
HAL Id: hal-04286101
https://hal.science/hal-04286101

Submitted on 15 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Steering Customized AI Architectures for HPC
Scientific Applications

Hatem Ltaief, Yuxi Hong, Adel Dabah, Rabab Alomairy, Sameh Abdulah,
Chris Goreczny, Pawel Gepner, Matteo Ravasi, Damien Gratadour, David

Keyes

To cite this version:
Hatem Ltaief, Yuxi Hong, Adel Dabah, Rabab Alomairy, Sameh Abdulah, et al.. Steering Customized
AI Architectures for HPC Scientific Applications. International Supercomputing Conference, May
2023, Hamburg, France. pp.125-143, �10.1007/978-3-031-32041-5_7�. �hal-04286101�

https://hal.science/hal-04286101
https://hal.archives-ouvertes.fr


Steering Customized AI Architectures
for HPC Scientific Applications

Hatem Ltaief1, Yuxi Hong1, Adel Dabah1, Rabab Alomairy1, Sameh Abdulah1,
Chris Goreczny2, Pawel Gepner3, Matteo Ravasi1, Damien Gratadour4, and

David Keyes1

1Extreme Computing Research Center
Division of Computer, Electrical, and Mathematical Sciences and Engineering

King Abdullah University of Science and Technology
Thuwal, Jeddah 23955 Saudi Arabia

Hatem.Ltaief, Yuxi.Hong, Adel.Dabah.1, Rabab.Alomairy, Sameh.Abdulah,
Matteo.Ravasi, David.Keyes@kaust.edu.sa

2Graphcore, Poland
chrisgo@graphcore.ai

3Warsaw University of Technology, Poland
pawel.gepner@pw.edu.pl
4Paris Observatory, France
damien.gratadour@obspm.fr

Abstract. AI hardware technologies have revolutionized computational
science. While they have been mostly used to accelerate deep learning
training and inference models for machine learning, HPC scientific ap-
plications do not seem to directly benefit from these specific hardware
features unless AI-based components are introduced into their simula-
tion workflows, for instance, as a replacement of their numerical solvers.
This paper proposes to take another direction in an attempt to democ-
ratize customized AI architectures for HPC scientific computing. The
main idea consists in demonstrating how legacy applications can lever-
age these AI engines after a necessary algorithmic redesign. It is crit-
ical that the resulting software implementations map onto the under-
lying memory-austere hardware architectures to extract the expected
performance. To facilitate this process, we promote the matricization
technique for restructuring codes (1) by exploiting data sparsity via al-
gebraic compression and (2) by expressing the critical computational
phases in terms of tile low-rank matrix-vector multiplications (TLR-
MVM) and batch matrix-matrix multiplications (batch GEMM). Alge-
braic compression enables to reduce memory footprint and to fit into
small local cache/memory, while batch execution ensures high occupancy.
We highlight how we can steer the Graphcore AI-focused Wafer-on-Wafer
Intelligence Processing Units (IPUs) to deliver high performance for both
operations. We conduct a performance benchmarking campaign of these
two matrix operations that account for most of the elapsed times of four
real applications in computational astronomy, seismic imaging, wireless
communications, and climate/weather predictions. We report bandwidth
and execution rates with speedup factors up to 150X/14X/25X/40X, re-
spectively, on IPUs compared to other systems.



2 H. Ltaief et al.

Keywords: BLAS for Graphcore IPU, Low-rank matrix computations,
Batch matrix operations, HPC scientific applications.

1 Introduction

Heterogeneity is ubiquitous in today’s hardware landscape. From large distributed
data centers supporting cloud computing to on-premise HPC Supercomputers,
the scientific community has witnessed major deployments of mainstream system
configurations composed of CPU hosts (e.g., x86/ARM) with accelerator/vector
devices. In fact, the adoption of hardware heterogeneity is a clear matter and
smartphones equipped with a myriad of specific hardware features (with a neural
engine, graphic cores, processing cores, etc.) may represent the ultimate exam-
ple, which may indicate a pathfinder of where high-end HPC architectures may
be heading. While this hardware heterogeneity trend legitimately raises seri-
ous concerns on general software development, productivity and sustainability,
the advancements of AI-focused hardware technologies have been tremendous
during the last decade. These have been supported by a business market contin-
uously expanding in size with applications in natural language processing (with
transformers) and computer vision (with convolutional neural network).

This paper demonstrates the capabilities of AI-focused architectures in solv-
ing some of the HPC grand-challenge scientific problems in computational as-
tronomy [28], seismic imaging [24, 34], wireless communications [10], and cli-
mate/weather predictions [5, 6, 11, 13]. In particular, we extend Graphcore AI-
focused Wafer-on-Wafer Intelligence Processing Units (IPUs) functionalities [20,
21, 38] to address the computational challenges raised by the aforementioned
applications with regards to real-time constraints and memory-bound mode of
execution. The programming efforts required to steer these customized AI accel-
erators for supporting HPC scientific applications are part of a general call for
action. Indeed, while it is true that fast matrix engines may not be inherent to
real applications for which sustained bandwidth is the main metric for perfor-
mance [17], algorithmic innovations are key to make compatible HPC workloads
with the underlying AI architectures. This necessitates to express the algorithms
in terms of matrix structures to be compliant with the specific features provided
by hardware accelerators (e.g., NVIDIA Tensor Cores). Although this may some-
times come at the price of performing more floating-point operations (flops),
the computational power of the fast matrix engines may compensate the flops
increase. Here, we instead redesign the algorithms that drive the simulations
of these four real applications by means of tile low-rank matrix-vector multi-
plication (TLR-MVM) for the computational astronomy and seismic imaging
applications and batch matrix-matrix multiplications (batch GEMM) for the
wireless communication and climate/weather applications. The former opera-
tion actually reduces memory footprint using algebraic compression to fit in
memory-austere environment of IPUs and leverage the high bandwidth of lo-
cal on-processor memory, while improving time complexity. The latter operation
permits to cast original memory-bound operations into batch GEMM operations



Steering Customized AI Architectures for HPC Scientific Applications 3

to improve the hardware occupancy. In particular, MVM accounts for 90% of the
real-time controller required on major ground-based deployed telescopes (e.g.,
the Very Large Telescope [4], the Keck Observatory [2], the Subaru telescope [3],
the European Extremely Large Telescope [1], etc.) to compensate for the atmo-
spheric turbulence. For the seismic imaging application, TLR-MVM accounts
for 90% of the total elapsed time, as highlighted in Figure 1 of [24]. As for the
batch GEMM kernel, it accounts for 80% of the total elapsed time of the wireless
communication [10,15] as well as the climate/weather applications [13,14]. These
algorithmic changes turn out to be key in extracting performance across various
architectures [11,13,24,28], but most importantly, makes IPUs (and potentially
similar wafer-on-wafer chip technologies with limited on-chip memory) and their
resource disaggregation compatible with these HPC scientific applications.

We develop TLR-MVM and batch GEMM operations on IPUs and report
time-to-solution, sustained bandwidth, and execution rate. The two latter met-
rics permit to assess how some of the memory-bound workloads on standard x86
or GPUs can translate into compute-bound mode of operation (from an abso-
lute performance perspective) once deployed on IPUs. We compare our imple-
mentations against other hardware architectures and highlight the performance
superiority of our numerical algorithms. We achieve on IPUs speedup factors up
to 150X/14X/25X/40X for computational astronomy, seismic imaging, wireless
communication, and climate/weather predictions, respectively, against a myriad
of hardware systems. These speedups correspond to the performance improve-
ment of the most time-consuming kernels from these applications that are of-
floaded to IPUs, while the remaining ones run on the host, similar to the hybrid
CPU/GPU trend observed in the HPC community.

The remainder of the paper is as follows. Section 2 presents related work and
list our main contributions. Section 3 recalls the batch execution model and the
TLR-MVM algorithm, while emphasizing on the importance of the matrization
when designing numerical algorithms to remain on par with the AI hardware
evolution. We present the Graphcore IPU hardware technology in Section 4.
Section 5 describes the four HPC scientific applications of interest in this paper.
We provide implementations details of our numerical algorithms in Section 6.
Section 7 reports the performance results in time-to-solution, sustained band-
width, and execution rate obtained on IPUs and compare our implementation
against other hardware architectures. Section 8 discusses current IPU hardware
limitations and gives some perspectives moving forward to further steer IPUs as
a general-purpose chip. We conclude in Section 9.

2 Related Work and Research Contributions

Leveraging AI-focussed hardware architectures for general-purpose HPC work-
loads is still at its infancy due to the significant efforts it requires to map the ex-
isting numerical algorithms on these chips, originally designed for machine learn-
ing workloads (i.e., training and inference) as studied in [9, 26]. Previous work
for accelerating breadth-first graph traversals on IPUs [12] have demonstrated



4 H. Ltaief et al.

performance improvement for the class of graph algorithms. Stencil computa-
tions for solving the 3D wave equation using finite-difference method in seismic
imaging applications have been ported into Graphcore IPU [26] and Cerebras
Wafer-Scale Engine (WSE-2) [25]. The authors in the latter work rely on a lo-
calized communication strategy to mitigate internal data movement overheads,
while ensuring data locality for maximum bandwidth extraction from local flat
on-chip memory. This matrix-free algorithmic approach that represents the core
engine for PDE solvers is friendly to Graphcore and Cerebras hardware tech-
nologies thanks to its minimal memory footprint.

In this paper, we revisit the numerical algorithms of real HPC applications,
as originally introduced in computational astronomy [28], seismic imaging [24,
34], wireless communications [10], and climate/weather predictions [5, 13]. We
integrate low-rank matrix compressions and batch executions to reconcile them
with IPUs hardware design. Based on the numerical kernel primitives used for
machine learning on IPUs, we develop these operations by composing higher-
level APIs for linear algebra operations, i.e., Level-2 and Level-3 BLAS routines,
that were not available natively on the vendor-optimized numerical library. We
further tune memory accesses of our algorithms on IPUs and achieve significant
performance improvement.

We emphasize the three main contributions of this paper: (1) the matriciza-
tion approach that enables these HPC applications, otherwise intractable, to
exploit IPUs by casting computations on compressed data structures, (2) the
batch mode of execution to maintain high hardware utilization, and (3) the re-
ported significant performance speedups that may further democratize AI hard-
ware and accelerate their adoption into the wide HPC application landscape on
heterogeneous environments.

3 Batching/Compression or Why Matricization Matters?

We are interested in leveraging IPUs computational and throughput capabilities
to accelerate HPC scientific applications that rely on matrix formulations. We
employ batched kernel executions to map the matrix operation onto IPUs’ local
memory and address the resource disaggragation challenge. In addition, if the
dataset is large and do not fit on the chip, we exploit Tile Low-Rank (TLR)
matrix approximation, an algorithmic technique that consists in splitting the
matrix operator into tiles and compressing them using an algebraic method of
choice (e.g., rank-revealing QR, randomized SVD, etc.), while enabling matrix
algebra on the compressed data structures. Figures 1-6 highlight the compression
procedure for a 4× 6 tiled matrix followed by the Matrix-Vector Multiplication
(MVM) applied to its compressed form. We refer to [6, 7, 28] for more techni-
cal details. The approximation error introduced is controlled by an accuracy
threshold that maintains the application’s numerical integrity [5, 13,24,34].

Matricization is a possible approach in maintaining numerical algorithms on
par with the AI hardware evolution so that the specific hardware features (e.g.,
fast matrix engines with support for mixed-precision computations) can be eas-



Steering Customized AI Architectures for HPC Scientific Applications 5

Fig. 1: Dense MVM. Fig. 2: Compress. Fig. 3: Stack the bases.

Fig. 4: V-Batch of MVM. Fig. 5: Slicing V->U. Fig. 6: U-Batch of MVM.

ily integrated and adopted by HPC scientific applications. There is no free lunch
and matricization may not be straightforward for all applications. However, when
possible, the redesigning efforts may be worth it and these efforts are usually
upfront. The main benefits of matricization are twofold: (1) significant perfor-
mance improvement in bandwidth for memory-bound codes and higher execution
rates for compute-bound kernels thanks to dedicated matrix engines (e.g., Intel
AMX, NVIDIA Tensor Cores, Graphcore AMP), while being on par with the
overall hardware evolution, and (2) high user-productivity when deploying on
new hardware architectures across vendors.

4 The Graphcore IPU Hardware Technology

4.1 Architecture Principles and Hardware Details

The Bulk Synchronous Parallel (BSP) model forms the basis for the hardware
architecture of Graphcore’s Bow Intelligence Processing Unit (IPU) and Poplar
graph framework software. The BSP model is fundamental to the operation of
IPU processors, which use this parallel computing scheme to schedule data pro-
cessing and exchange operations. BSP involves a three-step process alternating
compute, communication and data synchronisation.

Asynchronous computation. Each process performs local computations
using only local memory. This phase does not involve any communication be-
tween processes.

Communication. Data is exchanged by the processes and each process may
communicate with its target counterpart. In addition to exchanging intermediate
computation results, processes may also engage in remote direct memory access
in which they request access to data from remote memories. This remote data is
then received in a subsequent communication phase. Each process can therefore



6 H. Ltaief et al.

access other local memory as a remote memory, effectively enabling it to retrieve
any memory from the entire aggregate system memory.

Synchronization. The synchronization phase acts as a check point or bar-
rier. Once a process reaches this phase, it will only continue to the next phase
once all processes have reached this check point. This stage does not involve any
computation or communication unless the barrier itself specifically requires this.

In terms of its hardware architecture, the IPU is defined as a massively paral-
lel, distributed memory, multiple-instruction, multiple data (MIMD) processor.
The IPU has been designed from the ground up to process machine learning al-
gorithms, with explicit programming instructions. The IPU’s tile Instruction Set
Architecture-ISA [37] comprises of hardware elements such as Accumulating Ma-
trix Product-AMP units (i.e., dot product) and Slim Convolution Units-SLICs,
which enable the IPU to complete up to 64 multiply-add instructions per clock
cycle. These AMP units are eventually used to compose the necessary kernels
and accelerate the HPC applications studied in this paper.

4.2 Programming Model and Poplar Development Kit

Graphcore’s Poplar software is designed alongside the IPU to serve as a pro-
gramming interface. Poplar is a graph programming frameworks that enables
direct programming in Python and C++, building on the capability of C++ to
form a new IPU operation model founded on three elements – vertices, com-
putation graphs and control programs. The IPU computation graphs define the
input/output relationship between variables and operations. Within the com-
putation graph, there is the tensor variable (i.e., the variables in the graph),
the compute tasks (vertices) and the edges that connect them. In terms of the
tensor variable, data is stored in the graph in fixed-size multi-dimensional ten-
sors. A vertex is a specific task to be performed and the edges determine which
variable elements the vertex should process. A vertex can connect to a single
element or multiple elements. A codelet is associated with every vertex: this is a
piece of code that defines the inputs, outputs and internal state of a vertex. The
codelet is implemented in standard C++11 [26]. Finally, we have the control
program, which organizes the selection of processors, loads compiled graphs into
the hardware and then executes graph programs. This includes the mapping of
data transfers between the IPU and the host, memory structures, and initiating
transfers. As soon as the program has been implemented, all the code and data
structures required to run the program sit in the IPU’s distributed memory [26].
Thanks to the control programs, the appropriate vertices can be executed. On
top of low-level Poplar framework, Graphcore provides a PopLibs C++ library
that contains higher-level mathematical and machine-learning functions. These
underlie the Graphcore implementation of industry-standard ML frameworks,
such as TensorFlow and PyTorch, but can also be used for other purposes. The
massive parallelism and memory locality of IPU processor is well abstracted by
PopLibs. For large data operations like matrix-matrix multiplications, Graphcore
software handles the work distribution between IPU tiles to keep even memory
and compute utilisation across all cores for load balancing purposes.



Steering Customized AI Architectures for HPC Scientific Applications 7

5 HPC Scientific Applications

This section describes the background of four major HPC applications in compu-
tational astronomy [28], seismic imaging [24, 34], wireless communications [10],
and climate/weather predictions [5, 11, 13]. We identify the necessary algorith-
mic changes before deploying the most time-consuming computational kernels
on Graphcore IPUs.

5.1 Adaptive Optics in Computational Astronomy

Using Deformable Mirrors (DM), arranged in closed-loop feedback control with
wavefront sensors (WFS) in Adaptive Optics (AO) systems [16], correcting for
optical aberrations introduced by atmospheric turbulence, giant optical tele-
scopes are able to acquire sharp high-contrast images of faint and distant targets.
As shown in Fig. 7, the real-time controller (RTC) [18] is responsible for inter-
preting measurements from WFS into commands to the DM actuators, adapting
in real-time to the rapidly changing atmospheric turbulence conditions. Thanks
to advances in computing, WFS and DM technologies, AO systems are becoming
more capable and can be deployed on today’s largest ground-based telescopes.
However, classical AO correction is only valid in a very small patch of sky.
Multi-Conjugate Adaptive Optics (MCAO) solves this by using a series of DMs
to compensate the turbulence in volume [35]. This increase in AO complexity
inevitably translates into a significant additional load on the RTC sub-system.

A robust control scheme for AO is based on regular dense Matrix-Vector Mul-
tiplication (MVM), which has a low arithmetic intensity and is thus limited by
sustained memory bandwidth. Assuming a typical atmosphere coherence time of
a few ms and in order to compensate for most of the accessible frequency content
of the turbulence, the AO RTC latency should be kept below 250 µs [22]. This
250 µs specification leads to a memory bandwidth requirement of about 1600
GB/s for single precision floating-point MVM, i.e., several times larger than
what is achievable on current high-end dual-socket CPU servers and typically
even higher than on a single high-end GPU. Can the IPUs stand as an alter-
native hardware solution to outsmart the atmospheric turbulence and meet the
real-time computational challenges of ground-based giant optical telescopes? A
batched dense MVM is necessary to evenly split the matrix across local memories
of the IPUs and match the underlying IPU hardware architecture.

5.2 Seismic Processing and Imaging

Reflection seismology is a remote sensing technique that uses principles of wave
propagation to image the Earth’s subsurface from reflected seismic waves. Most
algorithms for processing and imaging of seismic data, originally developed in
the 80’s and 90’s, operate on individual shot gathers (i.e., ensemble of traces
recording the energy produced by a single source at the time); this naturally lends
to embarrassingly parallel implementations that loop over the dataset once per
processing step. A paradigm shift has however emerged in the early 2000s, with



8 H. Ltaief et al.

a large portion of modern algorithms relying on wave-equation, inversion-based
formulations [42]: such algorithms require repeated access to the entire seismic
data in order to evaluate the so-called Multi-Dimensional Convolution (MDC)
operator and its adjoint and solve an underlying inverse problem. Examples
of such a kind are closed-loop SRME [27], estimation of primaries by sparse
inversion [23], multi-dimensional deconvolution [8,33,39], and Marchenko-based
processing and imaging [30,31,40,44].

Fig. 7: End-to-end AO simulation [19]
relies on MVM in the RTC to outsmart
the atmospheric turbulence.

Fig. 8: From seismic acquisition to pro-
cessing data for the MDC operator that
involves TLR-MVM operations.

From a practical standpoint, the MDC operator can be viewed as the chain
of the following three linear operations: a Fast Fourier Transform (FFT) to con-
vert the input seismic data from the time to the frequency domain, followed by
a batched dense Matrix-Vector Multiplication (MVM) with the frequency rep-
resentation of the kernel of the MDC operator, and by an Inverse FFT (IFFT)
to bring back the output to the time domain (see Fig. 8 and [24,32,34] for more
details). Whilst the kernel of the MDC operator varies from application to ap-
plication, its sheer size renders the batched MVM to be the main computational
bottleneck of all of the above mentioned algorithms. As discussed in Section 3,
TLR-MVM can be used in an attempt to reduce both the memory requirements
and computational cost. When performing MDC with dense frequency matrices,
the arrangement of sources (along the rows of each matrix) and receivers (along
the columns of each matrix) can be arbitrary as long as they remain consistent
with that of the input vector. Such reordering becomes much more relevant in
the context of TLR algebraic compression as it may lead to better or worse
block compression capabilities. Following [34], the Hilbert space-filling curve al-
gorithm has been chosen as the best performing re-arrangement approach. We
refer to [24, 34] for a detailed study on the impact of accuracy. Compression
and reordering are key algorithmic aspects to consider, when deploying big data
applications on hardware with limited memory capacities, e.g., IPUs.



Steering Customized AI Architectures for HPC Scientific Applications 9

5.3 Climate/Weather Prediction Applications

Geostatistical emulations for climate/weather prediction applications rely on
computational statistics methods based on the maximum likelihood estimation.
The optimization model requires solving a large system of linear equations. This
involves a Cholesky factorization of the covariance matrix of dimension the num-
ber of geospatial locations, at every iteration of the optimization process. To
reduce algorithmic complexity and memory footprint, we exploit the data spar-
sity structure of the operator and perform TLR matrix approximation based
on algebraic compression, as originally introduced in [5, 6, 13, 14]. This neces-
sitates the development of new kernels composed of several successive calls to
BLAS/LAPACK functions (e.g., QR/GEMM/SVD), including the most time-
consuming, i.e., TLR-GEMM operating on thin-shaped pairs of U/V matrices
using the lower part of the symmetric matrix. To increase hardware occupancy,
a left-looking variant of the TLR-Cholesky is employed in [11], which then per-
mits to expose opportunities for batched GEMM kernel executions. For instance,
Fig. 9 shows the updates on the matrix tile in red that requires batched GEMMs
involving the compressed tiles located in the green/yellow/blue (overlapped) re-
gions. These algorithmic steps are critical to make IPU compatible with such
big data applications. otherwise intractable.

5.4 Wireless Communications

The increased number of connected devices and data demand under extreme
low latency puts today’s base station under a huge burden. Massive Multiple-
Input Multiple-Output (M-MIMO) technology uses hundreds of antennas at
base-station to fulfills the requirement of next-generation networks in terms of
data rate and service quality while supporting a huge number of connected de-
vices. However, this technology suffers from high signal detection complexity and
accuracy, which is critical for several applications, such as self-driving cars.

Indeed, reducing M-MIMO detection latency to meet the real-time require-
ment while guaranteeing good detection accuracy represents a challenging prob-
lem. Linear detection algorithms maintain low complexity. However, their lack of
reliability cannot be accepted [43]. Optimal non-linear detection approaches [41]
have high accuracy, but they are not scalable due to the M-MIMO exponential
complexity. The multi-level detection approach proposed in [10,15] is a promis-
ing scalable and accurate approach for M-MIMO detection problem. It itera-
tively extends a single path with several symbols within L levels until reaching
a complete solution path with the shortest distance among all existing paths.
These symbols represent the best combination of aggregating multiple levels.
This technique increases the accuracy in terms of error rate performance since it
uses coefficients from multiple levels to better distinguish the optimal path. As
a result, the more levels used, the more confident we are in getting near-optimal
solutions.

The computation of these distances can be casted in terms of small matrix-
matrix multiplication operations (i.e., GEMM) with dimensions M=K=L and N



10 H. Ltaief et al.

Fig. 9: Tile low-rank Cholesky fac-
torization powered by a batch
GEMM for climate applications.

Fig. 10: Massive MIMO workflow
powered by a batch GEMM detec-
tion for wireless communication.

the number of paths within the window. These well-established GEMM kernels
increase the arithmetic intensity of the algorithm and may account up to 80%
of the global execution time of the method. However, as highlighted in Fig. 10,
the resulting matrix generated by this multi-level algorithm has a short and
wide shape, which may prevent it from extracting the full hardware potential,
especially in presence of disaggregated memory resources as in IPUs. The sin-
gle short and wide GEMM must be redesigned into a batched GEMM, while
mapping each Bi and Ci blocks along with A onto the local memory.

6 Implementation Details

In the case of the Graphcore Poplar SDK, all linear algebra operations like
MVM and GEMM are exposed in form of the PopLibs C++ API that was built
from the ground up as a foundation for AI frameworks such as PyTorch and
TensorFlow. It is well optimized for this task and allows the user to leverage a
high number of independent tiles without needing to manually split the workload
among them. It is also based on the concept of computation graphs whereby all
compute operations are first compiled into one or more graphs and only then
run in this form on the IPU. Those two assumptions make the PopLibs API
very different from the standard BLAS interface where parallelism is handled
outside of BLAS and compute kernels are run as soon as they are called. It is
not straightforward to create a translation layer of BLAS calls which the CPU
implementation of TLR-MVM is dependent on to be used on the PopLibs API.

The logical equivalent of MVM and GEMM BLAS calls in FP32 in PopLibs
is the matMul function. For the computational astronomy applications, the real



Steering Customized AI Architectures for HPC Scientific Applications 11

datasets fit in IPUs’ local memory so a single call to PopLibs matMul function
can be issued, while ensuring proper mapping is done onto the disaggregated
memory resources to achieved the required throughput. For the seismic imag-
ing application and its large datasets, the TLR-MVM algorithm comes to the
rescue to reconcile the IPUs architectures with the application. TLR-MVM al-
gorithm performs multiple MVM kernels on stacked tile columns (Fig. 4) and
rows (Fig. 6), with in-between intermediate slicing phase (Fig. 5). PopLibs offers
a matMulGrouped call that aggregates multiple independent MVM or GEMM
into a single call and schedules all of them to be performed in parallel, distributed
amongst IPU tiles. The TLR-MVM implementations on IPUs comes down to a
sequence of three functions, as described in Algorithm 1: (1) perform batched
MVM on the group of matrix-vector pairs where each pair consists of stacked
tile column Vj and corresponding nb portion of the input vector x to get the
set of output vectors Y v, (2) project/slice the set of output vectors Y v from Vj
bases to Uj bases to get the set of output vectors Y u, and (3) perform batched
MVM on group of matrix-vector pairs where each pair consists of stacked tile row
Ui and corresponding output vector column of Y u. However, the dimensions in
all multiplications must be equal. In TLR-MVM, each stacked tiles column/row
can have different dimensions after matrix compression, as seen for the seismic
imaging application. To leverage the parallelism capabilities of PopLibs, it is
then necessary to make all dimensions equal to avoid overheads from stragglers
due to the BSP model of IPU, as explained in Section 4. Therefore, as shown
in Algorithm 2, we need to pad stacked tiles columns/rows with zeros at least
up to the size of the biggest element. The actual size of padding is then deter-
mined empirically to deliver the best performance with acceptable overheads on
memory utilization.

Algorithm 1: Poplar pseudo-code of TLR-MVM.
1: Yv = poplin::matMulGrouped(V,X) (i.e., batch MVM of V bases, see Fig. 4)
2: Yu = popops::multiSlice(Yv) (i.e., project from Yv to Yu via slicing, see Fig. 5)
3: Y = poplin::matMulGrouped(U,Yu) (i.e., batch MVM of U bases, see Fig. 6)

For the climate application, the large dense data-sparse matrix needs to be
compressed first using TLR algebraic compression [6,13,14]. The TLR Cholesky
factorization can then be redesigned in a left-looking variant [11] to further
expose batched GEMM operations that account for most of the elapsed time.
For the wireless communication application, the redesign of the detection algo-
rithm into an efficient GEMM-based approach [10, 15] enables to leverage high
throughput of customized hardware features for such a massively parallel op-
eration. Both applications can offload their batched GEMM on IPUs by using
PopLibs matMulGrouped function to address the computational and curse of
dimensionality challenges for the former and to meet the real-time constraints
for the latter by achieving high hardware occupancy.



12 H. Ltaief et al.

Algorithm 2: Pseudo-code of the offline zero padding step.

Require: Compress A
Ensure: max = 0
1: for each tile column do
2: if sum of ranks > max then
3: max = sum of ranks
4: end if
5: end for
6: for each tile row do
7: if sum of ranks > max then
8: max = sum of ranks

9: end if
10: end for
11: mod = 200 (identified empirically)
12: max = max + mod - max % mod
13: for each stacked tile column Vi do
14: append (max - sum of ranks) zeros
15: end for
16: for each stacked tile row Ui do
17: append (max - sum of ranks) zeros
18: end for

7 Performance Results

Fig. 11: Hardware/software descriptions and programming models.

The experiments are carried on six architectures, i.e., Intel IceLake (code-
named ICX), AMD Epyc Milan (Milan), Fujitsu A64FX (A64FX), NEC SX-
Aurora TSUBASA (Aurora), NVIDIA A100 GPU (A100), and Graphcore Bow
IPUs (IPUs). A detailed hardware and software descriptions along with the pro-
gramming models are illustrated in Fig. 11. We report performance from the
median obtained out of 1000 runs on IPUs. All computations are performed
using IEEE 754 FP32 arithmetic.

Figure 12 shows the performance of batched dense MVM for the astronomy
application. The main numerical kernel, i.e., FP32 Level-2 BLAS MVM, is de-
ployed on single IPU using the real datasets from the MAVIS flagship MCAO
instrument for ESO’s Very Large Telescope [36], which engenders batched MVM
operations on a 5K X 20K matrix size [28] to be performed in real-time. Our
batched dense MVM implementation on IPUs achieves 5X speedup factor against
Aurora and up to 150X against Milan (DDR4 memory). In terms of absolute
performance, our batched dense MVM implementation scores 2 Tflops/s for a



Steering Customized AI Architectures for HPC Scientific Applications 13

Level-2 BLAS operation that is usually limited in performance by the bus bandi-
wdth. To give a perspective, the obtained performance is equivalent to half of
LINPACK benchmark (FP32) on the two-socket 26-core Intel IceLake system.

Milan ICX A64FX A100 Aurora IPU0

1000

2000

3000

4000

Ti
m
e 
(u
s)

22510

5x

(a) Time-to-solution.

Milan ICX A64FX A100 Aurora IPU0

1000

2000

3000

4000

Ba
nd

wi
dt
h 
(G

B/
s)

(b) Sustained bandwidth.

Milan ICX A64FX A100 Aurora IPU0.0

0.5

1.0

1.5

2.0

2.5

3.0

TF
lo
ps

/s

(c) Execution rate.

Fig. 12: Performance of Dense MVM for the astronomy application.

For the seismic imaging application, the batched dense MVM is not an option
anymore for IPUs since the large matrix size in addition to the single complex
precision do not allow the matrix to fit on the on-chip memory. Therefore, we
have to use TLR algebraic compression on the matrix and deploy our TLR-MVM
kernel. We design our single complex TLR-MVM into two FP32 TLR-MVM for
handling the real and imaginary parts. With TLR matrix approximations, the
matrices can now fit into the local memory of the IPUs. To further improve per-
formance, we apply two optimizations: reordering and padding, as explained in
Sections 5.2 and 6, respectively. The former reduces memory footprint and time
complexity, while the latter ensures load balance on IPUs. Figure 13 shows the
impact of padding (represented by the stairs shape since matrices are clustered
into bins to mitigate the padding overheads) in terms of MB with limited over-
head on all frequency matrices using the default and Hilbert ordering schemes.

0 50 100 150
Frequency Matrices Index

0
100
200
300
400
500
600
700

Da
ta
 si
ze
 (M

B)

IPU with padding
IPU without padding

(a) Normal ordering.

0 50 100 150
Frequency Matrices Index

0
100
200
300
400
500
600
700

Da
ta
 si
ze
 (M

B)

IPU with padding
IPU without padding

(b) Hilbert ordering.

Fig. 13: Overhead (in MB) of padding for the seismic imaging application.



14 H. Ltaief et al.

Figure 14 shows the performance of TLR-MVM for the seismic imaging ap-
plication using Hilbert ordering on two IPUs. We do not show the slower perfor-
mance obtained for the default ordering due to space limitation. The scalability
on two IPUs is a bit limited but this is also expected due to the small memory
footprint after applying Hilbert ordering that does not permit saturation.

0 50 100 150
Frequency Matrices Index

0

20

40

60

80

100

Ti
m
e 
(u
s)

1 IPU
2 IPUs

(a) Time-to-solution.

0 50 100 150
Frequency Matrices Index

0

2000

4000

6000

8000

10000

Ba
nd

wi
dt
h 
(G

B/
s)

1 IPU
2 IPUs

(b) Sustained bandwidth.

0 50 100 150
Frequency Matrices Index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

TF
lo
ps

/s

1 IPU
2 IPUs

(c) Execution rate.

Fig. 14: TLR-MVM performance for the seismic application on two IPUs.

0 50 100 150
Frequency Matrices Index

0

100

200

300

400

500

Ti
m
e 
(u
s)

Milan
ICX
A100

Aurora
IPU

(a) Time-to-solution.

0 50 100 150
Frequency Matrices Index

0

1000

2000

3000

4000

5000

Ba
nd

wi
dt

h 
(G

B/
s)

Milan
ICX
A100
Aurora
IPU

(b) Sustained bandwidth.

0 50 100 150
Frequency Matrices Index

0.0

0.2

0.4

0.6

0.8

1.0
TF
lo
ps
/s

Milan
ICX
A100
Aurora
IPU

(c) Execution rate.

Fig. 15: TLR-MVM performance comparisons for the seismic application.

Figure 15 highlights performance comparisons of TLR-MVM on 150 fre-
quency matrices for the seismic imaging application against other hardware ar-
chitectures. Our TLR-MVM implementation achieves up to 14X performance
speedup against Milan. In terms of absolute performance, our implementation
scores more than 1 Tflops/s for a kernel that is intrinsically memory-bound.

Figure 16 shows the performance of batched GEMM for wireless commu-
nication and climate prediction applications. We only compare against GPUs
since x86/ARM/Vector are not meant for compute-bound kernels. The wire-
less communication batch size (M=N=K=8 ) comes from aggregating four tree
levels, resulting in a real matrix A with eight rows and columns. The batch
count, on the other hand, refers to the total number of possible combinations.
For instance, aggregating four levels with 32-QAM modulation generates 8M
combinations computed resulting in a batch count close to 1M. The batched



Steering Customized AI Architectures for HPC Scientific Applications 15

GEMM in the climate application needs to be grouped until each single matrix
block fits the local memory, while ensuring an even workload distribution. Com-
pared to [10] (but rerun on NVIDIA A100 with 1.1 Tflops/s) and [11] (results
obtained on NVIDIA V100 with 1.1 Tflops/s), we achieve 25X and 40X for wire-
less communication and climate applications, respectively. By launching these
kernels in batched mode, we activate all tiles on the IPUs, allowing high abso-
lute performance, while preserving the integrity of the IPU hardware resource
disaggregation.

Fig. 16: Batched GEMM performance for MIMO and climate applications.

8 Limitations and Perspectives

While the paper demonstrates IPUs’ capabilities, there are some areas for im-
provement for Poplar SDK, e.g., enabling support for a standard BLAS/LAPACK
interface. Currently, porting HPC applications based on TLR-MVM kernels re-
quires the developer to write a separate implementation for IPU that is fun-
damentally different from industry-standard solutions. This type of support is
a challenging task to accomplish considering how the Poplar SDK is designed,
however Graphcore is already working on delivering this. For instance, this will
enable to run the compression phase on IPUs instead of the host and ensure
the whole computational pipeline is resident on the chip. While this may not
be a problem for seismic imaging application since the compression is needed
only once upfront, it may raise performance bottlenecks for the climate/weather
applications application that requires matrix factorization and solve at every
iteration of the optimization procedure. One element that has not been men-
tioned yet is the graph compilation time. Poplar builds one compute graph that
contains all the operations instead of running small compute kernels. This allows



16 H. Ltaief et al.

for greater runtime performance as there is very little communication required
between the x86 host and the IPU. It also allows Poplar to apply multiple graph-
level optimisations that further improves performance, but at the cost of graph
compilation time increase. In some cases, this can become problematic and reach
minutes of x86 host time to perform a fraction of a second of compute on the
IPU. Whereas it can work very well for AI tasks when the same set of operations
is run thousands of times, this can become problematic for the one-time compute
kernels which are commonplace in HPC.

9 Conclusion and Future Work

This paper presents necessary algorithmic techniques to make the Graphcore
Bow IPUs compliant with state-of-the-art HPC scientific applications. Based
on low-rank matrix approximations and batched matrix-matrix multiplication,
we leverage the high bandwidth and throughput of IPUs and deliver high per-
formance with four different applications that share common matrix algebra
operations. We report speedup factors up to 150X/14X/25X/40X for computa-
tional astronomy, seismic imaging, wireless communication, and climate/weather
predictions, respectively, against a myriad of hardware architectures. This high-
lights the need to pursue the matricization efforts to ensure HPC applications
can keep up with latest AI hardware advancements. In terms of algorithmic
innovation, algebraic compression and batched execution appear to be critical
ingredients with a significant impact on performance and throughput, not only
on IPUs as studied herein, but also on a myriad of hardware architectures from
a relative performance perspective. For future work, we would like to explore
FP16 for some of these HPC applications and demonstrate the applicability of
mixed-precision computations [29].

References

1. The European Extremely Large Telescope (2023), https://elt.eso.org
2. The Keck Observatory (2023), https://www.keckobservatory.org
3. The Subaru Telescope (2023), https://subarutelescope.org/en/
4. The Very Large Telescope (2023), https://www.eso.org/public/teles-instr/

paranal-observatory/vlt/
5. Abdulah, S., Ltaief, H., 0002, Y.S., Genton, M.G., Keyes, D.E.: ExaGeoStat:

A High Performance Unified Software for Geostatistics on Manycore Systems.
IEEE Trans. Parallel Distributed Syst 29(12), 2771–2784 (2018), http://doi.
ieeecomputersociety.org/10.1109/TPDS.2018.2850749

6. Akbudak, K., Ltaief, H., Mikhalev, A., Keyes, D.: Tile Low Rank Cholesky Fac-
torization for Climate/Weather Modeling Applications on Manycore Architectures.
In: 32nd International Conference on High Performance, Frankfurt, Germany. pp.
22–40. Springer (2017)

7. Amestoy, P., Ashcraft, C., Boiteau, O., Buttari, A., L’Excellent, J.Y., Weisbecker,
C.: Improving multifrontal methods by means of block low-rank representations.
SIAM Journal on Scientific Computing 37(3), A1451–A1474 (2015)



Steering Customized AI Architectures for HPC Scientific Applications 17

8. Amundsen, L.: Elimination of Free-surface Related Multiples Without Need of a
Source Wavelet. Geophysics 66, 327–341 (2001), doi: 10.1190/1.1444912

9. Arcelin, B.: Comparison of Graphcore IPUs and Nvidia GPUs for Cosmology Ap-
plications (2021). https://doi.org/10.48550/ARXIV.2106.02465

10. Arfaoui, M.A., Ltaief, H., Rezki, Z., Alouini, M.S., Keyes, D.: Effi-
cient Sphere Detector Algorithm for Massive MIMO Using GPU Hard-
ware Accelerator. Procedia Computer Science 80(C), 2169–2180 (2016).
https://doi.org/10.1016/j.procs.2016.05.377

11. Boukaram, W., Zampini, S., Turkiyyah, G., Keyes, D.E.: H2OPUS-TLR: High
Performance Tile Low Rank Symmetric Factorizations using Adaptive Randomized
Approximation. CoRR abs/2108.11932 (2021)

12. Burchard, L., Moe, J., Schroeder, D.T., Pogorelov, K., Langguth, J.: iPUG: Accel-
erating Breadth-First Graph Traversals Using Manycore Graphcore IPUs. In: High
Performance Computing - 36th International Conference, ISC High Performance
2021, Virtual Event, June 24 - July 2, 2021, Proceedings. vol. 12728, pp. 291–309.
Springer (2021). https://doi.org/10.1007/978-3-030-78713-4_16

13. Cao, Q., Abdulah, S., Alomairy, R., Pei, Y., Nag, P., Bosilca, G., Dongarra, J.,
Genton, M., Keyes, D., Ltaief, H., Sun, Y.: Reshaping Geostatistical Modeling and
Prediction for Extreme-Scale Environmental Applications. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis (2022), https://dl.acm.org/doi/abs/10.5555/3571885.3571888

14. Cao, Q., Pei, Y., Akbudak, K., Mikhalev, A., Bosilca, G., Ltaief, H., Keyes, D.,
Dongarra, J.: Extreme-scale Task-based Cholesky Factorization Toward Climate
andWeather Prediction Applications. In: Proceedings of the Platform for Advanced
Scientific Computing Conference. pp. 1–11 (2020)

15. Dabah, A., Ltaief, H., Rezki, Z., Arfaoui, M.A., Alouini, M.S., Keyes,
D.: Performance/complexity Trade-offs of the Sphere Decoder Algorithm
for Massive MIMO Systems. arXiv preprint arXiv:2002.09561 (2020).
https://doi.org/10.48550/arXiv.2002.09561

16. Davies, R., Kasper, M.: Adaptive optics for astronomy. Annual Review of Astron-
omy and Astrophysics 50(1), 305–351 (2012). https://doi.org/10.1146/annurev-
astro-081811-125447

17. Domke, J., Vatai, E., Drozd, A., Chen, P., Oyama, Y., 0001, L.Z.,
Salaria, S., Mukunoki, D., Podobas, A., Wahib, M., Matsuoka, S.: Ma-
trix Engines for High Performance Computing: A Paragon of Perfor-
mance or Grasping at Straws? In: IPDPS. pp. 1056–1065. IEEE (2021).
https://doi.org/10.1109/IPDPS49936.2021.00114

18. Ferreira, F., Sevin, A., Bernard, J., Guyon, O., Bertrou-Cantou, A., Raf-
fard, J., Vidal, F., Gendron, E., Gratadour, D.: Hard Real-time Core Soft-
ware of the AO RTC COSMIC Platform: Architecture and Performance. In:
Schreiber, L., Schmidt, D., Vernet, E. (eds.) Adaptive Optics Systems VII. vol.
11448, p. 1144815. International Society for Optics and Photonics, SPIE (2020).
https://doi.org/10.1117/12.2561244

19. Ferreira, F., Gratadour, D., Sevin, A., Doucet, N.: Compass: an Efficient GPU-
based Simulation Software for Adaptive Optics System. In: 2018 International
Conference on High Performance Computing & Simulation (HPCS). pp. 180–187
(2018). https://doi.org/10.1109/HPCS.2018.00043

20. Gepner, P.: Machine Learning and High-performance Computing Hybrid Systems,
a NewWay of Performance Acceleration in Engineering and Scientific Applications.
In: 2021 16th Conference on Computer Science and Intelligence Systems (FedCSIS).
pp. 27–36 (2021). https://doi.org/10.15439/2021F004



18 H. Ltaief et al.

21. Graphcore: Tile Vertex ISA (march 2022), https://docs.graphcore.ai/
projects/isa/en/latest/_static/Tile-Vertex-ISA_1.2.3.pdf

22. Gratadour, D., Bernard, J., Doucet, N., Ferreira, F., Sevin, A., Biasi, R., Rigaut,
F.: MAVIS Real-time Control System: a High-end Implementation of the COSMIC
Platform. In: Schreiber, L., Schmidt, D., Vernet, E. (eds.) Adaptive Optics Systems
VII. vol. 11448, p. 114482M. International Society for Optics and Photonics, SPIE
(2020). https://doi.org/10.1117/12.2562082

23. van Groenestijn, G.J., Verschuur, D.J.: Estimating Primaries by Sparse Inversion
and Application to Near-offset Data Reconstruction. Geophysics 74, 1MJ–Z54
(2009), doi: 10.1190/1.3111115

24. Hong, Y., Ltaief, H., Ravasi, M., Gatineau, L., Keyes, D.: Accelerating Seismic Re-
datuming Using Tile Low-Rank Approximations on NEC SX-Aurora TSUBASA.
Supercomputing Frontiers and Innovations 8 (2021), doi: 10.14529/jsfi210201

25. Jacquelin, M., Araya-Polo, M., Meng, J.: Scalable Distributed High-Order Stencil
Computations. In: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (2022), https://dl.acm.
org/doi/abs/10.5555/3571885.3571924

26. Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting
the Graphcore IPU Architecture via Microbenchmarking (2019).
https://doi.org/10.48550/arXiv.1912.03413

27. Lopez, G.A., Verschuur, D.: Closed-loop Surface-related Multiple Elimination and
Its Application to Simultaneous Data Reconstruction. Geophysics 80, V189–V199
(2015). https://doi.org/10.1190/geo2015-0287.1

28. Ltaief, H., Cranney, J., Gratadour, D., Hong, Y., Gatineau, L., Keyes, D.:
Meeting the Real-Time Challenges of Ground-Based Telescopes Using Low-
Rank Matrix Computations. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (2021).
https://doi.org/10.1145/3458817.3476225

29. Ltaief, H., Genton, M.G., Gratadour, D., Keyes, D.E., Ravasi, M.: Responsibly
Reckless Matrix Algorithms for HPC Scientific Applications. Computing in Science
& Engineering 24(4), 12–22 (2022). https://doi.org/10.1109/MCSE.2022.3215477

30. van der Neut, J., Vasconcelos, I., Wapenaar, K.: On Green’s Function Retrieval by
Iterative Substitution of the Coupled Marchenko Equations. Geophysical Journal
International 203, 792–813 (2015). https://doi.org/10.1093/gji/ggv330

31. Ravasi, M.: Rayleigh-marchenko Redatuming for Target-oriented, True-amplitude
Imaging. Geophysics 82, S439–S452 (2017). https://doi.org/10.1190/geo2017-
0262.1

32. Ravasi, M., Vasconcelos, I.: An Open-source Framework for the Implementation of
Large-scale Integral Operators With Flexible, Modern HPC Solutions - Enabling
3d Marchenko Imaging by Least-squares Inversion. Geophysics 86, WC177–WC194
(2021). https://doi.org/10.1190/geo2020-0796.1

33. Ravasi, M., Vasconcelos, I., Curtis, A., Kritski, A.: Multi-dimensional Free-surface
Multiple Elimination and Source Deblending of Volve OBC Data. 77th Conference
and Exhibition, EAGE, Extended Abstracts (2015). https://doi.org/10.3997/2214-
4609.201413355

34. Ravasi, M., Hong, Y., Ltaief, H., Keyes, D., Vargas, D.: Large-scale Marchenko
Imaging With Distance-aware Matrix Reordering, Tile Low-rank Compression, pp.
2606–2610 (2022). https://doi.org/10.1190/image2022-3744978.1

35. Rigaut, F., Neichel, B.: Multiconjugate Adaptive Optics for Astronomy.
Annual Review of Astronomy and Astrophysics 56(1), 277–314 (2018).



Steering Customized AI Architectures for HPC Scientific Applications 19

https://doi.org/10.1146/annurev-astro-091916-055320, https://doi.org/10.
1146/annurev-astro-091916-055320

36. Rigaut, F.e.a.: MAVIS Conceptual Design. In: Society of Photo-Optical Instru-
mentation Engineers (SPIE) Conference Series. Society of Photo-Optical Instru-
mentation Engineers (SPIE) Conference Series, vol. 11447, p. 114471R (Dec 2020).
https://doi.org/10.1117/12.2561886

37. Rojek, K., Wyrzykowski, R., Gepner, P.: AI-Accelerated CFD Simulation Based
on OpenFOAM and CPU/GPU Computing. In: Computational Science –
ICCS 2021: 21st International Conference, Krakow, Poland, June 16–18, 2021,
Proceedings, Part II. p. 373–385. Springer-Verlag, Berlin, Heidelberg (2021).
https://doi.org/10.1007/978-3-030-77964-1_29

38. Valiant, L.G.: A Bridging Model for Parallel Computation. Commun. ACM 33(8),
103–111 (aug 1990). https://doi.org/10.1145/79173.79181

39. Vargas, D., Vasconcelos, I., Ravasi, M., Luiken, N.: Time-domain Multidimensional
Deconvolution: a Physically Reliable and Stable Preconditioned Implementation.
Remote Sensing 13, 3683 (2022). https://doi.org/10.3390/rs13183683

40. Vargas, D., Vasconcelos, I., Ravasi, M., Sripanich, Y.: Scattering-based Focusing
for Imaging in Highly-complex Media From Band-limited, Multi-component Data.
Geophysics Submitted (2021). https://doi.org/10.1190/geo2020-0939.1

41. Viterbo, E., Boutros, J.: A Universal Lattice Code Decoder for Fading Chan-
nels. IEEE Transactions on Information Theory 45(5), 1639–1642 (1999).
https://doi.org/10.1109/18.771234

42. Wapenaar, C.P.A., Berkhout, A.J.: Elastic Wave Field Extrapola-
tion: Redatuming of Single- and Multi-Component Seismic Data. El-
sevier Science, Philadelphia (2014), https://www.elsevier.com/books/
elastic-wave-field-extrapolation/berkhout/978-0-444-88472-5

43. Xie, Z., Short, R.T., Rushforth, C.K.: A Family of Suboptimum Detectors for
Coherent Multiuser Communications. IEEE Journal on Selected Areas in Commu-
nications 8(4), 683–690 (1990). https://doi.org/10.1109/49.54464

44. Zhang, L., Thorbecke, J., Wapenaar, K., Slob, E.: Transmission Compensated Pri-
mary Reflection Retrieval in the Data Domain and Consequences for Imaging.
Geophysics 84, Q27–Q36 (2019). https://doi.org/10.1190/geo2018-0340.1


