
HAL Id: hal-04286137
https://hal.science/hal-04286137v1

Submitted on 15 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asynchronous Implementation of a Region-Based
Distributed Optimal Power Flow Algorithm
Alyssia Dong, Roman Le Goff Latimier, Hamid Ben Ahmed

To cite this version:
Alyssia Dong, Roman Le Goff Latimier, Hamid Ben Ahmed. Asynchronous Implementation of
a Region-Based Distributed Optimal Power Flow Algorithm. 2022 IEEE PES Innovative Smart
Grid Technologies Conference Europe (ISGT-Europe), Oct 2022, Novi Sad, Serbia. �10.1109/ISGT-
Europe54678.2022.9960399�. �hal-04286137�

https://hal.science/hal-04286137v1
https://hal.archives-ouvertes.fr

Asynchronous Implementation of a Region-Based
Distributed Optimal Power Flow Algorithm

Alyssia Dong, Roman Le Goff Latimier, Hamid Ben Ahmed
SATIE, CNRS, ENS Rennes

Bruz, France
{alyssia.dong, roman.legoff-latimier, benahmed}@ens-rennes.fr

Abstract—The scalability potential of distributed algorithms
justifies the growing interest for decentralized optimal power
flow (OPF) algorithms. However, the need for communication
can significantly slow down the convergence of these algorithms
when considering various communication hazards. To overcome
this issue, an asynchronous framework is proposed where de-
centralized agents only wait for a part of the overall messages.
Simulations considering communication and computation delays
will highlight the speedup and robustness of the asynchronous
version of the algorithm in the case of message losses.

Index Terms—ADMM, Asynchronous, Communication, Decen-
tralization, Optimal Power Flow

I. INTRODUCTION

The ever growing integration of renewable energy into the
electricity markets requires new ways to manage the power
network, like solving a constrained optimization problem in
a decentralized manner. Decentralization requires computing
agents, representing a single node or a multitude of nodes
grouped by regions, to solve their own local sub-problem and
to communicate with their physical neighbors. This communi-
cation requirement may be the source of significant slowdowns
of the algorithm convergence. Whilst such a decentralized
algorithm is mathematically scalable, it is hardly applicable
considering the messages delays and losses that occur in a
real implementation. Even when using a reliable protocol like
TCP, in which another message is sent again if the previous
one got lost, the induced idle time of a region can significantly
increase and slow down the entire resolution. By only waiting
for a fraction of the information instead of all of it, the idle
time can be cut down between each iteration. This is referred
to as an asynchronous implementation. We already studied in
[1] an asynchronous peer-to-peer electricity market algorithm
and showed that it empirically sped up the convergence time
by up to 40%.

The subject of asynchronous implementation of a decentral-
ized optimal power flow problem has been discussed in several
articles the past few years. The DC-OPF in [2] is solved in a
distributed manner using lagrangian multipliers. The updates
are asynchronous in the sense that the buses in the same area
exchange information after each iteration, while communica-
tion between the areas occurs only after multiple iterations.
This allows for a reduction of communication between regions.
However, the computation and the communication delays are

widely not considered. Another asynchronous DC-OPF [3] is
solved using a lagrangian relaxation method, in which not all
messages are waited for between each iteration. This allows
to cut down idle time between iterations, and results in an up
to 50% convergence speedup. An asynchronous, alternating
directions method of multipliers (ADMM) based, AC-OPF
distributed by regions is solved in [4]. The communication
delays are randomly drawn within a range and the computation
delays are fixed. They showed that under mild communication
delays, the convergence speed is comparable to faster than in
the synchronous case. However, there are no considerations
over the different size partitioning of the testcase and the
consequence over the computing delays. A multi-timestep,
ADMM based, economic dispatch optimization is studied in
[5]. Each local agent communicates only with their direct
neighbors, skipping messages to speed up the convergence.
The asynchronous results deviate from the optimal point if the
rate of communication delay is high. The combination of an
electrical and a heating system is studied in [6] using a relaxed
ADMM method to distribute the optimization between an elec-
trical power system and several district heating systems. They
highlight that the relaxed ADMM allows convergence towards
the optimal solution in presence of message losses as opposed
to the classic ADMM results which are not optimal. Also, [7]
studies a similar electrical and heat system for a combined
day-ahead and real-time energy management optimization.
They use event-triggered based communication in order to
reduce the number of exchanged messages. In the presented
articles, the asynchronous updates allow either a reduction
of the number of exchanges between computing agents or a
speedup of the convergence time. Considering a decentralized
algorithm split between R regions, the computation delays
depend on the size of each region and subsequently, the
number of regions R. In an asynchronous resolution, both
the computation and the communication delays play a role
in the final convergence time, as shown in [8]. The previous
articles did not address the influence of partitioning regarding
the convergence time of the resolution.

In this article, we will study the asynchronous imple-
mentation of the decentralized optimal power flow algorithm
presented in [9]. We will highlight that such algorithm results
in the optimal solution and is more robust to communica-
tion delay variations coming from message loss or overall
communication slowdowns. Both communication delays and978-1-6654-8032-1/22/$31.00 ©2022 IEEE

computations delays will be taken into account in our studies.
After summarizing the decentralized OPF formulation of [9]

in II, we propose in III an asynchronous implementation of the
algorithm. The simulation platform of our study is introduced
in IV as well as the communication and computation delay
models. Finally, simulation results are presented in V before
concluding on the study in VI.

II. EXISTING DECENTRALIZED OPTIMAL POWER FLOW

The optimal power flow problem (1) finds the optimal
injection plan for all generators in the electrical network so
as to minimize their costs while also respecting the physical
constraints of the network. Those constraints include power
flow limitation in the lines, voltage amplitude and phase
limitations and power limitations at each node.

min
∑
i∈N

fi(Pi) (1a)

w.r.t. Vi ∈ C, Pi ∈ R, Qi ∈ R, i ∈ N
s.t. Pi ≤ Pi ≤ Pi (1b)

Qi ≤ Qi ≤ Qi (1c)

Vi ≤ |Vi| ≤ Vi (1d)

Pi + jQi = Vi

∑
j∈Ni

Y ∗
i,jV

∗
j (1e)

N represents the set of all electrical nodes. For a node i ∈ N ,
let us define Ni as the set of neighbor nodes, fi the cost
function, Pi and Qi the active and reactive power respectively
and Vi the complex voltage. Yi,j designates the complex
admittance of the line connecting nodes i and j.

The resolution of such a problem is tenuous given the non-
linearity of the constraints. Also, the bigger the problem is,
i.e. the higher the number of buses and lines, the slower it
gets while also demanding higher computational resources.
To overcome this scalability issue, Erseghe proposed in [9]
a decomposition of the OPF problem into regions using the
ADMM decomposition method. Each region k is composed
of a given set of nodes Rk. We selected this algorithm for
its robustness and the fact that it does not require any form
of coordination. In this section, we only summarize the main
elements of the algorithm. The original article [9] should be
referred to for an exhaustive explanation.

At every iteration given in Alg. 1, each region k solves a
local OPF problem and communicates with all its neighbor
regions the updated value of its boundary nodes voltages
j ∈ Ok, where Ok is the set of region k boundary nodes.
In turn, the region waits for all messages from those regions
for their updated boundary values. Once all messages have
been received by the region, the calculations can continue
towards the next iteration. As soon as the algorithm has
reached convergence, a consensus on boundary nodes voltages
has been found between the neighbor regions and the overall
solution is equivalent to the optimal solution of (1).

It is worth noting that the convergence speed of this algo-
rithm strongly depends on the coefficients aj,k,h and dj,k that
can be found in (2) and (3). As explained in more details in

Algorithm 1 Region k parallel processing synchronous algo-
rithm, from [9]

while Convergence not reached do
if t = 0 then

Initialize local voltages vk = [vk,j]j∈Vk

else
Update local voltages via

vk ← argmin
v∈Qk

Fk(v) +
∑
j∈Ok

dj,k|vj − βk,j |2 (2)

end if
Send boundary values vk,j , j ∈ Ok to neighbor regions
while the boundary values vh,j , j ∈ Ok ∩ Oh have not
yet been received from neighbor regions h do

Wait
end while
Evaluate the mixing values for j ∈ Ok

uk,j ←
∑

h∈Mj

1

2
ãj,k,h(vk,j − vh,j) (3)

if t = 0 then
Reset memory mk,j ← 0, j ∈ Ok

else
Update memory mk,j ← mk,j + uk,j , j ∈ Ok (4)

end if
βk,j ← vk,j − uk,j −mk,j , j ∈ Ok (5)
t← t+ 1

end while

[9], those coefficients are calculated from tuning coefficients
wk specific to each region. Hence, it is important to find
the right coefficient set in order to speed up the synchronous
convergence as much as possible.

III. ASYNCHRONOUS ALGORITHM

In the synchronous implementation that we just presented,
the region must wait for all messages at each iteration be-
fore continuing its computations. This can be the source of
significant slowdowns if one of their neighbors has a long
computation time or if the communication network is saturated
and loses the message. In this case, the majority of the
idle time between iterations is caused by one region which
takes a longer time to answer back. Moreover, this delay will
spread to other regions and worsen with message losses. To
overcome this delay issue, several studies have been done on
asynchronous implementations of such distributed algorithms
[1], [3], [4], [8]. In this framework, instead of waiting for all
messages to arrive to one region before going on with the
computations, the computation is now triggered by the arrival
of specific messages. The data that has not been received yet is
replaced by the data from the previous corresponding received
message.

Once the local region k receives all messages concerning
a certain node j ∈ Ok from neighbor regions, then this node
is ready for the iteration computation. We also say that node

j is activated. Let us define At
k the set of activated nodes at

iteration t and region k. The trigger for next iteration t + 1
is not the number of received message, but the number At

k of
boundary nodes ready for computation, i.e. the cardinality of
At

k. The asynchronism parameter δ is defined as the ratio of
the minimum number of boundary nodes taken into account
at every iteration over the total number of boundary nodes of
the region:

At
k ≥ ⌈δ · |Ok|⌉, ∀t, ∀k (6)

with ⌈·⌉ the ceiling function, guaranteeing At
k ≥ 1. This

asynchronism parameter is the same throughout all regions.
When δ = 100%, the region has to wait for all boundary
nodes to be activated from its neighbors, it is thus equivalent
to the synchronous version of the algorithm. To prevent the
algorithm to self-obstruct, i.e. two regions are stuck waiting
for the other one’s messages and freeze the entire resolution,
a timeout is implemented. The variables updates in (2)-(5)
are only conducted for activated nodes j ∈ At

k. Likewise,
boundary nodes values are only communicated for activated
nodes. The optimality of this new asynchronous algorithm is
verified on a testcase in section V-A.

IV. SIMULATION PLATFORM

We apply the asynchronous algorithm to the IEEE 118
bus test case [10] illustrated in Fig. 1. The computation
time as well as the communication time are simulated. The
simulation runs on the Julia programming language, using
SimJulia for the discrete event simulation environment, and
PowerModels to solve the local problems. The simulations
are done on an AMD Ryzen 9 3950X chipset @3.5GHz.
Subsequently, the study will also be performed over multiple
network partitions in order to observe the impact of region size
over the convergence time of the algorithm. The parameters
for every partition are given in Table I.

A. Computation delays

We assume an affine relationship between the computation
time and the size of the region, which is equal to the number
of local variables. The coefficients of the affine relationship
were estimated by running the resolution of the IEEE testcases
included in the matpower dataset, with number of variables

1

2 3

4

5
6

7

8
9

10

Fig. 1. IEEE 118 test case 10 regions partition.

TABLE I
REGIONS AND WEIGHTS OF THE 118 BUS TEST CASE DIFFERENT

PARTITIONS. THE 3, 5 AND 8 REGIONS PARTITIONS ARE DERIVED FROM
THE 10 REGIONS ONE.

#Partitions Weights wk Region partitioning

10

0.221, 0.362, R1: {1-22,26,30,113,117} ;

0.401, 0.157, R3:{68,69,76-81,116,118 } ;

0.708, 0.594, R2:{33-42} ; R4:{45-58} ; R10:{59-67} ;

0.767, 0.048, R5:{82-97,101,102} ; R7:{108-112} ;

0.112, 0.538 R6:{23,25,27-29,31,32,114,115} ;

R8:{98-100,103-107} ; R9:{24,70-75}

8

0.222, 0.287, R1 ; R2 ; R3 ∪R9 ;
0.415, 0.433, R4 ∪R10 ;
0.600, 0.600, R5 ; R6 ;
0.388, 0.134 R7 ; R8

5
0.139, 0.938, R1 ∪R6 ; R2 ; R3 ∪R3 ;
0.849,0.400, R4 ∪R10 ;

0.526 R5 ∪R7 ∪R8

3
0.184, 0.345, R1 ∪R5 ∪R6 ∪R7 ∪R8 ;

0.773 R2 ; R3 ∪R4 ∪R9 ∪R10

ranging from 3 to 1200, and by performing a linear regression
over the computation time.

∆comp(k) = 0.25 ·Nvar(k) + 8 (ms) (7)

with ∆comp(k) the computation time in milliseconds for
region k, and Nvar(k) the number of local variables. For
the purpose of our study, the computation delays are only
determined by the number of local variables of each region.

B. Communication delays

The communication delays are simulated each time a mes-
sage is sent from a region to another. Considering a reliable
communication protocol like TCP-IP, any lost message is
detected and sent again after a certain timeout. We consider
constant communication delays throughout the whole study
if not specified otherwise: ∆comm = 50ms, as we believe
the geographical variations induce negligible delay variations
compared to the ones induced by message losses. A message
loss rate is added to this constant communication delay: each
message sent by a region has a probability ploss to be discarded
by a router on the way. Every time it occurs to one message,
an extra 2 ·∆comm is added to its total end-to-end delay.

V. SIMULATION RESULTS

A. Asynchronous solution and definition of convergence time

Firstly, let us empirically verify that the final solution of the
asynchronous algorithm corresponds to the optimal power flow
solution. The asynchronous decentralized algorithm is applied
to the 10 regions partition testcase, and the corresponding
results are presented in Fig. 2. The active power state during
the resolution is plotted in Fig. 2a over an arbitrary 120
seconds duration, for an asynchronous parameter value set to
δ = 10%. This highlights the convergence of the asynchronous
algorithm. The comparison between the optimal result and
the corresponding asynchronous result is shown in Fig. 2b.

0 50 100
0

2

4

Time (s)

A
ct

iv
e

po
w

er
 (p

.u
.)

(a)

5 10
0

2

4

Sync Async

Generator
A

ct
iv

e
po

w
er

 (p
.u

.)

(b)

Fig. 2. Generators active power representation for the asynchronous OPF
implementation, for an asynchronous parameter δ = 10%. Figure (a)
represents the variable values during the calculations of the asynchronous
decentralized OPF and figure (b) shows the comparison between the final
result with the optimal synchronous result.

We observe that the asynchronous result is very close to the
optimal one. A comparison value is defined in (8) in order
to quantify the error between the asynchronous solution and
the optimal solution at any given time t. The optimal solution,
given by (P ∗

i , Q
∗
i)i∈N , is computed using the PowerModels

Julia package.

c(t) =
∑
i∈N
∥(Pi(t) + jQi(t))− (P ∗

i + jQ∗
i)∥

2 (8)

The comparison value at the final time of Fig. 2 is equal
to 7.4 · 10−5 p.u. We define the convergence time of the
asynchronous algorithm as the time tconv when the comparison
value c(t) falls below a certain residual ϵ : c(tconv) ≤ ϵ.
For the remainder of this article, the residual value is set to
ϵ = 10−3 p.u.

B. Influence of the asynchronism parameter over the conver-
gence time

The influence of the asynchronous algorithm on the overall
convergence time is shown in Fig. 3 for a 10 region testcase
with no message loss, i.e. ploss = 0%. Each region alternates
through periods of computation followed by idle periods.
Fig. 3 represents the computation delays in green and the idle
delays in yellow, averaged over all regions of the testcase.

Firstly, we note that the computation time increases as
the asynchronous parameter δ decreases, which implies that
a greater number of computations are needed in the asyn-
chronous version to reach the same level of convergence than
the synchronous algorithm. Also, at the same time, the idle
period decreases as δ decreases, which is natural given that
the idle periods depend on the number of boundary nodes
values received by the region at each iteration. However, the
idle delay decrease is not sufficient to counter the increase of
computation time needed to reach convergence. This leads to
a general slowdown of the asynchronous algorithm compared
to the synchronous algorithm when considering a lossless
communication network, where all communication delays are
constant and equal.

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

Computation time

Idle time

delta (%)

Ti
m

e
(s

)

Fig. 3. Convergence time with respect to the asynchronous parameter δ, with
no message loss ploss = 0%. The computation delays and the idle delays
are averaged over the testcase regions.

We note that when δ = 80% and δ = 85%, the idle delays
are notably larger than for any other δ value. This is due
to a self obstructing phenomenon which occurs when two
regions wait for each other’s message in order to resume their
calculations, which then increase the total idle time.

C. Influence of message losses over the convergence time

In real conditions, the probability for a message to get
lost in the communication network is not null. Fig. 4 studies
the influence of the message loss probability ploss on the
convergence time of the algorithm, for the synchronous case
δ = 100% and the asynchronous case δ = 10%. We observe
for the synchronous version δ = 100% that the computation
time is not modified by the message loss rate. The idle time
is the only one that is impacted by the message losses, as it
significantly increases with the message loss probability ploss.
The asynchronous algorithm is robust against message losses
in that its idle time does not increase as much with ploss as in
the synchronous algorithm. This allows the asynchronous algo-
rithm to become faster than its synchronous counterpart from
ploss = 2% and up, justifying the need for an asynchronous
framework in real life conditions.

D. Effects of regions size

The partitioning of the problem into regions affects the
decentralized resolution, even considering the original syn-
chronous algorithm. As briefly explained in section II, the
convergence speed of the original OPF algorithm heavily
depends on the regions tuning coefficient set (wk)k, presented

10 100 10 100 10 100 10 100 10 100 10 100
0 1 2 3 5 10

0

30

60

90

120 Computation time

Idle time

Ti
m

e
(s

)

delta (%)
p_loss (%)

Fig. 4. Average computation and idle time with respect to the message loss
probability ploss for δ = 10% (left) and δ = 100% (right). The error bars
represent the standard deviation over 20 simulations.

TABLE II
AVERAGE CONVERGENCE TIME FOR THE SYNCHRONOUS ALGORITHM
UNDER A 5% MESSAGE LOSS RATE AND MAXIMUM SPEEDUP OF THE

ASYNCHRONOUS ALGORITHM.

Number of regions 3 5 8 10

Synchronous convergence time (s) 35 47 138 103

Max asynchronous speedup (%) 8.27 12.3 12.4 18.8

Corresponding delta (%) 10 30 20 60

in Table I. Those coefficients have been manually tuned to
minimize as much as possible the convergence time of each
testcase partition. Table II shows the average convergence time
of the synchronous algorithm for various partitions of the
118 bus testcase for a message loss rate of 5% and a fixed
communication delay of 50 ms per message. Even considering
that a bigger region has longer computation delays, the 3
region and 5 region cases are still significantly faster than
the cases which contain more regions. However, the 8 regions
case turns out to be the slowest one among the cases tested.

In order to quantify results dedicated to the asynchronous
resolution of the algorithm, we will focus on the maxi-
mum speedup for each partition for a message loss rate of
ploss = 5%, also compiled in Table II. It seems that the
more regions the problem is split into, the greater the speedup
of the asynchronous resolution compared to the synchronous
resolution. However, there does not seem to be any rule about
the asynchronous parameter δ value corresponding to this
maximum speedup. This study should be further developed
using more partitions of the same testcase, or even various
partitions of different testcases.

E. Effects of communication time

One last parameter affecting the total convergence time
is the communication delay. So far, a fixed communication
delay ∆comm = 50 ms was considered. For the following
results, the message loss rate is set to ploss = 5% whilst
the fixed communication delay ∆comm varies from 25 to
200 ms. Fig. 5 shows the computation and idle time with
respect to the fixed communication delay and for three values
of the asynchronous parameter δ: 10, 50 and 100%. The
synchronous convergence time increases by 370% whereas the
asynchronous one (δ = 10%) increases only by 168%. The
asynchronous version is consequently more robust to global
communication delay increases.

VI. CONCLUSION AND PERSPECTIVE

In the present contribution, the study of the asynchronous
resolution of the decentralized optimal flow presented in [9]
has been performed on a 118 bus testcase. Computation
and communication delays have been simulated, and their
influence over the total convergence time have been studied
and compared to the synchronous resolution. We proposed an
asynchronous framework of a decentralized OPF algorithm,
and showed that it converges towards the optimal solution. Ap-
plied to the IEEE 118 bus testcase, the asynchronous resolution
is faster than the synchronous one when the message loss rate

10 50 100
10 50 100
10 50 100
10 50 100
10 50 100
10 50 100
10 50 100
10 50 100

25 50 75 100 125 150 175 200

0

100

200

300
Computation time

Idle time

Ti
m

e
(s

)

delta (%)

Δ_com (ms)

Fig. 5. Average computation and idle time with respect to the fixed commu-
nication delay ∆comm and the asynchronous parameter δ. The message loss
rate is fixed at ploss = 5%.

is over 2%. We showed that the asynchronous resolution is
indeed more robust against longer and varied communication
delays than the synchronous resolution. It also allows for
a bigger speedup as the number of partition increases. The
partitioning influence over the convergence time, however,
requires further study. A bigger testcase should be investigated
in order to further highlight the influence of the asynchronous
resolution over a greater number of regions. Simulations over
different partitions of the same testcase for a given number
of regions also need to be considered to make the study less
dependent on partitioning. This however would require to find
the appropriate tuning parameters for every partition.

REFERENCES

[1] A. Dong et al., “Convergence analysis of an asynchronous peer-to-peer
market with communication delays,” SEGAN, vol. 26, p. 100 475, Jun.
2021, ISSN: 2352-4677.

[2] J. Mohammadi et al., “Asynchronous distributed approach for DC
Optimal Power Flow,” in IEEE PowerTech 2015, Aug. 2015, ISBN:
9781479976935.

[3] A. Huang et al., “Asynchronous decentralized method for intercon-
nected electricity markets,” Int. J. Electr. Power Energy Syst., vol. 30,
no. 4, pp. 283–290, May 2008, ISSN: 01420615. DOI: 10.1016/j.ijepes.
2007.10.001.

[4] J. Guo et al., “Impact of communication delay on asynchronous
distributed optimal power flow using ADMM,” in SmartGridComm
2017, 2018, ISBN: 9781538640555. DOI: 10.1109/SmartGridComm.
2017.8340718. arXiv: 1711.01702.

[5] M. H. Ullah et al., “Distributed Energy Optimization in MAS-
based Microgrids using Asynchronous ADMM,” in ISGT 2019, In-
stitute of Electrical and Electronics Engineers Inc., Feb. 2019, ISBN:
9781538682326. DOI: 10.1109/ISGT.2019.8791568.

[6] X. Liang et al., “Relaxed alternating direction method of multipliers for
hedging communication packet loss in integrated electrical and heating
system,” J. Mod. Power Syst. Clean Energy, vol. 8, no. 5, pp. 874–883,
Sep. 2020, ISSN: 21965420. DOI: 10.35833/MPCE.2020.000163.

[7] Y. Li et al., “Event-Triggered-Based Distributed Cooperative Energy
Management for Multienergy Systems,” IEEE Trans. Ind. Inform.,
vol. 15, no. 4, pp. 2008–2022, Apr. 2019.

[8] A. Dong et al., “Asynchronous algorithm of an endogenous peer-to-
peer electricity market,” IEEE PowerTech 2021, Jun. 2021.

[9] T. Erseghe, “Distributed optimal power flow using ADMM,” IEEE
Trans. Power Syst., vol. 29, no. 5, pp. 2370–2380, 2014, ISSN:
08858950. DOI: 10.1109/TPWRS.2014.2306495.

[10] R. Christie, 118 Bus Power Flow Test Case, 1993. [Online]. Available:
http : / / labs . ece . uw. edu / pstca / pf118 / pg tca118bus . htm (visited on
09/22/2021).

