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Dielectric properties of aqueous electrolytes at the nanoscale

Despite the ubiquity of nanoconfined aqueous electrolytes, a theoretical framework that accounts for the nonlinear coupling of water and ion polarization is still missing. We introduce a nonlocal and nonlinear field theory for the nanoscale polarization of ions and water and derive the electrolyte dielectric properties as a function of salt concentration to first order in a loop expansion. Classical molecular dynamics simulations are favorably compared with the calculated dielectric response functions. The theory correctly predicts the dielectric permittivity decrement with rising salt concentration and furthermore shows that salt induces a Debye screening in the longitudinal susceptibility but leaves the short-range water organization remarkably unchanged.

Introduction -The study of nanoconfined electrolytes is exciting both for their ubiquity and for the theoretical challenge they bring [START_REF] Maggs | Simulating nanoscale dielectric response[END_REF][START_REF] Fuentes-Azcatl | Non-Polarizable Force Field of Water Based on the Dielectric Constant: TIP4P[END_REF][3]. The nanometer scale is the typical confinement size of technological and biological devices, the screening length of low concentrated ionic solutions, as well as the range at which water starts to behave as a discrete molecular medium [4][5][6]. The structure of interfacial solutions thus results from a subtle interplay between short-range charge overscreening generated by the solvent [7], ion-ion correlations, water-and ionsurface interactions [8,9]. The balance between these effects encode many aspects of the double layer structure [10,11].

The continuous linear description of water used in Poisson-Boltzmann (PB) model cannot capture this complexity. The well-documented decrement of the bulk permittivity of aqueous ionic solutions induced by an increase of the concentration of the salt [START_REF] Hasted | Dielectric properties of aqueous ionic solutions. part i and ii[END_REF] has been retrieved using nonlinear expansions of a dipolar PB model [START_REF] Levy | Dielectric constant of ionic solutions: A field-theory approach[END_REF]. But a parameterized nonlocal field theory (FT) for structured solvent to fully describe electrolytes at the nanoscale is missing [START_REF] Paillusson | Slits, plates, and poissonboltzmann theory in a local formulation of nonlocal electrostatics[END_REF][START_REF] Ben-Yaakov | Ion-specific hydration effects: Extending the poisson-boltzmann theory[END_REF][START_REF] Blossey | Continuum theories of structured dielectrics[END_REF][START_REF] Blossey | A comprehensive continuum theory of structured liquids[END_REF]. For instance, the simple question "Do electrolytes increase or decrease the range of the longitudinal correlations of water?" is still actively debated [START_REF] Omta | Negligible effect of ions on the hydrogen-bond structure in liquid water[END_REF][START_REF] Chen | Electrolytes induce long-range orientational order and free energy changes in the H-bond network of bulk water[END_REF][START_REF] Zhang | Dissolving salt is not equivalent to applying pressure on water[END_REF]. In contrast, the influence of ionic strength on transverse polarization correlations is largely unexplored although it could be of major impor-FIG. 1. Sketch of the system under study. Water is described as a nonlocal nonlinear continuous dielectric medium and ions as point charges. We evaluate the ionic-strength effect on the water longitudinal P and transverse P ⊥ polarization correlations.

tance for the interactions between solvated objects [START_REF] Schoeger | Universal casimir interaction between350 two dielectric spheres in salted water[END_REF]. The figure 1 shows an illustration of these questions.

Nonlocal model for water -At the molecular scale, water is a correlated dielectric medium, as illustrated by the wave mode dependence of the correlation tensor of the polarization field P [START_REF] Bopp | Static Nonlocal Dielectric Function of Liquid Water[END_REF][START_REF] Bopp | Frequency and wave-vector dependent dielectic function of water: Collective modes and relaxation spectra[END_REF]. In Fourier space, the longitudinal susceptibility of water, χ w (q) = β P (q) • P (-q) / 0 , -with β the inverse temperature, 0 the vacuum permittivity, P the longitudinal part of the polarization, q the wave vector -exhibits an overresponse peak around q=3 Å-1 . This structured response characterizes a charge overscreening at short range, induced by the layering of water molecules organized by the water hydrogen bond network [START_REF] Bopp | Static Nonlocal Dielectric Function of Liquid Water[END_REF]. The transverse susceptibility χ w ⊥ (q) = β P ⊥ (q) • P ⊥ (-q) / 0 , with P ⊥ the transverse part of the polarization -exhibits a Lorentzian decay at low q [START_REF] Bopp | Frequency and wave-vector dependent dielectic function of water: Collective modes and relaxation spectra[END_REF].

Continuum nonlocal electrostatics provides a useful framework to describe correlated fluids [START_REF] Kornyshev | On the non-local electrostatic theory of hydration force[END_REF][START_REF] Basilevsky | Nonlocal continuum solvation model with exponential susceptibility kernels[END_REF][START_REF] Hildebrandt | Novel formulation of nonlocal electrostatics[END_REF]. The electrostatic energy of the fluid U el can be written as a Gaussian functional of P,

U el [P] = 1 2 drdr ∇ • P(r)∇ • P(r ) 4π 0 |r -r | + U G conf [P]. ( 1 
)
The first term corresponds to the bare Coulomb interactions between the partial charges -∇ • P(r) of the fluid. The phenomenological configuration energy U G conf [P], where the subscript G stands for Gaussian, can be made explicit using a Landau-Ginzburg expansion [START_REF] Maggs | Simulating nanoscale dielectric response[END_REF] such as,

U G conf [P] = 1 2 0 dr KP(r) 2 + κ l (∇ • P(r)) 2 + κ t (∇ × P(r) 2 + α(∇(∇ • P(r))) 2 (2)
expanded up to the first spatial derivative for the transverse terms (term in κ t ) and up to the second one for the longitudinal ones (terms in κ l and α). Eq. ( 2) has been shown to capture the main features of dielectric properties of water at the nanoscale [6,[START_REF] Berthoumieux | Fluctuation-induced forces governed by the dielectric properties of water-a contribution to the hydrophobic interaction[END_REF]. The polarization susceptibility χ w , obtained by inversion of Eq. ( 1), can be decomposed in Fourier space in a longitudinal χ w and a transverse χ w ⊥ response using isotropy and homogeneity of the system, such that χ ij (q) = χ w (q)q i q j /q 2 + χ w ⊥ (q)(δ ijq i q j /q 2 ), with (i, j) = (x, y, z). Their expressions follow from Eq. (2) as

χ w (q) = 1 1 + K + κ l q 2 + αq 4 , χ w ⊥ (q) = 1 K + κ t q 2 .
(3) χ w is associated with a decay λ l and an oscillating λ o correlation length and χ w ⊥ with a transverse correlation length λ t for which explicit expressions are given in S1.1. The bulk permittivity w of water is defined as [START_REF] Bopp | Static Nonlocal Dielectric Function of Liquid Water[END_REF]. Figure 2 shows χ w and χ w ⊥ (blue line) for which Eq. ( 2) has been parameterized to reproduce MD simulated TIP4p/ water [START_REF] Fuentes-Azcatl | Non-Polarizable Force Field of Water Based on the Dielectric Constant: TIP4P[END_REF]. Details are provided in S1.1 and the values of the Landau-Ginzburg parameters (K, κ l , κ t , α ) are given in the caption of Fig. 2.

w = (1 -χ (0)) -1 = 1 + 1/K
A term scaling like P 4 , unfavorable to large values of the polarization field, can be added to correct the Gaus-sian model. The configuration energy [START_REF] Maggs | Simulating nanoscale dielectric response[END_REF] thus reads:

U conf [P] = 1 2 0 dr γ(P(r) 2 + P 2 0 ) 2 + κ l (∇ • P(r)) 2 + κ t (∇ × P(r)) 2 + α(∇(∇ • P(r))) 2 (4) 
and takes into account the saturation of water polarization in the presence of strong fields [START_REF] Alper | Field strength dependence of dielectric saturation in liquid water[END_REF][START_REF] Fedorov | Unravelling the solvent response to neutral and charged solutes[END_REF][START_REF] Paillusson | Dielectric response in the vicinity of an ion: A nonlocal and nonlinear model of the dielectric properties of water[END_REF], in addition to nanometric correlations. Such a medium presents a threshold saturation, P 0 , between a linear response (|P| P 0 ) and a saturation response (|P| P 0 ) regime. We impose P 0 = K/2γ so that the quadratic local terms in Eq. ( 2) -KP 2 -and Eq. ( 4) -2γP 2 0 P 2 become equal. Thus, in the low-field regime, the two models are associated with the same nonlocal properties [START_REF] Paillusson | Dielectric response in the vicinity of an ion: A nonlocal and nonlinear model of the dielectric properties of water[END_REF] and γ remains the only degree of freedom tuning the saturation threshold.

In this letter, we compute the Gibbs free energy and the nonlocal dielectric susceptibility of an aqueous electrolyte for which water is modeled by Eq. ( 2). We perform MD simulations and compare the Gaussian model to a simulated system. We include saturation effects using Eq. ( 4) including the one-loop expansion. We determine the effect of the ionic strength on the bulk permittivity, the longitudinal and transverse water correlations. Finally, we identify the essential building blocks to construct a field theory modeling electrolytes at the nanoscale.

Gaussian model for electrolytes -We consider an electrolyte with N + punctual cations of charge e and N - punctual anions of charge -e solvated in water modeled with Eq. ( 2). The ionic charge density reads ρ(r) = Σ N + i=1 eδ(r-r + i )-Σ N - j=1 eδ(r-r - j ). In the canonical ensemble, the partition function of the system can be written as

Z G = 1 N + ! 1 N -! N + i=1 dr + i   N - j=1 dr - j   × D[P]e -βU G conf [P] e -β 2
drdr ρtot(r)v(r-r )ρtot(r ) (5) with ρ tot (r) = ρ(r) -∇ • P(r) and v(r) = 1/4π 0 |r|. Z G includes the configurational degrees of freedom of the solvent and the Coulomb interactions between free and partial charges. Performing a Hubbard-Stratonivich transformation to get rid of the longrange potential v and switching to the grand canonical ensemble for a more tractable expression, we obtain the grand-canonical ensemble partition function, [START_REF] Levy | Dielectric constant of ionic solutions: A field-theory approach[END_REF]. The action F G u [P, Ψ] is a functional of P and of the electrostatic potential Ψ. Assuming a 1:1 electrolyte and an ionic density n, we find: 8) -as a function of q for water and solutions of increasing salt concentration. The arrow indicates the increase of the peak maximum with an increase of the concentration. (b) Transverse susceptibility χ G ⊥ = χ w ⊥ given by Eq (3) as a function of q, which is identical for water and electrolytic solutions. The parameter values of the FT model given in Eq. ( 2) are K= 1/76, κ l = -0.218 Å-2 , α=0.012 Å-4 and κt=0.013 Å-2 .

Ξ G = D[P] D[Ψ]e -βF G u [P,Ψ]
F G u [P, Ψ] = U G conf [P] -dr 0 2 (∇Ψ) 2 -Ψ∇ • P - 2n β cosh(βΨe) . (6) 
See S1.2 for a detailed derivation. The free energy F G of the system follows from F G = -k B T lnΞ G . The associated susceptibility is a 4×4 matrix defined as the inverse of the second functional derivative of F G as

0 χ G χ G P,ψ χ G ψ,P χ G ψ,ψ / 0 (r 1 -r 2 ) =   δ 2 F G u (P ,Ψ) δPi(r1)δPj (r2) δ 2 F G u (P ,Ψ) δPi(r1)δΨ(r1) δ 2 F G u (P ,Ψ) δΨ(r1)δPj (r2) δ 2 F G u (P ,Ψ) δΨ(r1)δΨ(r2)   -1 (7) 
where (P , ψ) are the mean fields minimizing the action F G u . They both vanish (See S1.3). As the medium is homogeneous and isotropic, the 2-point susceptibility is a function of the distance r 1r 2 . We focus here on the polarization susceptibility, which is written in Fourier space as χ G ij (q) = χ G (q)q i q j /q 2 + χ G ⊥ (q)(δ ijq i q j /q 2 ). The longitudinal term reads

χ G (q) = w λ 2 D + q 2 w λ 2 D + q 2 (K + κ l q 2 + αq 4 ) + q 2 , (8) 
with the Debye length λ D = 0 w /2βne 2 . See S1.4 for details. Fig. (2) a) shows χ G (q) for increasing salt concentration c = n/N a , where N a is the Avogadro number. The Gaussian model predicts an enhancement of the water ordering with an increase of c, as indicated by the magnitude increase of the peak at q=3 Å-1 . This can be understood as follows. In the nonlocal Gaussian framework, an ion, located in r = 0 generates the electrostatic potential, 1/4π 0 w r, and an extra potential decaying on a range λ l and oscillating around zero with a period λ o [START_REF] Vatin | Electrostatic interactions in water: a nonlocal electrostatic approach[END_REF]. This oscillating landscape leads to the organization of the charges and to longer-range correlations that increase with the salt concentration until a nonphysical crystallization of the system occurs, corresponding to a divergence of χ G (q). See S1.4 for details. In contrast, for a very diluted solution λ D → ∞ (see green line in Fig. 2), the longitudinal susceptibility can be approximated as χ G (q) ≈ ( w /λ 2 D + q 2 )/(K( w /λ 2 D + q 2 ) + q 2 ) + χ w (q), the sum of the Debye response function for an homogeneous electrolyte and the pure water spectrum. The Debye length λ D and the water-water correlation lengths λ l and λ o do not couple. The Debye contribution dominates for the low q limit and generates a Lorentzian decay as seen in Fig. [START_REF] Fuentes-Azcatl | Non-Polarizable Force Field of Water Based on the Dielectric Constant: TIP4P[END_REF]. The transverse susceptibility χ G ⊥ (q) is unaffected by the presence of salt and obeys χ G ⊥ (q)=χ w ⊥ (q). Indeed, the coupling between the salt and the solvent occur via the Coulomb interactions and involves only the longitudinal part of the polarization as seen in Eq. ( 5). Finally, we note that the Gaussian model predicts that the dielectric bulk properties of electrolyte solutions χ G (0) = χ G ⊥ (0) = 1/K are independent of the salt concentration.

Comparison with MD simulations -To check the validity of the Gaussian model, we compare its predictions with the dielectric properties of simulated solutions of NaCl in TIP4p/ water for concentrations c up to 1.5 mol.L -1 [START_REF] Fuentes-Azcatl | Non-Polarizable Force Field of Water Based on the Dielectric Constant: TIP4P[END_REF][START_REF] Loche | Transferable Ion Force Fields in Water from a Simultaneous Optimization of Ion Solvation and Ion-Ion Interaction[END_REF]. Simulation details are given in S2. We compute the bulk permittivity and plot (c) in Fig. 3 (a). We observe a linear decay, which is not described by the Gaussian model that predicts a constant permittivity. The susceptibilities χ MD ⊥ (q) and χ MD (q) are shown in Fig 3 (b) and (c) for c=0.15 mol.L -1 -λ D =7.8 Å-, c=0.75 mol.L -1λ D =3.5 Å-, and c=1.5 mol.L -1 -λ D =2.5 Å. The blue markers show the response for pure water. We observe a decay of the bulk value χ MD ⊥ (0) for an increasing concentration, which is not captured by the Gaussian model. In the longitudinal case, we see a very low coupling between the Debye contribution (Lorentzian decay for q ≤2 Å-1 ) and the spectrum of water (q >2 Å-1 ), which remains almost unperturbed. A concentration increase induces a decrease and a flattening of the pseudo resonant peak. The MD results indicate thus an effect of the salt opposite to the Gaussian model predictions that appears at much higher concentration.

A Nonlinear model for the solvent -To get a better agreement between FT and MD simulations, we consider the nonlinear configuration energy U conf in Eq. ( 4). We derive the inverse susceptibility of the system to first order in a loop expansion [START_REF] Levy | Dielectric constant of ionic solutions: A field-theory approach[END_REF]. The grand partition function obeys Ξ = D[P] D[Ψ]e -βFu[P,Ψ] with F u [P, Ψ] obtained by replacing U G conf by U conf in Eq. ( 6). The mean fields (P , ψ) still vanish, see S1.3. The action F u is expanded up to the second order in (P, Ψ) around the mean field solution,

F u [P, Ψ] ≈ F u [P , ψ] + 1/2 drdr (δP (r), δψ(r)) • F (2) u (P , ψ) • (δP (r ), δψ(r )), with F (2) u
the second functional derivative of F u with respect to (P, Ψ) and δP = P -P , δψ = Ψψ. See S1.7 for details. The free energy is then written as F ≈ F u [P , ψ] + Trln(βF

(2) u [P , ψ])/β. The inverse susceptibil- ity follows as χ -1 (r 1 -r 2 ) = χ -1,G (r 1 -r 2 ) + χ -1,1 (r 1 - r 2
), with the one loop correction term χ -1,1 (r 1r 2 ) defined as:

χ -1,1 i,j (r 1 -r 2 ) = 1 2β δ 2 Tr ln βF (2) u δP i (r 1 )δP j (r 2 ) (P , ψ). (9) 
χ -1,G is the inverse of the Gaussian susceptibility χ G given in Eq. ( 8). Performing the field derivatives and calculating the trace in Eq. ( 9), one obtains

χ -1,1 i,j (r 1 -r 2 ) = δKδ(r 1 -r 2 )δ ij with δK = 20γ 0 3β χ G (r c ) + 2χ G ⊥ (r c ) . (10) 
The first order correction of the susceptibility is purely local and proportional to γ, which tunes the saturation regime of the model, and depends on the Debye length via χ G . The cutoff distance r c has been introduced to get rid of the divergence of χ G in r = 0. See S1.7 for a detailed derivation and expressions of χ G i (r c ), i = , ⊥. It can be written in Fourier space as χ -1,1 ij (q) = δKq i q j /q 2 + δK(δ ijq i q j /q 2 ). The corrected permittivity, = 1+1/(K+δK) depends now on λ D and thus on the salt concentration. δK is expanded linearly in c as δK(c) = δK w + δK c c + τ (c 2 ), where δK w is the one-loop expanded correction to K for pure water and δK c c is the correction induced by the salt at linear order. Their expressions are derived in S1.8. Setting δK w to zero as it is included in the fitted value of K, and performing a linear expansion in c of (c) = 1 + 1/(K + δK c c), we find the permittivity,

(c) = w - δK c K 2 c, with (11) 
δK c = 5γN a e 2 ( w -1) 2 24π 2 w (4π 2 λ 2 l + λ 2 o )(4π 2 λ 2 l + 5λ 2 o ) λ l λ 4 o
The permittivity decrement is here expressed as a function of the bulk permittivity and the intrinsic longitudinal correlation lengths of the fluid.

Susceptibility kernels for electrolytes -We now compare the polarization susceptibilities obtained from MD simulations and the nonlinear FT models. Figure 3 (a) shows (c), Eq. ( 11), for a value of γ adjusted to reproduce the MD data and given in the caption of Fig 3.

The one-loop corrected transverse response,

χ FT ⊥ (q) = 1 K + δK c c + κ t q 2 , ( 12 
)
is plotted in Fig. 3 (b) for c=0, 0.15, 0.75, 1.5 mol.L -1 and shows very good agreement with simulations. The one-loop expanded longitudinal susceptibility is obtained by replacing K by K + δK c c in Eq. (8). Similarly to the Gaussian model, it foresees an enhancement of the longitudinal correlations (See S1.9) and thus fails to reproduce MD data. 12), (c) MD simulated longitudinal susceptibility χ MD , (d) conjectured expression of the longitudinal susceptibility χ FT given in Eq. [START_REF] Levy | Dielectric constant of ionic solutions: A field-theory approach[END_REF]. Susceptibilities are plotted as function of q for pure water and electrolytes of increasing concentration.

Guided by the absence of coupling between the Debye wavelength and the water-water correlation spectrum illustrated by the simulations, we propose an ad hoc longitudinal susceptibility as follows:

χ FT (q) = w λ 2 D + q 2 (K + δK c c)( w λ 2 D + q 2 ) + q 2 + 1 1 + K + δK c c + κ l q 2 + αq 4 . ( 13 
)
The first term corresponds to the susceptibility of an homogeneous electrolyte associated with the corrected permittivity (c) given in Eq. (11). The second term corresponds to the nonlocal susceptibility of pure water associated with this corrected permittivity. We plot χ FT (q) for c=0, 0.15, 0.75, 1.5 mol.L -1 in Fig. 3 (d). It reproduces well MD data as it presents a Lorentzian decay at low q and a flattening of the pseudo-resonant peak at q=3 Å-1 for an increase of the salt concentration. Discussion -In this work, we have derived analytic expressions for the dielectric response functions of electrolytes at the nanoscale. To do so, we have compared susceptibilities calculated from a FT including nonlocal and nonlinear behavior of water and susceptibilities derived with classical MD simulations. We have thus identified the key effects of the salt on the medium organization. For the longitudinal modes, we highlight two length scales that do not couple to each other: at small wave-modes, q ≤2 Å-1 , the medium can be described as homogeneous with a permittivity (c) decaying with the salt concentration. This corresponds to long-range interactions for which the Debye screening occurs. At larger q, the water longitudinal susceptibility is similar to the one of pure water but associated with a corrected permittivity (c). These two decoupled q-domains could indicate two "types" of water molecules that are spatially separated: the one solvating ions polarize in a saturated manner in response to the ionic field, creating an "electrically dead" solvation shell [START_REF] Levy | Dielectric constant of ionic solutions: A field-theory approach[END_REF]. Outside of this hydration shell, the molecular water organization remarkably is unaffected by the ions, as recently predicted by machine learning based simulations [START_REF] Zhang | Dissolving salt is not equivalent to applying pressure on water[END_REF]. We note that local nonlinear models of water also foresee two response regimes (a linear response at low electrostatic excitation and a saturated response at high excitation) with an abrupt switch between the two regimes [START_REF] Berthoumieux | Dipolar Poisson modeels in a dual view[END_REF]. Moreover, our work reveals the absence of coupling between salt screening and transverse polarization modes of water. This surprising result could have important consequences on the interactions between objects immersed in electrolytes [START_REF] Pires | Probing the screening of the casimir interaction with optical tweezers[END_REF] that were assumed to be screened in any circumstances. This study gives a clear picture of the nature and the range effect of the salt on water organization at the nanoscale for unconfined solutions. This paves the way to develop a field theory describing the properties of nanoconfined electrolytes. be written following a Landau-Ginzburg approach. We consider it here up to the second spatial derivative in the polarization P to reproduce the dielectric response of water and set

HB thanks

U G conf [P] = 1 2 0 drdr P(r) • K(r -r ) • P(r ) with P(r)K(r -r )P(r ) = KP(r) 2 + κ l (∇ • P(r)) 2 + κ t (∇ × P(r)) 2 + α(∇(∇ • P(r))) 2 δ(r -r ). (S2)
Note that as we consider bulk water which is homogeneous and isotropic, the two-point kernel K depends simply on the distance rr . We introduce the two-point dielectric susceptibility χ w (rr ) defined as:

U el [P] = 1 2 0 drdr P(r) (χ w (r -r )) -1 P(r ) (S3)
where the superscript w stands for water considered here as a pure solvent. The matrix χ w can be decomposed in Fourier space into a longitudinal χ w and a transverse χ w ⊥ function, such that χ w ij (q) = χ w (q) q i q j q 2 + χ w ⊥ (q)(δ ij -

q i q j q 2 ) χ w (q) = 1 1 + K + κ l q 2 + αq 4 , χ w ⊥ (q) = 1 K + κ t q 2 .
(S4)

The figure S1 shows the MD simulated longitudinal a) and transverse b) response function for the 3 charge water model TIP4p/ [START_REF] Fuentes-Azcatl | Non-Polarizable Force Field of Water Based on the Dielectric Constant: TIP4P[END_REF] (blue markers). MD data show an overesponse of the system χ w (q) >1 around q=3 Å-1 , which corresponds to a negative permittivity, as (q) obeys (q) = 1/(1χ w (q)) [3]. This overscreening phenomenon can be attributed to the H-bond network structuring water at short range [4]. Note that the secondary peak for q >4 Å-1 corresponds to intramolecular correlations and to length scales that are not addressed in this study. The transverse susceptibility is also extracted from MD simulations and shows a spectrum of simpler shape, as it monotonously decays.

The minimal model given in Eq. (S2) can reproduce these main features. For the longitudinal susceptibility, we consider the case (κ l < 0, α > 0). The value of the parameters K, κ l , and α, are adjusted to fit the bulk value, χ w (0), the position and the value of the maximum of χ w (q) of the the MD simulated response. The parameter κ t is chosen to fit the decay of MD data. Fig. S1 shows the FT response functions (black line). The values of the parameters are given in the caption.

The longitudinal susceptibility χ w (q) is associated with two correlation lengths: a longitudinal decay, λ d and an oscillation length λ o , defined as the imaginary and real part of the inverse of the poles of the function. The transverse susceptibility χ w ⊥ (q) is associated with a decay length λ t which is the inverse of its pole. Their expressions obey:

λ d = 2 √ α 2 α(1 + K) + κ l , λ t = κ t K , λ o = 4π √ α 2 α(1 + K) -κ l . ( S5 
)
The polarization-polarization correlation function in the real space can be derived by Fourier transforming the susceptibility given in Eq.(S4) and has been studied in a previous work [5]. Using the estimated values of the parameters we get a longitudinal decay length λ d =4.7 Å, an oscillating length λ o =2.1 Å, and a transverse decay length, λ t =1.05 Å.

S1.2. Derivation of Ξ, the partition function in the grand canonical ensemble

In this subsection, we present the main steps of the derivation of the partition function Ξ G in the grand canonical ensemble. We start from the partition function of the canonical ensemble, Z G ,

Z G = 1 N + ! 1 N -! N + i=1 dr + i   N - j=1 dr - j   D[P]e -βU G conf [P] e -β 2 drdr ρtot(r)v(r-r )ρtot(r ) (S6)
with v(rr ) = 1/4π 0 |rr |, the Coulomb potential and ρ tot (r) = ρ(r) -∇ • P(r). We introduce an auxiliary field Φ and perform a Hubbard-Stratonovich transformation using the relation v(rr ) -1 = -0 ∇ 2 δ(rr ) [6]. Dropping the prefactor, we get

Z G = 1 N + ! 1 N -! N + i=1 dr + i   N - j=1 dr - j   D[P]e -βU G conf [P] D[Φ]e -β 2 dr 0(∇Φ) 2 -iβ drΦ(r)(ρ(r)-∇•P(r)) . (S7)
Introducing the expression of the charge density ρ(r

) = Σ N + i=1 eδ(r -r + i ) -Σ N - j=1 eδ(r -r - j ), we get, Z G = D[Φ] 1 N + ! dre -iβeΦ(r) N+ 1 N -! dre iβeΦ(r) N- e -β 2 dr 0(∇Φ(r)) 2 × D[P]e -βU G conf [P] e -iβ drΦ(r)(-∇•P(r)) (S8)
The partition function is brought into a more manageable form by going to the grand canonical ensemble, where we get

Ξ G = ∞ N +=0 e -βµ+N+ N + ! dre -iβeΦ(r) N + × ∞ N -=0 e -βµ-N- N -! dre iβeΦ(r) N - × D[P]e -βU G conf [P] D[Φ]e -β 2 dr 0 (∇Φ(r)) 2 -iβ drΦ(r)(-∇•P(r)) , ( S9 
)
with µ i , (i = +, -), the chemical potential for cations and anions. We introduce the field Ψ = iΦ that can be identified as the electrostatic potential [6], we perform the sums over N ± and identify the action

F G u [Ψ, P], such that Ξ G = D[P] D[Ψ]e -βF G u [P,Ψ] . (S10)
Setting e -βµ± = n, the ionic density, we obtain

F G u [P, Ψ] = U G conf [P] -dr 0 2 (∇Ψ) 2 -Ψ∇ • P - 2n β cosh(βΨe) . (S11)
In this section we derive the expressions of the longitudinal χ G (q) and transverse χ G ⊥ (q) polarization susceptibility of an electrolyte. We first define the total susceptibility of the system as

χ tot (r 1 -r 2 ) = 0 χ G χ G P,ψ χ G ψ,P χ G ψ,ψ / 0 (r 1 -r 2 ) =   δ 2 F G u (P ,Ψ) δPi(r1)δPj (r2) δ 2 F G u (P ,Ψ) δPi(r1)δΨ(r1) δ 2 F G u (P ,Ψ) δΨ(r1)δPj (r2) δ 2 F G u (P ,Ψ) δΨ(r1)δΨ(r2)   -1 (S18)
with (P , ψ) the mean fields minimizing the action F G u . Using the expressions given in Eq. (S4), we find for the inverse susceptibility of the system, in Fourier space,

χ -1 tot (q) =     iq x χ -1G 0 (q) iq y iq z -iq x -iq y -iq z -(2ne 2 β + 0 q 2 )     , (S19) 
with the matrix χ -1G (q) given by χ -1,G ij (q) = (K + κ l q 2 + αq 4 ) q i q j q 2 + (K + κ t q 2 ) δ ij -q i q j q 2 . (S20) We inverse the matrix χ -1 tot (q) by using a block inversion and obtain

0 1 2 3 4 5 q [ Å-1 ]
χ tot (q) = 0 χ G (q) iQ -iQ χ ψ,ψ (q) 0 (S21) 
with Q = (q x , q y , q z ) and

χ G ij (q) = χ G (q) q i q j q 2 + χ G ⊥ (q)(δ ij - q i q j q 2 ) (S22) χ G (q) = w λ 2 D + q 2 w λ 2 D + q 2 (K + κ l q 2 + αq 4 ) + q 2 , χ G ⊥ (q) = 1 K + κ t q 2 (S23) χ ψ,ψ (q) = - K + κ l q 2 + αq 4 w λ 2 D + q 2 (K + κ l q 2 + αq 4 ) + q 2 (S24)
where we have introduced the Debye length λ D = 0 w /2βne 2 . We plot the susceptibility χ G (q) for increasing concentrations (c = n/N a , N a the Avogadro number) in Fig. S2. As we have (κ l <0, α >0) the denominator of χ G (q) will vanish for a small enough Debye length inducing a divergence of the susceptibility. See Fig. S2 , grey dashed line. For the chosen set of parameters, the divergence occurs for c=22 mmol.l -1 . At this concentration, the longitudinal correlations are purely oscillating illustrating an unphysical crystalization of the medium.

S1.5. Susceptibility for Gaussian model in real space

We express the Gaussian susceptibility χ G given in Eq. (S23) in real space. We perform the Fourier transform

χ G ij (r)=F T (χ G ij (q)) defined as χ G ij (r) = 1 2π 3 2π 0 dφ π 0 dθ sin(θ) ∞ 0 dqq 2 e iqr cos(θ) χ G ij (q) (S25)
χ G is here expressed in the intrinsic basis in which the vector r, joining the two correlated points, is aligned with the e z direction of wavemode q basis, as illustrated in Fig. S3. We develop the longitudinal projector q i q j /q 2 (i, j = x, y, z) in the spherical basis, Using Eqs. (S22,S23), χ G ij (r) is splitted into two contributions: χ G ij (r) = F T (χ G (q)q i q j /q 2 ) + F T (χ G ⊥ (q)(δ ijq i q j /q 2 )). We perform the integrals in Eq. (S25) using (S26). We get:

q i q j q 2 =   sin(θ) 2 cos(φ) 2 sin(θ) 2 cos(φ) sin(φ) sin(θ) cos(θ) cos(φ) sin(θ) 2 cos(φ) sin(φ) sin(θ) 2 sin(φ) 2 sin(θ) cos(θ) sin(φ) sin(θ) cos(θ) cos(φ) sin(θ) cos(θ) sin(φ) cos(θ) 2   , (S26) 
F T (χ G (q)q i q j /q 2 ) =   1 2 (I 1, (r) -I 2, (r)) 0 0 0 1 2 (I 1, (r) -I 2, (r)) 0 0 0 I 2, (r)   , (S27) 
and

F T χ G ⊥ (q)(δ ij -q i q j /q 2 ) =   1 2 (I 1,⊥ (r) + I 2,⊥ (r)) 0 0 1 2 (I 1,⊥ (r) + I 2,⊥ (r)) 0 0 0 I 1,⊥ (r) -I 2,⊥ (r)   . (S28)
We have introduced four elementary functions (I ,1 , I ⊥,1 I ,2 , I ⊥,2 ), defined as follow:

I i,1 (r) = 1 (2π) 3 ∞ 0 dqq 2 π 0 dθ sin(θ) 2π 0 dφ χ G i (q)e iqr cos(θ) , I i,2 (r) = 1 (2π) 3 ∞ 0 dq π 0 dθ sin(θ) 2π 0 dφ χ G i (q)e iqr cos(θ) , (S29) 
with i = , ⊥. The Gaussian susceptibility finally reads

χ G (r) =   χ G ⊥ (r) 0 0 0 χ G ⊥ (r) 0 0 0 χ G (r)   (S30) with χ G (r) = I 2, (r) + (I 1,⊥ (r) -I 2,⊥ (r)) (S31) χ G ⊥ (r) = I 1, (r) -I 2, (r) 2 + I 1,⊥ (r) -I 2,⊥ (r) 2 (S32)
in the basis {e i }, i = x, y, z) defined such that r is aligned with e z . See sketch in Fig. S3. The suscpetibility associated with any distance vector r = (x, y, z)) is obtained by performing the following change of basis:

χ G cart = R -1 • χ G (r) • R, (S33) 
R being the change-of-basis matrix from Cartesian to spherical coordinates. and

∂ 2 F (2) u (P , ψ) ∂P x (r 1 )∂P y (r 2 ) =    0 4γ/ 0 0 0 4γ/ 0 0 0 0 0 0 0 0 0 0 0 0    δ(r -r 1 )δ(r -r 2 )δ(r -r) (S44)
The other matrices are easily deduced by symmetry. We now have to calculate the trace of matrices in (S43) by integrating over the continuous indices dr dr and summing over the discrete indices. The polarization correlations depend only on the distance u = |rr |. We thus write:

drdr F (2) u -1 • ∂ 2 F (2) u ∂P i (r 1 )∂P j (r 2 ) = dr duu 2 dφ dθ sin(θ) F (2) u -1 ∂ 2 F (2) u ∂P i (r 1 )∂P j (r 2 ) (S45)
Using δ(rr ) = δ(u)/2πu 2 and F

(2) u -1

(P , ψ) = χ G P ,ψ (rr ) given in Eq. (S40), we perform the integral over θ and φ and find for the polarization correlation:

2π 0 dφ π 0 dθ sin(θ)R -1 • χ G ij (u) • R = 4π 3 χ (u) + 2χ ⊥ (u) δ ij . ( S46 
)
We now perform the matrix product of matrix given in Eqs. (S43, S46), calculate its trace and find:

χ -1,1 x,x (r 1 -r 2 ) = π β dr ∞ 0 du4γ 0 10 3 χ G (u) + 20 3 χ G ⊥ (u) δ(u) 2π δ(r -r 1 )δ(r -r 2 ) = 20γ 0 3β χ G (0) + 2χ G ⊥ (0) δ(r 1 -r 2 ). ( S47 
)
Note that we find the same value for χ -1,1 yy and χ -1,1 zz and that the cross terms are vanishing. We calculate the susceptibility at r = 0, χ G (0), using the elementary functions defined in Eq. (S29) and taken in 0 as follows,

I 1, (0) = 1 2π 2 ∞ 0 dqq 2 w /λ 2 D + q 2 ( w /λ 2
D + q 2 )(K + κ l q 2 + αq 4 ) + q 2 , (S48)

I 1,⊥ (r c ) = 1 2π 2 2π/rc 0 dq q 2 K + κ t q 2 = 1 πKλ 2 t r c (S49) I 2, (0) = I 1, (0) 3 , I 2,⊥ (0) = I 1,⊥ (r c ) 3 (S50)
where we have introduced a cutoff length r c to remove the divergence for I 1/2,⊥ in r = 0. The Gaussian susceptibility tensor reads,

χ G (r c ) = I 2, (0) + I 1,⊥ (r c ) -I 2,⊥ (r c ), χ G ⊥ (r c ) = 1 2 I 1, (0) -I 2, (0) + I 1,⊥ (r c ) -I 2,⊥ (r c ) . (S51) 
Using Eq. (S47), we obtain in Fourier space, χ -1,1 (q) = δK q i q j q 2 + δK δ ij -

q i q j q 2 , with δK = 20γ 0 3β χ G (r c ) + 2χ G ⊥ (r c ) . (S52)
Finally, we get the expression for the inverse polarization susceptibility at the first order, χ -1 ij (q) = (K + δK + κ l q 2 + αq 4 )

q i q j q 2 + (K + δK + κ t q 2 ) δ ij - q i q j q 2 . ( S53 
)
where we have used the expression of χ G (q) given in Eq. (S20).

S1.8. Linear dependence of χ -1,1 (q) in salt concentration c

The correction δK is now splitted into two contributions,

δK = δK w + δK c c + τ (c 2 ) (S54)
a pure water one δK w and a second one, δK c c depending on the salt concentration and expanded linearly in c.

To get explicit expression of δK w and δK c , we expand linearly in c the functions I i,x (0), i = 1, 2, x = , ⊥ given in Eq. (S48-S50), using w /λ 2 D =c × 2N a e 2 β/ 0 . We get

I i, (0) = I w i, (0) + c × I 1 i, (0) + τ (c 2 ) (S55) I i,⊥ (r c ) = I w i, (r c ), i = 1, 2 (S56) 
in which the functions are split into a pure water contribution and a linear correction in c. Note that I i,⊥ functions do not depend of the salt concentration, the associated salt correction is thus vanishing. The functions for pure water obey

I w 1 (0) = 1 2π 2 ∞ 0 dqq 2 1 1 + K + κ l q 2 + αq 4 , I w 2 (0) = I w 1, (rc) 3 , (S57) 
I w 1⊥ (0) = 1 2π 2 2π rc 0 dqq 2 1 K + κ t q 2 , I w 2⊥ (r c ) = I w 1,⊥ (r c ) 3 , (S58) 
and the linear correction for the parallel function,

I 1 1, (0) = 1 2π 2 0 ∞ 0 dq 2N a e 2 β (1 + K + κ l q 2 + αq 4 ) 2 , I 1 2, (0) = I 1 1, (0) 3 . ( S59 
)
The expression of χ w (r c ) and χ w ⊥ (r c ) are obtained by replacing I i, (0) by I w i, (0) and I i,⊥ (0) by I w i,⊥ (0) in Eq. (S47). Finally, we get:

δK w = 20γ 0 3β χ w (r c ) + χ w ⊥ (r c ) . (S60) 
We set δK w to zero as it is included in the fitted parameter K. Using the expressions of δK in Eq. ( S52) and (χ G ⊥ , χ G ) in Eq. (S51), we obtain

δK c = 20γ 0 3β I 1, (0). (S61)
We perform the integral in Eq. (S59) and obtain

I 1 1, (0) = βN a e 2 ( w -1) 2 64π 0 w (4π 2 λ 2 d + λ 2 o )(4π 2 λ 2 d + 5λ 2 o ) λ d λ 4 o (S62)
after having expressed K, κ l , α as functions of w , λ o , λ d by inverting Eq. (S5). We deduce that,

δK c = γ 5N a e 2 ( w -1) 2 24π w (4π 2 λ 2 d + λ 2 o )(4π 2 λ 2 d + 5λ 2 o ) λ d λ 4 o (S63)
Expanding linearly the relation (c) = 1 + 1/(K + δK c c ) , we obtain for the permittivity of the electrolytes

(c) = w - δK c K 2 c. (S64)
The inverse susceptibility can thus be written as:

χ -1 (q) = χ -1,G (q) + χ -1,1 (q) = (K + δK c c + κ l q 2 + αq 4 ) q i q j q 2 + (K + δK c c + κ t q 2 ) δ ij - q i q j q 2 . (S65)
that is inverted to get the one-loop corrected susceptibility χ (q) = 1 1 + K + δK c c + κ l q 2 + αq 4 (S66) which we plot for increasing salt concentration in Fig. S4. One sees comparing the susceptibilities obtained for the Gaussian model plotted in Fig. S2 and the one-loop expanded one plotted in Fig ( S5) that the enhancement of the pseudo-resonant peak at q=3 Å-1 is attenuated but not canceled by the one-loop correction. 

S2. SUPPLEMENTARY INFORMATION FOR MOLECULAR DYNAMIC SIMULATION

a. Molecular dynamics simulations We simulate a cubic water box of side size L=6.5 nm composed of N w water molecules, N w going from 9033 to 8527 for increasing salt concentration. See a snapshot of the simulated system in Fig. S5. The 0.15 mol.l -1 solution contains 25 ion pairs, the 0.75 mol.l -1 solution contains 124 ion pairs and the 1.5 mol.l -1 solution, 248 ion pairs. Simulations are performed using GROMACS 2021 molecular dynamics simulation package ( [7]), the integration time steps is set to ∆t=2 fs. Simulation boxes are periodically replicated in all directions and long range electrostatics are handled using the smooth particle mesh Ewald (SPME) technique. Lennard-Jones interactions are cut off at a distance r cut =0.9 nm. A potential shift is used at the cut-off distance. All systems are coupled to a heat bath at 300 K using v-rescale thermostat with a time constant of 0.5 ps. We use MDAnanlysis to treat the trajectories. After creating the simulation box, we perform a first energy minimization. We equilibrate the system in the NVT ensemble for 200 ps, and afterwards in the NPT ensemble for another 200 ps using a Berendsen barostat at 1 bar. Production runs are performed in the NVT ensemble for 20 ns.

We performe simulations with TIP4p/ ([2]), a 4 interaction site, three point-charges and one Lennard Jones reference site model. The Lenard-Jones (LJ) center is placed on the oxygen. Charges are placed on the hydrogen atoms and on an additional interaction site, M, carrying the negative charge. The ions (Na + and Cl -) were treated can be written as a sum over the molecular polarization p j (q) of the molecule j which reads as p j (q) = 1 √ V Σ α ez α δr αj iq • δr αj 1e -iq•δrαj (S76)

with δr αj the distance between the charge α and the center of mass of the molecule and V the volume of the simulation box. We then take the transverse part of the polarization P ⊥ (q) = q × P(q)/q and define the transverse susceptibility as χ ⊥ (q) = P ⊥ (q) • P ⊥ (-q) 2k B T 0 .

(S77)

Note that we replace 1e -iq•δrαj /iq • δr αj by 1 for q • δr αj < 10 -5 to prevent numerical errors.
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 2 FIG.2. Dielectric susceptibility for electrolytes. (a) Gaussian longitudinal susceptibility χ G -Eq. (8) -as a function of q for water and solutions of increasing salt concentration. The arrow indicates the increase of the peak maximum with an increase of the concentration. (b) Transverse susceptibility χ G ⊥ = χ w ⊥ given by Eq (3) as a function of q, which is identical for water and electrolytic solutions. The parameter values of the FT model given in Eq. (2) are K= 1/76, κ l = -0.218 Å-2 , α=0.012 Å-4 and κt=0.013 Å-2 .
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 13 FIG.3. Comparison of FT derived and MD simulated response functions of electrolytes. (a) Bulk permittivity as a function of c. The field theory expression is given in Eq. (11) and plotted for γ=0.08 Å4 .e -2 , (b) Transverse permittivity -FT expression given in Eq[START_REF] Hasted | Dielectric properties of aqueous ionic solutions. part i and ii[END_REF], (c) MD simulated longitudinal susceptibility χ MD , (d) conjectured expression of the longitudinal susceptibility χ FT given in Eq.[START_REF] Levy | Dielectric constant of ionic solutions: A field-theory approach[END_REF]. Susceptibilities are plotted as function of q for pure water and electrolytes of increasing concentration.

  FIG. S1: MD simulated and FT derived susceptibilities for bulk water. (a) Longitudinal and (b) transverse susceptibilities in Fourier space from FT model Eq. (S4) and from MD simulations (details given in S2). The parameter values of the FT model are K= 1/76, κ l = -0.218 Å-2 , α=0.012 Å-4 and κt=0.013 Å-2 .
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 1 FIG.S2: Longitudinal susceptibility of electrolytes. The Gaussian susceptibility χ G (q) given in Eq. (S23), for increasing concentration. Parameters are given in caption of Fig.S1.

FIG. S3 :

 S3 FIG.S3: Illustration of the basis considered to calculate the susceptibility tensor χ G .
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 1 FIG.S4: One-loop expanded longitudinal susceptibility of electrolytes. The susceptibility χ (q) given in Eq. (S66), for increasing concentration with δKc=0.028 mol -1 .L. Other parameters are given in caption of Fig.S1.

We consider a field theory (FT) model describing the dielectric properties of water at the nanoscale. The electrostatic energy of the system is written as a functional of the polarization P as follows [START_REF] Maggs | Simulating nanoscale dielectric response[END_REF]:

The first term corresponds to the bare Coulomb interactions between the partial charges -∇ • P(r) of the fluid and the second term U G conf -where the index G stands for Gaussian -is a phenomenological configuration energy. It can S1.3. Mean field (ψ, P) for the linear and nonlinear models

In this subsection, we derive (ψ, P ), the fields minimizing the action F G u given in Eq. (S11), and the action F u obtained by replacing U G conf in Eq. (S11) by the non Gaussian configuration energy,

The mean fields obey the following equations:

The functional derivative with respect to Ψ gives:

The functional derivative with respect to P i leads to

or the Gaussian action, F G u , and to

for the non Gaussian one, F u :

In the two cases, we obtain

The mean fields are vanishing both for Gaussian and non Gaussian configuration energy.

S1.4. Gaussian susceptibility for an electrolyte S1.6. One-loop free energy expansion

The partition function can be expanded to the second order around the mean field point (P , ψ), as

where we have droped the prefactor. F

u (rr ) is the second functional derivative of the action and can be defined as follows:

u (rr ) = δ 2 Fu(P ,ψ) δPi(r)δPj (r ) δ 2 Fu(P ,ψ) δPi(r)δΨ(r ) δ 2 Fu(P ,ψ) δΨ(r)δPi(r )

We set 2γP 2 0 = K so that the Gaussian asymptotic behavior of the P 4 -model, reached in the low polarization limit, is similar to the Gaussian model. The Gibbs free energy at the first order with a loop expansion can be written as:

S1.7. One-loop correction for the inverse susceptibility

In this subsection, we expand the inverse polarization susceptibility to the first order, χ -1 ≈ χ -1,G + χ -1,1 . Using its expression as a function of the Gibbs free energy of the system,

and the first order expansion of F, (Eq. S39), we get:

The second matrix product in the right hand term is vanishing as δF

(2)

u /δP x (r 2 )(P , ψ) = 0. We thus get:

We use the expression of F

(2) u given in Eq. (S37) and obtain

according to the force field developed in the reference [8]. b. Statistical treatment For the longitudinal and transverse susceptibility, the error bars are derived following the reblocking method [9]. For the bulk permittivity, we cut the trajectory in 5 statistically independent blocks, compute the bulk permittivity of each block, estimate the sample variance σ 2 and define the error bar as σ 2 /5. c. Permittivity Bulk permittivity is calculated from the total system dipole moments [10] M according to:

as implemented in the GROMACS dipoles module. M is the is the volume integral of the polarization as M =

V drP(r) and V is the volume of the box. Note that the ion polarization is not taken into account. d. Susceptibilities To compute the q-dependent susceptibilities, we use the fluctuation-dissipation theorem, relating the response functions to the polarization fluctuations as follows:

One can express the longitudinal susceptibility as a function of the charge structure factor S(q) and gets

The charge structure factor in the Fourier space can be decomposed into a intramolecular and intermolecular part, S(q) = S int (q) + S inter (q) (S70)

with S inter (q) the intermolecular contribution

z is the valency, e being the elementary charge, n w the molecular number density. h IJ is the Fourier transform of g IJ (r) -1, g IJ (r) being the radial distribution function associated with the atoms couple IJ. The intramolecular contribution can be written as

sin(qd HH ) qd HH -4 sin(qd HM )

where d IJ is the intramolecular distance between atom I and J. At low q the precision of this expression of the structure factor become pretty low as the function h IJ (r) is obtained on a finite range imposed by the box size. To solve this problem, we proceed as follows. For q < 2.5 Å-1 , we take into account the periodicity of the system, calculate the charge structure factor for discretized values of the wave length q, q = 2π/L n 2

x + n 2 y + n 2 z . We compute directly the charge structure factor from the charge distribution ρ(q) in the Fourier space, ρ(q) = N w i=1 eze iq•r -2e -iq•rM,i + e -iq•rH1,i + e -iq•rH2,i (S73)

where H 1,i and H 2,i stand for the two hydrogens of the molecule j. the charge structure factor S(q) = ρ(q)ρ(-q) /V , S(q) = 2q 2 H V i,j,j≤i 4 cos(q • d OiOj ) -2 cos(q • d OiH1j ) -2 cos(q • d H1iOj )

-2 cos(q • d OiH2j ) -2 cos(q • d H2iOj ) + cos(q • d H1iH1j ) + cos(q • d H2iH2j )

+ cos(q • d H1iH2j ) + cos(q

where q is a vector and d AiAj stands for r Air Aj . The transverse susceptibility is performed following ( [11]). The polarization of the medium in the Fourier space P(q) = Σ j p j (q)e -iq•rj (S75)