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Abstract 
Species formation is a central topic in biology, and a large body of theoretical work has explored the conditions under which speciation occurs, 
including whether speciation dynamics are gradual or abrupt. In some cases of abrupt speciation, differentiation slowly builds up until it reaches 
a threshold, at which point linkage disequilibrium (LD) and divergent selection enter a positive feedback loop that triggers accelerated change. 
Notably, such abrupt transitions powered by a positive feedback have also been observed in a range of other systems. Efforts to anticipate 
abrupt transitions have led to the development of “early warning signals” (EWS), that is, specific statistical patterns preceding abrupt transitions. 
Examples of EWS are rising autocorrelation and variance in time-series data due to the reduction of the ability of the system to recover from 
disturbances. Here, we investigate whether speciation dynamics in theoretical models also exhibit EWS. Using a model of genetic divergence 
between two populations, we search for EWS before gradual and abrupt speciation events. We do so using six different metrics of differentia-
tion: the effective migration rate, the number of selected loci, the mean fitness of our studied population, LD, FST, and Dabs, a metric analogous to 
DXY. We find evidence for EWS, with a heterogeneity in their strength among differentiation metrics. We specifically identify FST and the effective 
migration rate as the most reliable EWS of upcoming abrupt speciation events. Our results provide initial insights into potential EWS of impend-
ing speciation and contribute to efforts to generalize the mechanisms underlying EWS.
Keywords: abrupt speciation, adaptation, tipping point, linkage disequilibrium, genome wide congealing, stochastic model

Introduction
Speciation, defined as the emergence of new species, is often 
a complex phenomenon driven by multiple factors and pro-
cesses. Cases of gradual divergence over time between geo-
graphically isolated populations are generally regarded as the 
most common, but not only, mode of speciation (Coyne & 
Orr, 2004; Mayr, 1942; Price, 2007). In such situations, diver-
gence can build up in a fairly linear fashion (i.e., at a consis-
tent rate over time), via the combination of selection and drift, 
and unimpeded by the homogenizing process of gene flow. 
However, geographic isolation is not always complete during 
the divergence process. In such cases, the dynamics of and 
progress toward speciation can be shaped by a complex inter-
play of environmental conditions (i.e., sources and strength of 
selection), the extent of migration between populations, and 
genetic architecture. For example, environmental differences 
can create divergent selection favoring different phenotypes in 
different populations, promoting speciation (Gavrilets, 2004). 
Migrants between populations will on the contrary often lead 
to gene flow that homogenizes populations or at least con-
strains divergence (Endler, 1977; Hendry et al., 2001).

In addition, theoretical work has explored the conditions 
under which gradual versus abrupt speciation arises (Flaxman 

et al., 2013; Gavrilets, 2004; Nosil et al., 2017). In some mod-
els, this has uncovered the particular role of linkage disequi-
librium (LD) in the speciation process. LD refers to statistical 
associations between genetic regions, which are often facili-
tated by, but are not synonymous with, physical linkage on 
the same chromosome. Specifically, LD corresponds to non-
random associations between alleles at different loci (Hill 
& Robertson, 1968). LD can thus allow strongly favored 
alleles to increase the frequency of other associated alleles. In 
other words, direct selection on one locus can be transmitted 
to other loci in the genome, via LD with the selected locus. 
This process by which selection is transmitted from directly 
selected loci to other loci is termed “indirect selection” (fol-
lowing Gompert et al., 2017; Gompert et al., 2022; Kimura, 
1971 and Lande & Arnold, 1983) and results in genetic hitch-
hiking (Charlesworth & Jensen, 2022; Smith & Haigh, 1974).

An interesting consequence of LD is that it can promote 
abrupt (i.e., sudden in time) rather than gradual specia-
tion events (Flaxman et al., 2014; Nosil et al., 2017). This 
is because LD participates in a positive feedback loop with 
divergent selection (i.e., each amplifies the other) that can 
increase indirect selection and trigger accelerated change. 
This process prevents alleles affected by divergent selection 
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from being lost by gene flow (which acts against selection’s 
effect on increasing the frequencies of favored alleles in a 
population) and drift, and instead, it increases differenti-
ation (Dent et al., 2003; Flaxman et al., 2014) (Figure 1). 
In essence, loci under divergent selection transition from 
evolving independently to exhibiting coupled dynamics (e.g., 
similar to multilocus coupling in hybrid zone theory, where 
the coupling is in space rather than time (Barton, 1983, and 
see Box 1 in Nosil et al. 2017 for explicit consideration of 
dynamics in time vs. space).

Although the exact dynamics of abrupt speciation events 
are yet to be fully uncovered, one observation is that it 
shares similarities with the behavior of a range of other 
systems exhibiting marked, abrupt changes triggered by 
positive feedbacks (Angeli et al., 2004). Typically, this type 
of abrupt changes occurs in systems that tend to exhibit 
two (or more) alternative stable states (but not necessar-
ily so Hastings et al., 2018). When conditions are slowly 
changing, systems with alternative states often show small 
changes up to a point where a self-reinforcing positive feed-
back loop triggers accelerated and system-wide change. In 
the complex-systems literature, this bifurcation point where 
the positive feedback loop drives a sudden transition has 
generally been called a “tipping point” (Lenton, 2013; van 
Nes et al., 2016). In the case of speciation, simple mod-
els have suggested that two stable states might exist as a 
function of selection and migration rate (Flaxman et al., 
2014; Nosil et al., 2017): one a state where all individuals 
belong to the same species versus a state of two distinct 
species. Depending on the initial conditions in these models, 
as adaptive evolutionary divergence occurs, the changing 

LD acts as a driving force that pushes the system to cross 
the unstable threshold that divides the basins of attraction 
of the two states. Once that threshold is crossed, a sudden 
speciation event can unfold due to the positive feedback 
generated by the LD.

The existence of tipping points has been notably reported 
in the dynamics of climatic transitions (Alley et al., 2003), 
ecosystem shifts (like dryland desertification, or coral reef 
degradation Hughes, 1994; Scheffer et al., 2001), finan-
cial meltdowns (May et al., 2008), or even asthma attacks 
(Venegas et al., 2005). Perhaps the best-documented case of 
a tipping point is the one reported for shallow lakes shifting 
from a clear-water state to a turbid-water state (Scheffer et 
al., 1993). Clear lakes are characterized by the dominance of 
aquatic macrophytes, whereas in turbid lakes algae are dom-
inant. The transition from a clear to a turbid-water state is 
caused by a positive feedback where algal growth increases 
turbidity that prevents macrophytes from growing, which 
leads to further increased turbidity, further reducing macro-
phyte growth and so on. Thus, as macrophytes disappear, the 
lake becomes dominated by algae and shifts abruptly and per-
manently to a turbid state.

A challenge in terms of understanding and predicting tip-
ping point responses is that they occur suddenly (Figure 1A). 
Moreover, transitions induced by tipping points are difficult 
to stop because once the system arrives at such a state, the 
positive feedback that ensues propagates the system into a 
new state that is often associated with undesirable and irre-
versible effects. This has led to a search for statistical signals 
that precede tipping points, such that tipping points might 
be anticipated or even prevented before they occur (Scheffer 

Figure 1. Examples of the dynamics of abrupt and gradual speciation. (B) Gradual speciation is characterized by a smooth decrease in me, the effective 
migration rate (i.e., the fraction of immigrants from the most recent migration step that produced offspring). (A) Abrupt speciation is characterized by 
a nonlinear drop in me at the time of speciation (such a time is shown here by the gray dotted vertical line). The figure was obtained from the BU2S 
model (see Methods for details), under a model simulating the genetic evolution of two populations of initially the same species placed in two different 
environments experiencing divergent selection, with migration allowed. The effective migration rate me represents the fraction of immigrants that 
contributed to reproduction in a given generation. As the two populations diverge, the residents become more adapted to their environment, and the 
immigrants relatively more unfit, leading to decreasing me. Abrupt speciation is characterized by initially slow and small changes in me, eventually leading 
to a sudden decrease in me at the time of speciation. During gradual speciation events, on the other hand, me decreases at a fairly constant rate. The 
following values of the selection strength (s) and migration probability (m) were used for this figure: (A) m = 0.1, s = 0.01; (B) m = 0.01, s = 0.01.
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et al., 2009). The detection of such signals, so-called ear-
ly-warning signals (EWS), has been an active field of research 
in ecology and other fields (Scheffer et al., 2012), but has yet 
to permeate evolutionary biology. Here, we apply it for the 
first time—to our knowledge—to speciation.

In principle, tipping points can be anticipated because 
close to them a system loses resilience and thus takes longer 
to recover from small perturbations, a phenomenon called 
critical slowing down (CSD) (van Nes & Scheffer, 2007) 
(Supplementary Figure S1). CSD is expected to create spe-
cific statistical patterns (EWS) in the system dynamics as the 
system approaches a tipping point (Dakos et al., 2012). Here 
we focus on the two core patterns characterizing CSD. First, 
CSD makes the system’s current state more likely to resemble 
its past state (which can be measured by increasing auto-
correlation through time) (Held & Kleinen, 2004). Second, 
CSD makes the system accumulate more extreme values due 
to fluctuations that do not dissipate quickly, thus resulting 
in increased variability (which can be measured by increas-
ing standard deviation through time) (Carpenter & Brock, 
2006).

Given that abrupt speciation can be driven by a positive 
feedback loop analogous to those seen in other systems, it is 
reasonable to ask if abrupt speciation is also forewarned by 
the same EWS. In other words, even if metrics we typically 
use to measure differentiation itself (such as F

ST and DXY) hint 
that potentially speciation is taking place, they do not provide 
information on whether the dynamics of speciation will be 
gradual or abrupt (Figure 1). Instead it is the CSD-related 
EWS that could signal the imminence of an abrupt speciation 
event. Testing for such EWS is our objective here, in hopes 
that it will contribute to a better understanding of speciation 
(Nosil et al., 2020).

Importantly, our expectations are derived from past work 
(Flaxman et al., 2014; Nosil et al., 2017), which suggests 
that populations under divergent selection might exhibit two 
alternative stable states—weakly differentiated populations 
with low LD among adaptive alleles versus strongly differen-
tiated species with high LD among adaptive alleles. Bistability 
implies the presence of an unstable point that divides the state 
space in trajectories leading to either undifferentiated pop-
ulations or speciation. Close to this unstable point, slowing 
down is expected to enhance LD, thus pushing autocorrela-
tion and variance toward a runaway (Dakos et al., 2013).

Building on previous work on speciation (Flaxman et al., 
2014), we consider here a theoretical model that includes a 
system of two populations of the same species living in dif-
ferent environments and exchanging migrants between them. 
Over time, the two populations undergo genetic differentia-
tion and eventually become two different species. We simulate 
a stochastic model of populations evolving under migration 
and selection (with drift and mutations) that generates spe-
ciation events over time; this can occur either gradually or 
abruptly, depending on the strength of the positive feedback 
loop between LD and the strength of total selection (i.e., 
direct selection plus indirect selection induced by LD). We 
measure statistical signals typically associated with critical 
slowing down for simulations exhibiting abrupt speciation 
events and we compare them to simulations where specia-
tion occurs gradually. In addition, we compare patterns for 
selected loci to those expected in the absence of selection. Our 
results provide initial insights into potential EWS of impend-
ing speciation and generate clear avenues for further research.

Methods
The build-up-to-speciation model
Using the build-up-to-speciation (BU2S) model (Flaxman et 
al., 2014), we simulated the adaptation and genetic differ-
entiation of a species to two different habitats, considering 
multiple loci that are either (a) causally related to adaptation 
(i.e., functional adaptive variants) or (b) neutral (i.e., no effect 
on fitness). The model involves two populations (hereafter 
referred to as population 1 and 2) of the same diploid spe-
cies, in which there is initially zero genetic variation. At every 
generation, individuals migrate between populations with a 
probability m per individual (this is the gross migration rate). 
Individuals are assumed to have a diploid genome composed 
of four chromosomes of 50 cM each. Genetic variation arises 
through time via mutations. At each generation, 10 mutations 
are introduced at random loci in randomly chosen individu-
als. Each mutation is associated with a selection coefficient 
drawn from an exponential distribution with mean s. All 
individuals were initially homozygous at all loci, and ances-
tral alleles are favored in population 1. Newly arising muta-
tions happen in a random individual in either population and 
introduce alleles favored in population 2. Note that this is an 
“infinite-alleles” or “infinite-loci” model. No two mutations 
will occur at exactly the same location, and each locus can 
harbor at most two alleles (where only the segregating loci are 
tracked during the simulation).

The fitness of an individual is determined multiplicatively 
as the product of contributions of all selected loci in its 
genome (neutral loci do not contribute to fitness). As this is 
a soft selection model (constant population size in every gen-
eration), fitness values are always relative (not absolute). The 
emergence of new alleles creates more variation in possible 
relative fitness values. Selection is symmetrical between the 
two populations, meaning that an allele favored in one popu-
lation will be equally deleterious in the other one. The selec-
tion coefficient associated with the alleles of a selected locus 
is drawn from an exponential distribution of mean s, as in 
Flaxman et al. (2014). Let wj1

(
gij
)
 represent the contribution 

locus j makes to an individual’s fitness in population 1, Aj the 
ancestral allele, Bj the mutated one, and Sj the selection coeffi-
cient at the jth locus. Let Hj be the dominance coefficient of Bj. 
We assumed codominance here (Hj = 0.5). We thus obtained 
wj1

(
AjAj

)
= 1+ Sj , wj1

(
AjBj

)
= 1+

(
1−Hj

)
Sj = 1+ 0.5Sj ,  

and wj1
(
BjBj

)
= 1. As selection was symmetrical across 

populations, in population 2 we had wj2
(
AjAj

)
= 1, 

wj2
(
AjBj

)
= 1+HjSj = 1+ 0.5Sj, and wj2

(
BjBj

)
= 1+ Sj.

The overall sequence of these events is as follows. At every 
generation, individuals first migrate. One at a time, offspring 
are then produced through the following sequence: for each 
offspring, parents are chosen stochastically (no assortative 
mating), with a probability of selection directly proportional 
to their fitness, and meiosis is then performed to obtain one 
gamete from each parent. The total number of offspring pro-
duced is the same as the number of parents in a population 
and generations are nonoverlapping (i.e., offspring replace 
parents). Thus, the total population size across both popu-
lations is held constant at 5,000 individuals (i.e., “soft selec-
tion”). The number of recombination events per meiosis was 
drawn from a Poisson distribution with mean equal to the 
total genome length (expressed in centi-Morgans) divided 
by 100. Thus, in a 200 cM genome, we expected a total of 
2 recombination events per meiosis. The locations of the 

D
ow

nloaded from
 https://academ

ic.oup.com
/evolut/advance-article/doi/10.1093/evolut/qpad054/7126003 by Soulie M

uriel user on 10 M
ay 2023

http://academic.oup.com/evolut/article-lookup/doi/10.1093/evolut/qpad054#supplementary-data


4 Sinitambirivoutin et al.

recombination events were chosen at random (uniformly on 
the genome) after the number of events was drawn.

In line with previous work with the BU2S model (Flaxman 
et al., 2014), the time of speciation is defined as the last gener-
ation where the fitness of residents wres is closer to the fitness of 
immigrants wimm than to the maximum possible fitness in the 
resident’s population wmax. Specifically, the time of speciation 
is the last generation where wres

wimm
> wmax

wres
. The maximum possi-

ble fitness is calculated based on the alleles that are currently 
in the population at a given time. This definition of the “time 
of speciation” is somewhat arbitrary, but it is measurable and 
standardized such that it serves our goal here of representing 
a heuristic and operational way to objectively compare differ-
ent simulation runs with different parameter values. To ensure 
the simulations reached the defined time of speciation, they 
were run until nearly complete reproductive isolation was 
attained. Near reproductive isolation was considered reached 
when the effective migration rate me decreased below a fixed 
threshold (me = 1/(10,000N) with N the population size, here 
5,000), me being the fraction of immigrants from the most 
recent migration step (i.e., that just arrived in the population) 
that produced offspring. In the event that this threshold was 
not attained, the simulation continued until the maximum 
number of generations (a parameter set at the beginning of 
the simulation, here 49,990 generations) was reached.

Previous work on the BU2S model (Flaxman et al., 2014) 
highlighted the ability of the model to result in either abrupt 
or gradual speciation events, dependent on the evolution-
ary parameters used. Specifically, different outcomes were 
observed by varying the migration probability m and the 
mean selection strength s (while holding all other parame-
ters constant). With a higher m:s ratio, gradual gene-by-gene 
divergence is prevented or constrained by the homogenizing 
effects of high gene flow resulting from migration. Speciation 
in these cases is more difficult to reach but when it does 
occur it is abrupt, triggered when the system reaches a tip-
ping point where LD and divergent selection enter a posi-
tive feedback process that drives rapid divergence. Prior to 
this tipping point, neither component of this feedback loop is 
strong enough to prevent extensive gene flow from disrupting 
the differentiation. Thus, the feedback loop is not initiated 
until fit combinations of alleles arise by the combination of 
selection and chance, which at first is difficult, but becomes 
increasingly likely as new selected mutations arise. In con-
trast, under more similar strengths of selection and migration, 
speciation can take place progressively over time in a gradual 
gene-by-gene manner. This is because individual mutations 
experience sufficiently strong direct selection to overcome 
migration, even without strong feedback among selected loci 
due to LD. We thus here specifically focus on variation in 
the m:s ratio to test for and compare EWS of gradual versus 
abrupt speciation.

Simulated data sets of abrupt and gradual 
speciation
We simulated data sets using the BU2S model that repre-
sented cases of abrupt and gradual speciation, as well as cases 
without speciation events (i.e., where the simulation goes on 
until the maximum number of generations) (Supplementary 
Table S1). Abrupt speciation data sets, where a sudden change 
of dynamics is visible at the time of speciation (Figure 1A), 
were generated by setting m = 0.1 and s = 0.01 (i.e., m >> s). 
Gradual speciation data sets, where no marked change of 

dynamics occurs at the time of speciation (Figure 1B), were 
generated by setting m = s = 0.01. We also generated neutral 
data sets to act as a control (m = 0.1, s = 0). In these data sets, 
the absence of selection prevented differentiation and thus 
speciation from occurring.

In our analysis, neutral data sets served as a control to 
assess the significance of our results. In the typical EWS liter-
ature, significance testing is performed by generating a surro-
gate (null) time series from a random process (Dakos et al., 
2012). Here, instead of generating artificially such surrogates, 
we took advantage of the model itself to generate them and 
produced neutral data sets.

As our focus was on EWS that precede speciation events, 
we included only data from the beginning of the simulation 
to the time of speciation and focused downstream analyses 
on these time windows. Yet, the absolute elapsed time until 
speciation varied between abrupt, gradual, and neutral data 
sets. That is, speciation took longer for abrupt than gradual 
data sets (due to higher levels of homogenizing migration), 
while neutral data sets continued until the maximum number 
of generations. To be able to compare among the different 
data sets, we obtained equal distributions of lengths between 
data sets, by trimming the abrupt and neutral data sets to the 
length of gradual ones. This means that as, on average, the 
waiting time for speciation is around 160,000 generations for 
abrupt data sets, and around 12,000 generations for gradual 
data sets, we kept only the 12,000 generations before specia-
tion for the abrupt data sets and we kept only 12,000 gener-
ations from the neutral data sets. Figure 3 shows examples 
of abrupt and gradual data sets from the beginning of the 
simulation up to the time of speciation. Supplementary Figure 
S2 shows, in the same examples, only the portions of the data 
sets that were analyzed together with neutral data sets for 
comparison.

Finally, we performed analyses where the metrics of spe-
ciation we monitored (see next section for details) were 
recorded at resolutions of every 300, 100, and 30 generations. 
We report in the main text results obtained with the highest 
resolution (30 generations). Results obtained with lower res-
olutions are reported in Supplementary Figure S3 and were 
qualitatively similar.

Monitored metrics of speciation
The BU2S model outputs time series that provide information 
on the genetic characteristics of both populations, within each 
habitat, at each generation. The complete list of parameters is 
given in Supplementary Table S1. Here, for each simulation 
output, we analyzed six metrics that provide information on 
the genetic differentiation between the two populations. Each 
of the metrics is given for each population as a time series 
which constitute our data sets that were used to analyze EWS 
(abrupt, gradual, neutral data sets). Details are as follows:

Effective migration rate me: The effective migration rate 
me is the proportion of reproduction attributable to 
migrants. It is calculated as the gross migration rate 
multiplied by the proportion of immigrants that pro-
duce offspring. me drops at the time of speciation, as 
immigrants become unfit and thus exhibit reduced 
probability of contributing gametes to form the next 
generation. 

Number of variable selected loci: Variable selected 
loci represent the loci that contribute to fitness and  
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Figure 3. Metric dynamics before and after speciation. Left panels show abrupt data sets, middle panels show gradual data sets, and left panels show 
neutral data sets. Dotted vertical lines indicate the speciation event. Note the higher number of generations needed for speciation to occur in the abrupt 
data set when compared with the gradual data set, as expected given the higher migration rate in the abrupt data set. As speciation takes longer for 
abrupt data sets than gradual data sets, and to obtain data sets of equal length, we trimmed the abrupt data sets to the length of gradual ones by 
removing their excess data at the beginning of the simulation. In neutral data sets, there is no speciation event. The fitness of all individuals is set to 1, 
and there are no selected variable loci. This figure shows the entire time series. The parts analyzed correspond to the entire series for gradual data sets 
and to the gray-shaded areas for abrupt and neutral data sets. See Supplementary Figure S2 for an example zooming in parts of the data sets (shaded 
area) that we used for estimating EWS.
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adaptive divergence (as opposed to variable neutral 
loci, which do not affect fitness). Variable loci exhibit 
two different alleles and are created by spontaneously 
arising mutations. Depending on which environment 
they are in, alleles at selected loci will either be positive-
ly or negatively selected in a given population, meaning 
that they will either contribute a gain or a loss of rela-
tive fitness equal to s.

Mean fitness of a population: The fitness of an individual 
is determined by the cumulative effect of the selected 
loci in its genome, and the chances of survival and mat-
ing increase with higher fitness. As generations pass, 
the average fitness of residents rises as they adapt to 
their environment. In the output of the BU2S model, 
the fitness values of 200 individuals are given for each 
population as time series. The mean fitness of a popu-
lation is estimated as the average of the 200 individual 
fitness values at each generation. As this is a soft selec-
tion model, the mean fitness is relative.

Linkage disequilibrium (LD) (Freeman & Herron, 2004): 
If allele A occurs with a frequency p

A at one locus and 
allele B occurs at frequency pB at another locus, we de-
fine PAB as the frequency with which A and B appear to-
gether in the same individual. The coefficient of linkage 
disequilibrium is then defined as DAB = PAB − pApB. If 
DAB = 0, alleles at the two loci are independent. As D 
rises, the association between the loci goes up. The cor-
relation of allelic states between pairs of loci is then 
given by r = |DAB|√

pA(1−pA)pB(1−pB)
. In this study, we report 

LD as the mean r over all pairs of variable loci.
Mean fixation index (FST): The fixation index (Wright, 

1950) is a metric of relative differentiation between 
populations; in other words, it is based on both within 
and between-population variation. FST is usually based 
on allele frequencies, and in the BU2S model is calcu-
lated as follows: let HT be the expected heterozygosity 
based on the average allele frequencies across popu-
lations at one time for one locus and HS the average 
expected heterozygosity in each population. FST is cal-

culated as FST = HT−HS
HT

 for each locus. We report here 

the mean FST over all variable loci (i.e., the mean of the 
single-locus estimates).

Dabs: We define Dabs, a metric analogous to DXY defined 
by Nei and Li (1979) and referred to as π in their arti-
cle. DXY is a metric of absolute divergence. Unlike FST, 
it does not depend on intrapopulation variation. It is 
estimated as follows: take two populations X and Y. 
Suppose a locus i has two alleles, which we call “0” 
and “1.” Let pi be the frequency of one of the alleles at 
this locus in population X, and let qi be the frequen-
cy of that same allele at the same locus in population 

Y. Then, DXY is DXY =
N∑
i=1

pi (1− qi) + (1− pi) qi,  

with N the number of loci in the genome. Because 
the BU2S model is an “infinite sites” model of genet-
ic evolution, DXY cannot be calculated over a specific 
number N of nucleotide sites for this model. As a re-
sult, we define Dabs, an analogous metric calculated as 

Dabs =
1
Nv

Nv∑
i=1

pi (1− qi) + (1− pi) qi, with Nv the num-

ber of variable loci at the considered generation. Dabs 

thus varies between 0 and 1 and is the expected fraction 
of variable sites that differ between two randomly cho-
sen haplotypes from different populations.

Detecting EWS
To test for EWS we looked for critical slowing down (CSD), 
a sign of loss of resilience, in the time frame preceding spe-
ciation events in our simulations. Specifically, we focused 
on quantifying CSD through increases in autocorrelation at 
lag − 1 (AR1) and increases in variability measured as stan-
dard deviation (SD) through time (Dakos et al., 2012). These 
two variables are referred to hereafter as indicators. Although 
changes in kurtosis (Biggs et al., 2009) and skewness (Guttal 
& Jayaprakash, 2008) of a time series can also arise, they are 
not connected to CSD and are less generic and sensitive than 
AR1 and SD (Dakos et al., 2012). We thus restrict our focus 
in the main text on AR1 and SD, but we do report results for 
kurtosis and skewness in Supplementary Figures S4–S6.

To estimate CSD, we followed methods detailed in Dakos 
et al. (2012). We analyzed, for each simulation output, the 
time series of the six metrics of speciation described in the 
previous section (effective migration rate, number of selected 
variable loci, mean fitness of residents, LD, FST, Dabs). For each 
data set type, outputs from 50 replicated simulations were 
analyzed. We report results by data set type.

Each time series was analyzed as follows: we first removed 
any underlying long-term trend to keep only the residual 
variation. CSD arises when the system starts taking longer 
to recover from small short-term perturbations from its main 
trend, and thus it should be detectable by analyzing short-
term deviations from the main trend of a time series (i.e. 
residuals). We removed trends with a Gaussian filter that cal-
culates a smoothed average trend from our noisy time series. 
Subtracting the resulting average trend from the initial time 
series returns the residuals. We detrended the data over win-
dow sizes (bandwidths) of size 5%, 10%, 15%, 20%, and 
25% of the time series’ length. Window sizes were chosen 
experimentally by excluding smaller sizes that removed short-
term variations of the time series (i.e., overfit) and the bigger 
sizes that did not render well the long-term variation of the 
time series (Supplementary Figure S7). We did this for each 
time series for all six metrics.

Second, for each residual time series, we computed the AR1 
and SD within a rolling window of variable size. We used 11 
rolling window sizes, ranging from 25% to 75% of the size 
of the time series with an increment of 5%. This means that 
for each time series, we estimated 55 records (from all com-
binations of 5 bandwidths and 11 rolling windows) showing 
the evolution of AR1 and SD, respectively, and we did so for 
all 50 outputs for each data set type. We thus obtained a total 
of 2,750 records for each of the 6 metrics, for each abrupt, 
gradual, and neutral data sets. A schematic representation 
of the above flow of work can be found in Supplementary 
Figure S8.

We then characterized whether each of the AR1 and SD 
records had an increasing or decreasing trend using the 
Kendall τ rank correlation coefficient between AR1 or SD 
and time. The Kendall τ rank correlation ranges between −1 
to 1, with negative values indicating decreasing trends, pos-
itive values indicating increasing trends and values around 
zero indicating no trends. CSD being characterized by a rising 
AR1 and SD, we hypothesized positive Kendall τ’s.
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Figure 2 demonstrates an example of estimating the EWS on 
the metric FST prior to speciation. After detrending (i.e., remov-
ing the long-term trend) of FST, we used the residuals (Figure 
2B) to estimate the two EWS: AR1 (Figure 2C) and SD (Figure 
2D). We then used the Kendall τ rank correlation to charac-
terize the trend for each indicator. In this example, we found 
a strong increasing trend in standard deviation (Kendall τ = 
0.967, Figure 2D) and a moderate increasing trend in autocor-
relation (Kendall τ = 0.663, Figure 2C). In some of the abrupt 
data sets (like the example shown in Figure 2), a sharp increase 
in the metrics can be observed at the onset of speciation. Despite 
the fact that this sharp increase occurs technically before specia-
tion (according to our definition), it nonetheless may be causing 
a strong positive trend in the indicators. To check that this is not 
the case, but there still is a positive trend, we also analyzed data 
sets where we removed such sharp increases by trimming 450 
generations before speciation. We found similar results to those 
obtained without such trimming (Supplementary Figure S9). 

We present summary results of trends in autocorrelation and 
standard deviation for residuals of the effective migration rate, 
number of selected variable loci, mean fitness of residents, LD, 
FST, and Dabs, estimated on 50 replicates of each abrupt, grad-
ual, and neutral data sets. We report distributions of Kendall 
τ trends grouped by data set type, for all replicates, for all 
bandwidth and rolling window sizes (i.e., 2,750 Kendall τ per 
group), as a measure of the robustness of our results.

Receiver operating characteristic curves
We assessed the accuracy and sensitivity of our results using 
the area under curve (AUC) of receiver operating character-
istic curves (ROC). Formally, ROC are a way of quantifying 

the overlap between two distributions, which expresses the 
trade-off between accuracy (correctly detected EWS or true 
positives) and sensitivity (incorrectly detected EWS or false 
positives). We measured AUC from the overlap of Kendall τ 
distributions from two comparisons: (a) the distributions of 
Kendall τ from abrupt data sets were compared to those of 
neutral data sets. For instance, we compared the 50 trends  
of the AR1 of the FST of abrupt data sets to 50 AR1 trends 
computed from neutral data sets. In this comparison, neutral 
data sets served as control to test if our results were different 
from those obtained by chance; (b) the distributions of Kendall 
τ from abrupt data sets were compared with those of gradual 
data sets to assess whether the results found in abrupt data 
sets were characteristic of the dynamics of abrupt speciation 
events or solely of speciation events, regardless of their type.

To compute the AUC from ROC curves, we followed Boettiger 
and Hastings (2012) Boettiger and Hastings (2012) (Supplementary 
Figure S10). AUC ranges between 0 and 1, with values of 0.5 indi-
cating that the null and real distributions are the same. An AUC 
close to 1 indicates that the observed distribution has higher values 
compared with the control. AUC values approaching zero indicate 
the contrary. When looking for signs of CSD, we expected to obtain 
higher Kendall τ values on abrupt data sets compared with neutral 
and gradual data sets, and hence expected AUC values above 0.5 
when performing both comparisons.

Results
Metric dynamics before and after speciation
As expected, the differentiation metrics analyzed changed 
over time, but showed a sudden change of dynamics at 

Figure 2. Example of estimating early warning signals in time series of a speciation metric. (A) FST (black) and Gaussian detrending (red, bandwidth 
= 10%). (B) Residuals after detrending. The statistical indicators are computed on the residuals: (C) autocorrelation at lag − 1, (D) standard deviation. 
All indicators are calculated within a rolling window equal to 25% of the length of the time series. Indicator trend is evaluated by the Kendall τ rank 
correlation coefficient. A Kendall τ value of close to 1 means a strongly increasing trend, a value close to −1 a strongly decreasing trend, and a value 
close to 0 the absence of a trend. A positive trend constitutes a sign of critical slowing down and can be used as early-warning signal for the speciation 
event.
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the time of speciation only for abrupt data sets (Figure 
3). On neutral data sets, in the absence of selection, no 
change was visible in any of the metrics (Figure 3, A3–
F3). Specifically, all metrics except the effective migra-
tion rate were rising prior to the speciation event in both 
abrupt and gradual data sets (Supplementary Figure S2). 
The effective migration rate was decreasing, as the fitness 
gap between residents and immigrants made the latter 
too unfit to contribute greatly to reproduction (Figure 
3A, Supplementary Figure S1A). As new selected muta-
tions arose through generations, the number of selected 
variable loci increased steadily (Figure 3F, Supplementary 
Figure S1F). Residents becoming better adapted to their 
environment over time translated into an increasing aver-
age fitness (Figure 3C, Supplementary Figure S1C). Our 
metrics of population genetic differentiation, namely FST, 
(Figure 3B, Supplementary Figure S1B) and Dabs (Figure 
3D, Supplementary Figure S1D), increased through time. 
Finally, LD (Figure 3E, Supplementary Figure S1E) slowly 
built up before jumping at the time of speciation for 

abrupt runs, as expected in the presence of a positive feed-
back loop between LD and selection. But even if most of 
the metrics did change over time, this did not necessarily 
reflect whether or when speciation will occur, and whether 
it will be gradual or abrupt. It is EWS that might best pro-
vide this information, which we test below.

EWS before abrupt speciation
We compared Kendall τ values obtained for abrupt data sets 
to Kendall τ obtained for neutral data sets. The neutral data 
sets were used here as a control: the comparison aimed at 
assessing whether the results obtained for abrupt data sets 
were different from random. We detected evidence for EWS 
in abrupt data sets, but their robustness and accuracy varied 
among differentiation metrics and types of EWS. Robustness 
referred to the sensitivity of EWS to detrending bandwidths 
and window sizes we used, whereas accuracy referred to how 
different EWS were when compared with EWS computed in 
the control data sets.

Figure 4. EWS of abrupt speciation. Summary results of Kendall τ correlations for different detrending and rolling window values (see Methods) for 
(A, B) autocorrelation and (C, D) standard deviation. (Left) Kendall τ distributions for abrupt and neutral data sets. Distributions skewed toward positive 
values indicate EWS. No Kendall τ trends are reported for the mean fitness of neutral data sets as all individuals in simulations with neutral parameters 
are characterized by a fitness of 1. (Right) ROC (receiver operating characteristic) curves used to calculate AUC values (area under curve) to compare 
abrupt and null distributions. AUC values close to 1 indicate that the trend (Kendall τ) measured in the abrupt data sets is substantially higher than the 
trend measured in the neutral data set. An AUC close to 0 indicates the opposite. An AUC value close to 0.5 indicates that the trends measured in the 
two distributions are similar. Black bars on violin plots (A, C) show the median of the distributions. Eff. mig rate = effective migration rate; Nb sel loci = 
number of variable selected loci.
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Abrupt data sets showed robust EWS for FST and LD for 
autocorrelation (81.3% and 87.4% of positive Kendall τ, 
respectively, Figure 4A) and even more strongly for standard 
deviation (99.4% and 97.1% of positive Kendall τ, respec-
tively, Figure 4C). We found an AUC of 0.79 for FST and of 
0.79 for LD for autocorrelation, which indicates that the 
trends we estimated are far from the random expectations 
found in the control data sets (Figure 4B). Similarly, in the 
case of standard deviation, we observed even higher AUC val-
ues of 0.91 for FST and of 0.89 for LD (Figure 4D).

The rest of the metrics exhibited more variable trends, 
sometimes showing equally positive and negative trends. 
For example, the effective migration rate showed a robust 
increasing autocorrelation (70.6% positive Kendall τ, 
Figure 4A), but not standard deviation (32.9% posi-
tive Kendall τ , Figure 4C). The mean fitness of residents 
showed a robust increasing standard deviation (85.1% pos-
itive Kendall τ, Figure 4A), but not autocorrelation (45.1% 
positive Kendall τ, Figure 4C). For the mean fitness of res-
idents, no AUC was calculated as the neutral data sets do 
not have a variable fitness by definition (fitness is set to 1 
at all generations for all individuals). Table 1 provides a 
summary of the results.

Comparing EWS between abrupt and gradual 
speciation
We compared indicator trends between abrupt and gradual 
data sets to identify to what extent there were trends specific 
only to abrupt speciation events. Our results generally showed 
qualitatively similar trends between the two speciation types, 
but with differences in their robustness (Figure 5). Three indi-
cators were particularly different between abrupt and gradual 
data sets and were also consistent with our expectations of 
higher Kendall τ for abrupt data sets: the autocorrelation of 
FST (AUC of 0.75), standard deviation of the effective migra-
tion rate (AUC of 0.81), and to a lesser extent the autocor-
relation of the effective migration rate (AUC of 0.69) (Figure 
5B and D). These results suggest that increasing trends in 
the autocorrelation of the FST and effective migration rate 
were indicative of an abrupt rather than a gradual speciation 
event, whereas a decreasing trend in the standard deviation of 
effective migration rate was indicative of gradual rather than 
abrupt speciation. We also observed some unexpected results: 
We found substantial differences between abrupt and grad-
ual data sets in the standard deviation of Dabs (AUC of 0.24), 

but this result was partly due to the decreasing trends found 
for abrupt data sets. In addition, interestingly, positive trends 
in the standard deviation of the mean fitness and FST were 
substantially higher for gradual rather than abrupt speciation 
(AUC of 0.21 and 0.23, respectively, Figure 5B and D).

For the rest of the metrics, we found modest differences 
between abrupt and gradual data sets. The number of selected 
variable loci notably showed no EWS for either data set type. 
In contrast, trends in the autocorrelation and standard devi-
ation of LD provided clear EWS for both abrupt and grad-
ual speciation, and thus were not specific to either speciation 
dynamic. Table 1 provides a summary of the results obtained 
when comparing abrupt to gradual data sets. We discuss the 
potential causes of these differences and similarities between 
speciation types in the Discussion section.

Discussion
Previous theoretical work (Flaxman et al. 2014; Nosil et al. 
2017) on speciation dynamics through time has suggested 
that a positive feedback driven by linkage disequilibrium and 
divergent selection can generate a tipping point to abrupt 
speciation. Similar feedback effects of LD are also thought 
to affect coupling among loci across space in hybrid zones 
(Barton, 1983; Kruuk et al., 1999). Motivated by a character-
istic hallmark of tipping points—namely the generic property 
of critical slowing down (CSD) (Scheffer et al., 2009)—we 
hypothesized that similar statistical signals of CSD would 
develop prior to abrupt speciation events. We thus searched 
for EWS preceding abrupt speciation events and particularly 
looked into potential differences between abrupt and gradual 
speciation. We here start by summarizing and discussing our 
results and then consider their implications for understanding 
speciation events.

As detailed in Introduction, our expectations are derived 
from past work (Flaxman et al., 2014; Nosil et al., 2017), 
which suggests that populations under divergent selection 
could exhibit alternative stable states. However, the model is 
analytically intractable, and other interpretations are possi-
ble. For example, it might be that there are no alternative 
states, but rather saddle points that would initially attract a 
trajectory starting with nondifferentiated populations before 
repelling it to the speciation equilibrium. Such saddle points 
are common in high-dimensional systems, and they could as 
well cause slowing down (Hastings et al., 2018). Moreover, 

Table 1. Summary of the observed differences in early warning signals (EWS) between abrupt data sets versus neutral and gradual data sets. Summary 
of the AUC values computed when comparing abrupt data sets with neutral and gradual data sets. AUC values are a way of quantifying the overlap 
between two distributions, here Kendall τ characterizing abrupt data sets versus Kendall τ characterizing neutral or gradual data sets. An AUC ranges 
between 0 and 1, with a value of 0.5 indicating that the abrupt and gradual/neutral distributions are the same. An AUC close to 1 indicates that the 
abrupt distribution has higher values compared with the gradual or neutral one. An AUC approaching zero indicates the contrary. When looking for signs 
of CSD, we expected to obtain higher Kendall τ values on abrupt data sets compared with neutral and gradual data sets, and hence expected AUC 
values above 0.5 when performing both comparisons.

 Autocorrelation Standard deviation

Abrupt vs. neutral Abrupt vs. gradual Abrupt vs. neutral Abrupt vs. gradual  

Eff. migration rate 0.68 0.69 0.40 0.81

Mean fitness / 0.38 / 0.21

FST 0.79 0.75 0.91 0.23

Dabs 0.51 0.59 0.46 0.24

LD 0.79 0.45 0.89 0.45

Nb. of selected variable loci 0.47 0.49 0.42 0.44
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signals of increased autocorrelation and variability predicted 
for CSD could arise for reasons other than a loss of resilience 
near a tipping point. For example, because adaptive muta-
tions are continuously added to the system, increased oppor-
tunities for LD among divergently selected loci as the system 
moves toward speciation could increase the stochastic vari-
ance in LD and thus in the selection experienced by the loci. 
Thus, increased autocorrelation and variability could be ear-
ly-warning signals of speciation even if they do not indicate 
CSD per se. Even if the patterns we assess are not indicative 
of CSD, evidence of EWS would provide an important step 
forward with future work required to characterize the mech-
anistic basis of this heuristic signal. 

EWS exist but vary among differentiation metrics
Although we detected clear evidence for EWS, our collective 
findings highlight heterogeneous results between the analyzed 
metrics (Table 1). We did find two indicators that are strong 
candidates for signals specific to abrupt speciation, namely a 
rising autocorrelation of FST and rising standard deviation of 
the effective migration rate (Table 1, Figure 5A). We propose 

that given current understanding these are the most reliable 
and promising EWS of abrupt speciation. In fact, when testing 
(for a particular set of conditions) how early we could iden-
tify significant changes in AR1 or SD, we could find a clear 
early-warning only for LD and FST but not in any of the other 
metrics (Supplementary Figure S11). In particular, changes 
in SD become significant at earliest between 330 and 4,470 
generations before speciation, making SD of LD perhaps the 
strongest early-warning candidate among all indicators we 
analyzed. Although the reasons for why these particular met-
rics are the most reliable require further study, their inherent 
link to reproductive isolation may be part of the explanation, 
since effective migration, as calculated here, is essentially a 
measure of reproductive isolation due to selection against 
first-generation migrants (Nosil et al., 2005).

Yet, other EWS differences between abrupt and gradual 
data sets contradicted our expectation of being stronger in 
abrupt data sets: standard deviation of mean fitness of resi-
dents, FST, and Dabs showed a stronger rising trend in gradual 
data sets than in abrupt ones. Nonetheless, these three indica-
tors still show substantially different results when compared 

Figure 5. Comparing EWS between abrupt and gradual speciation. Summary results of Kendall τ correlations for different detrending and rolling window 
values (see Methods) for (A, B) autocorrelation and (C, D) standard deviation. (Left) Kendall τ distributions for abrupt and gradual data sets. Distributions 
skewed towards positive values indicate EWS. (Right) ROC (receiver operating characteristic) curves used to calculate AUC values (area under curve) 
to compare abrupt and gradual distributions. AUC values close to 1 indicate that the trend (Kendall τ) measured in the abrupt data sets is substantially 
higher than the trend measured in the gradual data set. An AUC close to 0 indicates the opposite. An AUC value close to 0.5 indicates that the trends 
measured in the two distributions are similar. Black bars on violin plots (A, C) show the median of the distributions. Eff. mig rate = effective migration 
rate, Nb sel loci = number of variable selected loci.
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with null expectations (Figure 4B, Table 1), which implies 
that they could serve as early warnings of speciation in gen-
eral, irrespective of whether the speciation events are grad-
ual or abrupt. In fact, EWS are not specific to tipping points 
associated only with abrupt transitions, but are more generic 
and can be identified also prior to gradual transitions that 
are related to noncatastrophic bifurcation points (Kéfi et al. 
2013; Boettiger et al. 2013).

We also observed EWS that were common to both abrupt 
and gradual data sets, even though speciation in the grad-
ual data sets is not inherently driven by a positive feedback. 
Moreover, LD, the key driver of the positive feedback, showed 
equally strong warning signals in both abrupt and gradual 
data sets: We reported rising autocorrelation and standard 
deviation approaching speciation for both data set types with 
similar strengths. This common trend for LD in both abrupt 
and gradual data sets may not be totally surprising as it 
reflects the generic behavior of LD as speciation approaches, 
regardless of the type of speciation (i.e., abrupt or gradual).

The most unexpected results were the decreasing trends in 
the standard deviation and autocorrelation of D

abs in abrupt 
data sets. At the same time, we reported increasing trends for 
FST (Figure 4). In this latter regard, Noor and Bennett (2009) 
noted that when FST and DXY (here, Dabs) “give the same 
answer, one can have some confidence in the interpretation, 
but when they give different answers, then a bias is likely 
affecting one measure (either by overly deflating FST or by 
giving a high DXY that does not reflect divergence occurring 
since the species split). The difficulty in the latter situation is 
interpreting which measure is biased or misinterpreted.” In 
the case of our simulations, the answer is likely an inflation 
of Dabs in earlier generations of the abrupt model due to vari-
ation (shared polymorphism) between populations. At earlier 
times during abrupt speciation, selected loci that establish, 
due to their having a minor effect on overall fitness, will be 
present at frequencies near 0.5 in both populations. In the 
formula for Dabs, this translates in values close to 0.5 for these 
loci. This will inflate the overall value of Dabs at an early state 
of differentiation when few loci are yet to differentiate. In 
contrast, FST will be near 0. Thus, Dabs is likely not as sensitive 
a metric for EWS as FST.

As for the effective migration rate, the standard deviation 
from the general trend reduced as populations approached 
speciation. A potential reason for the decreasing trend for the 
standard deviation may have to do with the way the param-
eter was measured in the simulations. Here, we estimated the 
effective migration as the proportion of immigrants from the 
most recent migration step that produced offspring (follow-
ing Vuilleumier et al. 2010). This measure is a useful one to 
assess immediate reproductive isolation caused by selection 
against first-generation migrants. However, it does not take 
into account the effects of recombination in subsequent gen-
erations of hybrids that can have profound consequences for 
the introgression of genes beyond selection acting against 
immigrant parents. As a result, our means for calculating 
effective migration disconnected this metric to some extent 
from LD among selected loci, the latter we found to be a 
common currency for EWS in all our speciation models. Thus, 
the standard deviation of me from the general trend did not 
reflect the behavior of the LD, which was found to be rising.

The above consideration set aside, Figure 3 seemingly pro-
vides a general guide for the usefulness of different metrics as 
indicators of EWS during speciation: metrics whose values 

are flat and close to baseline 0 up to the time of speciation 
(LD, the mean fitness of residents, and FST) were more infor-
mative in our analysis for EWS than metrics whose raw val-
ues were rising before speciation (Dabs and the number of 
selected variable loci). In terms of other potential properties 
that could provide EWS (i.e., skewness and kurtosis), the lack 
of clear trends in both data sets indicates that these metrics 
of variation do not appear highly informative for our sys-
tem and are in line with equally mixed or inconclusive results 
from other studies of dynamics other than speciation (Guttal 
& Jayaprakash, 2008) (Supplementary Figures S3 and S4). 

Although our findings identified FST, LD, Dabs, and effective 
migration rate as relevant signals for anticipating speciation 
events in some instances (Table 1), their heterogeneous behav-
ior and discrepancies between abrupt and gradual data sets 
introduce nuance into their interpretation and use as EWS. 
Work on EWS in multivariate systems such as multispecies 
communities has shown that not all components of a system 
carry comparable signals of CSD (Dakos, 2018), and in some 
cases, they might not show such slowing down at all (Boerlijst 
et al., 2013). In our case, we estimated indicators based on 
metrics which are often derived from state variables that are 
dynamically changing during the simulations. For example, 
FST and mean fitness are calculated from time series of FST val-
ues for individual loci and a sample of fitness values from 200 
randomly chosen individuals from a population, respectively. 
It is possible that analyses of the state variables and individual 
loci might yield a more refined understanding of EWS.

In fact, combining the EWS we calculated with the trends in 
the actual metrics could provide a better indication of abrupt 
speciation versus gradual speciation. For example, it is clear 
to see that in the case of gradual speciation almost all metrics 
show a linear change (Figure 3). Combining changes in the 
mean of the differentiation metrics with variance and auto-
correlation could be straightforward to develop as it has been 
implemented in analogous work on monitoring the emer-
gence of infectious disease (Brett et al., 2017) or population 
collapses (Clements & Ozgul, 2016). 

Finally, our results are likely influenced by the fact that the 
BU2S model is based on stochastic processes that introduce 
noise in the results. This is desirable when modeling evolution 
as it allows the realistic joint consideration of selection, ran-
dom drift, and mutation. However, EWS and CSD indicators 
have mostly been developed for deterministic systems with 
stochastically perturbed equilibria. If noise is too strong, it 
can mask warning signals (Dakos et al., 2012). For example, 
in a stochastic model on the evolution of cooperation dis-
rupted by tipping points to collapse, rising variance and auto-
correlation were most significant only for a specific range of 
conditions (Cavaliere et al., 2014). Indeed, other studies have 
also reported mixed signals among different EWS depending 
on what variable EWS are estimated for (Boerlijst et al. 2013; 
Gsell et al. 2017). In summary, we detected promising poten-
tial EWS, while the observed heterogeneity described above 
forms a clear avenue for further investigation.

Future work and implications for understanding 
speciation
We here consider more explicitly potential future work on 
EWS in evolution, both theoretical and empirical. In terms 
of future theory, although our model of speciation is quite 
general, there are many others (Bolnick & Fitzpatrick, 2007; 
Coyne & Orr, 2004; Dieckmann & Doebeli, 2004; Gavrilets, 
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2004; Kirkpatrick & Ravigné, 2002; Orr, 1995), to which 
analyses similar to ours could be applied. Further research 
could also include an analysis of spatial clustering of variable 
loci along chromosomes. Indeed, nonrandom positioning of 
variable alleles is suspected to be an important marker of dif-
ferentiation and to carry potential information on the stage of 
speciation (Nosil and Feder 2013; Wolf and Ellegren 2017), 
although other processes could also be involved (Cuickshank 
& Hahn, 2014). Linkage disequilibrium is more likely to 
appear between physically close loci, which are less prone 
to be separated by recombination than physically distant or 
unlinked loci. This process can sometimes create genomic 
“islands” of differentiation, which are suspected to play a role 
in shaping the speciation process in some scenarios (Feder et 
al., 2012). The BU2S model allows for spatial clustering of 
loci to build up in the genome as speciation approaches, and 
indeed some preliminary work implies that such islands can 
sometimes but not always contribute to speciation (Flaxman 
et al., 2014). Explicit future examination of the relationship 
between genomic islands and EWS is thus warranted. We 
note, however, that rapid transitions in speciation state may 
involve sudden increases of LD among loci across or span-
ning the genome (Flaxman et al., 2014), not just for spatially 

linked loci, the details of which we can also investigate in the 
BU2S model.

Theory aside, how might one empirically test the ideas 
and results presented here? This relates to the bigger ques-
tion of whether and how EWS can be used in practice. We 
acknowledge that this will be a challenge, but we do see 
two main realistic possibilities. First, microbes with short 
generation times could be suitable candidates to empiri-
cally test the results presented here using experimental evo-
lution. Ideally, this would require microbes such as yeast 
that can undergo recombination during reproduction, a 
condition for variation in LD to appear. Second, one could 
focus on spatial EWS rather than temporal ones (Eby et 
al., 2017), by comparing statistical indicators not through 
time, but in a variety of environmental conditions (i.e., a 
“space-for-time substitution”). The increasing availabil-
ity of genetic data from spatially distributed populations 
could facilitate comparisons based on such a space-for-
time approach. Under such a context, diverging popula-
tions might be identified that are on the verge of an abrupt 
(or gradual) speciation event. Our most general finding 
that EWS of speciation do exist urges further such theoret-
ical and empirical work.

Glossary

Term Definition 

Tipping point The point where accelerated change caused by a positive feedback generates a shift 
from the current system state towards a qualitatively different state.

Critical slowing down (CSD) Increase in recovery time back to equilibrium after a perturbation. CSD translates in 
a rise of statistical indicators like autocorrelation or variance.

Speciation Emergence of new species, here studied as the evolution of genetic differentiation 
between populations and reductions in gene flow (i.e., effective migration) between 
them. 

Abrupt speciation Nonlinear evolution of differentiation between populations of the same species.

Gradual speciation Linear differentiation between populations of the same species.

Fitness Measures the ability of an individual to survive and find a mate. The fitness depends 
on the sets of genes carried by the individual, positively selected genes yield higher 
fitness.

Variable loci Genetic positions for which more than one allele exists. In the BU2S model, this 
implies that a mutation has occurred at a locus since the onset of the simulations, 
creating a second allele.

Selected/neutral loci Selected loci contribute to the fitness by enhancing or disminishing it. Neutral loci do 
not contribute to the fitness.

Effective migration rate Proportion of reproduction in a population attributable to migrants.

Linkage disequilibrium (LD) Nonrandom association between loci. Practically, there is LD between two loci when 
alleles at the two loci occur together simultaneously in individuals more than expect-
ed by chance (i.e., more than expected based on allele frequencies at individual loci).

Fixation index, F
ST Relative measure of genetic differentiation between two populations. FST values are 

thus dependent on the within-population variation.

DXY Absolute measure of genetic divergence. DXY values do not depend on within-popula-
tion variation.
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