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Abstract: The incorporation of bioactive and biocompatible fillers improve the bone cell adhesion,
proliferation and differentiation, thus facilitating new bone tissue formation upon implantation.
During these last 20 years, those biocomposites have been explored for making complex geometry
devices likes screws or 3D porous scaffolds for the repair of bone defects. This review provides
an overview of the current development of manufacturing process with synthetic biodegradable
poly(α-ester)s reinforced with bioactive fillers for bone tissue engineering applications. Firstly, the
properties of poly(α-ester), bioactive fillers, as well as their composites will be defined. Then, the
different works based on these biocomposites will be classified according to their manufacturing
process. New processing techniques, particularly additive manufacturing processes, open up a new
range of possibilities. These techniques have shown the possibility to customize bone implants
for each patient and even create scaffolds with a complex structure similar to bone. At the end of
this manuscript, a contextualization exercise will be performed to identify the main issues of pro-
cess/resorbable biocomposites combination identified in the literature and especially for resorbable
load-bearing applications.

Keywords: manufacturing process; PLA; bioglass; mechanical properties

1. Bone Regeneration: Application of Orthopedic Implants

In some cases, bone fracture needs a medical intervention to install an internal fixation.
This system provides a temporary support to help the bone to restore the full function,
ensure a correct alignment of fractured bones and minimize the possible complications
during the healing. Furthermore, the device has to be biocompatible, inserted and removed
without damaging the surrounding tissue and withstand dynamic loading forces without
failure during the bone healing.

Orthopedic implants are assigned principally as class II and class IIb for the (Food
and Drug Administration of the U.S) and EMA (European Medicines Agency) respectively.
However, they are considered as Class III when they exhibit an active function (e.g.,
incorporating medical products or induce biological effect).

1.1. Why This Review?

During these last years, the scientific community has shown an increasing interest on
biodegradable synthetic polymer-ceramic materials [1–7] and the corresponding manufac-
turing process for bone tissue engineering [8,9]. The reviews of Boccaccini et al. [10] and
Gritsch et al. [7] summarize the principal studies about synthetic biodegradable poly(α-
ester)s and bioactive fillers of the last 20 years. Besides, the recent reviews of Dukle
et al. [11], Palivela et al. [12] and Jain et al. [13] have presented the recent studies on
additive manufacturing techniques for resorbable polyester and bioactive glass fillers.
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The aim of the present work is to inventory the studies of the different manufac-
turing techniques and final properties of biodegradable polyester filled with bioactive
particles. First, the introduction includes a presentation of the different applications of
these composites for internal bone fixation systems and the intrinsic properties of poly(α
ester) and bioactive ceramics. Afterwards, we present a detailed review to highlight the
different strategies to improve the final properties of implants of the recent studies of these
composites structured by manufacturing process. A concluding section summarizes the
current state of the field and highlights opportunities for further research.

1.2. Internal Bone Fixation

Bone plates, screw, nails or cages are use as internal fixation of fractures. Princi-
pally, internal bone fixation devices stabilize the bone from within the medullary canal
(intramedullary nails) or fixed to the exterior of the bone (plates and strews).

As a function of geometry and position, plates can present five different functions:
neutralization, compression, buttressing, tension band and bridging [14].

Compression plates apply a compression force to specific places to reduce the dis-
tance of bone fragments, increase fracture stability, and stimulate bone-to-bone interfaces.
Neutralization plates protect the bone shear, bending and torsional forces. Buttress plates
enhance the strength of weak cortical bone. In order to ensure a good loading force distri-
bution, this kind of plate presents a large contact surface with a good bone-implant contact
surface. 3D printing can design complex geometries to provide a good bone-implant con-
tact surface and ensure a good loading force distribution. Tension band plates are placed
to counteract the bending forces observed is some bearing bones. Installed in the tensile
“side”, they convert the bending force to compression force. Bridge plates do not produce
any force inside the injured zone and maintain the length, rotational and axial alignment.

Bone screws can also be used independently or combinate with plates or nails. They
are the responsible of adjust the force transfer across the plate and fracture. The number
and dimensions of screws to correctly install the plate depends on the health of bone (e.g.,
osteoporosis, osteonecrosis, infection), bone’s fragments and periprosthetic zone.

Besides, for intramedullary fixation (IF), nails are installed into the center of the
bone with minimal surgical incision. They provide stabilization and act as a load-sharing
device, allowing rapid rehabilitation after an injury. IF are widely used for rib fracture [15],
forearms [16], tibia or femur fixation [17]. The materials for IF need to have the ability
to be shaped according to the anatomical shape of the bone, be sufficient strength, and
present an adequate stiffness that can meet the elasticity and compliance requirements of
the anatomical region.

In the case of non-resorbable materials, these devices can be permanently implanted
or removed once they are no longer required.

2. Composites: Why Poly(α-hydroxy Ester) and Bioactive Fillers?
2.1. Poly(α-hydroxy Ester)

Due to their excellent biocompatibility, resorption, sterilization ability, good mechan-
ical and chemical stability under ambient conditions, ease of manufacture (thermal and
solvent techniques) and control over the biodegradation rate, poly(α-hydroxy ester) have
received considerable interest during the last 20 years. Poly(glycolic acid) (PGA) and
Poly(ε-caprolactone) (PCL), the stereoisomers of polylactic acid (PLA), poly(L-lactic acid)
(PLLA) and poly(D-lactic acid) (PDLA), and their copolymers (e.g., poly(D,L-lactic acid),
PDLLA, and PLGA) are the most common synthetic resorbable polymers used for orthope-
dic devices.

These different poly(α-hydroxy ester) have been approved by FDA [18] and are already
used for internal fixation devices. Figure 1 shows the chemical structure of the different
poly(α-hydroxy ester). Each polyester presents a different degradation rate and medical
applications [19].
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Figure 1. Chemical structure of the different poly(α-hydroxy ester).

PGA is frequently used as a material for biodegradable sutures, stents and orthopedic
implants for tendon and cartilage repair since it presents a faster degradation kinetics
than the others resorbable polyesters (less than 12 months) [20]. However, for some
applications, the degradation takes place faster than expected and the medical device losses
the mechanical properties and mass before the complete healing.

The properties of PLLA, PDLA and PDLLA are highly dependent on the crystallinity,
molecular weight and the ratio of D-lactide and L-lactide monomers for PDLLA [21]. They
are extensively used in the orthopedic devices like plates, nails or screws [22]. Due to its
crystalline phase, PLLA exhibits a similar modulus and tensile strength to PGA. Besides, the
amorphous structure of PDLLA promotes elasticity, but decreases the tensile strength [19].
PLLA presents a long degradation rate (more than 3 years) whereas PDLLA shows a
degradation time of 1–2 years due to the absence of crystallinity.

Poly(ε-caprolactone) is a semi-crystalline polymer and presents a low degradation
rate (2–4 years). Compared to PLA, PCL presents the advantages to be less hydrophilic
and does not release acidic degradation products that could affect cell growth [3,23]. PCL
is used principally for long-term implants as bone fixation or contraceptive devices [4].
However, the low degradation rate can even block bone ingrowth [4].

Poly(lactic-co-glycolic acid) (PGLA) is a copolymer composed of PGA and PLA. The
principal advantages of PGLA copolymers are the possibility to adjust the degradation
kinetics, mechanical properties and viscosity.

Hence, the different degradation times and mechanical properties of bioresorbable
polyesters provide a range of possibilities for biomedical applications.

The in-vivo degradation of poly(α-hydroxy ester) depends on different properties of
the material, such as the nature of polymer, molecular weight, the geometry of the implant,
porosity or processing technique [24]. In contact with body fluids, the poly(α-hydroxy
ester) degradation is principally driven by a hydrolytic random chain scission [25,26].
Afterwards, when the molecular weight is close to critical molecular weight (Mc), polymer
chains can diffuse through the body and through an enzymatic degradation process, the
monomers and oligomers are assimilated by the body [25,27]. It has also been noted that
the crystallinity of PLA tends to increase as polymer degrades. This can be attributed to
the fact that hydrolytic chain cleavage proceeds preferentially in the amorphous regions,
resulting in an increase in the polymer's global crystallinity [28].

However, internal fixation implants based on poly(α-hydroxy ester) exhibit a low
affinity with body cells and, in some cases, the hydrolytic degradation can cause an
inflammatory response of surrounding tissues [29].

It is also worth noting that the gamma-irradiation sterilization technique, the most
widely used technique for orthopedic implants sterilization [30], increases the polymer
matrix degradation [31].
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2.2. Bioactive Fillers

Calcium phosphates, CaP, make up a family known as apatites have been widely
used in orthopedic applications [32–36]. In general, the CaP used in medical devices are
hydroxyapatite (HA), tricalcium phosphate (TCP), and a ratio of HA and TCP. Synthetic HA
crystal is a bioactive and osteoconductive ceramic for which there exists long-term clinical
experience. Although synthetic HA has the same composition to HA found in bone [37,38],
the Ca/P ratio and specific surface are different (1.67 and 1.5 to 1.6 and 0.1 to 5 m2/g and
100 to 200 m2/g respectively). Besides, the low degradation rate, due to difference between
natural and synthetic HA, causes inadequate degradation properties [39].

Tricalcium phosphates (α and β) have a higher solubility than HA [37]. They are
also commonly used because of their biocompatibility, biodegradability, bioactivity and
osteoconductivity [40,41]. Moreover, β-TCP offers the fastest in-vivo resorption rate among
the commercial CaP.

Biphasic CaP (HA and β-TCP) allow to control the degradation of orthopedic implant.
The dissolution properties of a biocomposite with a filler of biphasic CaP are inversely
proportional to the HA/TCP ratio [42].

Bioglasses (BG) are bioactive, osteoconductive and osteoinductive. They can be di-
vided into three families: silicate (45S5, S53P4, 13–93), borate (13-93B3) and phosphate (CaP
glass) [43]. After implantation, a hydroxyapatite (HA) layer is formed on the BG surface,
followed by the attachment and proliferation of osteoblasts (Figure 2). Previous studies
have demonstrated that, in a specific composition window of Na2O-CaO-SiO2, different
glass compositions can present the ability to form a carbonated hydroxyapatite (cHA)
layer, even if the kinetics are slowed down as compared to 45S5 BG (the most bioactive
glass developed by Hench et al in 1971) [44–47]. Through the last years, the bioactive
glass composition has been studied to control the bioactivity, resorption and mechanical
properties [48–51].

However, the manufacturing process for orthopedic implants based on bioactive ce-
ramics are time- and energy- consuming. Besides, these devices exhibit limited geometries,
a mismatch in the mechanical properties of bone and ceramic implants as well as a brittle
behavior mechanical response. Hence, the application of bioactive ceramics has been
limited to non-loaded bone defects [52].
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2.3. Poly(α-hydroxy Ester)/BG Composites

The combination of bioactive filler and a resorbable polymer allows to meet the
mechanical and physiological demands of the host tissue [54]. The addition of CaP particles
into a PLA matrix enhances biocompatibility, facilitates the integration of the implant in host
tissues, and increases the modulus [33,55–57]. However, previous studies have reported
some complications with β-TCP/PLA biocomposites because of the fast loss of mechanical
strength over time [58]. Compared to CaP fillers, PLA/BG composites have shown in-
vitro cHA formation on the surface and superior in-vivo bone regeneration [46,51,59,60].
Moreover, the inflammatory response due to the acidic degradation produced by the
poly(α-ester) could be limited by the alkaline degradation of bioglass fillers [61–63].
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Since these composites are biodegradable, the final properties are sensitive to the man-
ufacturing process, bioactive filler nature and ratio, implant conservation, and implantation
time [64–66]. In the case of poly(α-hydroxy ester)/BG composites, the thermal manufac-
turing processes exhibits an important effect on the molar mass reduction of the polymer
matrix and on their final mechanical properties [64,65]. At high temperatures, a chemical
reaction occurs between the silicate functions on the surface of BG and ester groups of the
poly(α-hydroxy ester) accelerating the hydrolytic degradation [23,65,66]. Through the last
years, several studies have tried to reduce this chemical reaction by coating the BG surface
with a resorbable polymer [67,68], applying a thermal treatment on BG particles [66] or
varying the BG composition [31,69], size and shape [66,70,71]. In order to avoid this hy-
drolytic degradation, numerous works proposed solvent casting manufacturing techniques
to prepare poly(α-hydroxy ester)/BG composites [61,72–74]. However, since some toxic
chemical substances may still be present in the final product, polymer solvents present
significant obstacles to make the transition from laboratory to industrial application.

Besides, in-vitro investigations into the degradation of poly(α-hydroxy ester)/BG
composites have shown that BG particles accelerated the polymer matrix degradation
when immersed in a PBS (Phosphate-Buffered Saline) solution [59,75–79]. These composites
presented a significant loss of weight, molar mass, and mechanical strength from the first
week of immersion. Therefore, it is essential to control the degradation effect of BG on the
PDLLA during the manufacturing process and implantation in order to guarantee good
mechanical properties throughout bone healing.

In the following sections, we will present a detailed review of the different manufactur-
ing techniques proposed in the literature to fabricate poly(α-hydroxy ester)/BG composites.
The different mechanical, physical, morphological, microstructural, and bioactive proper-
ties will also be detailed.

3. Challenges and Opportunities

Following the criteria defined by the numerous studies of materials for orthopedic
devices, the perfect material for orthopedic devices would be [43,80]:

• Biocompatible (no inflammatory response, immunogenicity, or cytotoxicity)
• Resorbable
• Bioactive (develop a cHA layer on its surface)
• Osteoconductive (have a structure that allows the formation of new bone)
• Osteoinductive (induce bone formation)
• Osteogenic (facilitate the formation of new bone)
• Radiolucent
• Easy to produce and with complex shapes
• With similar mechanical properties to those of cortical bone or sponge bone
• Easy to use surgically
• Sterilized (have an antibacterial surface to avoid possible infections)
• Hypoallergenic
• Can be used in a wide range of medical applications (trauma, fractures, bone infections,

cancer...)

The recent research articles agree that resorbable materials, their design, and their
manufacturing process are expected to improve the treatment of bone fractures [81]. To
realize this new concept of bone plates, many attempts have been made by using different
biomaterials and manufacturing process strategies. Hereafter, we present the current
improvement strategies observed in the literature.

3.1. Therapeutic Applications/Therapeutic Release

One of the most serious complications associated with orthopedic implantations
is bone implant-associated infection. Drug therapy has shown positive results for the
treatment of bone defects [82]. In order to achieve local and targeted therapeutic effects,
antibiotics, drugs or metallic ions can be introduced into the biomaterials used for medical



Biomimetics 2023, 8, 81 6 of 32

devices [83]. The incorporation of metallic ions as strontium (Sr) [84], zinc (Zn) [85,86],
magnesium (Mg) [87], copper (Cu) [88], silver (Ag) or cobalt (Co) [89] can improve the
physicochemical and biological properties of BG composites. For example, Ag or Mg
nanoparticles have a strong inhibitory and bactericidal effect, and Co ions interfere in
physiological process such as oxygen transport in blood. Figure 3 exhibits the benefits of
Cu ions to reduce the biofilm formation on the bone implants.
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Figure 3. Bacterial viability and morphology of biofilms treated with MBG and Cu_MBG 2% sus-
pensions. Both suspensions were added to S. epidermidis RP62A biofilm formation cultures (A) or
after the formation of a stable staphylococcal biofilm (C). Bacterial viability is designed by *** and **
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formed in the absence (control) or in contact with both types of nanoparticles for 24 h are shown (B).
SEM images of post formed biofilms, untreated (control) or treated with both MBG or Cu_MBG 2%
nanoparticles for 24 h, are shown (D). Reproduced from [88].

Several studies have shown the benefits of therapeutic release. For example, Vallet-
Regí team developed biocomposites with a therapeutic release by introducing drugs,
metallic ions, and antibiotics into poly(α-hydroxy ester)/BG composites to reduce the
inflammatory response [90], the infection rate during implantation [86] and treat the
osteoporosis [91] or bone cancer [92].

3.2. Scaffolds

3D printing techniques open up a new range of possibilities for bone tissue engineering.
Among these opportunities, scaffold fabrication has been the main focus of researches in
the domain of orthopedic systems.

The principal objective of scaffolds is to provide an environment in which bone
formation is accelerated and can take place with no complications. These porous scaffolds
facilitate adhesion, proliferation, differentiation, and migration of cells to facilitate tissue
regeneration [93]. Usually, they present interconnected pores to facilitate the body fluid
circulation, transportation of cells, and metabolic wastes. Moreover, the level of porosity
and pore dimensions directly affects cell attachment, biodegradation, and drug release rates
since the amount of scaffold/body interface surface are correlated. However, in the case of
polymer-based scaffolds, excessive porosity affects mechanical performance and difficult
their utilization when exposed to external loads. Therefore, several authors studied the
optimization of porosity, pore sizes, and pore architecture to balance mechanical strength
and bone formation [1,94,95].

Besides, 3D printing of resorbable metallic Mg- or Zn-based scaffolds fabricated
by 3D printing are considered as an interesting strategy to combine the advantages of
scaffold structure with the controllable reduction of mechanical properties to obtain similar
performance of bone [96].
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3.3. Shape Memory Effect (SME)

Shape memory effect (SME) presents the advantage of being able to be compressed
into a temporarily smaller size and then return to their initial shape and size under an
appropriate external stimulus (heating). Orthopedic implants with SME could reduce the
size of the surgical incision area and hence, reduce the postoperative time and possible
complications [97]. Recent studies have shown the possibility of poly(α-hydroxy ester)
with bioactive fillers to enhance the biological performance and shape memory properties
for internal fixation systems [98–101].

3.4. Functionally Graded Materials (FGM)

Functionally Graded Materials (FGM) are materials whose structure and/or composi-
tion gradually change in one or multiple directions. Therefore, the properties change in
order to respond to specific requirements [102,103]. Osteochondral tissue is composed of
the cortical bone, the cancellous bone, and the cartilage. Moreover, hierarchical structure
porosity, and hierarchical composition (collagen, carbonated hydroxyapatite, and water) in
bone makes the osteochondral tissue the perfect example of functionally graded material.

In bone tissue engineering, a functional gradient can contribute to obtain a suitable
structural strength, porosity, bioactivity, or drug release [102–104] (Figure 4). The potential
of resorbable poly(α-hydroxy ester)/bioactive fillers FGM composites for bone tissue
engineering applications has been studied by different authors over the last years.
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A FGM strategy can be used to adjust the stiffness of orthopedic implants and bone
replacements by using with controlled compositional gradient structure and/or a graded
porous structure to mimic the mechanical response of bone and thus, avoid stress-shielding
and reduce aseptic loosening [105–107]. Caridade et al. [108] and Pawlik et al. [109]
developed FGM membranes with a bioactive and a barrier side to promote bone formation
on one side and prevent it on the other side [108,109]. In parallel, Li et al. [110] fabricated
a bi-layered membrane by a two-step method. The bi-layer membranes were composed
of a dense and smooth layer to prevent the infiltration of connective tissue and a porous
bioactive layer to promote osteogenesis. These systems are useful for bone repair in cranial,
maxillofacial areas and in dental applications, where limited mechanical loading exists.
Furthermore, other studies have combined different materials to provide bioactivity and
enhance the mechanical properties [111–113].

4. Manufacturing Process

As presented in the previous sections, there are several materials and fabrication
methods that could potentially meet the desired bone fixation requirements. However,
not all materials and fabrication methods are compatible with each other, and the right
combination should be selected when designing an orthopedic implant. The objective of
this section is to present the different manufacturing techniques used to fabricate poly(α-
hydroxy ester)/BG composites. The principal mechanical and microstructural properties of
the discussed articles are resumed at the end of each section.

4.1. Solvent Route

The results of different studies presented in this section are summarized in Table 1.



Biomimetics 2023, 8, 81 8 of 32

4.1.1. Solvent Casting

The solvent casting method is usually used in order to characterize the in vitro behav-
ior of biocomposites of poly(α-hydroxy acids)/BG, fabricate pellets and films. Interestingly,
the solvent casting technique prevents thermal degradation during processing [61,72].
Firstly, the resorbable polyester is dissolved in a solvent (usually with chloroform, acetone
or DMC). Once dissolved, glass powder is mixed with solution until the particles are well
dispersed. Afterwards, the polymer and glass blended solution is cast in a PTFE mold to
facilitate solvent evaporation. Finally, the film is cut into a precise geometry or milled and
sieved to obtain granules.

Navarro et al. [73] fabricated a composite based on P(L/DL)LA with a 95L/5DL ratio
blended with a BG type G5 using chloroform as a solvent. The aim of their study was to
compare the degradation response of PLA/BG composite with PLA. BG composite had
a more complex degradation behavior than P(L/DL)LA. The hydrolytic degradation of
PLA was accelerated by the fluid penetration in the polymer/BG interface induced by the
partial BG dissolution. Moreover, the formation of a cHA layer on the surface and the
buffering effect of BG increased the pH of the surrounding fluid. Aliaa et al. [114] used a
solvent casting method by mixing 95% of PLA and 5% of PEG in 5 vol% of chloroform,
and afterwards BG powder was added to obtain concentrations at 1 and 2.5 wt%. The ap-
parition of voids within the PEG/PLA/BG films indicates its degradation. Moreover, they
noted that suspensions with a non-homogeneous distribution lead to voids creation and
weak interfacial bonding; causing a diminution of mechanical properties. Gao et al. [115]
fabricated a PDLLA/bioglass film using different BG particles (45S5, mesoporous 58S, and
58S) through a solvent casting technique. Biocomposites films filled with surface-modified
BG particles presented a better particle distribution in the matrix than non-surface-modified
BG. Moreover, the modification did not significantly affect the bioactivity or the mechanical
properties. Tamjid et al. [71] prepared a PCL composite film containing 5 wt% of BG
particles at different size. The introduction of BG nanoparticles increased the elastic modu-
lus and improved bioactivity. However, BG nanoparticles increased the hydrophily and
consequently, the degradation kinetics. Terzopoulou et al. [116] fabricated PCL membranes
with two types of BG (containing Sr or Ca ions). Moreover, the osteogenesis properties
were enhanced by adding bisphosphonate drug ibandronate (IBA) into the composites.
Pawlik et al. [109] fabricated a film of PCL/PLGA blend with BG particles biocomposite
by solvent casting route. They observed that the ratio of PCL/PLGA and BG composition
are two key factors to control the mechanical and bioactivity properties. Mohammadkhah
et al. [117] studied the mechanical properties, bioactivity, and in-vitro degradation of bio-
composites based on PCL filled with 45S5 and 13-93B3 BG. The 13-93B3 BG presented a
higher degradation and bioactivity and a slight decrease of elastic modulus.

4.1.2. Scaffolds Systems by Solvent Casting

During the last years, several studies fabricated porous PLA/BG composites to in-
crease bone in-growth. Solvent techniques like solid-liquid phase separation method (SLPS),
solvent casting particulate leaching (SCPL), and gas foaming (GF) can be used to fabricate
porous PLA/BG composites.

4.1.3. Gas Foaming (GF)

Gas foaming is the process of forming porous structures by enabling gas flow or
bubble formation inside a mixture of polymer solutions. The polymer is mixed with a
solvent, a foaming agent, and a binder to create a polymer paste to be molded into a
particular geometry. After a partial solidification, the chemical reaction of the foaming
agent is activated to create the desired porous geometries. Besides, a second gas foaming
technique consists in inject an inter gas like N2 or CO2 into the polymer solution to create an
internal porous structure [1]. Song et al. [118] fabricated a highly interconnected PLGA/BG
porous scaffold by CO2 foaming to enhance the biological fluid circulation. The authors
ensured an interconnected porosity by controlling the pressure, venting foaming, and
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temperature. The addition of BG particles increased slightly the mechanical properties.
Dong et al. [119] fabricated a composite foam based on PLGA filled with BG particles
grafted with PLLA. The in-vivo tests confirmed the good biocompatibility, homogeneity,
and mechanical properties of PLGA/g-BG foams.

4.1.4. Solid-Liquid Phase Separation Method (SLPS) or Freeze-Drying

The freeze-drying is the process of creating microporous structures by freezing a poly-
meric solution suspended in another liquid (e.g., water, camphene) to a lower temperature
to create a phase separation between the freezing vehicle and the precursor solution [1]. Af-
terwards, the porous composite is produced by the melting and extraction of frozen vehicle
crystals that have been trapped inside the polymerized gel [1]. Fabbri et al. [74] fabricated
a high porous composite (around 90% of porosity) of PCL/BG 45S5 by solid-liquid phase
separation method (SLPS) with a good cell proliferation during in-vitro tests.

Mallick et al. [120] fabricated highly porous and interconnected 3-D network PLLA/BG
45S5 scaffolds by freeze-drying technique. As shown in Figure 5, pore size and poros-
ity can be controlled via freezing temperature employed. Santos et al. [121] fabricated
PCL/BG 58S porous composite and characterized the mechanical and cell viability prop-
erties. Maquet et al. [122] prepared two series of porous composites based on PLGA/BG
and PDLLA/BG at three different contents by freeze-drying method. They studied the
microstructural, bioactivity and mechanical properties. The degradation rate was adjusted
by varying the nature of the polymer and the content of BG in the matrix. The studies of
Rezabeigi et al. [123,124] shown a high porosity and interconnected PLA/BG scaffolds with
a combination of different size of pores. Conoscenti et al. [125] compared the bioactivity,
microstructural and mechanical properties during in-vitro conditions of resorbable scaf-
folds based on PLLA and 45S5 or 13-93 BG. The PLLA/13-93 BG composites presented a
better particle dispersion into the matrix and more homogeneous pore size.
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Figure 5. SEM images showing pore formation for PLLA scaffold during solvent extraction at
different temperatures. Reproduced from [120].

In the study of Dziadek et al. [61], PCL/BG composite with two different composi-
tions of BG were studied following three different preparation methods: solvent casting
particulate leaching (SCPL), solid–liquid phase separation (SLPS) and phase inversion (PI).
In all of the methods, PCL was firstly dissolved. The different techniques presented similar
bioactive properties. However, each technique presented a different porosity and pore
size. In their in-vitro studies they demonstrate the low cytotoxicity (mostly due to the
production methods) and the bioactive behavior of PCL/BG composites scaffolds.
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The different investigations presented above demonstrate the bone growth promotion
of scaffolds. However, owing to the low mechanical properties, polymer-based scaffolds
can be used only for non-load-bearing applications.

Polymer solution techniques present significant problems to moving from laboratory
to industrial scale as the long-time fabrication, the presence of toxic chemical substance in
the final product, and the low mechanical properties. Moreover, even if poly(α-hydroxy
acids) solvents like chloroform or acetone evaporates rapidly in room conditions, they can
remain during several months in atmosphere before been completely degraded or easily
dissolved in water [126,127].

Table 1. Principal properties of solvent route molding investigations. With * the compression,
** tensile and *** flexural modulus/strength (not filled cells mean no data).

Composite Modulus
(MPa)

Strength
(MPa)

Strain at
Break (%) Porosity Pore Size

(µm)
Particle

Size (µm)
Content
(wt%) Technique By

Cancellous bone 20–50 ** 2–12 */7.4 **
[127]

Cortical bone 3000–30000 ** 130–180 */
60–160 **

PLA-PEG 2.5 ** 10.1 ** 0 Solvent Casting [114]PLA-PEG/45S5 4.9 ** 18.5 ** <38 1
PDLLA 18 ** 0

Solvent Casting [115]
PDLLA/45S5 12.3 ** 20 15
PDLLA/58S 50.6 ** 1 15

PDLLA/m58S 29.3 ** 1 15
PCL 0.13 **

Solvent casting [71]
PCL/45S5 0.43 ** 6 5
PCL/45S5 0.82 ** 0.25 5
PCL/45S5 0.46 ** <0.1 5

PCL 800 **
Solvent casting [116]PCL/SrBG 5600 ** 0.4 10

PCL/CaBG 5500 ** 0.2 10
PCL/PLGA 1500 ** 31.5 ** Solvent casting [109]PCL/PLGA/BG 3400 ** 38 ** <5 20 vol%

PCL 280 ** 148 ** 240 - - - -

Solvent Casting [117]
PCL/45S5 190 ** 51 ** 2.4 - - 3.7 50

PCL/13-93B3 146 ** 41 ** 27 - - 4.0 50
PCL/45S5/

190 ** 44 ** 5.5 - - 3.7–4.0 5013-93B3
PLGA 14 ** 2.1 ** 460 155

Solvent casting [110]PLGA/BG 10 ** 1.9 ** 390 175 20
PLGA/BG 10 ** 2 ** 350 170 40

PLGA 4.1 *–1.9 *** 80 Gas foaming [119]PLGA/g-BG 5.5 *–2.8 *** 80 0.04 20
PLGA 7.6 * 1.4 *

73–85 120–320
0 Solvent/gas

foaming [118]PLGA/BG 13 * 1.8 * 10
PLGA/BG 18 * 2.1* 20

PCL 0.08–0.19 *
Freeze-drying [74]PCL/45S5 0.13–0.23 * 90 50–300 <45 25

PCL/45S5 0.16–0.25 * 90 50–300 <46 50
PLLA/45S5 BG - 0.8–0.3 * - 81–91 250–1100 <2 - Freeze-drying [120]

PCL/58S BG 46 * 4.5* 72 18 10 vol% Freeze-drying [121]
PDLLA 13.6 * 90 10–100

Freeze-drying [122]
PDLLA/45S5 21 * 90 10–100 25 50

PLGA 9.8 * 90 10–100
PLGA/45S5 26.5 * 90 10–100 25 50
PLA/45S5 91.4 110 1.82 2

Freeze-drying [123]
PLA/45S5 89.3 72 1.82 2
PLA/45S5 87.9 46 1.82 2
PLA/45S5 85.3 40 1.82 2

PLLA 6.3 ** 60
Freeze-drying [125]PLLA/45S5 6.5 ** 88.5 25 11.26 5

PLLA/13-93 8.2 ** 88.5 60 8.86 5
PCL/BG 57 10–100 <50 21 vol% SLPS

[61]PCL/BG 65 10–100 <50 21 vol% Freeze-drying
PCL/BG 90 >100 <50 21 vol% SCPL
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4.2. Thermal Route

The results of different studies presented in this section are summarized in Table 2.

4.2.1. Injection Molding

The injection molding fabrication of poly(α-hydroxy acids)/BG composites is divided
in two steps. In a first time, poly(α-hydroxy acids) and BG particles are mixed following
a thermal extrusion [62,69] or a solvent casting [59] process to obtain composite pellets
with well-dispersed particles. Afterwards, composites are processed into different shapes
at high temperature and under pressure by injection molding. Generally, compared to
other manufacturing process, injection molding parts present better mechanical properties
thanks to the lack of porosity.

Ji et al. [62] investigated the mechanical properties and bioactivity of composite based
on PCL filled with nanoparticles of BG. Although the tensile strength remained almost the
same, the addition of BG particles, increased in elastic modulus. PCL/nBG composites
exhibited an excellent bioactivity after being immersed in SBF (Simulated Body Fluid)
fluid. However, they showed a faster degradation behavior. Simpson et al. [69] presented
a detailed study of PLGA with different bioactive fillers of the thermal and mechanical
properties. Compared to HA, composites filled with bioactive particles exhibited lower
mechanical properties due to the premature degradation of the PLGA matrix and poor
particle/matrix adhesion. Vergnol et al. [59] used a two-step process to prepare PDLLA/BG
composites. The composites pellets were fabricated by solvent technique and afterwards,
they were molded by injection. As observed in Figure 6, the in-vitro tests revealed that
composite systems presented a faster degradation rate. In addition, poly(ethylene-vinyl
alcohol)/BG composites exhibited the same behavior [128]. In order to reduce the polymer
degradation at high temperature, Lacambra et al. [66] fabricated a PDLLA/BG composite
by a coupled thermal extrusion with direct injection molding process.
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Figure 6. Compressive strength of the polymer P (light gray) and the composite C30 (dark gray) in
function of immersion time in PBS. Reproduced from [59].

These different studies observed that the bioactive particles in the resorbable polyester
matrix led to a significant decrease in the strain at break and tensile strength. Furthermore,
they observed only an elastic deformation without yield stress and strain softening during
the tensile experiment for the composites, suggesting a brittle fracture.

4.2.2. Hot-Pressing

Hot-pressing molding consists on heating a polymer (or composite) in a closed mold,
under a controlled temperature and pressure, to take the shape of the mold cavity. The
team of Mehboob et al. modelled the mechanical behavior of a FGM bone plate based
on a multilayer FGM PLA/BG composite [129]. Afterwards, they studied the in-vitro
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mechanical properties evolution of the same FGM composite during the immersion in a
phosphate-buffers saline (PBS) solution [130]. The FGM were fabricated by hot-pressing
molding. They investigated the healing of critical segmental bone fractures by following
the in-vitro formation on new tissues. A recent study fabricated scaffolds from PCL/BG
microspheres by a low-temperature process [131]. In this case, the porosity was ensured by
the partially sintering of microspheres surfaces.

Table 2. Principal properties of extrusion-injection molding investigations. With * the compression,
** tensile (not filled cells mean no data).

Composite Modulus
(MPa)

Strength
(MPa)

Strain at
Break (%) Porosity Pore Size

(µm)
Particle

size (µm)
Content
(wt%) Technique By

Cancellous bone 20–50 ** 2–12 */7.4 **
[127]

Cortical bone 3000–30,000 ** 130–180 */
60–160 **

PCL 40 **

Extrusion-injection
molding [62]

PCL/nBG 20 ** 0.05–0.09 10
PCL/nBG 20 ** 0.05–0.09 20
PCL/nBG 20 ** 0.05–0.09 30
PCL/nBG 17.5 ** 0.05–0.09 40

PDLLA 2100 * 82 *
Extrusion-injection

molding [66]PDLLA/45S5 BG 2200 * 78 * 40–500 10
PDLLA/45S5 BG 2500 * 75 * 40–500 30
PDLLA/45S5 BG 2200 * 64 * 40–500 50
PLGA/45S5 BG 3500 * 69 * 35.3 25 vol% Extrusion-injection

molding [69]PLGA/ICIE4 BG 5900 */7500 ** 93.1 */35.8 ** 5.2 25 vol%
PLGA/HA 5900 */8800 ** 93.1 */51.7 ** 3.8 25 vol%

PDLLA 68 * 0 Extrusion-injection
molding [59]PDLLA/45S5 BG 72 * 3.5 30

PVA 1860 ** 42.3 ** 14.7 0 Extrusion-injection
molding [128]PVA/45S5 BG 3540 ** 50.7 ** 2.5 38–53 10

PVA/45S5 BG 3770 ** 38.6 ** 1.8 38–53 40
PCL 5 * 85.9 183 Hot-pressing and

Salt-leaching [60]PCL/HA 8.2 * 86.2 180 0.02 20
PCL/45S5 8.6 * 87.5 177 66.4 20

PCL 34 ** 2.2 ** 44.5 100 0
Microsphere sintering

by hot-pressing [131]PCL/BG 47 ** 2.7 ** 44.5 100 5
37 ** 2.1 ** 10
30 ** 1.9 ** 20

PDLLA 2.2 * 0.42 * 92 920
Gas foaming by SSF [132]PDLLA/BG 4.9 * 0.7 * 91 270 50 10

PDLLA/BG 7.3 * 1.2 * 79 190 50 30

4.2.3. Solid-State Foaming (SSF)

Mohammadi et al. [132] fabricated a PDLLA/BG composite foam via a solid-state
foaming (SSF) using CO2. Composite pellets were fabricated by melt-extrusion under a
flow of nitrogen to reduce the polymer degradation. Afterwards, the different specimens
were processed by hot-pressing molding. The dense parts were saturated with CO2 under
pressure and foaming was conducted at 80 ◦C. Compared to the other foaming techniques,
SSF presents the advantage of being a solvent free process.

4.2.4. Salt-Leaching

Scaffolds can also be fabricated by a salt-leaching technique. In this case, salts powders
are used as pore generation. This technique can be coupled with a solvent or melt method
such as hot-pressing molding, solvent casting or robocasting [60,133,134]. At the end, the
systems are immersed in water to dissolve the salts and create the composite scaffolds.
Figure 7 exhibits the different manufacturing steps of scaffold fabrication by hot-pressing
molding combined with salt leaching. Yin et al. [60] studied the bioactivity and mechanical
properties of PCL/HA and PCL/BG scaffolds. The composites were firstly mixed by
extrusion compounding with NaCl salts and then molded at high pressure.
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Figure 7. Schematic diagram of fabricating porous PCL composite scaffolds. Reproduced from [60].

4.3. Additive Manufacturing (AM)

Additive manufacturing (AM) techniques have attracted attention in bone tissue engi-
neering during this lasts years [8]. AM techniques are considered the group of fabrication
process that manufacture parts by a gradually addition of materials. These techniques
are advantageous than traditional methods since it can customize, repeat architectures,
fabricate complex designs, are low cost, and are highly efficient [12]. One of the key
advantages of AM is the ability to produce tailored devices adjusted to each patient. How-
ever, these technologies are material-based dependent, since there are some mechanisms
that works only for some specific materials. Thus, different publications have shown the
possibilities of polymer, ceramic and metal-based AM techniques for bone regeneration
applications [6,8,135].

Although a huge number of polymer-based publications using different AM tech-
niques can be find in the literature, the main objective of this review is to present mainly
the investigations using poly(α-ester)/BG composites. Table 3 shows the advantages and
limitation of each AM technique. At the end of each section we present a table summa-
rizing the principal mechanical and microstructural properties of the systems studied in
the literature.

Table 3. Advantages and disadvantages of additive manufacturing processes and commonly used
materials in tissue engineering.

Technique Advantages Limitations References

Fused deposition
modeling (FDM)

Multi-material printing, low cost,
complex geometries, good strength

Anisotropy, porosity, Easy to
block nozzles [136]

Direct Pellet multi
Extrusion Printing

Avoid filament fabrication,
multi-material printing, complex

geometries, good strength

Anisotropy, porosity, Easy to
block nozzles [137]

Robocasting Non-thermal degradation, high
filled systems

low mechanical properties, porosity,
residual solvent products, long

time fabrication
[138]

Electrospinning and Melt
Electrospinning
Writing (MEW)

Interconnected pores, good strength,
high specific surface, uniform and

aligned fibers, precisely
controllable structure

Residual solvent products, high voltage
apparatus, limited geometry [139,140]

Selective laser sintering (SLS)
Design flexibility, good resolution, low

material waste, No need for
support structure

High cost, long printing time, residual
stress, need post-processing, expensive,

powdery surface
[141]

Stereolithography (SLA) Smooth printing surface, good strength
High cost, need of photosensible resins,
additional step to eliminate non-cured

polymer remining in the scaffold
[139]
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4.3.1. Fused Deposition Modelling (FDM)

Fused deposition modelling (FDM) is the most commonly-used AM technique. The
extruded is melted through a heated nozzle and deposited layer-by-layer (with an accuracy
on the order of 100 µm) to create a 3D part [142]. The final properties like anisotropic
mechanical properties or surface quality are determined by nozzle dimensions and poly-
mer viscoelasticity.

Korpela et al. [143] demonstrate the printability of a PCL/BG biocomposites. Firstly,
the composite printability was more challenging to print than PCL: the adhesion between
adjacent layers was weaker and the extrusion flow was unstable due to the high viscos-
ity. Afterwards, the printing parameters like the nozzle temperature, porosity or layer
orientation were optimized. The composites presented a similar mechanical behavior to
PCL scaffolds.

For the purpose of show the interest of BG particles in biocomposites for bone tissue
regeneration, Alksne et al. [144] compared the in-vitro results between scaffolds of PLA/HA
and PLA/BG manufactured by FDM. A powder mix of PDLLA/HA and PDLLA/BG
at 10 wt% content was extruded at 140–145 ◦C to create a filament with a diameter of
1.28–1.6 mm. Different in-vitro tests have been realized (DPSC, cell adhesion, DPSCs
migration and proliferation and osteogenic differentiation) to compare the osteoconductive,
osteoinductive, and biocompatible properties. The results confirmed that the bioactivity
properties of PDLLA/BG were better than PDLLA/HA.

Distler et al. [145] fabricated and studied the properties of PLA/45S5 BG filaments
for 3D scaffolds manufacturing by FDM. The µCT images confirmed the interconnected
porosity of scaffolds and BG particle distribution into the PLA matrix. The different
composite filaments presented an ultimate tensile strength between 35 and 60 MPa.

The mechanical properties of PDLGA/45S5-BG 3D scaffold fabricated by FDM during
in-vitro degradation are significantly affected by the presence of BG. In the in-vitro study
of Han et al. [146], the composites filled with different BG presented a decrease of the
mechanical properties from the first week of immersion. A structural decomposition
appeared up to 4 weeks of immersion for scaffolds filled with non-thermal treated BG.
As shown in Figure 8, even if scaffolds with thermal treated particles presented lower
mechanical properties after fabrication, they presented higher mechanical properties up
to 4 weeks of immersion and maintained their shapes and porous structures during the
first 8 weeks. The results of different studies presented in this section are summarized in
Table 4.
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Table 4. Principal properties of FDM investigations. With * the compression (not filled cells mean
no data).

Composite Modulus
(MPa)

Strength
(MPa)

Strain at
Break (%) Porosity Pore Size

(µm)
Particle

Size (µm)
Content
(wt%) Technique By

PCL/S53P4 148–157 * 30–40 400 50 10 FDM [143]
PDLA 48 414

FDM [144]PDLA/HA 48 412 50 10
PDLA/45S5 48 396 38–75 10

PDLGA 466 * 19.5 *
FDM [146]PDLGA/

dilatom-BG 186 * 10.7 * 5–80 1

PDLGA/
dilatom-BG 264 * 11.3 * 5–80 5

4.3.2. Robocasting or Direct Ink Writing

Robocasting or Direct ink writing is a type of 3D material extrusion-based technique.
Briefly, this technique consists to extrude a polymer solution or a melted polymer through
a nozzle using a force-controlled plunger like a screw, a piston or air pressure to control the
mass flow rate. Figure 9 shows a schematic diagram of robocasting process.
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To understand and validate the robocasting process to fabricate PCL/BG scaffolds
for bone tissue engineering, Oh et al. [147] studied the morphological changes (particle
dispersion, pore size and filament diameter) during immersion in SBF. The composite paste
was prepared by mixing PCL and BG with acetone at 50 ◦C. The rheological properties of
the mixture were examined in order to ensure the printability and the final geometry of the
scaffold structure.

Yun et al. [134] fabricated a PCL/BG scaffold with three pore dimensions via a com-
bination of robocasting, salt leaching and mesoporous BG. During the scaffold fabrica-
tion the NaCl had an also an effect of stiffening supporter avoiding the collapse of the
structure. In order to analyze the effect of porosity in bone tissue regeneration devices,
three compositions with different porosity and pore dimension have been studied. The
mechanical strength was inversely proportional to porosity. Scaffolds presenting high
macro-porosity exhibited an increase of the loss modulus (E”). Their sponge-like plastic
nature and bioactivity make them interesting for minimum invasive surgery and articular
cartilages reconstruction.

Several studies enhanced the biomedical response by introducing metallic ions or
drugs. The in-vivo studies of Gomez-Cerezo et al. [89] carried out into cavity defects, proved
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excellent bone regeneration properties for scaffolds of PCL/mBG with an antiosteoporotic
drug fabricated by robocasting. Sánchez-Salcedo et al. [83] studied the in-vitro antibacterial
of PCL/BG scaffolds with ZnO to decrease in infection rates during implantation. Zhang
et al. [82] fabricated a PVA/mBG scaffold with Sr ions to reduce inflammatory response
as soon after the device implantation. Zhang et al. [90] introduced magnetite (Fe3O4)
nanoparticles into PCL/BG composite for cancer treatment. Wang et al. [97] fabricated an
SME scaffold using a Pickering emulsion of poly(D,L-lactide- co-trimethylene carbonate)
(PLMC)/BG composite.

Murphy et al. [133] studied the cell viability and proliferation properties of scaffolds
fabricated with two inks: adipose stem cells (ASCs) and PCL/13-93B3/chloroform mix.
The formation of a porous filament by the chloroform evaporation increased the glass
dissolution, bioactivity and polymer bulk degradation. Kolan et al. [148] studied the
mechanical properties and biological response of bi-material scaffolds based on PDLLA/BG
13-93B3 and Bioink (Alginate + Gelatin + ASCs).

In order to improve the regeneration of osteochondral defects, Barbeck et al. [149]
fabricated a bi-layered PLA and PLA/BG scaffold. The printing conditions and paste
composition used in this study have been previously optimized by Serra et al. [150]. They
analyzed the in-vitro degradation in SBG of scaffolds by following the mass loss, the weight
average molecular weight (Mw) loss and the compressive modulus. Even if the studied
properties decreased faster in PLA/BG than PLA, PLA/BG scaffolds kept their structural
integrity during the in-vitro experimentation (eight weeks). For in-vivo study, the addition
of BG showed a bioactive response of scaffolds.

Baier et al. [151] prepared a 3D PCL/45S5 BG composite scaffolds by direct ink writing
at high temperature. The raw composite pellets were fabricated by solvent casting. The
rheological investigation confirmed the printability of PCL/BG composites at different BG
content and shear rates.

Some studies used a paste based on Pluronic F-127 mixed with BG to create 3D
scaffolds. For example, Nommeots-Nomm et al. [152] observed the effect on ink printability
as a function of BG nature. In some cases, a debinding and sintering step were used to
create highly porous BG scaffolds. Barberi et al. [153] and Baino et al. [154] studied the
compressive behavior and bioactivity of BG 47.5B scaffolds in SBF. The formation of cHA
on the surface of BG 47.5B scaffolds after immersion in SBF and the ion concentration
profile confirmed the bioactivity.

The team of Eqtesadi et al. [155–158] fabricated scaffolds of 45S5 BG with an optimized
paste composed of caboxymethyl cellulose CMC (0–2 wt%), a polyelectrolyte dispersing
agent, deionized water and 45vol% of BG. After the debinding and sintering step (at 500
and 1000 ◦C respectively), the mechanical properties of scaffolds were tested. Their recent
studies [159,160] shown the improvements on compression and flexural properties after a
PCL and/or PLA infiltration by immersion in a polymer melt bath at 227 ◦C. As previously
notice [23,65,66], the authors observed a chemical degradation of PLA in contact with BG
at high temperature. Furthermore, the increase of crystallinity degree of BG by increasing
the sintering temperature reduced the bioactivity kinetics under in-vitro conditions [66].
Finally, Motealleh et al. [73] studied the mechanical properties and in-vitro degradation of
BG scaffolds coated with different synthetic polymers (PCL, PLA) and natural polymers
(alginate, chitosan, gelatin). Scaffolds with a polymer coating exhibit a higher compressive
strength, a strain energy density and weight loss than BG scaffolds. Although the coating by
the solvent route shown a better infiltration and a non-degradation of resorbable polyester,
the mechanical properties of scaffolds with a polymer coating were higher than those
of non-coated scaffolds, whereas the coating technique. The results of different studies
presented in this section are summarized in Table 5
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Table 5. Principal properties of Robocasting investigations. With * the compression, ** tensile and
*** flexural modulus/strength (not filled cells mean no data).

Composite Modulus
(MPa)

Strength
(MPa)

Strain at
Break (%) Porosity Pore Size

(µm)
Particle

Size (µm)
Content
(wt%) Technique By

PCL/BG 500 3 [161] 75 Robocasting [147]
PCL/mesoBG 4.3 * 75 190/0.005 <25 35.5

Robocasting [134]PCL/mesoBG/Na1 2.2 * 84 190/10/0.005 <25 35.5
PCL/mesoBG

Na0.5 3.3 * 190/10/0.005 <25 35.5

PCL/13-93B3 100–300 20 50 Robocasting [133]
PDLLA 24.5 ** 1 ** 0

Robocasting [148]PDLLA/BG-B3 22.2 ** 1.1 ** 20 33
PDLLA/BG-B3 25.8 ** 2.2 ** 20 50

PDLA-PGA 27 * 75–165 Robocasting [149]PDLA-PGA/G5 44.2 * 45–165 <40 50
PCL 75 * 4.2 * 50 370 0

Robocasting [151]PCL/BG-45S5 50 * 3.7 * 50 370 10
PCL/BG-45S5 43 * 3.2 * 50 370 20

ICIE16 15.8 100
Robocasting [152]13–93 10.8 100

PSrBG 12.5 100
45S5 13 * 3.8 * 60 1–10 100 Robocasting [155]

PCL/13-93B3 17 * 90 */20 *** Robocasting [158]PLA/13-93 18 * 105 */22 ***

4.3.3. Electrospinning

Electrospinning is one of the approaches used to manufacture micro-fibrous scaffolds
based on medical degradable polymers filled with bioactive ceramics. Electrospinning
is a processes by which a steady stream of an electrically charged polymer material (in
a dissolved or melted state) is drawn into microfibers under the action of electrostatic
forces [139]. The high voltage electric field between the nozzle and the collector plate
(generally between 4 and 30 kV) is the principal responsible for drawing down the original
diameter of the material. However, other electrospinning process parameters such as
solvent, polymer concentration, flow rate or temperature can also influence the microfibers
diameters and final mechanical properties [160].

Kouhi et al. [160] studied the electrospinning fabrication of a PCL/ chloroform/methanol
solution with different contents of BG particles. The electrospun nanofibrous presented a
good tensile strength and bioactivity. Konyalı & Deliormanlı [71] fabricated a PCL/13-93BG
composite by electrospun method using acetone in solution. They studied the effect of
BG morphology on in-vitro bioactivity of composite scaffolds. Serio et al. [161] fabricated
two types of fiber mats of PLLA/BG by electrospinning: aligned and random. As observed
in Figure 10, compared to neat polymer fibers, PLLA/BG composites shown an increase of
the elastic modulus. Moreover, composite fibers shown a ductile behavior. A cell culture
of ST-2 confirmed that PLLA/BG fibers promote an effective and viable environment for
cellular colonization.

Liverani et al. [96] studied the feasibility of PCL-TES (triethoxysilane-terminated)/BG
shape memory effect (SME) manufactured by electrospinning. The samples presented an
excellent shape fixity and shape recovery.

Moura et al. [89] studied the mechanical strength and bioactive response of a PCL/nBG
and PCL/nBG doped with metallic ions (silver nanoparticles and cobalt ions) mats fab-
ricated by electrospinning process. These mats presented a tensile strength (14–27 MPa)
and an elongation (103–167%) close to the values of human skin (5–30 MPa and 35–115%
respectively) and makes them interesting to be used as a skin regeneration membrane.
Canales et al. [162] studied the mechanical properties and cell viability under in-vitro
conditions of PLLA/BG scaffolds with MgO fabricated by electrospinning. The results of
different studies presented in this section are summarized in Table 6.



Biomimetics 2023, 8, 81 18 of 32

Biomimetics 2022, 7, x FOR PEER REVIEW 21 of 37 
 

 

of the material. However, other electrospinning process parameters such as solvent, pol- 627 
ymer concentration, flow rate or temperature can also influence the microfibers diameters 628 
and final mechanical properties [160]. 629 

Kouhi et al., [160] studied the electrospinning fabrication of a PCL/ chloroform/meth- 630 
anol solution with different contents of BG particles. The electrospun nanofibrous pre- 631 
sented a good tensile strength and bioactivity. Konyalı & Deliormanlı [71] fabricated a 632 
PCL/13-93BG composite by electrospun method using acetone in solution. They studied 633 
the effect of BG morphology on in-vitro bioactivity of composite scaffolds. Serio et al., [161] 634 
fabricated two types of fiber mats of PLLA/BG by electrospinning: aligned and random. 635 
As observed in Figure 10, compared to neat polymer fibers, PLLA/BG composites shown 636 
an increase of the elastic modulus. Moreover, composite fibers shown a ductile behavior. 637 
A cell culture of ST-2 confirmed that PLLA/BG fibers promote an effective and viable en- 638 
vironment for cellular colonization. 639 

 640 
Figure 10. Young’s modulus (a), elongation at break (b) and tensile strength (c) of random and 641 
aligned fibers. Results are expressed as (mean ± standard deviation). Bars show statistically signifi- 642 
cant differences (p < 0.05). In the inset of (a) and (c) a zoom view of the properties of randomly 643 
oriented fibers is reported. Reproduced from [161] 644 

Liverani et al., [96] studied the feasibility of PCL-TES (triethoxysilane-termi- 645 
nated)/BG shape memory effect (SME) manufactured by electrospinning. The samples 646 
presented an excellent shape fixity and shape recovery.   647 

Moura et al., [89] studied the mechanical strength and bioactive response of a 648 
PCL/nBG and PCL/nBG doped with metallic ions (silver nanoparticles and cobalt ions) 649 
mats fabricated by electrospinning process. These mats presented a tensile strength (14- 650 
27MPa) and an elongation (103-167%) close to the values of human skin (5–30 MPa and 651 
35-115% respectively) and makes them interesting to be used as a skin regeneration mem- 652 
brane. Canales et al., [162] studied the mechanical properties and cell viability under in- 653 
vitro conditions of PLLA/BG scaffolds with MgO fabricated by electrospinning. The re- 654 
sults of different studies presented in this section are summarized in Table 6. 655 

Table 6. Principal properties of electrospinning investigations. With * the compression, ** tensile 656 
and *** flexural modulus/strength (not filled cells mean no data). 657 

Composite Modulus 
(MPa) 

Strength 
(MPa) 

Strain at 
break (%) 

Po-
ros-
ity 

Pore 
size 
(µm) 

Particle 
size (µm) 

Content 
(wt%) 

Tech-
nique 

By 

PCL   2.3** 119     <100nm 0 

Electro-
spinning 

[160] 
PCL/nBG  3** 103   <100nm 5 
PCL/nBG   3.3** 108     <100nm 10 
PCL/nBG  3.4** 96   <100nm 15 
PCL/nBG   2.7** 70     <100nm 20 
PLLA/BG 35** 7** 15   0.1 2 35 vol% Electro-

spinning [161] 
PLLA 20** 11** 20  0.1 - - 

Figure 10. Young’s modulus (a), elongation at break (b) and tensile strength (c) of random and aligned
fibers. Results are expressed as (mean ± standard deviation). Bars show statistically significant
differences (p < 0.05). In the inset of (a,c) a zoom view of the properties of randomly oriented fibers is
reported. Reproduced from [161].

Table 6. Principal properties of electrospinning investigations. With ** tensile (not filled cells mean
no data).

Composite Modulus
(MPa)

Strength
(MPa)

Strain at
Break (%) Porosity Pore Size

(µm)
Particle

Size (µm)
Content
(wt%) Technique By

PCL 2.3 ** 119 <100 nm 0

Electrospinning [160]
PCL/nBG 3 ** 103 <100 nm 5
PCL/nBG 3.3 ** 108 <100 nm 10
PCL/nBG 3.4 ** 96 <100 nm 15
PCL/nBG 2.7 ** 70 <100 nm 20
PLLA/BG 35 ** 7 ** 15 0.1 2 35 vol% Electrospinning [161]PLLA 20 ** 11 ** 20 0.1 - -

PCL 4.61 ** 20 ** 167 0
Electrospinning [87]PCL/nBG 3.7 ** 15 ** 143 0.032 0.75

PCL/nBG/DP 6.5 ** 21 ** 112 0.032 0.75
PLA/BG 4 ** 0.05 ** 80 0.027 20 Electrospinning [162]PLA/BG/MgO 4 ** 0.03 ** 30 0.027 10

4.3.4. Melt Electrospinning Writing (MEW)

Melt electrospinning writing (MEW) is a high-resolution additive manufacturing
technique that facilities the fabrication of scaffolds with polymer microfibers. This additive
manufacturing technique is a combination of electrospinning and robocasting process [140].
As electrospinning, the scaffolds can be fabricated by solvent or thermal route. In the
case of thermal route, the composite pellets are loaded into a syringe and melted and for
solvent route, the polymer solution is directly extruded through the syringe by air pressure
or pneumatic system [163,164]. A monitored moving collector plate and a high potential
difference between the nozzle and plate leads to the layer-by-layer fabrication of micro
fibrous scaffolds scaffolds (Figure 11).
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Hochleitner et al. [166] proved the processability of PLA/PEG with 5 wt% of 45S5 BG
scaffold using the MEW. Paxton et al. [165] studied the rheological behavior of PCL/SrBG
(strontium bioactive glass) scaffold fabricated by MEW method. The PCL/SrBG composite
was prepared by a micronization of SrBG particles and mixing with a PCL/chloroform
solution. In this study, they used the Ostwald model and a non-Newtonian shear rate
model to predict the composite printability according to process parameters such as printing
pressure, temperature, Sr BG content, average extrusion velocity, and the radius, R, and
length, L, of the cylindrical nozzle.

4.3.5. Selective Laser Sintering (SLS)

The SLS is a layer-by-layer process where a laser energy source is employed to raise the
temperature and fuse the powder material particles together without completely melting
the material. The principal parameters to control are: the laser power, the sintering speed,
the spot diameter at focus, the powder temperature, the layer thickness, the powder
polymer, and filler size (Figure 11). The final parts present interconnected microporous
due to the non-completely fusion of particles which can facilities the cell attachment and
fluids transport through them. The parts fabricated by SLS offers the advantage of having
good mechanical properties, good resolution and a no-need of support structures, post-
processing step, or solvents.

The fabrication of complex geometries with a controlled micro- and macro-pore size
and good mechanical properties needs the control and optimization of the sintered level,
the effect of the polymer and filler particles size or the layer thickness (Figure 12). For
example, Do-Vale-Pereira et al. [167] optimized the PDLLA/58S-BG scaffolds fabrication
by modifying the process parameters such as the laser energy density and the BG content
(0, 10, 20 and 30 wt% of BG).

Figure 13, from the study of Doyle et al. [168], shows the heling process of polymer
particles, the effect of particle size and the effect of filler content during the SLS fabrication.
Salmoria et al. [169] studied the properties of Poly(L-co-D,L)lactic acid (PLDLA)/58S-BG
scaffolds fabricated by SLS. They characterized the microstructural, flexural, thermome-
chanical and cell viability properties at different BG contents.

Karl et al. [170] fabricated a PLGA/BG composite microsphere for SLS. This powder
was produced by a solid-in-oil-in-water (s/o/w) emulsion method. They studied the
influence of the process to produce porous microparticles, the influence of BG content on
the macro/microstructure and the SLS application to fabricate structures with these micro-
spheres. These kind of microporous particles could have others biomedical applications
such as carriers for drugs, absorption of substances, pulmonary drug delivery and tissue
regeneration [5,171].
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Figure 12. (A) Healing of individual polymer particles to form partially sintered and fully sintered
material as a function of time and temperature. (B) Illustration of the effect of increasing filler content
on the sintering of composite materials. An increase of filler content difficult the polymer sintering.
(C) Schematic of sintering of powder particles with different particle sizes. Regions directly under the
laser path are fully sintered, and heat is transferred to surrounding particles through contact points to
form partially sintered regions. Higher partial sintering and lower porosity occurs for small particle
sizes. Reproduced from [168].
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Xu et al. [172] studied the effect of polydopamine as a cross-linking bridge between
mesoporous BG and PLLA to improve the interfacial interaction during the scaffold fabri-
cation. Afterwards, Xu et al. [173] studied the mechanical and biological properties of a
scaffold based on a blend of PLA and PGA (PGPL) filled with polydopamine functionalized
mesoporous BG with dexamethasone (DEX). The mBG had promoted cell proliferation
and DEX increased the alkaline phosphate (ALP) activity of osteoblasts and thus bone
formation and calcification.

Qian et al. [174] introduced Ag ions into mesoporous BG nanoparticles since it presents
an antibacterial capacity. The mechanical tests as well as the in-vitro test confirmed the
good mechanical properties, admirable antibacterial ability and cytocompatibility.

Some studies, proposed a debinding and sintering step to eliminate the organic phase
and obtain BG scaffolds with high porosity. In this case, the authors used binders like
stearic acid (SA) as a supporting material: during the SLS process the laser melts the stearic
acid which bonds the BG particles. Afterwards, the scaffolds are post-processed at 550 ◦C
to burn out the binder and to sinter the 13–93 glass particles. This thermal treatment did
not affect the amorphous nature of the BG, which could otherwise have an impact on
the bioactivity [31,66]. The works of Kolan et al. [175–177] studied the morphological,
mechanical and bioactive properties of BG13-93 scaffolds elaborated by SLS technique.
They optimized the effect of pore size, porosity, blinder (SA) content and layer thickness.
For example, scaffolds with high pore size and porosity do not have enough strength to
remove the unsintered powder from the pores. The optimization of the heating rate for the
debinding and sintering step enabled to control the densification and therefore reduce the
internal voids. Furthermore, decreasing the layer thickness allowed to reduce the stearic
acid content, delete the delamination between layers, obtain higher strength and a better
surface finish. The scaffolds presented the appropriate morphological and mechanical
properties for non-load-bearing applications since they had a highly interconnected porous
network, a suitable pore size (300–800 µm) to facilitate the fluid body circulation and the
compressive strengths obtained was significantly higher than that of trabecular bone. The
results of different studies presented in this section are summarized in Table 7.

Table 7. Principal properties of SLS investigations. With * the compression, ** tensile and *** flexural
modulus/strength. (not filled cells mean no data).

Composite Modulus
(MPa)

Strength
(MPa)

Strain at
Break (%) Porosity Pore Size

(µm)
Particle Size

(µm)
Content
(wt%) Technique By

PDLLA 68.07 *** 1 *** 22 *** 150–300 0

SLS [167]
PDLLA/58S 79 *** 1.7 *** 6 *** 150–300/12.5 10
PDLLA/58S 21 *** 0.6 *** 4 *** 150–300/12.5 20
PDLLA/58S 10 *** 0.2 *** 3 *** 150–300/12.5 30

PCL 86 ** 4.4 ** 10 50
SLS [168]PCL/β-TCP 124 ** 2 ** 3 50/3–5 10

PCL/β-TCP 117 ** 1.2 ** 1.7 50/3–5 50
PLDLA 68 *** 3.7 *** 23 *** 38 200

SLS [169]PLDLA/58S 79 *** 2.4 *** 6.9 *** 26 200 12.15 10
PLDLA/58S 21 *** 0.5 *** 4 *** 27 200 12.15 20
PLDLA/58S 10 *** 0.3 *** 7.4 *** 30 200 12.15 30

PLLA 1800 * 20.8 * 400
SLS [172]PLLA/mBG 3100 * 50.2 * 400 0.5 5

PLLA/p-mBG 3600 * 62.9 * 400 0.5 5
PGPL-DEX 95 * 6.2 * 40.4 450

SLS [173]PGPL-
DEX/mBG 230 * 12.1 * 40.4 450 15

PGPL-DEX/
p-mBG 270 * 17.5 * 40.4 450 15

PLA 890 * 10.5 * 400
SLS [174]PLLA/mBG 1100 * 15.1 * 400 0.4 4

PLLA/Ag-
mBG 1180 * 15.9 * 400 0.4 4

SA/13-93 20.4 * 50.3 300–800 42.08 100 SLS [175]
SA/13-93 41 * 40 300–800 16 100 SLS [176]
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4.3.6. Stereolithography (SLA)

The stereolithography (SLA) is based on photo-linking of a liquid polymer resin into a
3D architecture. This AM technique is a layer-by-layer process where a UV or laser light pho-
topolymerizes the surface corresponding to the 3D part. For this technique, two approaches
have been observed in the literature (Table 8): utilization of a resorbable photopolymer
as a matrix for the final bioactive composite [178] or utilization of a photopolymer as a
sacrificial agent [178–183].

Table 8. Principal properties of SLS investigations. With * the compression, ** tensile and *** flexural
modulus/strength (not filled cells mean no data).

Composite Modulus
(MPa)

Strength
(MPa)

Strain at
Break (%) Porosity Pore Size

(µm)
Particle

Size (µm)
Content
(wt%) Technique By

PCL 1.4 * 77 594 <45 5

SLA [178]
PCL/S53P4 2.4 * 75 555 <45 10
PCL/S53P4 2.4 * 70 517 <45 15
PCL/S53P4 3.4 * 63 476 <45 20

Photopolymer/45S5 3.2 ** 66 870 5

SLA [179]
Photopolymer/45S5 4.9 ** 65 700 5
Photopolymer/45S5 6.7 ** 66 550 5

Photopolymer/
pre-sintered-45S5 8.5 ** 63 550 5

45S5 BG 40 *** 50 100 SLA [182]
45S5 BG 21.9 * 50 100 SLA [181]
45S5 BG 124 *** 2 100 SLA [183]

Figure 14 exhibits the scaffolds of PCL/BG with a well-defined architecture (gyroid
pores) fabricated by Elomaa et al. [178] using the SLA process. In their study, PCL monomer
was mixed with a photoinitiator and a solvent dye at different BG contents. The processing
parameters chosen were: 12 s of exposure time, 1600 mW/dm−2 of light intensity and
a layer thickness of 50 µm. Finally, the non-photopolymerized PCL was removed by
immersion in a solvent mixture of acetone and isopranol. The scaffolds containing 20 wt%
shown a compressive strength between 2.5 and 3.4 MPa (for dry and wet conditions,
respectively) and good bioactive properties during in-vitro test. They observed that the
compressive strength and bioactivity was improved by increasing the BG content.
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Tesavibul et al. [182] shown for the first time the 45S5 BG scaffold fabrication with 3D
interconnected pores by lithography-based AM process. After the green part fabrication,
the solvent and the polymeric blinder were eliminated and the sample sintered. Thavornyu-
tikarn et al. [179] fabricated different scaffold architectures to show the structure with the
most controllable properties such as the compressive strength, the pore interconnection and
shrinkage. In this investigation, different pore shapes and pore sizes with the same level of
porosity were studied. The combination of an optimum scaffold structure and a thermal
pre-treatment of BG powders exhibited mechanical properties close to those of cancellous
bone. They used an acrylate-based photopolymer resin as a sacrificial agent mixed with BG
(41 vol%). After the 3D printing, the scaffolds were heated at 550 ◦C during 3 h to burn
out the resin. Ma et al. [181] optimized the debriding and sintering parameters of 45S5-BG
scaffolds fabricated by SLA with a photosensitive resin. The optimized parameters were
a sintering temperature at 1000 ◦C, heating rate of 5 ◦C/min and a holding time of 0h.
Gmeiner et al. [183] increased up to 124 MPa the bending strength of dense 3D printed BG
fabricated by SLA process. The slurries presented a high content (70 wt%) of well-dispersed
BG particles.

The FT-IR technique was used by Kang et al. [180] to verify the completely non-
presence of blinders after the sintering step. They fabricated scaffolds of 45S5 bioactive
glass with photocurable and acrylate blinders. The objective was to obtain dense structures
from polymeric suspension with high BG particles loading. However, a high concentration
of BG particles increased the viscosity of the suspension, hindering the printability. An-
alyzing the rheological behavior of the suspensions, the authors calculated the printable
composition with the highest BG content. The scaffolds elaborated with the highest BG
content (60% of blinder and 40% of BG) and with the highest viscosity, show the best
mechanical and morphological properties: less shrinkage, a high relative density and high
biaxial flexural strength.

5. Conclusions

The level of bone injury, the place of bone fracture or the age of the patient plays an
important role in the choice of the material and manufacturing process. However, there
exists a large list of biocompatible materials for bone tissue engineering. Moreover, the bone
implant fabrication involves several processes such as structural design, manufacturing
technique and additional treatments. This review presents the different manufacturing
techniques with poly(α-hydroxy ester)/BG composites and classifies the recent papers as a
function of the processing method.

The different studies discussed in this review allow us to conclude that poly(α-hydroxy
ester)/BG composites are a promising resorbable material for the production of scaffolds
and dense medical devices that may exhibit a controllable porosity, mechanical properties,
degradation rate, in-vivo, and in-vitro bioactivity.

In the field of resorbable bioactive composites recent studies focus on scaffold fabrica-
tion since they show a good osteogenesis and permit the body fluids circulation. However,
the use of traditional approaches for scaffold fabrication (e.g., solvent casting, particulate
leaching, phase separation, electrospinning or freeze drying) presents a limited capacity
to ensure sufficient mechanical properties and control the internal structure like porosity,
pore size, pore morphology and pore interconnectivity. Additive manufacturing techniques
can provide scaffolds with a controlled porosity, pore size, pore geometry and ensure a 3D
pore interconnectivity and better mechanical properties. Unfortunately, the mechanical
properties of these scaffolds are significantly lower than bone and cannot be used for
load-bearing applications.

Shape memory materials (SME), functionally graded materials (FGM) or materials with
therapeutic applications are, and will be the focus of bone tissue engineering investigations.
These new materials present several advantages as the reduction of the incision length,
mimic the bone porosity, control and increase the strength, or includes an antibacterial/anti-
inflammatory effect.
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Although SLS, SLA or MEW have demonstrated their ability to create 3D geome-
tries with interesting biomedical properties, FDM and robocasting are the most frequently
used AM techniques to fabricate resorbable composites scaffolds and dense parts. In-
terestingly, 3D material extrusion techniques can combine multiple extrusion systems to
fabricate multi-material parts. Hence, the differents 3D extrusion process are a promising
feasible alternative to fabricate low-cost and modulable FGM either with a structural or
compositional gradient.

In most of the studies, it appears that the study of the melted or solid rheological
behavior of composites is not very developed while it could be very helpful to optimize
manufacturing processes and consequently the resulting properties.

Besides, further investigations are needed regarding the mechanical properties evo-
lution of poly(α-hydroxy ester)/BG composites fabricated by 3D material extrusion tech-
niques under in-vitro degradation conditions to better understand the relationship between
the composites resorption and their mechanical properties change.

6. Towards Resorbable Load-Bearing Applications

The works presented in this review provides an overview of the clinical needs and
the main manufacturing techniques for composites based on resorbable polyester matrix
filled with bioactive glass. The combination of a bioactive glass and a polyester provides
biocomposites with attractive properties when used as a medical osteosynthesis device.
The bioactive glass ensures a bioactive material while the polyester can bring an easily
processability and mechanical properties that are essential for load-bearing applications.

The final properties of composites are influenced by the manufacturing techniques,
but also by the size, shape and composition of the bioglass. The bioactive glass 45S5
is a well-known biomaterial for the bone regeneration applications since it presents a
high bioactivity index [184]. However, polyester matrix filled with bioglass exhibit low
mechanical properties, especially during in-vitro immersion [185,186]. Although a large
number of investigations had been performed on these composites (with different bioglass
compositions and manufacturing processes), the majority of studies were mainly focused
on the characterization of cytotoxicity, biocompatibility, cell adhesion, or bioactivity.

Some studies address the influence of bioglass composition on the properties of
a composite. For example, by modifying the BG composition it is possible to reduce
their reactivity (thus delaying their bioactivity) and therefore limit the degradation of the
polymer matrix. According to this approach, composites based on bioglass fillers containing
less sodium show better mechanical properties while ensuring the bioactive properties.

Unfortunately, when it comes to optimizing the manufacturing processes, there are
few studies dealing with a deeply characterization and prediction the final mechanical and
morphological properties.

For most polymer processing techniques, the viscosity of the molten material needs
to be in a certain range to ensure a good processability and the suitable properties of the
final product. A rheological study provides information regarding the filling properties
and flow of biocomposites. Indeed, rheology can be a valuable tool to improve quality
control, process efficiency, product quality or reduce energy costs. For example, changes
in the chemical composition of materials at high temperature and their effect on the
manufacturing process and on the final product, can be clarified. Hence, rheology can
contribute to establish the optimal parameters of a manufacturing process depending on
the raw material used (poly(D,L-lactide) (PDLLA)/BG) to meet the complex specifications
of medical devices.

The main advantages of additive manufacturing techniques are the design of scaffolds
with complex internal structure. However, in the case of composites based on polyester,
the mechanical properties of these systems are significantly lower to those of bone, and
cannot be used for load-bearing applications. Hence, for these biocomposites, obtaining a
low porosity rate is the only way to ensure systems with good mechanical properties.
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Functionally graded materials (FGM) have several advantages, such as the ability
to mimic the porosity of the bone, the control and increase of the mechanical resistance
or to provide an antibacterial or anti-inflammatory effect. As explained earlier, at high
temperatures, the polymer hydrolysis catalyzed by the presence of bioglass, accelerates
the polymer chain-scission. Moreover, the in-vitro studies have shown that, when in
contact with biological fluids, bioglass accelerates the composite degradation (in particular
the mechanical properties). It seems that the use of FGM is the only solution for 3D
material extrusion techniques to guarantee the functionality of medical devices for a
sufficiently lifetime.

Besides, to avoid problems of matrix degradation due to the chemical reaction between
the matrix and the filler at high temperature, several authors chose to use solvent-based
processes. The main limitation of these manufacturing techniques, however, is the raised
probability of causing toxic reactions during implantation, as some chemical residue can
remain in the final product. No previous study has succeeded to bypass the degradation
effect of high temperatures applied during thermal process techniques like extrusion,
injection molding, or 3D printing extrusion. Consequently, the processing of resorbable
load-bearing devices is an actual challenge which have to address two points:

1. Controlling resorbability induces a robust manufacturing process for bioactive composites.
2. Maintaining sufficient functional mechanical properties of composites during implantation.
3. The commercial devices for bone regeneration are mostly made of ceramic or metal-

lic component, with the mechanical restrictions inherent to these systems (stress-
shielding...). The objective of this review was to present the state of the art on the
manufacturing processes for promising resorbable composites based on polymer
matrix and bioactive glass fillers, to promote osteo-induction. Most of the works
presented focuses on academic developments of scaffolds. It is very difficult to com-
pare the intrinsic performances associated with each process because polymer, filler
and their ratio are different from one to other process. However, it is obvious that a
scaffold can never be used as load bearing device. Thus, the ultimate challenge is to
produce hydride load bearing systems as previously detailed in this last section.
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