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The axonemal shapes averaged over one beat cycle results in a circular arc with mean curvature of about -0.2 µm -1 . This static component of the axonemal curvature results in a curved swimming trajectory and in the absence of this component, the bead is propelled on a straight trajectory. The experimental techniques used to record the motion of the beads and the flagella are described in Ref. [START_REF] Ahmad | Bio-hybrid micro-swimmers propelled by flagella isolated from C. reinhardtii[END_REF]. Please note that in this experiment, the bead-axoneme attachment appears to be asymmetric but 3D microscopy techniques are required to distinguish a symmetric versus an asymmetric attachment. ciliary flow in the Fallopian tube to assist sperm transport to the fertilization site [START_REF] Lyons | The reproductive significance of human Fallopian tube cilia[END_REF], and propulsion of green algae C. reinhardtii that swims by breaststroke-like motion of its two flagella [START_REF] Witman | The Chlamydomonas Sourcebook[END_REF][START_REF] Goldstein | Noise and synchronization in pairs of beating eukaryotic flagella[END_REF][START_REF] Wan | Lag, lock, sync, slip: the many 'phases' of coupled flagella[END_REF].

In recent years, there has been a great interest in the field of targeted drug delivery and assisted fertilization to integrate cilia and flagella as efficient energy conversion modules into bio-compatible micro-swimmers. Autonomous flagella-driven motility of various biological species, mainly E. coli and sperm, are utilized as bio-actuators to provide an efficient cargo transport [START_REF] Singh | Microemulsion-based soft bacteria-driven microswimmers for active cargo delivery[END_REF][START_REF] Alapan | Soft erythrocyte-based bacterial microswimmers for cargo delivery[END_REF][START_REF] Carlsen | Bio-hybrid cell-based actuators for microsystems[END_REF][START_REF] Singh | Patterned and specific attachment of bacteria on biohybrid bacteria-driven microswimmers[END_REF][START_REF] Mostaghaci | Bioadhesive bacterial microswimmers for targeted drug delivery in the urinary and gastrointestinal tracts[END_REF][START_REF] Prakash | Tuning the torque-speed characteristics of the bacterial flagellar motor to enhance swimming speed[END_REF][START_REF] Prakash | Swimming statistics of cargo-loaded single bacteria[END_REF]. More recently, in the experiments by Ahmad et al. [START_REF] Ahmad | Bio-hybrid micro-swimmers propelled by flagella isolated from C. reinhardtii[END_REF], axonemally-driven cargoes are fabricated by integration of isolated and demembranated flagella from C. reinhardtii (known as axonemes) with micron-sized beads (see Fig. 1 and Videos 1-2). These ATP-reactivated axonemes, with a length of approximately 10 µm, beat with an ATP-dependent frequency [START_REF] Chen | ATP consumption of eukaryotic flagella measured at a single-cell level[END_REF][START_REF] Geyer | Characterization of the flagellar beat of the single cell green alga Chlamydomonas reinhardtii[END_REF][START_REF] Ahmad | Light-Powered Reactivation of Flagella and Contraction of Microtubule Networks: Toward Building an Artificial Cell[END_REF] and have an asymmetric waveform that can best be described as a base-to-tip traveling wave component superimposed on a circular arc with mean curvature of about -0.2 November 14, 2023 2/27 µm -1 . The static component of the axonemal curvature leads to a curved swimming trajectory of the micro-swimmer (see Fig. 1D) [START_REF] Geyer | Independent control of the static and dynamic components of the Chlamydomonas flagellar beat[END_REF][START_REF] Saggiorato | Human sperm steer with second harmonics of the flagellar beat[END_REF][START_REF] Gong | The steering gaits of sperm[END_REF][START_REF] Liu | Effects of the intrinsic curvature of elastic filaments on the propulsion of a flagellated microrobot[END_REF]. In comparison, when the static curvature is strongly reduced, a micro-swimmer swims along an essentially straight path [START_REF] Ahmad | Bio-hybrid micro-swimmers propelled by flagella isolated from C. reinhardtii[END_REF][START_REF] Gholami | Waveform of free, hinged and clamped axonemes isolated from C. reinhardtii: influnece of calcium[END_REF][START_REF] Bessen | Calcium control of waveform in isolated flagellar axonemes of Chlamydomonas[END_REF][START_REF] Hyams | Isolated flagellar apparatus of Chlamydomonas: characterization of forward swimming and alteration of waveform and reversal of motion by calcium ions in vitro[END_REF].

Importantly, the static curvature of axonemes is highly dependent on the calcium concentration. Namely, increasing the calcium concentration beyond 0.05 mM reduces the static curvature of axonemes by one order of magnitude [START_REF] Ahmad | Bio-hybrid micro-swimmers propelled by flagella isolated from C. reinhardtii[END_REF][START_REF] Bessen | Calcium control of waveform in isolated flagellar axonemes of Chlamydomonas[END_REF][START_REF] Hyams | Isolated flagellar apparatus of Chlamydomonas: characterization of forward swimming and alteration of waveform and reversal of motion by calcium ions in vitro[END_REF], thereby inducing a transition from circular to straight swimming trajectories of axonemally-propelled beads. In addition to the flagellar waveform, the axoneme-bead attachment geometry also plays a critical role in the cargo propulsion speed. As emphasized in Ref. [START_REF] Ahmad | Bio-hybrid micro-swimmers propelled by flagella isolated from C. reinhardtii[END_REF], axonemes can attach to the bead symmetrically, with their tangent vector at the contact point passing through the bead center, or asymmetrically. Due to the limitations of 2D microscopy in Ref. [START_REF] Ahmad | Bio-hybrid micro-swimmers propelled by flagella isolated from C. reinhardtii[END_REF], it was not experimentally possible to distinguish between these two types of bead-axoneme attachment and 3D microscopy techniques [START_REF] Mojiri | Rapid multi-plane phase-contrast microscopy reveals torsional dynamics in flagellar motion[END_REF] are required to quantify the effect of attachment geometry on the propulsion speed. This symmetric versus asymmetric attachment has consequences on cargo propulsion dynamics and investigating this effect theoretically and numerically is the main focus of the present work.

Here, we investigate the effect of (i) various flagellar wave components, (ii) the size of the cargo (the bead), and (iii) the symmetric versus asymmetric flagellum-bead attachment on the swimming dynamics of a bead that is propelled by a model flagellum. We restrict ourselves to two-dimensional motion, which captures most of the experimental results in Ref. [START_REF] Ahmad | Bio-hybrid micro-swimmers propelled by flagella isolated from C. reinhardtii[END_REF]. We use an approximate description of the flagellum waveform as a combination of a static curvature and a traveling wave component, and use resistive-force theory (RFT) [START_REF] Gray | The propulsion of sea-urchin spermatozoa[END_REF][START_REF] Johnson | Flagellar hydrodynamics. A comparison between resistive-force theory and slender-body theory[END_REF] to obtain analytical expressions for the translational and rotational velocities of a flagellum-propelled bead in the limit of small amplitude of curvature waves. We compare the resulting expressions to the results of simulations of the swimming trajectories. Our analysis reveals a surprising non-monotonic behavior of the mean translational and rotational velocities of the axonemally-driven bead as a function of the bead radius. Finally, our analysis shows that for a freely swimming axoneme, which rotates predominantly with its static component of the axonemal waveform, sideways bead attachment is sufficient to generate mean rotational velocities comparable to the rotation rates induced by the static curvature. This paper is structured as follows: first we briefly describe RFT, which we use to calculate the propulsion speed of the micro-swimmer as a function of the cargo size. In this approach, the specific details of the bead-axoneme attachment geometry are taken into account in the drag matrices of the bead and the axoneme. Next, we present our analytical approximations and numerical simulations to show the effect of the cargo size and of the symmetric versus asymmetric bead-axoneme attachment.

2 Materials and methods

RFT and calculations of mean translational and rotational velocities

The fluid flow generated by the swimming of small objects is characterized by very small Reynolds numbers. In this regime, viscous forces dominate over inertia and non-reciprocal motion is necessary to break the time-symmetry and generate propulsion (scallop theorem) [START_REF] Purcell | Life at low Reynolds number[END_REF][START_REF] Lauga | The hydrodynamics of swimming microorganisms[END_REF]. The micro-swimmer in our system consists of an axoneme (a filament of characteristic length L ∼ 10 µm and radius 0.1 µm), which is attached at one end to a micron-sized bead and swims in an aqueous solution of viscosity µ = 10 -3 Pa s and density ρ = 10 3 kg m -3 . Given the characteristic axonemal wave velocity V = λ /T ≈ 0.5 mm s -1 (calculated for a typical axonemal beat frequency of 50 Hz and a wavelength which is comparable to the axonemal contour length L), the Reynolds number Re = ρLV /µ is small, no larger than ∼ 0.005. In this physical regime, Newton's laws then consist of an instantaneous balance between external and fluid forces and torques exerted on the swimmer, i.e. the axoneme-bead swimmer can be written as:

F fluid = F Bead + L 0 ds F Axoneme (s,t), (1) 
τ fluid = τ Bead + L 0 ds r(s,t) × F Axoneme (s,t), (2) 
where F bead and τ Bead are the hydrodynamic drag force and torque acting on the bead, and the integrals over the contour length L of the axoneme calculate the total hydrodynamic force and torque exerted by the fluid on the axoneme. The bead is propelled by the oscillatory shape deformations of the ATP-reactivated axoneme. At any given time, we consider axoneme-bead swimmer as a solid body with translational and rotational velocities U(t) and Ω(t) to be determined as explained below. F fluid and τ fluid can be separated into propulsive part due to the relative shape deformations of the axoneme in the body-fixed frame and the drag part [START_REF] Keller | Swimming of flagellated microorganisms[END_REF]:

F fluid τ fluid = F prop τ prop -D U Ω = F prop τ prop -(D A + D B ) U Ω , (3) 
where the 6×6 geometry-dependent drag matrix D is symmetric and non-singular (invertible) and is composed of drag matrix of the axoneme D A and drag matrix of the bead D B . For a freely swimming axoneme-bead, which experiences no external forces and torques, F fluid and τ fluid must vanish. As explained in the introduction, we restrict ourselves to 2-dimensional motion, which describes most of the experimental work described by Ref. [START_REF] Ahmad | Bio-hybrid micro-swimmers propelled by flagella isolated from C. reinhardtii[END_REF]. In 2-dimensions, D is reduced to a 3×3 matrix and Eq. 3 can be reformulated as:

  U x U y Ω z   = (D A + D B ) -1   F prop x F prop y τ prop z   , (4) 
which we use to calculate translational and rotational velocities of the swimmer after determining the drag matrices D A and D B , and the propulsive forces and torque

(F prop x , F prop y , τ prop z
).

We calculate

F prop x , F
prop y and τ

prop z in the body-fixed frame by selecting the basal end of the axoneme (bead-axoneme contact point) as the origin of the swimmer-fixed frame. As shown in Fig. 1C and Fig. 3A, we define the local tangent vector at contour length s = 0 as X-direction, the local normal vector n as the Y-direction, and assume that z and Z are parallel. Here (x,y,z) denote an orthogonal lab-frame basis. We define θ 0 (t) = θ (s = 0,t) as the angle between x and X which gives the velocity of the bead in the laboratory frame as

U Bead-Lab x = cos θ 0 (t)U x + sin θ 0 (t)U y and U Bead-Lab y = -sin θ 0 (t)U x + cos θ 0 (t)U y .
Furthermore, note that the instantaneous velocity of the axoneme in the lab frame is given by u = U + Ω × r(s,t) + u , where u is the deformation velocity of the flagellum in the body-fixed frame, U = (U x ,U y , 0) and Ω = (0, 0, Ω z ) with Ω z = dθ 0 (t)/dt.

To calculate F prop x , F prop y and τ prop z
for a given beating pattern of axoneme in the body-fixed frame, we used the classical framework of resistive-force theory (RFT), which neglects long-range hydrodynamic interactions between different parts of the flagellum as well as the inter-flagella interactions [START_REF] Gray | The propulsion of sea-urchin spermatozoa[END_REF][START_REF] Johnson | Flagellar hydrodynamics. A comparison between resistive-force theory and slender-body theory[END_REF]. In this theory, the flagellum is discretized as a set of small rod-like segments moving with velocity u (s,t) in the body-frame, as illustrated in Fig. 2. The propulsive force F prop is proportional to the local center-line velocity components of each segment in parallel and perpendicular directions: 5) implies that the resulting velocity is not parallel to the propulsive force F prop . In the following, we introduce the two dimensionless quantities:

F prop (s,t) = ζ u (s,t) + ζ ⊥ u ⊥ (s,t), u (s,t) = [ṙ(s,t).t(s,t)]t(s,t), u ⊥ (s,t) = ṙ(s,t) -u (s,t), (5) 
η ≡ ζ ζ ⊥ and ζ ⊥ ≡ ζ ⊥ µ . (6) 
The value of η will be fixed to 1/2 in the rest of the text [START_REF] Gray | The propulsion of sea-urchin spermatozoa[END_REF]. The value of ζ ⊥ is determined by the geometry of the axoneme. We take for the axoneme radius a realistic value of a = 0.1 µm and a contour length of L = 10 µm.

Here is a brief summary of the steps in the RFT analysis: First, we translate and rotate the axoneme such that the basal end is at position (0, 0) and the local tangent vector at s = 0 at any time t is along the x-axis (see Fig. 1C). In this way, we lose the orientation information of the axoneme at all the time points except for the initial configuration at time t = 0. Second, we calculate propulsive forces and torque in the body-frame using RFT (Eq. 5), and then use Eq. 4 to obtain translational velocities U x , U y as well as rotational velocity Ω z of the axoneme. Now the infinitesimal rotational matrix can be expressed as

dΓ(t) =   cos(Ω z (t)dt) -sin(Ω z (t)dt) U x (t)dt sin(Ω z (t)dt) cos(Ω z (t)dt) U y (t)dt 0 0 1   , (7) 
which we use to update the rotation matrix as Γ(t + dt) = Γ(t)dΓ(t), considering Γ(t = 0) to be the unity matrix. Having the rotation matrix at time t, we obtain the configuration of the axoneme at time t from its shape at the body-fixed frame by multiplying the rotation matrix as r lab-frame (s,t) = Γ(t)r body-frame (s,t), which can then be compared with the experimental data.

Please note that r lab-frame (s,t) = (X lab-frame (s,t), Y lab-frame (s,t), 1) is an input from experimental data presenting the beating patterns in the laboratory frame.

Fig. S2 shows a comparison between the rotational and translational velocities measured directly with the experimental data presented in Fig. 1 and the results obtained with RFT using the experimental beat pattern as input (as explained above). This comparison shows a semi-quantitative agreement, therefore justifying our analysis in the framework of RFT in section 3.2.

November 14, 2023 5/27 A) Definition of the swimmer-fixed frame, and illustration of the bead orientation with respect to the axoneme in 2D. The X-direction is given by the tangent vector at s = 0 (basal end). We note that X B = -R and Y B = 0 corresponds to a symmetric bead-axoneme attachment, where the tangent vector at s = 0 passes through the bead center. B-D) Schematic drawing of the forces and torques that counteract the hydrodynamic drag force and torque.

Drag matrix of a bead in 2D

Let us consider the two-dimensional geometry defined in Fig. 3A. Note that the origin of the swimmer-fixed frame is not at the bead center; rather it is selected to be at the bead-axoneme contact point. In general, the tangent vector at position s = 0 of the axoneme, which defines the X-axis, does not pass through the bead center located at

(X B ,Y B ) (note that X 2 B +Y 2 B = R 2 )
. This asymmetric bead-axoneme attachment is also observed in the experiments, as shown in Fig. 1A. We emphasize that the drag force is actually a distributed force, given by df = σ .dA, applied at the surface of the sphere, but symmetry implies that drag force effectively acts on the bead center. We define the translational and rotational friction coefficients of the bead as ν T = 6πα t µR and ν R = 8πα r µR 3 , where µ = 10 -3 Pa s is the dynamic viscosity of water and factors 3 /8 are corrections due to the fact that axonemal-based bead propulsion occurs in the vicinity of a substrate [START_REF] Leach | Comparison of Faxén's correction for a microsphere translating or rotating near a surface[END_REF]. Here R is the bead radius (∼ 0.5 µm), and h is the distance of the center of the bead to the substrate.

α t = 1/ 1 -9(R/h)/16 + (R/h) 3 /8 and α r = 1/ 1 -(R/h)
Assuming R/h ∼ 1, we obtain α t = 16/9 and α r = 8/7. We now look at each component of velocity and ask what force do we need to apply to counteract the viscous force and torque? (i) Translation in X-direction. In this case, we have (U x ,U y , Ω z ) = (1, 0, 0) as shown in Fig. 3B. We need to apply a force in +X-direction to counteract the drag force as:

F x = 6πα t µR = ν T . (8) 
But we must also apply a torque in +Z-direction for the case illustrated in Fig. 3B (where Y B < 0) to prevent rotation from occurring:

τ = -τ D = -Y B F x = -ν T Y B , (9) 
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(F x , F y , τ z ) = (ν T , 0, -ν T Y B )U x . (10) 
(ii) Translation in Y-direction, see Fig. 3C, corresponding to (U x ,U y , Ω z ) = (0, 1, 0). We have F x = 0 and F y = +6πα t µR = ν T . Note that we need to apply a negative torque, and since X B < 0, we have τ z = +X B ν T which gives:

(F x , F y , τ z ) = (0, ν T , ν T X B )U y . (11) 
(iii) Rotation around Z-direction, see Fig. 3D, corresponding to (U x ,U y , Ω z ) = (0, 0, 1).

Before looking at the forces, let us examine the motion. The rotation Ω z = 1 of the bead center around the origin O also generates translational velocity

U = Ω × R = (-R y , R x )Ω z = (-Y B , X B ).
Note that for Y B < 0 and X B < 0, we get U x > 0 and U y < 0 which is consistent. Around the center of the bead, drag exerts force and torque F D and τ D , as depicted in Fig. 3D:

F D = -v T U = (ν T Y B , -ν T X B ), and 
(τ D ) z = -ν R . (12) 
To counteract the drag force, we must apply:

F D = (-ν T Y B , ν T X B ), and 
τ z = ν R + FR = ν R + ν T R 2 , (13) 
so we obtain

(F x , F y , τ z ) = (-ν T Y B , ν T X B , ν R + ν T R 2 )Ω z , where ν T = 6πα t µR and ν R = 8πα r µR 3 .
Now we combine parts (i), (ii) and (iii) to obtain:

  F x F y τ z   =   ν T 0 -ν T Y B 0 ν T ν T X B -ν T Y B ν T X B ν R + ν T R 2     U x U y Ω z   . (14) 
For the special case of a symmetric attachment, with the center of the bead at (X B ,Y B ) = (-R, 0), Eq. 14 simplifies to:

  F x F y τ z   =   ν T 0 0 0 ν T -ν T R 0 -ν T R ν R + ν T R 2     U x U y Ω z   . (15) 
Note that Eqs. 14-15 present the forces and torque exerted by the bead on the fluid which has opposite sign of the forces generated by the fluid on the bead, so the drag matrix of the bead D B is given by:

D B =   -ν T 0 ν T Y B 0 -ν T -ν T X B ν T Y B -ν T X B -ν R -ν T R 2   . (16) 
The general form of the drag matrix in 3D is derived in the supplemental information.

Drag matrix of an axoneme in 2D

Since the axoneme beats over time, its drag matrix, which relates force and velocity, is time-dependent:

D A =   a 11 (t) a 12 (t) a 13 (t) a 21 (t) a 22 (t) a 23 (t) a 31 (t) a 32 (t) a 33 (t)   . ( 17 
)
Assume the motion is 2D, and consider the axonemal shapes at successive time points are given in the body frame as r body-frame (s,t) = (X body-frame (s,t), Y body-frame (s,t), 1). This can be either an input from the experimental data (see Fig. 1F) or a predefined waveform of a model axoneme, November 14, 2023 7/27 as introduced in Section 3.1. The experimental shapes shown in Fig. 1 were recorded with a high time resolution of 1000 Hz [START_REF] Ahmad | Bio-hybrid micro-swimmers propelled by flagella isolated from C. reinhardtii[END_REF], and translated and rotated such that the tangent vector at s = 0 is along the X-axis. Factoring out an overall rotation and translation in the laboratory frame allows us to focus on the shape deformation of the axoneme.

To obtain the elements of the drag matrix for a given axonemal shape at time t, we work in the framework of RFT and follow the same procedure as in the case of a bead, as described in Sec. 2.2:

(i) Global translation of the axoneme in X-direction. In this case, we have (U x ,U y , Ω z ) = (1, 0, 0), which using Eq. 5 and the given axonemal shape at time t, we first obtain the tangential and perpendicular velocity components for each cylindrical segment of the axoneme. Second, in the framework of RFT, we calculate the corresponding elemental force dF = (dF X (s,t), dF Y (s,t)) and torque dτ Z (s,t) = r body-frame (s,t) × dF exerted by each cylindrical segment of the axoneme on the fluid to counteract the drag force. Third, to obtain the drag elements a 11 , a 21 and a 31 , we integrate the elemental force and torque over the whole contour length of axoneme to calculate the total force and torque exerted by the axoneme on the fluid to counteract the drag. The fluid drag force exerted on the axoneme has an opposite sign, thus:

a 11 = - L 0 dF X (s,t) , a 21 = - L 0 dF Y (s,t), and a 31 = - L 0 dτ Z (s,t). (18) 
(ii) Global translation of the axoneme in Y-direction. In this case, we have

(U x ,U y , Ω z ) = (0, 1, 0).
The matrix elements a 12 , a 22 and a 32 are obtained as in (i).

(iii) Global rotation of the axoneme around Z-direction, corresponding to (U x ,U y , Ω z ) = (0, 0, 1). We note that the rotation of the axoneme around the origin O (see Fig. 3A) with Ω = (0, 0, Ω z ), also generates translational velocity components as Ω × r body-frame (s,t) = (-Y body-frame (s,t), X body-frame (s,t)), that should be taken into account while using Eq. 5 to obtain the force and the torque that the axoneme exerts on the fluid to counteract the drag. Similar to Eq. 18, we can now calculate the drag elements a 13 , a 23 and a 33 .

3 Results

Analytical approximations of rotational and translational velocities of an axonemally-propelled bead

The waveform of the axoneme is complex, and involves a combination of several components [START_REF] Geyer | Independent control of the static and dynamic components of the Chlamydomonas flagellar beat[END_REF][START_REF] Gong | The steering gaits of sperm[END_REF][START_REF] Gholami | Waveform of free, hinged and clamped axonemes isolated from C. reinhardtii: influnece of calcium[END_REF][START_REF] Geyer | Ciliary beating patterns map onto a low-dimensional behavioural space[END_REF]. In this first subsection, we begin by discussing a simplified waveform, in order to understand the elementary aspects of the propulsion of the bead. In practice, we approximate the waveform of the axoneme as a superposition of traveling wave component, with amplitude C 1 , and a circular arc with mean curvature C 0 [START_REF] Geyer | Independent control of the static and dynamic components of the Chlamydomonas flagellar beat[END_REF][START_REF] Gholami | Waveform of free, hinged and clamped axonemes isolated from C. reinhardtii: influnece of calcium[END_REF]:

C(s,t) ≈ C 0 +C 1 cos(ω 0 t -ks), (19) 
where ω 0 = 2π f 0 , k = 2π/λ is the wave number. For our exemplary axoneme in Fig. 1A, following the method described in Ref. [START_REF] Geyer | Characterization of the flagellar beat of the single cell green alga Chlamydomonas reinhardtii[END_REF], we calculate the wavelength to be λ ∼11.34 µm, which is ∼ 34% larger than the axonemal contour length L ∼ 8 µm. The approximate waveform given by Eq. 19 allows us to obtain explicit expressions for the propulsion velocity of the cargo. This expression, however, neglects a small backwards wave component, propagating from tip-to-base of the form C 1 cos(ω 0 t + ks) [START_REF] Gholami | Waveform of free, hinged and clamped axonemes isolated from C. reinhardtii: influnece of calcium[END_REF], along with components with wave numbers equal to n × k, where n is an integer > 1. The results of our analysis of beating axonemes [START_REF] Gholami | Waveform of free, hinged and clamped axonemes isolated from C. reinhardtii: influnece of calcium[END_REF] show that back-propagating wave component is about 5-10 times smaller than the main base-to-tip wave. For simplicity, this small component is neglected in this subsection. The analysis presented in Subsection 3.2, based on numerical simulations with the precise waveform of the axonemes determined experimentally [START_REF] Ahmad | Bio-hybrid micro-swimmers propelled by flagella isolated from C. reinhardtii[END_REF], qualitatively validates the approach presented here.
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To obtain analytical expressions for the mean translational and rotational velocities of the swimmer, we used RFT, as presented in the Materials and Methods section. As a further simplification, we neglect in this section the difference between the wavelength of the beat pattern, λ , and the size of the axoneme, L, and assume in the following L = λ . We determine the propulsion velocity up to the first order in C 0 , and the second order in C 1 .

Symmetric bead-axoneme attachment.

Let us first consider the example of an axoneme attached symmetrically from the basal side to a bead, so that the tangent vector at s = 0 passes through the bead center (X B = -R, Y B = 0, see Fig. 3B). We determine the dependence of the translational and rotational velocities of the swimmer on the dimensionless bead radius r = R/L, with the simplified waveform of the axoneme given by Eq. 19 and impose the force-free and torque-free conditions in 2D. The drag matrix of the bead is given by Eq. 16, with Y B = 0 and X B = -R. The drag matrix of the axoneme is calculated as described in Sec. 2.2.

We approximate analytically the averaged angular and linear velocities in the swimmer-fixed frame, as defined in Fig. 1C, and we determine the propulsion velocities up to first order in C 0 , and to second order in C 1 :

Ω z ω 0 ≈ β 1 (r, ζ ⊥ , η)C 0 C 2 1 , (20) 
U x Lω 0 ≈ β 2 (r, ζ ⊥ , η)C 2 1 , (21) 
U y Lω 0 ≈ β 3 (r, ζ ⊥ , η)C 0 C 2 1 . (22) 
The functions β 1 , β 2 and β 3 depend on the dimensionless quantities ζ ⊥ and η, defined by Eq. 6, and on r = R/L. The explicit expressions are presented in the supplemental information, Eqs. S.16-S. [START_REF] Geyer | Independent control of the static and dynamic components of the Chlamydomonas flagellar beat[END_REF]. The results in the absence of the bead simplifies to:

Ω z ω 0 ≈ -0.42C 0 C 2 1 , (23) 
U x Lω 0 ≈ -0.16C 2 1 , (24) 
U y Lω 0 ≈ +0.038C 0 C 2 1 . (25) 
which are previously discussed in Refs. [START_REF] Saggiorato | Human sperm steer with second harmonics of the flagellar beat[END_REF][START_REF] Gong | The steering gaits of sperm[END_REF]. The corresponding dependence on C 0 and C 1 is shown in Fig. 4A-F as full lines. We note that Eqs. 20-22, in the absence of intrinsic curvature C 0 = 0, predict that the axoneme swims in a straight path with U y = 0, U x proportional to the square of traveling wave component C 1 [START_REF] Shapere | Self-propulsion at low Reynolds number[END_REF][START_REF] Lauga | Floppy swimming: Viscous locomotion of actuated elastica[END_REF][START_REF] Friedrich | High-precision tracking of sperm swimming fine structure provides strong test of resistive force theory[END_REF] and the mean rotational velocity Ω z vanishes (see the solid red line in Fig. 4A and Fig. S3A).

In order to verify the quality of our analytical approximations, we also determined the motion of the swimmer numerically using RFT, starting from the simplified waveform given in Eq. [START_REF] Saggiorato | Human sperm steer with second harmonics of the flagellar beat[END_REF] We also performed numerical simulations at different values of the bead radii, see the circular symbols. As shown in Fig. 5, there is a very good agreement between our numerical simulations and analytical approximations at small values of C 1 (panels A-C) but deviations appear at larger values (panels D-F). Remarkably, while U x decreases monotonically with the bead radius r = R/L, both Ω z and U y exhibit a non-monotonic dependence. This behavior is counter-intuitive: the drag exerted by the fluid on the sphere increases with the size of the bead, which in turn increases dissipation. Based on this general remark, one expects the velocity of the swimmer to go down when r increases. We nevertheless notice that not all three components of velocity may increase when r increases.

To gain more insight on this anomalous behavior, we determined the asymptotic expressions November 14, 2023 10/27 of Eqs. 20-22 in two opposite limits of small and large bead radii. The corresponding dependence is shown by the dashed lines in Fig. 5. In the limit of very large bead radius, R L (small 1/r), we obtain a dependence of U x and U y as r -1 , and of Ω z as r -2 (up to the November 14, 2023 11/27 higher order corrections):

Ω z ω 0 ≈ 21C 0 C 2 1 (η -1)ζ ⊥ r -2 64 , (26) 
U x Lω 0 ≈ 7C 2 1 (η -1)ζ ⊥ r -1 36864π 2 (576π -7(6η + 5)ζ ⊥ r -1 ), (27) 
U y Lω 0 ≈ - 7C 0 C 2 1 ζ ⊥ r -1 36864π 2 (35π(η -1)(4η + 21)ζ ⊥ r -1 + 720(3η -1)r -1 -96π 2 (η(9r -1 + 30) -11r -1 -30)). ( 28 
)
In the opposite limit of small r (i.e. R L), up to the second order in r, we obtain with the realistic value of ζ ⊥ ≈ 4.33:

Ω z ω 0 ≈ -0.42C 0 C 2 1 (1 -19.15r + 513.77r 2 ), (29) 
U x Lω 0 ≈ 0.16C 2 1 (1 -29.85r + 960.23r 2 ), (30) 
U y Lω 0 ≈ 0.038C 0 C 2 1 (1 + 39.8r -3941.65r 2 ). (31) 
The black dashed lines (with and without stars in pink color) in Fig. 5 show the corresponding asymptotic behavior. The limiting behavior is valid only for very small values of r. It nevertheless qualitatively captures the non-monotonous trend, observed at intermediate values of r. The transition from the r 2 dependence at small values of bead radius to the r -2 -trend at large values of r provides a qualitative explanation for the non-monotonous behavior, observed for Ω z and U y .

3.1.2

The sideways bead-axoneme attachment contributes to the rotational velocity of the swimmer.

In the experiments in Ref. [START_REF] Ahmad | Bio-hybrid micro-swimmers propelled by flagella isolated from C. reinhardtii[END_REF], it was frequently observed that the bead-axoneme attachment was asymmetric, i.e. the tangent vector of the axoneme at s = 0 does not pass through the bead center. This case is schematically illustrated in Fig. 3A, where it results in a value of Y B = 0.

Interestingly, our analytical approximations and simulations show that this asymmetric bead-axoneme attachment is enough to rotate the axoneme, so the presence of the static curvature or the second harmonic is not necessary for rotation to occur.

For this analysis, we consider the 2D geometry where the center of the bead is at position X B and Y B , measured with respect to the coordinate system defined at the bead-axoneme contact point (Figs. 1C and3A). We will use here the dimensionless coordinates x B = X B /L and y B = Y B /L (note that x 2 B + y 2 B = (R/L) 2 = r 2 ).The drag matrix of the bead is given by Eq. 16, where we specify the value of Y B = 0 corresponding to the asymmetric attachment. The beating of the axoneme is described by Eq. 19 in terms of a traveling wave component C 1 and intrinsic curvature C 0 . Similar to the case of a symmetric bead-axoneme attachment in Section 3.1.1, we calculate the mean rotational and translational velocities of an axonemally-driven bead by combining the drag matrix of the bead and the axoneme (see Materials and Methods). The results up to the leading order in C 0 and C 1 can be expressed as:

Ω z /ω 0 ≈ α 1 (η, ζ ⊥ , y b , r) + α 1 (η, ζ ⊥ , y b , r)C 0 C 2 1 , (32) 
U x /Lω 0 ≈ α 2 (η, ζ ⊥ , y b , r) + α 2 (η, ζ ⊥ , y b , r)C 0 C 2 1 , (33) 
U y /Lω 0 ≈ α 3 (η, ζ ⊥ , y b , r) + α 3 (η, ζ ⊥ , y b , r)C 0 C 2 1 ( 34 
)
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α 1 (η, ζ ⊥ , y b = 0, r) = 0 and α 3 (η, ζ ⊥ , y b = 0, r) = 0 , (35) 
which expresses the fact that in the absence of C 0 , both Ω z and U y are zero. This is also consistent with previous expressions of Ω z and U y when the attachment is symmetric, see Eqs.26,28,29 and 31. In contrast, when the attachment is not symmetric (y B = 0), the coefficients α 1 (η, ζ ⊥ , y B , r) and α 3 (η, ζ ⊥ , y B , r) become non zero, which implies that the system rotates ( Ω z = 0) and has a nonzero velocity component U y = 0 even when C 0 = 0.

This clearly shows the importance of the asymmetric bead-axoneme attachment. This is illustrated by Figure 6, which shows the translational and rotational velocities of the swimmer for different values of C 0 and C 1 and a sideways bead attachment of x b = 0 and y b = -r, as shown schematically in Fig. 7B. The full analytic forms of α i and α i (i = 1, 2, 3) are November 14, 2023 13/27 very long and not particularly informative, so we only present closed form expressions for the coefficients α i , defined by Eqs. 32-34, when C 0 = 0 in the supporting information, see Section 5.3. In particular, Eq. S.22 shows the closed form of α 1 . For α 2 and α 3 , Eqs. S.23-S. [START_REF] Hyams | Isolated flagellar apparatus of Chlamydomonas: characterization of forward swimming and alteration of waveform and reversal of motion by calcium ions in vitro[END_REF] show the expressions for the even more restricted case where C 0 = 0 and y b = -r.

We also performed numerical simulations to study the effect of an asymmetric bead-axoneme attachment on the swimming motion (see Fig. 7). In these simulations, the model axoneme has only the traveling wave component C 1 and it swims in a straight path if the bead is attached symmetrically i.e. when y B = 0; see Fig. 7A and supplementary Video 3. An asymmetric bead-axoneme attachment causes the axoneme to rotate, as illustrated by Fig. 7B-C; see also the supplementary Videos 4-5. Thus, consistent with Eqs. 32-34, our numerical simulations show that an asymmetric attachment of the axoneme to the bead causes rotation of the swimmer, even in the absence of static curvature (C 0 = 0).

It is interesting to compare the effect of the intrinsic curvature (Eq. S.16 with r = 0) versus asymmetric bead attachment (Eq. 32 with C 0 = 0) on the rotational velocity of the swimmer. To this end, Fig. 7D presents a comparison between the influence on the rotational velocity, Ω z , of an asymmetric attachment, as a function of y B (lower horizontal and left vertical axes; black line), and of intrinsic curvature, C 0 (upper horizontal and right vertical axes; red line). The results presented in Fig. 7D show that the contribution of the asymmetry in the attachment to November 14, 2023 14/27 Ω z is comparable to that of the intrinsic curvature, C 0 . We also observe that, as shown in Fig. 7E, the maximum rotational velocity is found at values of y b close to -r.

Analysis with the experimental waveform

To confirm that the predictions of the previous subsection of the existence of an anomalous propulsion regime and of a rotation induced by asymmetric cargo attachment is general and not limited to the very simplified waveform given by Eq. 19, we also used the experimental beat patterns and performed RFT simulations to compute mean translational and rotational velocities of an axonemally-propelled bead for both asymmetric and symmetric bead-axoneme attachment and various bead radii.

For this purpose, we used the experimental beat pattern shown in Figure 3A of Ref. [START_REF] Ahmad | Bio-hybrid micro-swimmers propelled by flagella isolated from C. reinhardtii[END_REF] (see Video 6). As explained in our recent studies [START_REF] Ahmad | Bio-hybrid micro-swimmers propelled by flagella isolated from C. reinhardtii[END_REF][START_REF] Gholami | Waveform of free, hinged and clamped axonemes isolated from C. reinhardtii: influnece of calcium[END_REF], we performed principal component analysis (PCA) of the experimental beat patterns, and then, decomposed the eigenmodes as Fourier series. Our analysis reveals that the traveling curvature waves can be decomposed into a static component C 0 and a leading traveling wave component of amplitude C 1 that coexist with standing waves at the traveling wave number and at multiples of this wave number (higher harmonics). This Fourier analysis of the experimental data indeed justifies the decomposition of the waveform as defined in Eq. 19 for our analytical study. November 14, 2023 15/27 Note that the general trend in panel A is consistent with the analytical analysis presented in Fig. 5 for a symmetric bead attachment.

The results of our determination of the mean translational and rotational velocities as a function of the bead radius is shown in Fig. 8. Although the results are quantitatively different from those in Fig. 5 obtained with the simplified waveform given by Eq. 19, the variations of Ω z and one of the translational velocity show a non-monotonic dependence on r = R/L for the case when the attachment is symmetric, as shown in Fig. 8A. The results obtained with the experimentally realistic waveform are therefore qualitatively consistent with those obtained with the simplified waveform, Eq. 19.

In the case of an asymmetric attachment, depending on the sign of the static curvature of the axoneme C 0 and the position at which the bead is attached, one may observe an increase or decrease in the overall mean rotational velocities. For the axoneme in Fig. 8, C 0 is negative and the sideways bead attachment at Y B = R (Fig. 8B) acts against the rotation induced by the intrinsic curvature C 0 . The opposite happens in Fig. 8C where the bead attachment at Y B = -R amplifies the rotational velocity of the axoneme. We also note that the anomalous propulsion regime is more pronounced in panel C where the bead is attached sideways at Y B = -R.

Furthermore, in the right panels of Figs. 8A-C, the measured values of Ω z /ω 0 using RFT at the experimental bead size of R = 0.5 µm (so the ratio R/L = 0.05), are indicated by red circles. We note that in this experiment (see Video 6) the axoneme globally rotates around 2π in the time interval of ∼650 msec, and with f 0 = 38.21 Hz, results to Ω z /ω 0 ∼0.04, which is larger than the measured RFT values of 0.025, 0.020 and 0.029, corresponding to different bead-axoneme attachment geometries in panels A-C, respectively. Overall, we observe a semi-quantitative November 14, 2023 16/27 agreement between the RFT predicted and the experimentally measured values of Ω z /ω 0 .

An important conclusion in Ref. [START_REF] Ahmad | Bio-hybrid micro-swimmers propelled by flagella isolated from C. reinhardtii[END_REF] is that at higher calcium concentration, the mean curvature C 0 is strongly reduced, leading to a strong reduction of Ω z . For this reason, we also considered the beat patterns from the experiment in Fig. 3D of Ref. [START_REF] Ahmad | Bio-hybrid micro-swimmers propelled by flagella isolated from C. reinhardtii[END_REF] at higher calcium concentration (Video 7), to study the influence of the flagellar waveform on the propulsion of the swimmer, both with symmetric and asymmetric bead attachments. The results, presented in Figure 9 also demonstrate the existence of an anomalous propulsion regimes as highlighted by the bands in cyan color in the three graphs on the right. The experimental value of Ω z /ω 0 ∼ 0.004 (total rotation of ∼ π/4 in 1299 msec; see Video 7) is slightly larger than the values 0.0024, 0.0029 and 0.0028 in panels A-C, respectively, which are highlighted by the red circles in Fig. 9A-C. Finally, comparing Figs. 8 and9 shows that, as expected, the dependence of the mean translational and rotational velocities on the bead size is highly sensitive to the flagellar waveform.

Conclusions

In this work, we have studied analytically and by numerical simulations the motion of a bead propelled by a model flagellum. We used data from our previous experimental study in which isolated and demembranated flagella of the green alga C. reinhardtii were reactivated with ATP to propel a bead. [START_REF] Ahmad | Bio-hybrid micro-swimmers propelled by flagella isolated from C. reinhardtii[END_REF]. In this work, we observed two distinct regimes of bead propulsion depending on the calcium concentration. The first regime describes the bead motion along a curved trajectory which is observed in experiments at zero or very small concentration of calcium ions (less than 0.02 mM). In the second regime and at higher calcium concentrations, the cargo is propelled along a straight trajectory, at an averaged velocity as high as ∼ 20 µm/sec, comparable to the typical human sperm migration speed in mucus [START_REF] Katz | Factors regulating mammalian sperm migration through the female reproductive tract and oocyte vestments[END_REF]. Calcium ions are known to affect the flagellar waveform by reducing the mean curvature (C 0 ) of axonemes in a dose-dependent manner [START_REF] Gholami | Waveform of free, hinged and clamped axonemes isolated from C. reinhardtii: influnece of calcium[END_REF][START_REF] Bessen | Calcium control of waveform in isolated flagellar axonemes of Chlamydomonas[END_REF], thereby inducing a transition from circular to straight swimming trajectories.

To characterize the motion, we first used a simplified waveform to describe the axonemal shapes which is composed of a traveling wave component propagating along a circular arc (Eq. [START_REF] Saggiorato | Human sperm steer with second harmonics of the flagellar beat[END_REF]. This simplified waveform allows us to obtain analytical expressions for the translational and rotational velocities of an axonemally-propelled bead in the limit of small amplitudes of curvature waves. The rotational velocity of an axoneme is predominately controlled by its mean curvature C 0 . As shown in Ref. [START_REF] Saggiorato | Human sperm steer with second harmonics of the flagellar beat[END_REF], the second harmonics (as well as higher harmonics of even order) of the flagellar waveform also contribute to the rotational velocity of an axoneme, although more weakly (at higher orders). Remarkably, our analysis with the simplified waveform predicts a non-monotonous dependence of the rotational velocity, and/or of some of the components of the translational velocity as a function of the size of the bead. Namely, some of these components may increase when the size of the bead, hence the overall drag, increases, see Fig. 5. It is also very interesting to note that the translational velocity components U x and U y are nearly saturated for a fairly large range of cargo size.

Further, we used our experimental beat patterns from Ref. [START_REF] Ahmad | Bio-hybrid micro-swimmers propelled by flagella isolated from C. reinhardtii[END_REF] to demonstrate that this counter-intuitive regime is not limited to the simplified waveform and also exists for waveforms closer to the experimental ones. This anomalous propulsion regime has also been predicted for a model sperm-like swimmer with a zero mean curvature, propelled by a traveling wave component, as illustrated by Fig. 7F. Consistent with this, we also observed anomalous regimes using our experimental beat patterns from Ref. [START_REF] Ahmad | Bio-hybrid micro-swimmers propelled by flagella isolated from C. reinhardtii[END_REF] at an increased calcium concentration (0.1 mM instead of 0 mM), in which the mean curvature of axonemes is significantly reduced (by a factor of about 10).

An anomalous cargo transport regime was also predicted in biofilm forming bacteria

Pseudomonas aeruginosa (PA14) [START_REF] Prakash | Tuning the torque-speed characteristics of the bacterial flagellar motor to enhance swimming speed[END_REF][START_REF] Prakash | Swimming statistics of cargo-loaded single bacteria[END_REF], where swimming is driven by multiple (on average two) rotating helical flagella (length∼4 µm) that can bundle to propel the bacterium in a November 14, 2023 17/27 corkscrew-like motion or unbundle to change direction, exhibiting a run-and-tumble swimming pattern [START_REF] Berg | Motile behavior of bacteria[END_REF]. This anomalous behavior is expected to exist for a hypothetical mutant of PA14 which has a larger (around three times) size than the wild type. This up-scaling of bacteria size results in a larger rotational drag coefficient of the flagellum, compared to that of the bacterial body, which in Ref. [START_REF] Prakash | Tuning the torque-speed characteristics of the bacterial flagellar motor to enhance swimming speed[END_REF] appears to be as criterion for anomalous propulsion. Whether such a hypothetical large-scale bacterium exists is an open question. However, this anomalous propulsion regime could be important in bacterial swimming in polymeric solutions, where due to steric interactions between flagella and polymers, the rotational drag coefficient of the flagella can become larger than that of the bacterial body, fulfilling the criteria for anomalous propulsion. Thus, as experimentally observed and contrary to our expectations, the swimming speed of bacteria in the polymeric solutions can increase [START_REF] Martinez | Flagellated bacterial motility in polymer solutions[END_REF][START_REF] Patteson | Running and tumbling with E. coli in polymeric solutions[END_REF]. In our system, however, we are not able to obtain a simple analytical criteria for the anomalous propulsion as it results from the full calculations which include inverting the full time-dependent, 3 × 3 drag matrix, D A + D B , see

Eqs. 16 and 17 of the bead-axoneme swimmer. From a general physics perspective, we remark that the anomalous regime corresponds to a change in the partitioning between translation (in the two physical directions) and rotation as R increases, so that some components may increase with R over a range while other components decrease or remain almost constant over a fairly large range of the cargo size, as imposed by the overall increase of the drag due to the bead.

Furthermore, our analysis shows that asymmetric cargo-axoneme attachment provides a contribution to the rotational velocity, comparable to that of the mean curvature of the flagellum.

In other words, a sperm-like beating flagellum without mean curvature and second harmonic swims in a curved trajectory if it is attached sideways to a cargo. In our experiments [START_REF] Ahmad | Bio-hybrid micro-swimmers propelled by flagella isolated from C. reinhardtii[END_REF], the limitations due to the 2D imaging technique prevented us from precisely distinguishing symmetric versus asymmetric bead-axoneme attachments. Indeed, in a 2D-projected image, a symmetric bead-axoneme attachment could in reality be an asymmetric one. Moreover, as the bead-axoneme swimmer goes slightly out of focus, the attachment in some frames seems to be symmetric and in other frames asymmetric. The 3D microscopy techniques utilized in Ref. [START_REF] Mojiri | Rapid multi-plane phase-contrast microscopy reveals torsional dynamics in flagellar motion[END_REF] are necessary to distinguish a symmetric from an asymmetric axoneme-bead attachment. This 3D characterization is absolutely essential to experimentally prove the anomalous behavior predicted by our analysis with a simplified waveform as well as with the experimental beat patterns. Although in Ref. [START_REF] Ahmad | Bio-hybrid micro-swimmers propelled by flagella isolated from C. reinhardtii[END_REF], we performed few experiments with beads of diameters of 1, 2 and 3 µm, we are unable to verify the validity of the predicted anomalous trend because the 2D microscopy does not allow us to distinguish between symmetric and asymmetric bead-axoneme attachment.

Finally, it is important to note that in our analysis we have assumed that the presence of the bead (load) does not affect the waveform of the flagellum. Supplementary Fig. S4 shows the hydrodynamic force distribution along the contour length of a flagellum with a given waveform at a fixed time and for different bead radii, and indeed we see that the force distribution depends on the size of the bead. These tangential and perpendicular components of the hydrodynamic force (which vary with the bead size) might feedback into the activity of the dynein molecular motors and thereby, change the flagellar waveform. By taking the product of the force distribution with the velocity distribution and integrating, we find the hydrodynamic energy dissipation to range between 0.01× ∼ 10 -15 J/s (r = 0) and 0.17 × 10 -15 J/s (r = 0.5). From the energy budget point of view, the ATP consumption measurements at the single-axoneme level [START_REF] Chen | ATP consumption of eukaryotic flagella measured at a single-cell level[END_REF] show that the energy required to generate elastic deformation in an axoneme is one order of magnitude larger than hydrodynamic dissipation. The WT active Chlamydomonas axonemes consume approximately 10 6 ATP molecules/s, corresponding to an energy consumption of 8.1 × 10 -14 J/s [START_REF] Chen | ATP consumption of eukaryotic flagella measured at a single-cell level[END_REF]. It is estimated that this energy is expended primarily for elastic deformation of the flagellum and not for overcoming viscous drag, as they calculate the viscous losses as 6.4 × 10 -15 J/s [START_REF] Chen | ATP consumption of eukaryotic flagella measured at a single-cell level[END_REF]. This suggests that the feedback effect of hydrodynamic drag on motor activity might be negligible. In-depth studies to incorporate the feedback between motor activity and hydrodynamic forces require a microscopic description of flagellar dynamics November 14, 2023 18/27 and are the subject of our future work.

The design and fabrication of synthetic micro-swimmers is a challenging task in the growing field of smart drug delivery, and has recently become a multidisciplinary effort involving physicists, biologists, chemists and materials scientists. Our theoretical analysis as well as numerical simulations reveal the existence of an anomalous cargo transport regime, where contrary to expectation, the flagellar-propelled cargo rotates faster as we increase the cargo size. This counter-intuitive behavior may play a crucial role in the design of future artificial flagellar-based propulsion systems, where targeted transport of cargo is the goal and higher rotational speeds could reduce the efficiency of directional propulsion. Finally, our analysis also highlights the contribution of the asymmetric cargo-flagellum attachment in the rotational velocity of the micro-swimmer. This turning mechanism should be also taken into account in manufacturing bio-inspired synthetic swimmers where a directional targeted motion is critical for delivery of drug-loaded cargoes.

5 Supporting information

Drag matrix of a bead in 3D

Although our analysis in the current work is limited to 2D, we also present the drag matrix of the bead in 3D with respect to the coordinate system which is defined to be the bead-axoneme attachment point. Extending the full analysis to 3D is the subject of our future work.

Let us fix a couple of points P and P on or in a rigid body (see Fig. S1A). The distance between these points remains constant. Furthermore, if we attach two parallel vectors at P and P , they would remain parallel under movement. Since this is the case, it follows that Ω P = Ω P , so we will drop the subscript and call it Ω. Let us denote the positions of P and P by R P and R P (Fig. S1B). The distance |R P -R P | is constant, but the orientation changes:

U P -U P = d dt (R P -R P ) = -(R P -R P ) × Ω. (S.1)
Next, suppose we apply a distribution of forces f i at R i as F = Σ i f i which does not depend on P and P . The torques depend on P and P :

τ P = Σ i (R i -R P ) × f i , and τ P = Σ i (R i -R P ) × f i , (S.2)
November 14, 2023 19/27 and the difference gives:

τ P -τ P = -(R P -R P ) × F. (S.3)
Now let us define the problem we wish to solve: What is the force F = (F x , F y , F z ) T and torque τ = (τ x , τ y , τ z ) T we need to apply at point P on the bead's surface to make the bead move with translational velocity U = U P and angular velocity Ω? This amounts to asking what is the drag force and drag torque one needs to overcome. Let us denote the center of the bead as P and define R = R P -R P (Fig. S1B). This problem would have been much simpler if we were asked what force F and torque τ needs to be applied at the bead's center to counteract drag: 

U Ω = U -(R P -R P ) × Ω Ω = U + R × Ω Ω = I R O I U Ω , (S.6)
where we have defined: 

R =   0 R z R y R z 0 -R x -R y R x 0   =   0 -Z C + Z B Y C -Y B Z C -Z B 0 -X C + X B -Y C +Y B X C -X B 0   . (S.
F τ = ν T I ν T R -ν T R ν R I -ν T R 2 U Ω , (S.10)
where Possibly noteworthy is that:

R 2 =   0 -R z R y R z 0 -R x -R y R x 0     0 -R z R y R z 0 -R x -R y R x 0   (S.11) =   -R 2 y -R 2 z R x R y R x R z R x R y -R 2 x -R 2 z R y R z R x R z R y R z -R 2 x -R 2
R 2 + R 2 I =   -R 2 y -R 2 z R x R y R x R z R x R y -R 2 x -R 2 z R y R z R x R z R y R z -R 2 x -R 2 y   +   R 2 0 0 0 R 2 0 0 0 R 2   =   R 2 x R x R y R x R z R x R y R 2 y R y R z R x R z R y R z R 2 z   = RR T . (S.13)
For the motion in xy plane (2D), we are only interested in F x , F y and τ z as a function of U x , U y and Ω z . Here we also assume R z = 0, so we are only interested in components 1, 2, and 6:

  F x F y τ z   =   ν T 0 ν T R 13 0 ν T ν T R 23 -ν T R 31 -ν T R 32 ν R -ν T R 2 33     U x U y Ω z   =   ν T 0 ν T R y 0 ν T -ν T R x ν T R y -ν T R x ν R + R 2 ν T     U x U y Ω z   .
(S.14)

Up until now, we haven't actually specified where our origin is. Let us set the origin to be at point P on the surface of the bead (R P = 0). We will choose X to point tangent to the flagella at the point of attachment, and let the coordinates of the center of the bead be located at R P = (X B ,Y B , 0). Note that X B ≤ 0 and -R ≤ Y B ≤ R (Fig. S1D). Also note that R = -R P , so the force equation reads:

  F x F y τ z   =   ν T 0 -ν T Y B 0 ν T ν T X B -ν T Y B ν T X B ν R + ν T R 2     U x U y Ω z   , (S.15) 
which was previously extracted in Eq. 14. Note that setting Y B = 0 allows us to handle the case where the flagella is not attached normal to the bead.

Rotational and translational velocities of an axoneme attached symmetrically to a bead

We used the simplified waveform given by Eq. 19 to calculate translational and rotational velocities of a freely swimming axoneme attached symmetrically from the basal end to a bead of dimensionless radius r = R/L. In the limit of small C 0 = κ 0 L/(2π) and C 1 = κ 1 L/(2π), we calculate rotational and translational velocities of the swimmer from Eq. 4 by calculating the propulsive forces and inverting the drag matrix D (see Materials and Methods). We then take average over one beat cycle to obtain: 

Ω z ω 0 ≈ 7C 0 C 2 1 ζ ⊥

Fig 1 .

 1 Fig 1. An exemplary experiment showing a flagellum-based bead propulsion. A) An isolated and demembranated flagellum (known as axoneme) from green algae C. reinhardtii is attached to a 1 micron-sized bead. The axoneme is reactivated with 1 mM ATP and beats at around 110 Hz (see Video 1). B) Over time, the position of the center of the bead, its evolution represented by the blue curve, is propelled on a helical-like trajectory (see Video 2). (C) The definition of the laboratory and the swimmer-fixed frame. As the flagellum beats, the micro-swimmer swims counterclockwise (CCW) in the microscope's field of view effectively in 2D. D) The traces of the basal (yellow line) and distal tip (cyan line) of the flagellum tracked for 198 sec. (E) Curvature waves initiate at the basal end of axoneme (s = 0) which is attached to the bead, and propagate toward the distal tip (s = L) at the frequency of about 110 Hz. F)The axonemal shapes averaged over one beat cycle results in a circular arc with mean curvature of about -0.2 µm -1 . This static component of the axonemal curvature results in a curved swimming trajectory and in the absence of this component, the bead is propelled on a straight trajectory. The experimental techniques used to record the motion of the beads and the flagella are described in Ref.[START_REF] Ahmad | Bio-hybrid micro-swimmers propelled by flagella isolated from C. reinhardtii[END_REF]. Please note that in this experiment, the bead-axoneme attachment appears to be asymmetric but 3D microscopy techniques are required to distinguish a symmetric versus an asymmetric attachment.

F

  ext + F fluid = 0 and τ ext + τ fluid = 0. The force F fluid and torque τ fluid exerted by the fluid on November 14, 2023 3/27

Fig 2 .

 2 Fig 2. A schematic representation of the Resistance Force Theory (RFT) calculation. A flagellum, depicted by the blue line, is decomposed into small cylindrical segments moving at a velocity u , which is decomposed as the sum of a tangential and a perpendicular component u and u ⊥ in the body frame. The propulsive force is obtained by multiplying u and u ⊥ , with the friction coefficients ζ and ζ ⊥ .

Fig 3 .

 3 Fig 3.A) Definition of the swimmer-fixed frame, and illustration of the bead orientation with respect to the axoneme in 2D. The X-direction is given by the tangent vector at s = 0 (basal end). We note that X B = -R and Y B = 0 corresponds to a symmetric bead-axoneme attachment, where the tangent vector at s = 0 passes through the bead center. B-D) Schematic drawing of the forces and torques that counteract the hydrodynamic drag force and torque.

  and r = 0. The corresponding results are shown by the circular symbols in Fig.4A-F.The comparison between numerical simulations and the full analytical approximations presented in Eqs. S.16-S.18, shows a very good agreement at small values of C 0 and C 1 , with deviations at larger values. In addition, three exemplary trajectories (r = 0.1), determined from RFT, are shown in Fig.4G-I. The corresponding averaged rotational velocity Ω z of the model swimmer is proportional to the square of the traveling wave component C 1 .To investigate the dependency of the mean translational and rotational velocities of our model swimmer on the bead size, r, Fig.5shows the dependence of Ω z /ω 0 (A and D), U x /(Lω 0 ) (B and E) and U y /(Lω 0 ) (C and F), predicted by Eqs.20-22; see the full lines.

Fig 4 .

 4 Fig 4. A-F) Comparison between the analytical approximations for the rotational and translational velocities, Eqs. 20-22 (solid lines), and the results of numerical simulations (dots) for bead radius of R = 0. G-I) Numerical simulations performed with the simplified waveform to show the effect of C 1 . A bead of radius R, with r = R/L = 0.1, is attached symmetrically to a model flagellum. At a fixed value of the static curvature, C 0 = 0.2, the mean rotational velocity decreases as the amplitude of dynamic mode C 1 decreases from G) C 1 = 0.7, to H) C 1 = 0.5 and further to I) C 1 = 0.2.

Fig 5 .

 5 Fig 5. Anomalous flagella-based propulsion speed of a symmetrically attached bead as a function of its dimensionless radius r = R/L. Contrary to expectations, in the region highlighted in cyan, the mean translational and rotational velocities increase with increasing the bead radius. Analytical approximations (continuous lines calculated from Eqs. 20-22) and simulations (dotted points) are performed at different values of C 1 , while the intrinsic curvature of the axoneme is fixed at C 0 = -0.01 in (A-C), and C 0 = -0.1 in (D-F). The black dashed curves show the trend expected in the limit of large bead radius (r = R/L > 1), as presented in Eqs. 26-28. The black dashed lines with stars in magenta illustrate the opposite limit of the small r, as given in Eqs.29-31. 

Fig 6 .

 6 Fig 6. The mean rotational and translational velocities of a bead which is asymmetrically attached to an axoneme with y b = -r and x b = 0 for different values of C 1 , as a function of the dimensionless ratio r = R/L. The mean curvature C 0 is -0.01 in panels A-C and -0.1 for panels D-F. For a sketch of the bead-axoneme attachment geometry see Fig. 7B.

Fig 7 .

 7 Fig 7. A-C) Asymmetric versus symmetric bead attachment to an axoneme with a beat pattern consisting only of the traveling wave component C 1 (C 0 = 0 in Eq.19). While the axoneme in panel A, to which the bead is symmetrically attached, swims on a straight path (Video 3), the axonemes in panel B (Video 4) and C (Video 5), with an asymmetric bead attachment, swim on curved paths. D) Comparison of the effect of the asymmetric bead attachment (in black) as a function of y b = Y B /L versus the effect of the intrinsic curvature C 0 (in red) on Ω z . E) The averaged angular velocity Ω z changes non-monotonically with y b for different bead radii. X B and Y B are the coordinates of the bead center in the swimmer-fixed reference frame. Parameters are η = 0.5, ζ ⊥ = 4.33 and C 1 = 0.1.

Fig 8 .

 8 Fig 8. Experimental beat pattern presented in Ref. [7] (see Video 6) are used to calculate rotational and translational velocities of an axonemally-propelled bead attached (A) symmetrically at Y B = 0, X B = -R, (B) asymmetrically at Y B = R, X B = 0 (C) asymmetrically at Y B = -R, X B = 0. Anomalous propulsion regimes are highlighted in cyan color. Red circles mark the experimental bead size of R/L ∼0.05 and the corresponding rotational velocities. Note that the trend observed in panel A is consistent with the trend predicted by our analytical calculations with a simplified waveform for a symmetric bead-axoneme attachment as shown in Fig. 5.

Fig 9 .

 9 Fig 9. Experimental beat pattern reported in Ref. [7] with 0.1 mM [Ca 2+ ] and [ATP] = 80 µM (see Video 7) are used to calculate the mean rotational and translational velocities of an axonemally-driven bead attached (A) symmetrically at Y B = 0, X B = -R (B) asymmetrically at Y B = R, X B = 0, and (C) asymmetrically at Y B = -R, X B = 0. Anomalous propulsion regimes are highlighted in cyan color. Red circles mark the experimental bead radius of R/L = 0.05 and the corresponding values of Ω z /ω 0 (see Video 7).Note that the general trend in panel A is consistent with the analytical analysis presented in Fig.5for a symmetric bead attachment.

Fig S1 .

 S1 Fig S1. Schematic presentation of the set up and the coordinate system.
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 45 Here ν T = 6πRµ, ν R = 8πR 3 µ/3 and:Now we use what we learned about rigid body motion in Eq. S.1:

7 )

 7 Recall that R P = (X C ,Y C , Z C ) are the coordinates of the flagella-bead contact point andR P = (X B ,Y B , Z B) are the coordinates of the bead center (Fig.S1C). Similarly, we have that:F τ = F τ -(R P -R P ) × F = F τ + R × F= and calculating the products of matrices yields:

5π 3 7ηζ ⊥ + 96πr 73728π 2 r 4 + 2 ⊥ 2 5 24461180928 × (η - 1 )π 8 r 7 + 6 + 5 +

 422244611809281765 2688ζ ⊥ π(r(5r + 3) + 1)r + 49ζ 42467328π6 (-720η + 32(9η -11)π 2 + 7(η -1)(2η + 9)ζ ⊥ π + 240)r 3096576ζ ⊥ π 5 (-24η(26η + 67) + 16(η(8η + 31) -47)π 2 + 35(η -1)ζ ⊥ π + 552)r 258048ζ ⊥ π 4 (288π(4π 2 η -21η -4π 2 + 9) + 7ζ ⊥ (-3η(65η + 23) + (η(8η + 67) -83)π 2 + 24))r 4 + 2688ζ ⊥ π 3 (-735(η(9η -4) + 1)ζ 2 ⊥ + 14112(η -1)π 3 ζ ⊥ -6048 × (η + 3)(3η -1)πζ ⊥ + 18432(η -1)π 4 + (245(2η 2 + η -3)ζ 2 ⊥ -27648(5η -3))π 2 + 82944(2η -1))r 3 + 56448ζ 2 ⊥ π 2 (112π 4 (η -1) + 7(η + 2)ζ ⊥ π 3 (η -1) -24(η(4η + 31) -17)π 2 + 288(η + 2)(2η -1) + 21η(1 -5η)ζ ⊥ π)r 2 + 32928ζ 3 ⊥ π(7π4 (η -1) -3(η(13η November 14, 2023 21/27
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+ 5) -6)π 2 + 36(4η 2 -1))r -2401ζ 4 ⊥ (9(-8 + π 2 )η 2 -(-36 + π 4 )η + π 4 -3π 2 ) , (S. [START_REF] Geyer | Characterization of the flagellar beat of the single cell green alga Chlamydomonas reinhardtii[END_REF])

⊥ + 2688πζ ⊥ (r(5r + 3) + 1)r + 73728π 2 r 4 7ηζ ⊥ + 96πr 49(6η + π 2 -3)ζ 2 ⊥ -672πζ ⊥ r(2η(π 2 (r(20r + 9) + 2) -3)π 2 (2r(20r + 9) + 5) + 3) -221184π 4 (η -1)r 4 , (S.17)

× 7ζ ⊥ (-4718592π 5 (4π 2 (5r + 2) -39)r 6 + 516096ζ ⊥ π 2 (π 2 (r(35r -6) + 1) -6)r 3 Here

33 where a ∼ 0.1 µm is the radius of axoneme, L ∼ 10 µm is the contour length of axoneme and we have assumed η = ζ /ζ ⊥ = 0.5. Exemplary, for r = R/L = 0.1 and with η = 0.5, Eqs. S.16-S.18 simplify to:

(S.21)

Rotational velocity of a bead attached asymmetrically to a freely-swimming axoneme

To illustrate the analytical results, we consider the special case of a model axoneme where only the main traveling wave component C 1 is present, and set the static component C 0 to zero. A bead is attached asymmetrically to a flagellum at positions X B and Y B , as shown schematically in Fig. 3A. We calculate the mean rotational velocity of the swimmer using the matrix introduced November 14, 2023 22/27 in Eq. S.15 and drag matrix of the flagellum to obtain:

where

33 and η = ζ /ζ ⊥ = 0.5. Note that the expressions for U x and U y are excessively long, and not worth presenting here. In the following we show the results for the restrictive case, shown in Fig. 7B where x b = 0 and y b = -r, and C 0 is set to zero:

Fig S2 . A-C) Velocity components of the bead's center U x (t) and U y (t), and the rotational velocity of the bead Ω z (t) measured in the body-fixed frame of the exemplary axoneme in Fig. 1.

Comparison with results obtained in the framework of RFT shows a good, semi-quantitative agreement, in particular for the rotational velocity, Ω z (t) (panel C). The power spectra show a dominant peak at the beat frequency of 110.24 Hz and its second harmonic.

[ATP] = 1 mM and [Ca 2+ ] = 0 mM.