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ABSTRACT

Context. Dust grain dynamics in molecular clouds is regulated by its interplay with supersonic turbulent gas motions. The conditions
under which interstellar dust grains decouple from the dynamics of gas in molecular clouds remain poorly constrained.
Aims. We first aim to investigate the critical dust grain size for dynamical decoupling, using both analytical predictions and numerical
experiments. Second, we aim to set the range of validity of two fundamentally different numerical implementations for the evolution
of dust and gas mixtures in turbulent molecular clouds.
Methods. We carried out a suite of numerical experiments using two different schemes to integrate the dust grain equation of motion
within the same framework. First, we used a monofluid formalism (or often referred to as single fluid) in the terminal velocity approxi-
mation. This scheme follows the evolution of the barycentre of mass between the gas and the dust on a Eulerian grid. Second, we used
a two-fluid scheme, in which the dust dynamics is handled with Lagrangian super-particles, and the gas dynamics on a Eulerian grid.
Results. The monofluid results are in good agreement with the theoretical critical size for decoupling. We report dust dynamics decou-
pling for Stokes number St > 0.1, that is, dust grains of s > 4 µm in size. We find that the terminal velocity approximation is well suited
for grain sizes of 10 µm in molecular clouds, in particular in the densest regions. However, the maximum dust enrichment measured in
the low-density material – where St > 1 – is questionable. In the Lagrangian dust experiments, we show that the results are affected by
the numerics for all dust grain sizes. At St ≪ 1, the dust dynamics is largely affected by artificial trapping in the high-density regions,
leading to spurious variations of the dust concentration. At St > 1, the maximum dust enrichment is regulated by the grid resolution
used for the gas dynamics.
Conclusions. Dust enrichment of submicron dust grains is unlikely to occur in the densest parts of molecular clouds. Two fluid imple-
mentations using a mixture of Eulerian and Lagrangian descriptions for the dust and gas mixture dynamics lead to spurious dust
concentration variations in the strongly and weakly coupled regimes. Conversely, the monofluid implementation using the terminal-
velocity approximation does not accurately capture dust dynamics in the low-density regions, that is, where St > 1. The results of
previous similar numerical work should therefore be revisited with respect to the limitations we highlight in this study.
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1. Introduction

The properties of dust grains regulate the opacity, ionisation,
initial conditions of planet formation in star forming regions,
but their evolution remains poorly constrained. Contemporary
observing facilities on the ground and in space have shed light
on dust-grain properties at various scales from the diffuse inter-
stellar medium (ISM) using Planck (Planck Collaboration XXIV
2011) down to protoplanetary discs using ALMA and SPHERE
(e.g. Muro-Arena et al. 2018). It is now understood that the dust-
grain population evolves at all scales via dynamical interaction
with the gas (drag force) and the magnetic fields (Lorentz force),
as well as via interaction within the dust-grains population that
leads to growth and fragmentation processes (e.g. Lesur et al.
2022). The study of the evolution of dust grains during star and
planet formation has therefore attracted significant interest in
recent years. There is growing evidence from observations and
theoretical works that dust-grain properties evolve dramatically
within dense cores during the very early stages of star and planet
formation, suggesting rapid dust growth and dynamical segre-
gation (e.g. Steinacker et al. 2010; Bate & Lorén-Aguilar 2017;

Sadavoy et al. 2018; Galametz et al. 2019; Lebreuilly et al. 2020;
Guillet et al. 2020; Tsukamoto et al. 2021). It remains unclear as
to whether or not dust grains also evolve at larger scales within
molecular clouds, prior to protostellar collapse.

Thanks to major advances achieved in computational astro-
physics for modelling dust and gas mixtures as well as in
hardware development, it is now possible to study the dynamical
evolution of dust grains at various scales in the ISM with a num-
ber of astrophysical codes (see Teyssier & Commerçon 2019, for
a review). In particular, recent works focused on the dynamics
of dust grains within molecular clouds and report variation of
the dust concentration (Hopkins & Lee 2016; Tricco et al. 2017;
Mattsson et al. 2019a). This result is of significant importance
because it can have different astrophysical implications. First,
the dust-to-gas ratio could vary in molecular clouds beyond the
canonical value of 1 percent. Second, dynamical decoupling of
grains of different sizes could favour dust growth and fragmen-
tation processes. Variations in dust-grain concentration and size
distribution will then have potential implications on both heat-
ing and cooling, as well as on mass estimates from observations
through opacity variations (Ormel et al. 2011). Furthermore, the
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non-ideal magnetohydrodynamics resistivities within collapsing
dense cores, which regulate the formation of protoplanetary
discs, are highly sensitive to dust-grain size distribution (Guillet
et al. 2020; Marchand et al. 2021).

However, the critical dust-grain size for measurements
of dynamical decoupling varies between these latter studies.
Hopkins & Lee (2016) report significant dust decoupling (varia-
tion in dust concentration by more than a factor 1000) for dust
grains of sgrain ≥ 0.01 µm in size. Similarly, Mattsson et al.
(2019a) report dust-ratio variations for sizes sgrain > 1 µm. On
the contrary, Tricco et al. (2017) report significant decoupling
only for dust grains larger than 10 µm. In addition, Mattsson
et al. (2019b) find that very small grains (typically nanometer
size) are also clustering, which increases the local grain density
by at least a factor of a few in their models.

At first glance, the difference in the critical size for dynami-
cal decoupling might seem insignificant, but it can have dramatic
effects on the evolution of dust-size distribution in the ISM.
The dust-grain size distribution in the diffuse ISM is relatively
well constrained, with maximum sizes of <1 µm (Guillet et al.
2018) and a peak of the distribution at around 0.1−0.3 µm in the
Milky Way (Weingartner & Draine 2001; Draine 2003; Guillet
et al. 2018). This peak lies just in the range where Hopkins &
Lee (2016) and Mattsson et al. (2019a) report decoupling while
Tricco et al. (2017) do not.

The cause of the discrepancy in the literature for the crit-
ical size for decoupling remains unknown. Both the physical
and numerical setup are different from one study to another. In
the following, we investigate whether these discrepancies may
arise from differences in numerical implementation. We briefly
present the current state of the art in the numerical methods used,
as well as their main limitations, which we will test in this study.

Hopkins & Lee (2016) and Mattsson et al. (2019a) use a
two-fluid model, where the dust and the gas are considered as
two separate fluids interacting via a drag force. These authors
also use two different fluid descriptions. In Mattsson et al.
(2019a), the gas is handled on a uniform Cartesian grid (Eule-
rian approach), while the dust fluid is handled using inertial
particles (Lagrangian approach). Hopkins & Lee (2016) use a
mesh-free method where the gas and the dust fluids are handled
using two separate particle distributions (Hopkins 2015). In both
implementations, the back-reaction of the dust onto the gas is not
considered.

In addition, very small grains, which are well coupled to the
gas, can be assimilated to gas tracer particles; that is, they mostly
move with the gas velocity (with a tiny velocity shift). Price &
Federrath (2010) and Cadiou et al. (2019) showed that classi-
cal particle-integration schemes based on velocity increments
interpolated from the grid (using for instance a Cloud-In-Cell
(CIC) algorithm) cannot properly trace the gas dynamics. These
authors show that the velocity tracers aggregate in converg-
ing flow (high-density region) leading to artificial clustering.
The density in the vicinity of converging regions can there-
fore be overestimated by one order of magnitude, while it is
largely underestimated around filaments. We test whether this
result affects the dynamics of very small dust grains treated
as Lagrangian particles by comparing their distribution to the
distribution of dust velocity tracer particles.

On the other hand, Laibe & Price (2014a,b) propose a full
monofluid approach, which is well adapted for dust grain dynam-
ics as long as the fluid approximation remains valid (Stokes
number (St) of the order unity). The full monofluid system
of equations for the gas and dust dynamics and the system
of equations of the two-fluid formalism are mathematically

equivalent. The monofluid approach consists of a change of vari-
ables, which allows us to follow the evolution of the barycentre
of the mixture and the relative velocity difference and concentra-
tion of the dust. We have further simplified this formalism using
the so-called diffusion approximation (Price & Laibe 2015),
which is based on the terminal velocity approximation (TVA,
Youdin & Goodman 2005). In this approximated monofluid for-
malism, the drift velocity is set directly by the force budget
on the gas and the dust, and only one equation (the mass con-
servation) needs to be solved per dust size. In the context of
molecular clouds, this diffusion approximation has been used in
Tricco et al. (2017) and is well suited for well-coupled grains
with St < 1; it is not valid for larger grains, because the velocity
difference between the dust and the gas is underestimated.

In this study, we perform a comprehensive test of well-
controlled numerical experiments which allows the use of both
the monofluid formalism in the diffusion approximation and a
two-fluid method based on inertial Lagrangian particles for the
dust. We focus on the effect of the numerical implementations on
the dust dynamics in driven dusty turbulence experiments. We
will explore the effect of the physical parameters (amplitude and
properties of turbulence and the effect of magnetic fields) in a
forthcoming study. The paper is organised as follows. In Sect. 2,
we estimate the expected critical dust grain size for decoupling
within typical turbulent molecular clouds from simple analytical
arguments. The numerical methods and the physical setup are
described in Sect. 3. Section 4 is devoted to the results obtained
with the monofluid implementation. We then compare with the
two-fluid results in Sect. 5. In Sect. 6, we discuss the limitation
of this work and the comparison with previous works.

2. Condition for decoupling in molecular clouds

2.1. Turbulence in molecular clouds

In a turbulent cloud of size L and internal velocity disper-
sion vrms, the dynamical time is defined as the time at which a
turbulent fluctuation travels through the blob:

tturb ≡
L
vrms
, (1)

where tturb can been seen as the time needed for the turbulence
to completely renew all the hydrodynamic fields of the flow. In
molecular clouds, observations show that the amplitude of the
turbulence vrms and the gas density n scale with the size L as
(Larson 1981; Heyer & Brunt 2004; Roman-Duval et al. 2011;
Hennebelle & Falgarone 2012)

vrms ≃ 1 kms−1
(

L
1 pc

)0.5

,

n ≃ 3000 cm−3
(

L
1 pc

)−0.7

. (2)

We aim to study dust dynamics in typical conditions that satisfy
the two aforementioned scaling relations.

2.2. Dust grain and gas dynamical (de)coupling

Dust grains experience a drag force from the collisions with gas
particles. The drag force experienced by a dust grain can be
written as

Fg =
mgrain

ts,grain
∆v, (3)
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where ∆v ≡ vg − vd is the differential velocity between the dust
grain and the gas (locally described by a Maxwellian velocity
distribution), and ts,grain is the grain stopping time, which char-
acterises the time needed for the dust grain to adjust its velocity
to a change of gas velocity. For typical physical conditions of
molecular clouds, the mean free path of the gas is much larger
than the size of spherical dust grains; this is the Epstein regime
(Epstein 1924). In this regime, the stopping time is defined as

ts,grain,0 =

√
πγ

8
ρgrain

ρg

sgrain

cs
, (4)

where ρgrain is the grain intrinsic density (typically 1−3 g cm−3,
Love et al. 1994), sgrain is the grain size, γ the heat specific ratio
of the gas, ρg the gas density, and cs the gas sound speed. In
molecular clouds, the flow is supersonic, as described above. As
a consequence, the velocity drift between the dust and the gas
can exceed the sound speed locally. In that case, we apply a cor-
rection for supersonic flow to handle this regime and the stopping
time is defined as (Kwok 1975; Draine & Salpeter 1979)

ts,grain = ts,grain,0

(
1 +

9π
128
∆v2

c2
s

)−1/2

. (5)

Assuming that all grains have the same intrinsic density, the
larger the grain, the longer the stopping time, and consequently,
the smaller grains are the most coupled to the gas. The degree of
coupling between the dust grain and the gas is characterised by
the Stokes number, which is defined as

St =
ts

tdyn
, (6)

where tdyn is the typical dynamical time of the system and ts ≡
ρg

ρ
ts,grain is the fluid stopping time of the dust species (hereafter

stopping time), ρ being the total density of the gas and the dust.
For St ≪ 1, the gas and the dust are dynamically coupled.

2.3. Critical grain size for dynamical decoupling

In turbulent molecular clouds, the dynamical time is the turbu-
lent time tturb. One can consider that a dust grain decouples from
the gas dynamics if St > 1, which yields the critical dust grain
size (ignoring the correction for supersonic flow in the stopping
time expression):

scrit =

√
8
πγ

ρgL
ρgrainM

. (7)

According to the Larson relations (Eq. (2)), the critical dust
grain size scales as

scrit ∼ 40 µm
(

ρg

10−20 g cm−3

) (
L

1 pc

) (
ρgrain

1 g cm−3

)−1 (
M

10

)−1

, (8)

whereM = vrms/cs is the turbulent Mach number, and we have
taken γ = 5/3. Dust grains of a few 10s microns are therefore
expected to decouple significantly from the gas dynamics within
a crossing time tturb. Numerical experiments show that the decou-
pling is already significant for Stokes numbers St ≥ 0.1 (Dipierro
et al. 2015; Lebreuilly et al. 2020), which indicates that dust
grains >1 µm are expected to decouple on a dynamical timescale
as well.

This value of scrit is consistent with the maximum dust-grain
sizes expected in molecular clouds (<1 µm, e.g. Köhler et al.
2015). Recent works have shown that grain growth could be at
play in the dense and turbulent ISM (Ormel et al. 2009; Guillet
et al. 2020). In this study, we therefore consider grains up to sizes
of 10 µm.

3. Numerical methods and initial conditions

3.1. The RAMSES code

We use the adaptive-mesh-refinement (AMR) code RAMSES
(Teyssier 2002) which integrates the Euler equations in their
conservative form using a second-order finite volume Godunov
scheme. In this work, we do not take into account magnetic fields
or gravity. In addition, we use a uniform grid, which is well
suited to the study of turbulent boxes.

Our setup follows the classical one designed for investigat-
ing compressible turbulence in molecular clouds using turbulent
boxes. The boundary conditions are periodic for all hydrodynam-
ical quantities. The gas thermal evolution is isothermal. We use
the HLL Riemann solver combined with a minmod slope limiter
for the hyperbolic part and upwind for the dust solver (see e.g.
Toro 1999, for more details). In our experience, this combina-
tion of solver and slope limiter is the best compromise between
accuracy and robustness.

We employ the same module to drive the turbulence as that
used by Commerçon et al. (2019). This latter is based on a source
term, a force, in the momentum equation. The turbulent force
field is generated in Fourier space and its mode is given by
a stochastic method based on the Ornstein-Uhlenbeck process
(Eswaran & Pope 1988; Schmidt et al. 2006). For more details
on the turbulence forcing module, we refer readers to the work
of Schmidt et al. (2009) and Federrath et al. (2010) on which our
implementation is based. We set the forcing to a mixture of com-
pressive and solenoidal modes, with a compressive force power
equal to one-third of the total forcing power. The turbulence is
driven on the scale of the computational box, with a peak at half
the box length.

3.2. Dust and gas dynamics implementations

3.2.1. Monofluid, two-fluid, and multi-fluid: terminology
explained

The terms monofluid, two-fluid, Lagrangian dust, and Eulerian
dust are often used in this paper, as well as much of the litera-
ture in the field. Therefore, it is useful to clarify what is meant
by these terms in this context. The two formulations of dust
hydrodynamics, ‘two-fluid’ or ‘multi-fluid’ and ‘monofluid’, dif-
fer fundamentally in one aspect, namely in how the equations
for the dust-gas mixture are written. In a multi-fluid approach,
dust species are treated as additional fluids with their own
Navier-Stokes equations coupled to the gas by a drag term. The
monofluid description is instead designed to describe the mixture
as a single fluid, with velocity equal to the barycentre velocity of
the mixture, and evolving the drift velocity, which is the vec-
tor field that describes the velocity difference between dust and
gas. The two descriptions are mathematically equivalent; how-
ever, starting from the monofluid description, it is possible to
construct approximate descriptions of the mixture by truncating
the drift velocity expansion at different orders. The monofluid
method in this paper is a TVA of the complete monofluid equa-
tions (see Sect. 3.2.2). A further level of complexity is added
to the problem when one considers that, when constructing a
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multi-fluid solver, it is not required that the same approach be
used to solve all the fluid equations (provided the drag term is
treated correctly). Hybrid schemes solve the gas dynamics on
a Eulerian grid, but solve the dust dynamics using Lagrangian
super-particles. This approach may provide some advantages,
especially in the limit of St→ inf where the dust particle dynam-
ics becomes ballistic mechanics. The two-fluid scheme in this
paper is one such ‘hybrid scheme’, which solves the gas dynam-
ics on a grid, but solves the dust dynamics by integrating the
motions of Lagrangian dust particles.

3.2.2. Monofluid implementation

The implementation in RAMSES of dust dynamics in the diffu-
sion approximation – which is based on the TVA – and the
monofluid formalism was presented in Lebreuilly et al. (2019).
We use the multi-species framework, which allows us to follow
the coupled dynamical evolution ofNd different grain species on
a single numerical simulation. Below, we describe the main char-
acteristics of our monofluid implementation. We refer readers to
Youdin & Goodman (2005), Laibe & Price (2014b,a), Price &
Laibe (2015), Hutchison et al. (2018), and Lebreuilly et al. (2019)
for more details on the derivation of the diffusion approximation
in the monofluid formalism.

We first define the monofluid hydrodynamical quantities.
The total mixture density ρ is

ρ ≡ ρg +

Nd∑
k=1

ρd,k, (9)

where ρd,k is the dust fluid density of the kth size bin. The total
dust density is simply ρd =

∑Nd
k=1 ρd,k. The mixture barycentric

velocity v is the defined as

v ≡
ρgvg+

∑Nd
k=1 ρd,kvd,k

ρg+ρd
, (10)

where vd,k is the velocity of the k bin dust fluid. The dust ratio
of dust species k is then ϵk ≡ ρd,k/ρ and the total dust ratio is
E = ρd/ρ

1.
The dust and gas mixture dynamical coupling is charac-

terised by the stopping time

ts,k ≡
√
πγ

8
ρgrain,k

ρ

sgrain,k

cs
=
ρg

ρ
ts,grain, (11)

which leads to the effective stopping time Ts,k in the case of
multiple dust species. This coupling accounts for the interaction
between dust species due to their cumulative back-reaction on
the gas:

Ts,k ≡
ts,k

1 − ϵk
−

Nd∑
l=1

ϵl
1 − ϵl s,l

. (12)

Finally, we introduce the mean stopping time,

Ts ≡ E

Nd∑
k=1

ϵkTs,k. (13)

1 The dust ratio is the ratio between the local dust density and the
local total density (gas and dust mixture), which must not be confused
with the dust-to-gas ratio, which is the mass ratio between the dust and
the gas.

The set of equations of the evolution of the gas and dust
mixture is then

∂ρ

∂t
+ ∇ ·

[
ρv

]
= 0,

∂ρv
∂t
+ ∇ ·

[
ρv ⊗ v + PgI

]
= ρf,

∂ρd,k

∂t
+ ∇ ·

[
ρd,k

(
v +

Ts,k∇Pg

ρ

)]
= 0, ∀k ∈ [1,Nd], (14)

where Pg is the gas pressure, and f is the acceleration applied to
account for the turbulence driving. The back-reaction of the dust
onto the gas is taken into account in this monofluid framework.
We note that no energy equation is considered here, because we
use the isothermal approximation.

This set of equations is integrated using the classical second-
order Godunov scheme of RAMSES, which is complemented by
the second-order scheme developed by Lebreuilly et al. (2019)
to integrate the dust differential dynamics. We refer readers to
Lebreuilly et al. (2019, 2020) for more details on the numerical
implementations, as well as tests and applications to prestellar
dense core collapse and protostellar disc formation.

3.2.3. Two-fluid implementation

We developed an implementation to account for the dynamics
of inertial Lagrangian super-particles in the two-fluid formalism
for this study. Our implementation is based on the particle-mesh
method used for tracer particles already implemented in RAMSES.
The method is well tested, and is used, for example, to run large
chemical networks as postprocessing, as it stores the density and
temperature of individual parts of the fluid (e.g. Coutens et al.
2020).

The dust fluid here is represented by Lagrangian super-
particles with constant mass moving at the dust velocity vd. Their
motion is described by

dvd

dt
=

vg − vd

ts
. (15)

In the case of strong dynamical coupling, the drag term
becomes stiff, which leads to prohibitive time-step constrains.
We therefore solve the equation of motion analytically, which
leads to the integration scheme

vn+1
d = vn+1

g

(
1 − e−∆t/tn

s
)
+ vn

de−∆t/tn
s . (16)

This analytic formulation naturally yields the limits St ≪ 1
and St ≫ 1. The particle velocity is updated using a CIC interpo-
lation of the gas density and velocity from the grid. The particles
are then moved using the second-order midpoint scheme of
RAMSES (Teyssier 2002). This scheme is very similar to the
one used by Mattsson et al. (2019a) using the PENCIL code
(Pencil Code Collaboration 2021). As mentioned earlier,
with this implementation, the numerical resolution of the dust
depends on the number of particles used, but the accuracy of the
drag estimate is limited to the grid resolution used for the gas.
Finally, this two-fluid implementation does not take into account
the back-reaction of the dust onto the gas.

3.3. Initial conditions and numerical setup

The initial physical setup consists of a uniform density box,
which represents a portion of a large molecular cloud. We use a
uniform grid with resolution ranging from 1283 to 5123, always
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Table 1. Summary of the simulations parameters (the star labels our fiducial model).

Model E0 Grid resolution Nd Np Dust size Monofluid Two fluid
∗256MRN 0.01 2563 10 0 MRN ; sgrain ∈ [1 nm, 20 µm] ✓ x
128MRN 0.01 1283 10 0 " ✓ x
512MRN 0.01 5123 10 0 " ✓ x
256NBR 10−5 2563 10 0 " ✓ x
256_2F 10−6 2563 5 106 1 nm, 0.01 µm, 0.1 µm, 1 µm, 10 µm ✓ ✓
128_2F 10−6 1283 5 106 " ✓ ✓

128_2F_LR 10−6 1283 5 125 × 103 " ✓ ✓
128_2F_VLR 10−6 1283 5 1 × 103 " ✓ ✓

assuming periodic boundary conditions. The initial density is
ρ0 = 4.4 × 10−21 g cm−3 and the box length is set to 4 pc, which
satisfies the Larson relations (Eq. (2)). The gas thermal evolution
is forced to remain isothermal with a temperature of T0 = 10 K.
In all models, the grain intrinsic density is ρgrain = 1 g cm−3. This
value is rather low if one considers that the dust grains are made
of a mixture of graphite (2.2 g cm−3) and crystalline olivine with
composition MgFeSiO4 (3.6 g cm−3). Nevertheless, we note that
at a given Stokes number, the dust size and intrinsic density are
degenerate. If we were to chose an intrinsic density of 1 g cm−3

as used in other studies such as Tricco et al. (2017), we would
have to divide the dust size by a factor of 3.

In this study, we explore only one level of turbulence in order
to focus on the numerical methods. We set the RMS velocity of
the dust and gas mixture in accordance with the Larson rela-
tion (Eq. (4)), i.e. vrms ≃ 1.9 km s−1, which corresponds to a
Mach number M ≃ 10 . The turbulent crossing time is then
tturb ≃ 2.4 Myr. For the turbulence driving, we use a unique
autocorrelation timescale T (timescale for a full change of the
turbulent field), set to one-quarter of the turbulent crossing time,
namely T ≃ 0.6 Myr.

In the following, we present two types of numerical simu-
lations. In the first, we identify the critical dust grain size for
decoupling using the monofluid solver presented above. In this
setup, we have introducedNd = 10 bins of dust-grain size, rang-
ing from 1 nm to 12 µm, which corresponds to Stokes numbers
ranging from 10−5 to 0.18, respectively. The fiducial resolution
is 2563. In addition, in Appendix B, we investigate the effect of
the back-reaction by varying the initial total dust ratio E0 from
0.01 (fiducial value) to 10−5 (a negligible amount of dust should
not affect the gas dynamics). In Appendix A, we also propose
a resolution convergence study where the grid size ranges from
1283 to 5123. In the second setup, we compare the monofluid
results with the ones obtained using the dust Lagrangian parti-
cles (2F runs). To this end, we useNd = 5 bins of dust-grain size
ranging from 1 nm to 10 µm. Thanks to our numerical tool, we
can compare the two solvers using a single numerical simulation.
As our two-fluid formalism does not allow us to account for the
back-reaction, we have set the total dust ratio to the very small
value of 10−6 in the monofluid solver. On top of this, we have
added Np dust Lagrangian super-particles in the two-fluid solver.
These particles do not impact the hydrodynamical fields. Table 1
summarises the numerical parameters of the various simulations
we run in the context of this study.

3.3.1. Expected limits to the monofluid and two-fluid methods
in this setup

From our analysis in Sect. 2.2, the expected critical dust-grain
size corresponding to St = 1 is scrit ⪆ 70 µm. As already

mentioned, in our experience, grains with Stokes number St ≥
0.1 already decouple significantly on a dynamical timescale. We
therefore expect grains with size s ⪆ 7 µm to decouple in our
setup.

3.3.2. Maximum dust velocity

In the low-gas-density regions, the Stokes number can exceed
unity even for the smallest grains. In these conditions, the TVA
approximation breaks down, leading to large dust velocity. We
therefore limit the dust velocity estimated from our monofluid
module to the mean RMS turbulent velocity, that is, Mcs. We
also apply the correction for supersonic flow when the veloc-
ity drift between the dust and the gas exceeds the sound speed
(Kwok 1975; Draine & Salpeter 1979).

3.4. Postprocessing of the grid versus particle data

In this study, we analyse sets of data that encompass both Eule-
rian and Lagrangian variables. Our analysis is based mostly on
volume-weighted probability density functions (PDFs) and den-
sity cuts through the computational domain. We use well-tested
suites of postprocessing tools, as follows.

For the grid quantities (monofluid), we simply bin the grid
cells according to the value of the density for the PDF and
the slices are straightforward. We use the OSYRIS2 visualisa-
tion package for RAMSES. For the particle quantities (Lagrangian
dust and tracers), we follow the procedure described in Price
& Federrath (2010) and Price et al. (2011). First, all particles
have the same mass, mp, which is equal to the total mass of the
dust species divided by the number of particles). To produce
density maps, we project the particle distribution onto a regu-
lar grid, which has the same dimensions as the grid used for the
monofluid. We then use the Smoothed-particle hydrodynamics
(SPH) density calculation routine from the PHANTOM code (Price
et al. 2018), where the density and smoothing length are iterated
self-consistently using classical SPH procedures. We produce
cross-section slices of the density field using the SPLASH visu-
alisation software (Price 2007). To obtain the volume-weighted
PDF from the particles, we follow Price et al. (2011) and again
interpolate the density on an adaptive grid.

4. Monofluid results

4.1. Time evolution

Figure 1 shows the time evolution of the RMS velocity ⟨
√
v2⟩ and

of the density clumping factor of the various fluids (dust, gas,

2 https://github.com/osyris-project/osyris
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Fig. 1. Time evolution of the barycentre and dust-species RMS velocity
(top) and of the clumping factor of the density of the different species
(bottom) in the fiducial model 256MRN. The time evolution has been
normalised according to the turbulent crossing time tcross. In the bottom
panel, the dotted line shows the clumping factor evolution of the total
dust density ρd and the dashed-dotted line shows the clumping factor
evolution of each dust species concentration ϵi. The evolution of the
clumping factor of the gas density (dashed) is indistinguishable from
that of the barycentre (solid) density.

barycentre). The clumping factor CX of a quantity X is defined
as CX = ⟨X2⟩/⟨X⟩2. A clumping factor CX > 1 indicates that the
field X shows significant variation. The RMS velocity and the
density clumping factor of the barycentre and of the ten different
dust species are shown. In addition, we show the evolution of the
total dust density and gas density clumping in the clumping fac-
tor plot. After roughly one turbulent crossing time, the various
quantities oscillate around a mean value and do not show any
trend as a function of time, which indicates that we have reached
a steady state. While dust species with size s < 1 µm do not
show any significantly different evolution from the barycentre,
the largest dust grains tend to show a decoupling with amplitude
in the measured quantities, which remains constant with time. In
addition, the fluids consisting of dust grains with sizes s ≥ 4 µm
have RMS velocities and clumping factors that increase with
size. The larger the grain, the larger the turbulence amplitude
and the stronger the clumping. Interestingly, the total dust den-
sity also shows a stronger clumping than the barycentre and the
gas. This is mostly due to the fact that under the MRN size
distribution, most of the dust mass is contained in the largest
grain species. In summary, this first qualitative analysis shows
that grains with St > 0.1 decouple from the gas dynamics, in
good agreement with our theoretical estimate. In addition, the
gas and barycentre quantities exhibit almost identical time evo-
lution, meaning that the gas-phase evolution corresponds to the
evolution of the barycentre.

In addition, we verified that the evolution of the total dust
mass contained above given the total density threshold remains

roughly constant with time. This indicates that there is no cumu-
lative trapping of the dust grains at any density as a function of
time, and that the degree of decoupling also remains constant
with time. The quantities we derive in the following are then
independent of time, and we can safely analyse our models at a
given time snapshot, even though the absolute amplitude of the
different quantities might fluctuate with time.

4.2. Characteristic features of the decoupled regions

Figure 2 shows density maps at time 3tcross of the variations
of the gas density and dust ratio ϵi of each dust species rel-
ative to their initial value. The gas density varies over more
than four orders of magnitude with large velocities in the low-
density regions. The amplitude of the density variation is typical
of isothermal compressible turbulence, with density jumps at
shocks varying as ∝ M2. The amplitude of the dust ratio vari-
ations increases with dust-grain size, up to very large values
(more than eight orders of magnitude) for the largest grains. The
region that show a large variation in dust ratio, for both deple-
tion and enrichment3, are associated to densities ρg < ρg,0 where
the largest density gradients develop. As we use an isother-
mal equation of state, the pressure gradients are proportional to
the density gradients. The dust velocity shift is also inversely
proportional to ρ2, and so the smaller the density, the larger
the velocity drift, which is consistent with our findings. We
also observe strong depletion of dust density for dust grains
>0.1 µm. These depleted regions correspond to low gas den-
sities and therefore to low dust densities. As a consequence,
the dust enrichment is mostly at higher densities, because the
total dust mass is conserved. Interestingly, we observe that the
strongly depleted regions (shown in dark blue in Fig. 2, cor-
responding to log(ϵi/ϵi,0) < −2) always sit in low gas densities
where log(ρg/ρg,0) < −1. These regions also exhibit the largest
dust velocity. On the other hand, the dust-enriched regions do not
correspond to higher densities, but rather are found where −1 <
log(ρg/ρg,0) < 1. The high-gas-density material shows a nearly
uniform dust ratio, which corresponds to the initial value for all
dust species, except the largest dust species where variations of
a factor of a few can be observed.

In order to better characterise the regions of decoupling,
Fig. 3 shows the dust-to-gas ratio variations as a function of
the gas density for the total amount of dust, as well as the dust
ratio for the various dust-grain species we modelled. All dust
species show the largest variations in the dust ratio for gas den-
sity ρg < ρg,0. The amplitude of the variations, in particular
depletion, increases with dust size. Interestingly, we see that the
smallest dust grains (s < 0.1 µm) are only strongly depleted at
the smallest gas density, that is, ϵi/ϵi,0 < 10−2, while the enrich-
ment is effective for gas densities −4 < log(ρg/ρg,0) < 1. The
bulk of the mass remains at the initial dust ratio for the smallest
grains. These grain species also exhibit Stokes numbers St < 1
for the bulk of the mass, which indicates that our monofluid
approximation is well suited for these species. The grains with
sizes >0.1 µm show stronger depletion even at gas densities cor-
responding to ρg,0. The amplitude of the dust enrichment is lower
compared to the smaller grains, typically ϵi/ϵi,0 < 100, but corre-
sponds to a larger bulk mass. In terms of total mass budget, as the
largest grains carry the mass, the total dust-to-gas ratio exhibits
some variation, but this is only moderate (less than one order
of magnitude for the bulk). For grains with sizes s > 1 µm, the

3 We define the dust enrichment (resp. depletion) as the material where
the dust ratio variation is ϵi/ϵi,0 > 1 (resp. ϵi/ϵi,0 < 1).
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Fig. 2. Gas density (top-left) and dust ratio variation maps in the xz-plane for the ten dust bins in the 256MRN run. The variations are given relative
to the initial value of the quantity and are shown in logarithmic scale. In the dust-ratio panels, the red colour shows dust-ratio enhancement, while
blue indicates a dust-ratio decrease. The isocontours correspond to gas-density variations of −1 (orange), 0 (black), and +1 (green) in logarithmic
scale. The arrows represent the barycentric velocity (top-left), and the dust-grain drift velocity vectors in the plane for all the other plots. All plots
are made at a time corresponding to 3tcross.
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Fig. 3. 2D histograms of the dust-ratio variations as a function of gas density for the fiducial model 256MRN. The top-left panel shows the variation
in total dust-to-gas ratio E , while the other panels show the dust-ratio variations of each dust species. The colour coding indicates the mass of the
gas in log scale (in solar units). The horizontal grey dotted line separates the dust-enriched and dust-depleted regions. The vertical line indicates
St = 1 (solid) for each dust species. All quantities are averaged over more than one dynamical time tcross and the variations are normalised to the
initial value of each dust ratio.

maximum dust variation occurs at St > 1, which is outside the
range of validity of the diffusion approximation. In Sect. 4.3, we
show that this is not a problem for the total mass budget because
the bulk of the mass is found in the St < 1 regions. However, the
amplitude of the dust variations might be inaccurately estimated.

Figure 4 shows the cumulative volume-weighted PDFs of the
dust-ratio variations for various dust species, including the three
largest ones. For grains with sizes s < 0.1 µm, the bulk of the
volume does not show variation in dust ratio. The dust-enriched
region corresponds to less that 5% of the total volume for the
0.03 µm dust grains. As explained in the previous paragraph, this
material corresponds to low gas density. For larger grains, s >
1 µm, more than half of the total volume shows dust-enriched
regions. About 4% of the 12 µm dust-grain material shows dust-
ratio variations of greater than a factor of two, and about 1.3%
shows variations of greater than a factor three.

Figure 5 shows the variation of the total density along a
line of sight, as well as the drift velocity and dust ratio for
the 12 µm dust grains in the fiducial 256MRN model. As
our model is isothermal, the density directly traces the pres-
sure, meaning that the density variations correspond to the
pressure ones. In the TVA approximation, the drift velocity is
proportional to the pressure gradient. The pressure and drift

Fig. 4. Volume-weighted cumulative PDF of the dust ratio variation for
the 1.6 nm, 0.03, 1.7, 4.5, and 12 µm dust grains in the fiducial model
256MRN. All quantities are averaged over more than one dynamical
time tcross.
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Fig. 5. Profile of the total density ρ (blue) and the drift velocity (orange)
and dust ratio (dotted green) for the 12 µm dust grains in the fidu-
cial model 256MRN. The density is normalised by its initial value. The
norm of the drift velocity with respect to the barycentre is normalised
to 1 km s−1. The variations in dust ratio are computed with respect to its
initial value. The quantities are plotted against the x−axis at a random
time (>2tcross) and at a random location in the yz-plane. Regions with
positive relative dust ratio correspond to dust-enriched material.

velocity evolutions are anti-correlated. The drift-velocity min-
ima correspond to pressure maxima. The dust-enriched regions
are found in the pressure maxima. As already reported, the
highest concentrations are measured in the regions of inter-
mediate density (ρ < ρ0). This behaviour confirms that our
implementation of the TVA correctly captures the predicted
physics.

4.3. Validity of the diffusion approximation

Figure 6 shows the volume- and density-weighted PDFs of the
Stokes number for various dust species, including the three
largest ones. The bulk of the mass of all dust species sits in
St < 0.1 regions. However, the volume-weighted PDFs of the
largest grains show large volume fractions with St > 1. This
corresponds to ≃60% of the total computational volume for the
12 µm grains, ≃25% for the 4.5 µm grains, and ≃15% for the
1.7 µm grains. In terms of mass, the fraction of the total dust
mass of the largest bin (12 µm) where the Stokes number is
St > 1 is ≃1% (4 ≃22% for St > 0.1).

We also checked the fraction of the total volume and mass of
each dust species where the limitation of the dust velocity is neg-
ligible. For the most decoupled dust grains (12 µm), the fraction
of the mass where the velocity floor is active is always ⪅10−6,
which corresponds to a fraction on the order of a few times 10−5

of the total volume. This confirms that the dust diffusion approx-
imation and our numerical implementation are well suited for
our purposes.

4.4. Summary of the monofluid results

The main results of our analysis of the monofluid results are as
follows:

– Dust grains of size <0.1 µm remain well coupled to the
gas.

– Dust grains of size >1 µm show strong variation in
concentration. The decoupling regions correspond mainly to
low-density material.

– Dust concentrates in the pressure maxima.

Fig. 6. Cumulative PDF of the Stokes number for the 1.6 nm dust grains
and the 0.03, 1.7, 4.5, and 12 µm dust grains in the fiducial model
256MRN. The coloured dotted lines show the mass-weighted PDF and
the coloured solid lines show the volume-weighted PDFs. The Stokes
number is computed using the local gas density and the global turbu-
lent crossing time tturb. All quantities are averaged over more than one
dynamical time tcross. The vertical lines indicate the St = 1 (solid) and
St = 0.1 (dashed).

– The total dust fraction does not show variation in the high-
density regions.

– Our monofluid and TVA implementation is well-suited for
the bulk of the mass (99% for the largest grains). However, the
maximum dust variation for large grain sizes occurs for physical
conditions that are outside the range of validity of the diffusion
approximation.

5. Comparison between monofluid and two-fluid
formalisms

In this section, we focus on the comparison of the above results
based on the monofluid formalism with those produced using
our two-fluid implementation based on Lagrangian superparti-
cles. We also present a convergence study where we vary both
the grid resolution N and the number of particles Np.

Our comparison focuses on the evolution of five dust-grain
size populations, which are treated using both the monofluid and
the two-fluid solvers in single simulation runs. The dust-grain
size varies from 1 nm (well-coupled grains) to 10 µm (least
coupled), and the dust-to-gas-mass ratio of each dust species
is set to 10−6. Indeed, as already mentioned, as our two-fluid
implementation cannot account for the back-reaction of the dust-
grain dynamics on the gas dynamics whereas the monofluid
implementation can, choosing a low value of the dust-to-gas
ratio means we are mostly neglecting the back-reaction in the
monofluid solver. All other aspects of the monofluid setup are
identical to the ones presented in the previous section (except for
grain size and total dust mass). In addition to the two solvers,
we have included classical tracer particles designed to trace
the dust fluids handled in the monofluid runs, that is, with the
velocity computed in the terminal-velocity approximation. The
tracer-particle populations are used for comparison with both the
monofluid and the two fluid results.
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Fig. 7. Density slice in the z = 0 plane obtained from the 256_2F run for
the 1 nm (top) and 10 µm (bottom) dust grains at a time corresponding to
≃ 4.5tcross. The left column represents the density field of the monofluid
dust, while the right column represents the density field interpolated
from the Lagrangian dust particles. The density is normalised by the
initial density ρ0. The black lines represent the contour for which the
gas density is equal to its initial value ρ0.

5.1. Density fields

Here, we investigate the results of the 256_2F run. In this run,
each dust-grain size is represented by 106 ‘two fluid’ Lagrangian
particles and another 106 monofluid ‘tracer’ particles. Figure 7
shows slices of dust-density variations for the 1 nm and 10 µm
dust-grain fluids for both the monofluid and the two-fluid approx-
imations. All quantities are normalised to the initial dust density
of each species. We also show the isocontour, which indi-
cates the threshold where the gas density is equal to its initial
value. We can therefore compare the dust variations to those of
the gas. For the 1 nm dust grains, the dust-density variations
from the monofluid closely match the gas-density variations,
which is in very good agreement with what we observe in
the previous section for the most coupled dust species. The
1 nm dust-grain density obtained with the dust as Lagrangian
particles globally matches the density of the gas. The gas-
depleted regions correspond to dust-depleted regions. However,
one can distinguish small islands of dust-depleted regions within
gas-enriched regions and dust-enriched filaments in some gas-
depleted regions, which is indicative of decoupling. For the
10 µm dust grains, the dust-density variations roughly match the
gas variations for the monofluid, with large dust-depleted regions
of more than a factor of two. Conversely, the variations in the
dust-density field from the Lagrangian particles are less impor-
tant than those found in the monofluid, with smaller enriched and
depleted regions. Large dust-depleted islands are also observed
within the gas-enriched regions.

5.1.1. Tightly coupled dust grains (1 nm)

Figure 8 shows the averaged PDFs of the density obtained from
the gas and the monofluid, the Lagrangian dust particle, and the
monofluid tracer-particle populations for the 1 nm and 10 µm
dust grains. We first focus on the PDFs of the 1 nm dust grains.

Fig. 8. PDFs of the logarithm of density ln ρ in the 256_2F run for the
1 nm (top) and 10 µm (bottom) dust grains. The density variations are
normalised to the initial density values for each field.

We observed two clearly distinct behaviours. On the one hand,
the gas and monofluid PDFs match relatively well, in particu-
lar for the largest densities, while on the other, the tracer and
Lagrangian-dust-particle PDFs are identical. The dust-tracer-
particle PDF does not match the monofluid PDF at all, while
they should match.

First, comparing the monofluid and the gas PDFs, there are
more dust-depleted regions as well as gas-depleted ones. As a
consequence, there is a slight shift of the peak to high den-
sity for the dust population. This is seen in the previous section
for tightly coupled dust grains. For the 1 nm dust grains, the
expected behaviour would be for the dust density PDFs to be
similar to the gas ones, as the gas drag is strongest. However, at
low gas density, the Stokes number becomes large enough for the
dust to slightly decouple.

Second, the monofluid tracer particles should trace the
monofluid dust species, but as the two PDFs are very dif-
ferent, they do not. We observe an excess in both the low-
and high-density tails of the tracer particles distribution, mean-
ing that some particles are trapped in the high-gas-density
regions, resulting in a larger depletion in the regions of low
gas density. This result suggests that particles may be subject to
artificial clustering, which we investigate in the following sub-
section. From the identical tracer- and Lagrangian-dust-particle
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population PDFs, we see that both particle populations expe-
rience exactly the same velocity field, computed using either
the terminal velocity approximation (monofluid) or our analyt-
ical integrator scheme (two-fluid Lagrangian particles). Given
the small Stokes numbers of the 1 nm dust grains, the computed
velocity is equal to the gas velocity, which further verifies that
the dust velocity computed by the monofluid approximation is
correct in this regime. These two PDFs depart significantly from
the gas-density PDF as well.

5.1.2. Least-coupled dust grains

For the 10 µm dust grains, we observe four different PDFs in
Fig. 8. First, the tracer particles and monofluid PDFs are dif-
ferent, indicating that the tracer particles do not trace the dust
fluid as they should for all Stokes regimes. This brings into
question the reliability of the results obtained with the classical
Lagrangian tracer particles. Further, the monofluid PDF departs
from the gas PDF for low density. At high density, where the
Sokes number is St ≪ 0.1, the two PDFs (gas and monofluid)
are a close match, as indicated by the small dust-ratio variations
observed previously. The Lagrangian dust-particle PDF falls in
the middle of the gas and monofluid PDFs, close to the PDF of
the tracer particles at high density and to the gas PDF at low
density. This last observation seems to indicate that the two-
fluid solver based on Lagrangian particles also has problems
handling the large gas density corresponding to small Stokes
numbers (clustering). The relatively good match with the gas
PDF at low density is also questionable, because the dust-grain
dynamics should be decoupled from the gas dynamics given the
high Stokes numbers. We see in the following sections that this
match is not robust, and that the low-density slope of the PDF
depends on the number of particles Np.

5.1.3. Intermediate summary

The main results of the analysis of the density PDFs are the
following:

– Two-fluid results exhibit stronger decoupling than the
monofluid ones, for all dust sizes.

– For small dust-grain sizes, the tracer particles and very
small dust Lagrangian super-particles have identical density
PDFs.

– For large dust-grain sizes, the density PDFs obtained with
the monofluid and the two-fluid formalisms do not agree.

5.2. Dust ratio

In this section, we focus on the dust variations obtained in the
256_2F run. We computed the dust enrichment in the two-fluid
case with dust as Lagrangian particles by projecting the dust-
particle distribution onto a uniform grid of the same resolution
as that used for the gas, and divided by the gas density. For the
dust species handled with the two-fluid solver, we can determine
a maximum dust enrichment by assuming that the minimum
length scale of the particle distribution cannot go beyond the gas
resolution set by the grid for the gas. We define the maximum
dust enrichment ϵmax by setting the minimum adaptive resolu-
tion length hmin (see definition in the following section) equal to
the grid size ∆x:

ϵmax ≡
ρd,max

ρ
=

mp

∆x3ρ
, (17)

where mp is the mass of a particle.

Fig. 9. Same as Fig. 3 but for the 256_2F run. The left column shows
the monofluid results and the right column shows the results when dust
is modelled as Lagrangian particles. The top row shows the 1 nm dust
grains and the bottom row the 10 µm dust grains. The red dashed line
indicates the maximum dust enrichment as defined in Eq. (17). All the
material that is above this line has an excessive dust concentration.

Figure 9 shows 2D histograms of the dust enrichment
obtained in the 256_2F run for the monofluid and Lagrangian-
particle dust species of 1 nm and 10 µm in size. First, the
monofluid results are different from those observed in Fig. 3 for
the 256MRN run. In particular, there is almost no dust enrich-
ment for the 1 nm dust grains. In Appendix A, we show that this
is due to the neglect of the dust back-reaction onto the gas, which
mainly affects the dust-enriched tail of the PDFs. The monofluid
results for the 10 µm dust grains are similar to the ones observed
in the 256MRN run.

We now compare with the results obtained in the two-fluid
case with dust as Lagrangian particles. For both grain sizes,
monofluid and two-fluid solvers give very different results. For
the well-coupled dust grains, there is a huge spread in dust
enrichment (up to at least two orders of magnitude) in the full
density range. As a consequence, the depletion is also large at
all densities. For the 10 µm dust grains, the enrichment is higher
at low gas density compared to the monofluid results. In partic-
ular, the regions of lowest gas density are only dust enriched.
This corresponds to regions where St > 1. At high gas den-
sity, the enrichment is similar to that observed for the smallest
grains, which indicates that they undergo the same dynamical
(de-)coupling with the high-density gas at low Stokes number.
The red line in Fig. 9 indicates the maximum dust enrichment,
which corresponds to the maximum dust density allowed by the
gas grid resolution. The entire region above ϵmax corresponds to
dust enrichment with resolution length smaller than the gas res-
olution, that is, unresolved dynamical coupling. For 1 nm dust
grains, only the regions of high gas density are affected, while for
the 10 µm dust grains, the upper part of the distribution follows a
trend inversely proportional to the gas density. This suggests that
the maximum dust enrichment is regulated by the grid resolution
used for the gas dynamics. We observe a maximum enrichment
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Fig. 10. PDF of the effective adaptive resolution length h of the 1 nm
(dotted lines) and 10 µm (solid lines) dust-grain fluid particle distri-
butions for the 256_2F run. The colour coding indicates the particle
distribution (two-fluid dust as Lagrangian particles in blue, tracer in
red). The vertical line indicates the numerical resolution of the grid
(2563).

of about four orders of magnitude in the low-gas-density mate-
rial, which corresponds to the maximum enrichment permitted
by the grid resolution used for the gas dynamics. Even if the two-
fluid implementation with dust as Lagrangian particles is better
suited for large Stokes numbers than our monofluid implemen-
tation, it remains severely limited by the grid resolution, leading
to numerical artefacts in of high dust density.

Intermediate summary

The main results of our analysis of the dust-ratio variations are
as follows:

– Our two-fluid implementation with dust as Lagrangian par-
ticles leads to dust enrichment that exceeds the maximum value
set by the grid resolution used to compute the drag from the gas
(see Fig. 9).

– The high-density regions show dust-ratio variations at all
sizes with the two-fluid solver that were not observed in the
monofluid results.

5.3. Adaptive resolution length PDFs

We define the adaptive resolution length of the dust-particle
distribution as

h =
(

mp

ρd,i

)1/3

, (18)

where ρd,i is the local density associated with each parti-
cle, which is computed following the procedure described in
Sect. 3.4. Therefore, h is a measure of the highest resolution
reached in the particle distribution, to be compared with the grid
scale ∆x.

Figure 10 shows the PDFs of the adaptive resolution length h
obtained for the particle distributions of run 256_2F. The scales
covered range over more than six orders of magnitude. At large
values (high densities), the PDFs of the 10 µm behave very
differently. The two-fluid dust Lagrangian-particle distribution
is more compact, while the particle distribution of the tracer
exhibits larger voids. Conversely, all the PDFs show the same

trend at small scales, namely high densities. Interestingly, when
we compare the adaptive resolution length to the resolution of
the grid used for the gas dynamics, we observe that for h < 2∆x,
the PDFs are almost identical, independently of the dust-grain
size and integration method (two-fluid dust Lagrangian or tracer
particles). This indicates that the dust-grain dynamics at scales
smaller than the grid size is dominated by numerical artefacts
and the clustering is therefore artificial. Indeed, the gas drag is
the only mechanism that can move dust particles, and the gas
drag cannot be accurately computed on scales smaller than ∆x.
As a consequence, the clusters of high dust density are charac-
teristic of regions dominated by numerical diffusion, which leads
to the conclusion that tiny grain clustering observed in the par-
ticle distributions has a numerical origin. It remains unclear as
to what extent this clustering affects the rest of the simulation
volume, in particular the low-density tail of PDF.

Intermediate summary

The main results of the analysis of the Lagrangian-particle
clumping scale are as follows:

– The two-fluid Lagrangian-particle dust results show clus-
tering on scales smaller than the grid size, where the physics of
the dust dynamics is not resolved. This behaviour is not physical,
but numerical in nature.

– All dust sizes show the same trend of artificial clustering
below the grid scale.

5.4. Effects of the grid resolution and the number of particles

In this section, we investigate the effect of varying the grid reso-
lution N and the number particles Np in order to test the effect of
the relative resolution used for dust particles in comparison with
the relative resolution of the gas. First, we compare the 256_2F
and 128_2F runs, in which the only difference is the resolution
used for the grid. Figure 11 shows the PDFs of the 1 nm and
10 µm density and the adaptive resolution length of the dust-
particle distributions in these two models. For the 1 nm dust
grains, the PDFs of the dust density are identical regardless of the
treatment (two fluid vs. tracer) at a given resolution. The PDFs
of the 128_2F are wider compared to the 256_2F ones, which
indicates a more important decoupling from the gas dynamics
as the gas resolution decreases. For the 10 µm dust grains, we
observe the same trend, but with different PDFs for the two-fluid
Lagrangian-particle distribution and tracer particle distribution,
as already reported in Sect. 5.1. From the adaptive length PDFs,
we observe that the 128_2F exhibits the largest clustering effect.
One would have naively expected the 128_2F model to give
better results than the 256_2F model for the dust-particle dis-
tribution, as the particle resolution per grid cell is eight higher
in the 128_2F model. However, as demonstrated in the previ-
ous section, the dust-particle dynamics is strongly affected by
the numerical resolution used for the gas on the grid, and the
amount of artificial clustering is higher.

Figure 12 shows the PDFs of the 1 nm and 10 µm dust-
grain density and adaptive resolution length of the dust-particle
distributions in the 128_2F (106 particles per grain size bin),
128_2F_LR (125 × 103 particles), and 128_2F_VLR (103 par-
ticles) models. The aim is to test the effect of the number of
particles used to describe the dust fluid at a given resolution for
the gas. We see that the dust-density PDFs get tighter as the num-
ber of particles decreases. The best match between the two-fluid
and the monofluid results is found for the 128_2F_LR run for the
1 nm dust grains. For the 128_2F_VLR model, the results for the
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Fig. 11. PDF of the dust density of the 1 nm (left) and 10 µm (middle). The colour coding indicates the dust fluid treatment (two fluid Lagrangian
particles in blue, tracer particles in red, monofluid in black). For clarity, only the monofluid quantities of the 256_2F are shown. The solid lines
show the results of the 256_2F run, while the dotted lines show the results of the 128_2F. Right: PDF of the adaptive length of the two-fluid dust
Lagrangian-particle distributions (solid lines for the 10 µm dust grains, dotted line for the 1 nm ) for the 256_2F (blue) and 128_2F (red) models.
The vertical dashed lines indicate the grid numerical resolution (black for 256_2F, grey fro 128_2F).

Fig. 12. Same as Fig. 11 for the 128_2F, 128_2F_LR, and 128_2F_VLR models. In the density PDFs, the blue lines indicate the results for the two
fluid dust Lagrangian-particle distribution while the red lines indicate the tracer particle ones.

1 nm and 10 µm dust grains are qualitatively similar: the resolu-
tion is insufficient to correctly capture the dust-grain dynamics.
Finally, the minimum adaptive resolution length increases when
the number of particles decreases.

Our short resolution study does not indicate a convergence
on the particle-distribution properties. However, it is clear that
the properties of the two-fluid Lagrangian-particles and tracer-
particle evolution strongly depend on the grid resolution, as well
as on the total number of particles used to sample the dust fluid.
We discuss the limits of our different methods used to follow the
dust dynamics in the following section.

Intermediate summary

The main results of our analysis of the two-fluid Lagrangian-
particle dust method convergence are as follows:
– The two-fluid results are highly sensitive to both the grid reso-
lution and the total number of particles.
– Our resolution study of the grid and particle resolutions does
not show convergence.

6. Discussion

6.1. Limits of the monofluid and two-fluid formalisms

Our results presented in Sect. 4 show that the monofluid approx-
imation is well suited for our setup, even for the largest grains,
which exhibit large Stokes numbers St > 1 in significant parts of
the computational volume. For all dust sizes, the regions where
St > 0.1 show dynamical size sorting and dust-ratio variations
of orders of magnitude. However, the amplitude of the largest

dust-ratio variations we report for grains with sizes s ≥ 1 µm
is questionable, because the diffusion approximation we use is
not well suited for large Stokes numbers St > 1. However, the
mass enclosed in these regions remains negligible compared to
the total mass (≃10−2). In addition, we find no evidence of sys-
tematic effects on the time evolution of dust enrichment, because
the turbulence resets the flow within a crossing time. More
importantly, we show that dust grains with sizes s ≥ 4 µm sig-
nificantly decouple from the gas, which is consistent with the
critical size of s ⪆ 7 µm that we derive in Sect. 3.3.1 for our
setup and St > 0.1. Finally, our monofluid solver does account
for the back-reaction of the dust on the gas dynamics. We show
in Appendix B that the back-reaction crucially affects the dust
enrichment of the smallest grains (nanometers), which is con-
centrated in the regions of low gas density. Indeed, as large dust
grains accumulate, the gas gets pushed away from the regions of
high dust concentration. The smallest dust grains, which are well
coupled to the gas, are therefore expelled. We do not observe this
high concentration at low density in our models that neglect the
back-reaction. Our numerical experiments and implementation
of the monofluid equations using the terminal velocity approx-
imation do not allow us to investigate the dynamics of grains
larger than 10 µm. An alternative implementation, such as full
monofluid (Laibe & Price 2014a,b), a full two-fluid Eulerian
treatment (Benítez-Llambay et al. 2019), or the two-fluid dust
as Lagrangian superparticles we employed (with the addition of
dust back-reaction), should better handle high Stokes numbers.
We note that for Stokes numbers a few times above unity, the
fluid formalism itself becomes questionable.

Using the two-fluid dust as Lagrangian particles, our results
are at odds with the monofluid ones for all dust sizes. Firstly,

A128, page 13 of 22



A&A 671, A128 (2023)

for the smallest dust-grain sizes, the bulk and the peak of the
monofluid and two-fluid density PDFs are quantitatively compa-
rable. However, the two-fluid PDF tails extend to much higher
and lower densities (more than one order of magnitude). The
two-fluid particles indeed encounter the same limitation as clas-
sical tracer particles, which experience artificial trapping in the
high-density regions (Cadiou et al. 2019). This leads to an appar-
ent decoupling of the dynamics of the dust particles and the gas,
which then appears as large variations in the dust-to-gas ratio.
However, this decoupling is of numerical origin, and is mostly
due to the finite resolution used for the gas, that is, the grid cell
size is larger than the adaptive smoothing length computed from
the Lagrangian particle distributions. In addition, we neglect the
dust back-reaction in our two-fluid Lagrangian-particle imple-
mentation, and our monofluid results indicate that the smallest
grains should not show evidence of large dust enrichment at low
gas density. Secondly, for the large grains, the PDF of the den-
sity distribution does not converge between the monofluid and
the two-fluid dust as Lagrangian particles. There is an important
discrepancy between the low-density PDF of the two methods.
Considering only the two-fluid Lagrangian-particle distribution,
at high density, the PDF of the largest grains matches that of the
smallest grains, with the same issue of h < ∆x. We also defined
a maximum dust enrichment as a function of the gas density,
which is a function of the grid size. From Fig. 9, it is clear that
the regions of maximum dust enrichment, that is, the regions
with the highest dust density, are regulated by the grid size ∆x,
in particular for the largest grains.

Laibe & Price (2012, 2014a) showed that two-fluid methods
are limited by both temporal and spatial resolution in the strong
drag regime. Firstly, the spatial resolution should verify the cri-
terion ∆x < csts in order to accurately capture the dust and gas
dynamical phase separation, and to avoid artificial velocity dif-
ference damping. It is straightforward to estimate the dust-grain
size sbifluid which satisfies ∆x < csts using Eq. (4):

sbifluid > ∆x
ρg

ρgrain

√
8
πγ
, (19)

or, in typical conditions of molecular clouds,

sbifluid > 380 µm
(
∆x

1 pc

) (
ρ

10−20 g cm−3

) (
ρgrain

1 g cm−3

)−1

, (20)

where ∆x is the characteristic resolution length of the gas fluid.
This criterion might have been overlooked in previous studies.
In our experiments, we neglected the dust back-reaction, mean-
ing that the over-damping is not problematic (Lorén-Aguilar &
Bate 2015). We verified this by running some DUSTYWAVE exper-
iments (Laibe & Price 2012) with our monofluid and two-fluid
solvers with a tiny (ϵ = 10−5) dust fraction. In the strong drag
regime, we find that both methods give accurate results. In addi-
tion to the spatial resolution criterion, Laibe & Price (2012,
2014a) showed that the integration time-step constraint due the
very short stopping time conditions can be very restrictive. In
this work, we solve this issue by using an analytical update of
the dust particle velocity. In addition, the characteristic velocity
of the gas in supersonic turbulence experiments is larger than
the sound speed, meaning that the condition in Eq. (20) relaxes
towards smaller values, because ∆x < vrmsts. Assuming Larson
scaling relations, we get

sbifluid > 84 µm
(
∆x

1 pc

) (
ρ

10−20 g cm−3

)12/7 (
ρgrain

1 g cm−3

)−1

. (21)

For the two-fluid results, it is important to note that we have
found no systematic accumulation of the particles in the regions
of high gas density in the two-fluid Lagrangian-particle pop-
ulation. Indeed, the gas flow, being highly turbulent, changes
drastically over one crossing time, such that the artificially
trapped particles can be released in the low-density material.
A hybrid treatment of the particle motion in the high-density
regions could help to alleviate this problem by superimposing the
dust-mass fluxes from the Eulerian description at small Stokes
numbers onto the Lagrangian model (see e.g. Cadiou et al. 2019).

From the study we conduct here, with its limited resolution,
we observe a strong dependence of the dust density PDFs and
clustering degree on the number of particles and grid resolu-
tion. Indeed, the number of particles as well as the number of
grid cells should increase, as should the ratio between the two,
similarly to what is expected in SPH codes with the number of
particles and the number of neighbours (e.g. Commerçon et al.
2008).

6.2. Comparison to previous works

Using SPH, Tricco et al. (2017) employed the same approxima-
tions as ours, that is, monofluid and diffusion approximation, and
used very similar initial conditions and numerical resolution. In
the context of compressible turbulence, it is worth remembering
that Price & Federrath (2010) report that SPH and grid codes
give roughly comparable results when the number of SPH par-
ticles is approximately equal to the number of grid cells. We
can therefore directly compare our results with those of Tricco
et al. (2017). The models of these latter authors use a grain den-
sity of 3 g cm−3, while we use 1 g cm−3. As a consequence,
at equal Stokes number, our dust size has to be multiplied by
a factor of three in order to compare with their results. Our
results qualitatively agree with those of Tricco et al. (2017),
who report that grains with size >10 µm decouple significantly
from the gas dynamics. We find that the dust grains with size
>4 µm decouple significantly (which thus corresponds to 12 µm
in the experiments of Tricco et al. 2017), with large variations
in the dust concentration (more than one order of magnitude). In
terms of initial Stokes number, this corresponds to St ≳ 0.1. This
behaviour is referred to as size-sorting in Tricco et al. (2017).
We find that the size-sorting most efficiently occurs in regions
of intermediate gas density (−4 < log(ρg/ρg,0) < 1), whereas the
densest parts of the molecular clouds exhibit uniform dust con-
centration, equal to the initial dust concentration. For the small
grains, with sizes <4 µm, we report some variation in the local
dust ratio, but these regions represent a negligible amount of
mass and correspond to gas densities where ρg/ρg,0 < 1. We can
therefore expect apparent variation of the dust-size distribution
in these intermediate densities. However, when observed in real
conditions with an integration along the line of sight, this inho-
mogeneity will be smoothed out by the bulk of the mass, which
has a uniform dust concentration.

In order to compare our results with those of Hopkins &
Lee (2016) and Mattsson et al. (2019a,b), we introduce the
dimensionless parameter α as defined in Hopkins & Lee (2016):

α =
ρgrains
⟨ρgas⟩L

, (22)

where ⟨ρgas⟩ ≃ ρ0 is the mean density of the gas. In our
numerical setup, this translates to

α ≃ 0.002
(

s
1 µm

)
≃ 0.12 St. (23)
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Hopkins & Lee (2016) and Mattsson et al. (2019a,b) report a
small-scale clustering reaching its maximum for grains in the
nanometer range (a few tens of nanometers), which corresponds
to α ≃ 0.01−0.1 for their parameter choice. In our setup, we
investigate a parameter space for which α < 0.02, corresponding
to the very small grains in Hopkins & Lee (2016) and Mattsson
et al. (2019a,b).

Hopkins & Lee (2016) designed their numerical experi-
ment to investigate gas and dust dynamics in giant molecular
clouds. These authors used a 2563 particle resolution for both
the dust and the gas fluids, using the mesh-free GIZMO frame-
work (Hopkins 2015). The numerical setup used by Mattsson
et al. (2019a,b) is more similar to ours (gas dynamics on a fixed
grid, dust treated as Lagragian superparticles), but they inves-
tigate dust grains with α > 0.1. Our results for the two-fluid
dust as Lagrangian particles are globally consistent with those of
Hopkins & Lee (2016) at very low α, with the largest varia-
tion of the dust ratio observed in the regions of low gas density.
In our two-fluid models, the maximum dust ratio is set by the
grid resolution used for the gas dynamics. In the regions of low
gas density, we report a dust ratio increase of up to four orders
of magnitude for the α ≃ 0.02 dust grains, while Hopkins &
Lee (2016) found variations of up to six orders of magnitude
for α = 0.03. Hopkins & Lee (2016) used a completely differ-
ent numerical framework from ours, with adaptive resolutions of
both the gas and the dust particles, meaning that they can better
manage different resolutions for the gas and the dust (despite still
being limited by the gas resolution for the drag). Further work at
higher resolution is needed in order to investigate the behaviour
of the α ≃ 0.02 dust grains in the material of low gas density with
our setup. At high gas density, we observe dust-ratio variations
over more that two orders of magnitude, also similar to Hopkins
& Lee (2016) results. We attribute these variations to spurious
effects due to trapping of Lagrangian superparticles beyond the
grid scale, which gives rise to an artificial increase in the dust-
fluid density. Our results therefore question these fluctuations at
high density, which are typically regions where St < 1. These
correspond to adaptive resolution lengths of the Lagrangian-
particle distributions smaller that the grid size and where the grid
size is larger than the coupling length. The effects of these spu-
rious variations at small Stokes number on the dust ratio at low
density remains unclear from our comparison. Hopkins (2014)
and Hopkins & Lee (2016) suggest that the variations of stel-
lar abundances within clusters could be a consequence of the
dust dynamical coupling at the scales of giant molecular cloud.
In particular, Hopkins (2014) proposes that decoupling due to
dust dynamics could lead to the formation of totally metal stars
(1 for 104 in clusters). Our two-fluid results show that the max-
imum dust enrichment for the largest dust grains is regulated by
the size of the grid used to interpolate the friction with the gas.
On the other hand, our monofluid results show that the maxi-
mum dust enrichment for the largest grain corresponds to regions
where St > 1, that is, regions where the TVA approximation is
out of range. In summary, our results do not allow us to make
a firm estimation of the amplitude of dust-ratio variations for
dust grains with St > 1 . Greater resolution is still clearly needed
in order to quantify the occurrence of metal stars as suggested
by Hopkins (2014). Two-fluid Eulerian dust simulations should
also be used as the method does not cause artificial clustering for
particles with St ≳ 1.

More recently, Mattsson et al. (2019b) performed similar
experiments to ours, using a 10243 grid resolution for the gas and
106−107 particles for each dust-size bin. These authors compare

the properties of the two-fluid Lagrangian superparticles with
the those of the tracer particles for the smallest grains they con-
sider (α ≃ 0.001) and find that the inertia still makes a difference
in the grain dynamics and small-scale clustering. Our com-
parison between the tracer particles and two-fluid Lagrangian
superparticles shows that this is not the case for very small
Stokes number, as both particle distributions are identical. More
importantly, we show that independently of the dust size, the
regions where St < 1 show evidence of artificial dust-particle
trapping (or clustering) similar to that of the tracer particles.
Our findings therefore bring into question the small-scale clus-
tering properties of nano-dust grains reported by Mattsson et al.
(2019b), in particular with respect to the minimum resolution set
by the grid.

This short comparison points towards the need for a hybrid
numerical method for dust-particle mesh codes in order to handle
the large variety of Stokes numbers encountered locally in turbu-
lent molecular clouds. For dust-grain species with both St > 1 in
the material with low gas density and St < 1 in that with high gas
density, one could use our two-fluid implementation for St > 1
to get the particle acceleration, but a Monte Carlo scheme based
on the Godunov flux at cell interface for St < 1 as proposed by
Cadiou et al. (2019).

6.3. Neglected physics

In this work, we studied the dynamical interplay between dust
grains and gas in conditions typical of molecular clouds. We
made a number of simplifications in order to focus on numeri-
cal implementation effects rather than on physical effects. The
first big assumption we made concerns magnetic fields. Mag-
netic fields are ubiquitously observed in molecular clouds with
micro-Gauss amplitudes (Hennebelle & Falgarone 2012; Pattle
& Fissel 2019) and can interplay with the turbulent motions of
the gas (Federrath 2016). In our setup, accounting for magnetic
fields would have two implications. First, the properties of the
turbulent flows change in the presence of magnetic fields, in par-
ticular in the strong field case, with anisotropies arising from
the strong magnetic tension. However, this should not alter our
findings as to the reliability of the monofluid and two-fluid for-
malisms, as long as dust grains are considered to be neutral.
Hopkins & Lee (2016) report that including magnetic fields has a
weak effect on the amplitudes of the gas-to-dust-ratio variations,
but that the dust density can vary in regions where the gas den-
sity does not vary. Indeed, the neutral dust grains are sensitive to
the gas-pressure gradients and Lorentz force of the gas through
the drag. In shearing-box experiments of dust dynamics within
protoplanetary discs, Lebreuilly et al. (2021) show that dust
grains preferentially concentrate in regions where the pressure-
gradient force and Lorentz force cancel out. Second, dust grains
are expected to be charged in molecular clouds (e.g. Draine &
Sutin 1987; Guillet et al. 2007), and depending on the dust-grain
size, either the Lorentz force or the gas drag should regulate
the dust-grain motions. The balance between the gyration time
and the stopping time of the dust grains of different sizes can
therefore favour dust-size sorting. Lee et al. (2017) extended
the work of Hopkins & Lee (2016) to include the dynamics of
charged dust grains and find that the Lorentz force suppresses
the dust-ratio variations for very small grains (s ≪ 1 µm), while
the large grains (s ≳ 1 µm) are insensitive to magnetic fields.
These authors concluded that the effects of Lorentz forces are
subdominant, and so the qualitative conclusions from their pre-
vious studies remain unchanged. However, they expect that the
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dynamics of charged dust grains would be more important in
physical conditions other than the cold neutral medium, such as
in the warm neutral medium. Exploration of the dynamics of
charged dust grains with the monofluid formalism still lacks a
proper derivation of the monofluid equation accounting for the
Lorentz acceleration and the dust back-reaction.

The second strong assumption is on dust coagulation and
fragmentation processes. We limit our physical model to dust
dynamical evolution, in which only the interactions between the
dust and the gas are taken into account. The supersonic motions
within molecular clouds associated with the dust size sorting
favour strong interactions between dust grains, in particular col-
lisions that can lead to dust growth and fragmentation. However,
we show that for dust-grain sizes typically observed in molec-
ular clouds (<1 µm, Köhler et al. 2015), only a small mass
fraction of the dust grains decouples from the gas and could
therefore be undergoing grain–grain interactions. Further work
should account for dust-grain interaction in order to test whether
or not dust growth can already occur in molecular clouds thanks
to the dynamical size sorting as suggested by previous work by
Ormel et al. (2009), who report growth up to 100 µm in clouds
with lifetimes larger than a freefall time.

7. Conclusion

We present a unique suite of numerical experiments designed
to investigate neutral dust-grain dynamics in turbulent molec-
ular clouds. We considered typical turbulence driving parame-
ters, which satisfy the classical Larson relations (Larson 1981;
Hennebelle & Falgarone 2012. We compared two different
numerical implementations of the dust dynamics. The first one
relies on the monofluid formalism and the diffusion approxi-
mation. The second implementation treats the dust fluid using
Lagrangian super-particles, while the gas dynamics is handled
on a Eulerian grid. For each implementation, we compared the
dust-density distributions and the spatial dust-ratio variations as
a function of dust-grain size. Our main findings are as follows:

– Our implementation of the monofluid formalism, which
relies on the dust diffusion approximation (Price & Laibe
2015; Lebreuilly et al. 2019), is well suited to studying the
dynamics of neutral dust grains with sizes 1 nm < s <
10 µm. We report dust dynamics decoupling for Stokes num-
bers St > 0.1, that is, dust grains of s > 4 µm in size, which
matches the theoretical expectations provided in Eq. (8). Our
results are in very good agreement with previous work by
Tricco et al. (2017). The dust concentrates in the pressure
maxima, with a higher concentration at low density (ρ < ρ0).

– The two-fluid results with dust as Lagrangian particles are
affected by numerical artefacts in both the strong and weak
drag regimes as follows. For tightly coupled dust grains,
with St ≪ 1, we show that the apparent large dust-to-gas
ratio variations are spurious, mostly because of artificial
trapping in the high-density regions. For weakly coupled
dust grains in the St > 1 regime, the maximum dust enrich-
ment we measure is strongly affected by the grid resolution,
from which the drag from the gas is interpolated. These
results raise questions about the robustness of dust con-
centration and clustering predictions measured in numerical
experiments of dusty turbulence using a hybrid multifluid
numerical method (gas on a grid, dust as Lagrangian parti-
cles). Our resolution study shows that results from a setup
with dust as Lagrangian particles do not converge to the
correct results with increasing grid and particle resolutions.

Instead of deriving resolution criteria, a more fundamental
study of the correctness of the Lagrangian implementation
at different drag regimes should be carried out.

– We discuss the comparison with previous works and we
show that there is no tension in terms of the critical size
for decoupling between the results reported by Tricco et al.
(2017) on one side and Hopkins & Lee (2016) and Mattsson
et al. (2019a) on the other. These studies did not explore the
same parameter space as suggested in footnote 13 of Hopkins
et al. (2020). The controversy arose from trying to conclude
on a universal dust size for decoupling, independently of
the physical conditions. Our results show that these previ-
ous studies are in good agreement when the comparison is
done at equivalent Stokes number or α parameter.

– If one takes typical dust grains in molecular clouds to have
sizes in agreement with the standard MRN size distribution,
namely a maximum dust size of <1 µm, then our results
indicate that the dust-to-gas ratio should not exhibit large
variations of more than a factor of two in regions of high gas
density. We stress that these results are valid for (1) neutral
dust grains and (2) turbulent properties following the Larson
relations at parsec scales.
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Appendix A: Resolution convergence

In this Appendix, we test the resolution convergence of the
monofluid models. We repeat our fiducial setup 256MRN with
resolutions of 1283 and 5123. These models include ten dust
species with sizes ranging from 1 nm to 20 µm, distributed
according to the MRN power law.

Figure A.1 shows the gas-density and dust-ratio variations
of the two extreme dust-size bins. As expected in isothermal
turbulence, the higher the resolution, the stronger the density
contrasts. The dust-ratio variations are also sensitive to the reso-
lution, with larger variations in the 512MRN model. Figure A.2
portrays the PDFs of the total dust-to-gas ratio and of the dust
ratios of the 1.6 nm, 0.08 µm, 0.6 µm, 4.5 µm, and 12 µm dust
grains for the three resolutions. The PDFs get wider as resolu-
tion increases, except in the case of the 1.6 nm grains. Indeed,
for the largest grains, the pressure gradients increase with reso-
lution and thus the velocity shift between the dust and the gas.
As a consequence, the dust grains tends to decouple more. For
the smallest grains, the numerical diffusion decreases with res-
olution. The 1.6 nm grains should trace almost perfectly the
gas since St < 1, see Fig. 3). As a consequence, as resolution
increases, the coupling gets stronger.

Our results are qualitatively very similar, and are indepen-
dent of the resolution. The monofluid results we report in the
main part of this study are thus robust against resolution effects.
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Fig. A.1. Total density (left), 1.6 nm dust-grain-ratio variations (middle), and 12 µm dust-grain-ratio variation maps in the xz-plane for different
resolutions: 1283 (top), 2563 (middle) and 5123 (bottom). The dust variation is given relative to the initial dust ratio value and is shown in logarithmic
scale. The red colour shows dust-ratio enhancement while blue means a dust-ratio decrease. The arrows represent the barycentric velocity (left),
and the 1.6 nm (middle) and 12 µm dust-grain (right) velocity vectors in the plane. All plots are made at a time corresponding to 2tcross.
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Fig. A.2. Dust-ratio PDFs for the total dust-to-gas ratio, the 0.6 nm dust grains, the 1.6 nm dust grains, the 4.5 nm dust grains, the 0.08 µm
dust grains, and the 12 µm dust grains. The black, red, and blue lines show respectively the 128MRN, the 256MRN, and the 512MRN runs. The
dust-ratio PDFs are normalised to the initial dust ratio of each dust species (ϵi/ϵi,0) and the PDFs of the total dust-to-gas ratio is not normalised to
the initial dust ratio and thus peaks around 0.01.
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Appendix B: Back-reaction

Our two-fluid implementation does not include the back-reaction
of the dust onto the gas. In order to compare the monofluid
and two-fluid results, we neglected the back-reaction in the
monofluid models presented in Sect. 5. To do so, we simply set
the initial dust-to-gas ratio to 10−6 in the monofluid runs. In this
Appendix, we compare the impact of the back-reaction in the
monofluid models in more depth than in the main part of the
manuscript. Our comparison is based on the 256MRN and on a
simlar one but with an initial dust-to-gas ratio to 10−6

Figure B.1 shows the PDF of the total (gas + dust), gas, and
total dust densities. First, the PDFs of the total and gas densities
are almost identical, because the dust mass is always much less
that the gas mass for the bulk of the material. The dust-enriched
regions we report in the main text do not enclose sufficient mass
to affect the global quantities. Second, all PDFs are very similar
between the two runs.

Figure B.2 shows the PDFs of the total dust-to-gas ratio and
of the same dust ratios as in Fig. A.2 for the two runs. Only the
tails of the PDFs are effected by the back-reaction, while the bulk
of the mass remains unaffected.

Fig. B.1. PDFs of the total (gas + dust) density (top), total dust density
(middle), and gas density (bottom) variations for the 256MRN (fiducial,
red) run and for the same model but with an initial dust-to-gas ratio to
10−6 (black). All quantities are averaged over more than one crossing
time. The different densities are normalised to their initial values.
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Fig. B.2. Same as Fig. A.2 for the comparison between the 256MRN run and the same one but with an initial dust-to-gas ratio of 10−6.
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