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Random Tensor Networks with Non-trivial
Links

Newton Cheng, Cécilia Lancien, Geoff Penington, Michael Walter
and Freek Witteveen

Abstract. Random tensor networks are a powerful toy model for un-
derstanding the entanglement structure of holographic quantum gravity.
However, unlike holographic quantum gravity, their entanglement spec-
tra are flat. It has therefore been argued that a better model consists of
random tensor networks with link states that are not maximally entan-
gled, i.e., have non-trivial spectra. In this work, we initiate a systematic
study of the entanglement properties of these networks. We employ tools
from free probability, random matrix theory, and one-shot quantum in-
formation theory to study random tensor networks with bounded and
unbounded variation in link spectra, and in cases where a subsystem has
one or multiple minimal cuts. If the link states have bounded spectral
variation, the limiting entanglement spectrum of a subsystem with two
minimal cuts can be expressed as a free product of the entanglement spec-
tra of each cut, along with a Marchenko–Pastur distribution. For a class
of states with unbounded spectral variation, analogous to semiclassical
states in quantum gravity, we relate the limiting entanglement spectrum
of a subsystem with two minimal cuts to the distribution of the minimal
entanglement across the two cuts. In doing so, we draw connections to
previous work on split transfer protocols, entanglement negativity in ran-
dom tensor networks, and Euclidean path integrals in quantum gravity.
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1. Introduction

More than twenty years after its discovery, the AdS/CFT correspondence [49]
remains the only known example of a theory of quantum gravity.1 A crucial
feature of this correspondence is that the emergence of a (classical) spacetime
is closely related to the entanglement structure of the boundary theory. Tensor
networks appear to provide useful toy models for this aspect of AdS/CFT, mir-
roring many of its expected properties in a setting that can be made completely
mathematically rigorous [40,61,70,71]. A particularly powerful model is given

1Here, we are requiring any putative theory of quantum gravity to (a) be defined non-
perturbatively and (b) have strong evidence for the existence of a semiclassical limit con-
sisting of Einstein gravity coupled to quantum field theory.
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by random tensor networks, which have the advantage of being highly ana-
lytically tractable, while exhibiting remarkably precise agreement with grav-
itational calculations (even including certain exponentially small corrections)
[29,40,42,60,62–64,80]. Random tensors and tensor networks also arise in a
number of other fields of physics, including quantum information, where they
have been used to explore generic entanglement properties of quantum states
[2,5,9–11,17,18,20–22,37,39,46,50,57,79] and condensed matter physics, e.g.,
in the study of random circuits and measurements [44,47,48,53,55,77,81,82].

The most basic version of a random tensor network is characterized by
a choice of bond dimension D and a graph G = (V,E), where the vertices
V = Vb � V∂ of G are partitioned into “bulk” vertices Vb and “boundary”
vertices V∂ . To each edge e ∈ E, we associate a maximally entangled state

1√
D

D∑

i=1

|ii〉 (1.1)

on two D-dimensional Hilbert spaces, one of which is associated with each
endpoint of e; each vertex v ∈ V is therefore associated with a Hilbert space
Hv of dimension Ddeg(v). Finally, we project each bulk vertex vb ∈ Vb onto a
Haar random state |ψvb

〉 ∈ Hvb
. The resulting “random tensor network state”

lives in the Hilbert space H∂ = ⊗v∂
Hv∂

associated with the boundary vertices
v∂ ∈ V∂ , as shown in Fig. 1. Such states, obtained by projecting maximally
entangled edge states onto (not necessarily random) bulk vertex states, are
also known as projected entangled pair states (PEPS) in the condensed matter
literature [23,75,76].

To characterize the typical entanglement structure of random tensor net-
work states, we can compute the von Neumann entropy H(ρA) of the reduced
density matrix ρA on a subset A ⊂ V∂ of the boundary vertices. In the limit
where the bond dimension D is very large, this entropy can be shown to
converge with high probability to log(D) |γA|, where γA is the set of edges

Figure 1. The basic structure of a random tensor network
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crossing the minimal cut (for the moment, assumed to be the unique such
cut) in the graph separating A from its boundary complement V∂\A (see
Fig. 2a). This formula is closely analogous to the Ryu–Takayanagi (RT) for-
mula and its generalizations in AdS/CFT, in which entropies are given by the
area of minimal surfaces homologous to a subregion of the conformal bound-
ary [32,33,41,45,65,66]. Indeed, this connection is one of the primary reasons
for studying tensor networks as a toy model of quantum gravity. However, if
one goes beyond the von Neumann entropy and studies finer details of the en-
tanglement spectrum of random tensor network states, significant divergences
from holography begin to appear, as we will see shortly.

When studying entanglement in either random tensor networks or quan-
tum gravity, or more generally in quantum field theory, it is often convenient
to study kth Rényi entropies Hk(ρA) = (1 − k)−1 log tr[ρk

A]. For integer k > 1,
these are more amenable to direct computation than the von Neumann en-
tropy, and one can extract the von Neumann entropy by analytic continuation
to k = 1. The computation of Rényi entropies in random tensor network mod-
els is very similar to holographic computations. In both cases, the idea is to
use the replica trick—essentially, this is the observation that tr[ρk

A] = tr[τρ⊗k
A ]

where τ is an operator which permutes the k copies of A cyclically. In the holo-
graphic computation, this can be written as a path integral, on k copies of the
theory, glued together in an appropriate way. By the holographic dictionary,
this path integral can then be computed by the action of a bulk geometry
with certain boundary conditions [45]. For random tensor networks, one finds
that tr[ρk

A] concentrates around its expectation and can be computed as the
partition function of a classical spin model on the bulk vertices, with boundary
conditions dictated by the choice of boundary subsystem [40]. This computa-
tion will be explained in detail in Sect. 2.1. From these computations, one finds
that holographic CFT states and random tensor network states behave quite
differently when k �= 1. For random tensor network states, the Rényi entropies
are approximately independent of k in the large D limit, meaning their entan-
glement spectrum is close to “flat”; the boundary state ρA is approximately
maximally mixed within a certain subspace. On the other hand, CFT states
that are dual to semiclassical spacetime geometries have Rényi entropies that
vary non-trivially with k, meaning their entanglement spectrum contains a
wide range of eigenvalues that contribute significantly to the state. Recently,
it has been argued that the class of “fixed-area states” in AdS/CFT do have
flat spectra and more generally have an entanglement structure that closely
matches random tensor network states [8,14,27,29,54]. Fixed-area states have
a well-defined semiclassical geometry associated with a fixed spatial slice; how-
ever, thanks to the uncertainty principle, they cannot describe a single semi-
classical spacetime geometry [14]. We discuss the connection between these
states and random tensor networks in more detail in “Appendix A.”

In the random tensor network model, the flatness of the spectrum can
be traced to the maximally entangled states used as “link states” (see Eq.
(1.1) and Fig. 1b) on the edges of the graph, which themselves have flat en-
tanglement spectra. To take results about random tensor networks beyond
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the fixed-area state regime, it is natural—see, e.g., discussion in [14,40]—to
replace the maximally entangled link states by general states

|φe〉 =
D∑

i=1

√
λe,i|ii〉. (1.2)

The variation in the entanglement spectrum λe,i represents the fluctuations in
area in semiclassical gravitational states. We introduce this model in Sect. 2.
The goal of this paper will be to understand the entanglement spectra of
random tensor networks with such non-trivial link states and spectra in a
number of different regimes. In fact, a number of our results apply in an even
more general setting, where the product of link states ⊗e|φe〉 is replaced by a
completely general “background state” density matrix φV . From a quantum
gravity perspective, random tensor networks with general background states
are needed to model bulk quantum fields in AdS/CFT, which yield significant
physical consequences when the bulk entropies are large [6,7]. Beyond hologra-
phy, they also play a central role in the quantum information processing tasks
of multiparty state merging split transfer [26], a connection we elaborate on
in “Appendix B.”

If one considers a random tensor network with non-trivial link states, if
there is a single minimal cut γA for a subsystem A, then the resulting density
matrix ρA will have an entanglement spectrum that converges to that of |γA|
copies of the link state along the minimal cut as D → ∞; indeed, this was
implicit in [40]. A more complex question, and the main focus of this work,
is the case where there are two minimal cuts, as in Fig. 2b. This situation
is motivated by questions in holography: It can be used to study the phase
transition at the point where there are two competing minimal surfaces [6,54],
which has been relevant to recent advances on the black hole information
paradox [1,4,51,59,60].

For our first main result, in Sect. 3, we consider a family of link states
with increasing bond dimension D as in Eq. (1.2). For each D, the link state
has an associated distribution

μ(D)
e =

1
D

D∑

i=1

δDλe,i
,

where δx is a δ-distribution centered at x, so this is the discrete probability
distribution given by a uniform distribution over the spectrum of the link state.
Note that λe,i = λ

(D)
e,i also depends on D. We then require that the moments

m
(D)
k = Dk−1

D∑

i=1

λk
e,i

of the distributions μ
(D)
e converge to a finite limit as D → ∞ for all positive

integer k. We refer to this as the bounded spectral variation limit. This means,
in particular, that we must have λe,i = O(1/D) for all but a vanishing fraction
of the eigenvalues λe,i. If we let γA denote a minimal cut for a boundary
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Figure 2. Tensor networks with one and two minimal cuts

domain A, then we may similarly define the associated distribution

μ(D)
γA

=
1

D|γA|
∑

{ie}e∈γA

δD|γA|∏
e∈γA

λe,ie
.

By assumption, the moments of the distribution μ
(D)
γA converge to a finite limit

(because those of each distribution μ
(D)
e do), implying that μ

(D)
γA converges

weakly to some distribution μγA
. Now, consider the empirical distribution of

the spectrum of reduced state ρA, which is the (random) distribution

μ
(D)
A =

1
D|γA|

∑

λ∈spec(ρA)

δ
D|γA|λ.

In the case where there are two non-intersecting minimal cuts γA,1 and γA,2,
we find that μ

(D)
A converges weakly, in probability, to a limiting distribution μA

given by a free product MP(1)�μγA,1 �μγA,2 , a notion from the theory of free
probability. Here, MP(1) is the Marchenko–Pastur distribution of parameter 1.
The situation is summarized by our first main result, which we state more
precisely as Theorem 3.4:

Theorem (Informal). Consider a family of link states in the bounded spectral
variation limit. If there is a unique minimal cut γA for a boundary subsystem
A, then μ

(D)
A converges weakly, in probability, to μγA

, while if there are exactly
two non-intersecting minimal cuts γA,1 and γA,2, it converges to MP(1) �
μγA,1 � μγA,2 .

In Sect. 3.3, we briefly discuss the closely related problem of computing
the entanglement negativity spectrum in the same regime.
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For our second main result, in Sect. 4, we investigate a different regime, in
which link states are allowed to have unbounded spectral variation in the large
D limit. This is the more relevant regime for holography, where fluctuations in
the area of a surface (in Planck units) grow sublinearly but without bound in
the semiclassical limit. When the spectral variation is unbounded, there still
exists a reasonable notion of a minimal cut that determines the entanglement
spectrum of the boundary state, but the key difference is that minimality must
now be defined entropically, rather than geometrically. In fact, the underlying
graph essentially plays no role in this regime. A sensible way to formalize this
would be to use one-shot entropies: We might say that a cut is “minimal” if
the rank of the state along the cut is smaller than the inverse of the largest
element in the entanglement spectrum along any other cut. This condition,
while intuitive, is a little too restrictive, and one can use smooth conditional
entropies to get a weaker, but still meaningful, condition. In Definition 4.6,
following [6] we introduce the notion of a unique (ε,K)-minimal cut ΓA, where
ΓA ⊆ V is a subset of vertices such that the ε-smooth conditional min-entropy
of ΓA compared to competing cuts either contained in ΓA or containing ΓA is
lower bounded by K. Intuitively, we want K to be as large as possible, and
indeed, we show in Theorem 4.7 that the spectrum of a reduced density matrix
ρA will be close to the spectrum along a unique (ε,K)-minimal cut with an
error exponentially small in K.

The situation is more complicated if there are two non-intersecting (ε,K)-
minimal cuts, defined in Definition 4.10 as both cuts satisfying an (ε,K)-
minimality property for the same ε and K. Here, we need to impose a regularity
condition on the link states, motivated by the example of a link state that is
a (large) number of copies of a fixed state:

|φe〉 = |φ0〉⊗n (1.3)

where |φ0〉 is a bipartite state with local dimension d, so the total bond di-
mension is D = dn. In this case, if φ0 is not maximally entangled, the measure
μ

(D)
e will not converge with increasing n as the spectrum is not concentrated

around 1
D . However, using a different measure, the entanglement spectrum

of |φe〉 satisfies a central limit theorem. Namely, if |φe〉 has Schmidt coeffi-
cients {λi}, and |φ0〉 has entanglement entropy H0, then the distribution of
the random variable X(n) which takes values 1√

n
(log( 1

λi
) − nH0) with prob-

ability λi, converges weakly to a centered Gaussian distribution as n → ∞.
Since we subtracted the entropy nH0, the random variable X(n) has expec-
tation zero. Its variance can be thought of as a measure of the fluctuation of
log( 1

λi
) around the entropy and is relevant for second-order asymptotic rates

in quantum information processing tasks [72]. We take this central limit theo-
rem as motivation for a regularity condition on the spectra of general link and
background states, and we allow the states to have varying bond dimensions
D(n), e.g., D(n) ∼ dn. To be more precise, we define the following measure
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along a cut γA:

ν(n)
γA

=
∑

{ie}e∈γA

∏

e∈γA

λe,ie
δ 1√

n

(∑
e∈γA

log 1
λe,ie

−H(n)
),

where H(n) is a function of n (which one can think of as being approximately
equal to the entanglement entropy along the cut γA), and we assume that
ν

(n)
γA converges weakly to a continuous distribution. Note that the distribution

described above reduces to the distribution of X(n) if the link state is of the
form in Eq. (1.3) and is very different from the distribution μ

(D)
A , we study for

link states with bounded spectral variation. Similarly, we let

ν
(n)
A =

∑

λ∈spec(ρA)

λ δ 1√
n

(log( 1
λ )−H(n))

be the corresponding (random) distribution for the boundary spectrum. Knowl-
edge of this distribution allows computation of the entropy of ρA (and fluc-
tuations) as a correction to H(n). In the random tensor network setting, we
find that in a situation with two competing minimal cuts, the random tensor
network will ‘select’ the minimal parts of each cut, in the following sense:

Theorem (Informal). Assume that we have a family of (states with) two non-
intersecting (ε(n),K(n))-minimal cuts γA,1 and γA,2, as defined in Defini-
tion 4.10. Suppose the entanglement spectra along the two minimal cuts are
such that ν

(n)
γA,1 and ν

(n)
γA,2 converge weakly to continuous measures ν1 and

ν2, respectively, as n → ∞. Then, ν
(n)
A converges weakly, in probability, to

min∗(ν1, ν2) which is the pushforward of ν1 and ν2 along the function min: R×
R → R. In other words, for any bounded continuous function f ∈ Cb(R)

∑

λ∈spec(ρA)

λ f

(
log( 1

λ ) − H(n)√
n

)
→
∫ ∫

f(min(x1, x2)) dν1(x1)dν2(x2)

(1.4)

in probability.

We also show in Corollary 4.14 that, up to an error of size O(log(n)), this
allows us to compute the entropy of ρA.

An analogous statement to (1.4) was previously conjectured in [54] to
be valid in quantum gravity and justified at a physics level of rigor in [6].
Our proof of (1.4) is closely related to the arguments in [6], but converting
the physical arguments into a mathematical proof and careful controlling the
relevant sources of error requires significant technical work, and constitutes
the majority of Sect. 4.

In “Appendix A,” we relate our results to the study of holographic grav-
ity computations, particularly in situations with competing minimal surfaces.
This is not needed to understand the results of this work, but provides addi-
tional motivation for the relevance of our results and clarifies the way in which
random tensor networks provide a useful toy model for holographic quantum
gravity. Then, in “Appendix B,” we discuss the relation of our results to split
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transfer and its relevance in holography. This is again not needed to understand
the main text, but rather pointing at topics our work is connected to. Next,
in “Appendix C,” we prove two technical lemmas on joint smoothing that are
necessary to analyze competing minimal cuts in the unbounded spectral vari-
ation regime. Finally, in “Appendix D,” we prove that a certain function on
the symmetric group is a metric; this is not directly used in the current work,
but may be of independent interest for the study of random tensor networks.

After the completion of this manuscript, we became aware of independent
work by Jinzhao Wang [78] on the use of free products to describe entanglement
in the toy model of quantum gravity introduced in [60] that has strong overlap
with the ideas in Sect. 3.2 and “Appendix A.”

1.1. Notation and Conventions

For k ∈ N, we let [k] = {1, . . . , k}, and we denote by Sk the group of permu-
tations of this set. We denote by ‖a‖p the �p-norm of a vector a, defined
by ‖a‖p

p =
∑

i |ai|p. If a and b are vectors of different dimension, we ex-
tend the shorter vector by zeros and still write ‖a − b‖p for their distance.
For example, if a ∈ Cd1 and b ∈ Cd2 with d2 > d1, we write ‖a − b‖1 =∑d1

i=1 |ai − bi| +
∑d2

i=d1+1 |bi|. We also denote by ‖A‖p the Schatten p-norm
of an operator A, defined as the �p-norm of the singular values {si} of A; it
can also be computed by ‖A‖p

p = tr((A†A)p/2). The operator norm is given
by ‖A‖∞ = max{si}. If H is a Hilbert space, we introduce the notation P(H)
for the set of positive semidefinite operators on H. We often refer to positive
semidefinite operators as “density operators” or “states,” without requiring
them to be normalized to unit trace. We write P=(H) for the set of ρ ∈ P(H)
with unit trace, tr[ρ] = 1, and we denote by P≤(H) the set of subnormalized
states, that is, ρ ∈ P(H) with tr[ρ] ≤ 1. We use the convention that for a
vector |φ〉, we denote the corresponding pure state by φ, so φ = |φ〉〈φ|. Given
a positive semidefinite operator ρ, we denote by spec(ρ) the vector containing
its spectrum in non-increasing order, and we write spec+(ρ) for the nonzero
part of the spectrum. It is a well-known fact that

‖spec(ρ) − spec(σ)‖1 = ‖spec+(ρ) − spec+(σ)‖1 ≤ ‖ρ − σ‖1 (1.5)

. (In the second expression, we use the convention for the distance of vectors
of possibly different dimension introduced above.) If A is a quantum system
with Hilbert space HA, we write P(A) = P(HA), P=(A) = P=(HA), and
P≤(A) = P≤(HA), and we use subscripts, e.g., ρA ∈ P(A), to indicate which
system and Hilbert space a quantum state is associated with. For a bipartite
state ρAB ∈ P(AB) defined on a tensor product of Hilbert spaces HAB =
HA ⊗HB , we obtain the reduced state or reduced density operator ρA ∈ P(A)
by taking the partial trace over the complement: ρA = trB [ρAB ], and similarly
in multipartite situations. Finally, we adopt the standard notation that if μn is
some sequence of finite measures, we write μn ⇒ μ if μn converges weakly (or
in distribution) to a finite measure μ, meaning that for any bounded continuous
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function f ∈ Cb(R),
∫

f(x)dμn(x) →
∫

f(x)dμ(x). (1.6)

If μn is a sequence of random finite measures on R, we say that the sequence
μn converges weakly, in probability, to a finite measure μ, if, for any bounded
continuous function f ∈ Cb(R), Eq. (1.6) converges in probability, i.e., if for
every ε > 0 we have that

lim
n→∞ Pr

(∣∣∣∣
∫

f(x)dμn(x) −
∫

f(x)dμ(x)
∣∣∣∣ ≥ ε

)
= 0.

In this situation, we will also write μn ⇒ μ, in probability. All logarithms are
to base 2.

2. Random Tensor Network States

We first review the random tensor network model, closely following [29,40].
Let G = (V,E) be a connected undirected graph, and let V = V∂ � Vb be a
partition of the vertices into a set of boundary vertices V∂ and bulk vertices Vb.
If A ⊆ V∂ , we write Ā = V∂\A. We assign a bond dimension De to each edge,
and we will consider families of states with increasing bond dimensions; for
example, we may take De = D for all edges and let D increase. For each
vertex x ∈ V , let ∂{x} denote the set of edges e = (xy) ∈ E connecting x
to some y ∈ V . We define Hilbert spaces He,x = CDe for e ∈ ∂{x}, and
Hx :=

⊗
e∈∂{x} He,x. We call the pair (e, x) a half-edge. Moreover, we write

He = He,x ⊗ He,y for an edge e = (xy) ∈ E. Let Dx = dim(Hx). For a
subset A ⊆ V , we write HA =

⊗
x∈A Hx, and similarly, for a subset S ⊆ E

we write HS =
⊗

e∈S He. Similarly, for a set T of half-edges we write HT =⊗
(e,x)∈T He,x. At each edge e = (xy) ∈ E, we place a pure state |φe〉 ∈ P=(He)

|φe〉 =
De∑

i=1

√
λe,i|ii〉 ∈ He = He,x ⊗ He,y, (2.1)

that we call a link state. Then, φe,x = φe,y =
∑D

i=1 λe,i |i〉〈i| is the reduced
density matrix of the link state on either of the two subsystems. We refer to
the vector spec(φe,x) = spec(φe,y), which is ordered in non-increasing fashion,
as the entanglement spectrum of φe. Let φ ∈ P=(V ) be the full state on edges
given by the tensor product of link states

|φ〉 =
⊗

e∈E

|φe〉. (2.2)

At every bulk vertex x ∈ Vb, we place a random vector |ψx〉 ∈ Hx, where
the entries of |ψx〉 are independent standard (circularly symmetric) complex
Gaussian random variables: Each entry of the tensor can be written as 1√

2
(x+

iy) where x and y are independent real Gaussian random variables of mean 0
and unit variance. We note that, in the model of [40], the tensors |ψx〉 were
not chosen as random Gaussian vectors, but as uniformly random vectors on
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the unit sphere. However, for our choice of Gaussian |ψx〉, the norm ‖|ψx〉‖
is independent of the normalized vector |ψx〉/‖|ψx〉‖, and |ψx〉/‖|ψx〉‖ will be
a uniformly random vectors on the unit sphere. Therefore, these two models
only differ by their normalization. We write |ψ〉 =

⊗
x∈Vb

|ψx〉. The resulting
random tensor network state ρ ∈ P(V∂) is defined by

|ρ〉 = (IV∂
⊗ 〈ψ|)|φ〉. (2.3)

The random tensor network state is obtained by projecting the link states onto
random vectors, so that the final state lives in the boundary Hilbert space. We
can make this manifest by using the cyclicity of the trace to write the density
matrix:

ρ = (IV∂
⊗ 〈ψ|) φ (IV∂

⊗ |ψ〉) = trVb
[(IV∂

⊗ ψ) φ] . (2.4)

Note that this state need not be normalized, but we chose the standard devia-
tion of the |ψx〉 such that ρ is normalized on average, given that the link state
φ is normalized:

E tr[ρ] = tr[φ]. (2.5)

In Sect. 2.3.1, we prove the stronger statement that ρ is normalized with high
probability for appropriately connected tensor networks and large bond dimen-
sion. Note also, that in Eq. (2.1), we have chosen states which have a Schmidt
decomposition in a fixed basis (the standard basis). Since we project onto
uniformly random tensors, we can choose to do so without loss of generality.

2.1. The Replica Trick for Random Tensor Networks

We now consider a boundary subset A ⊆ V∂ and use the replica trick to study
the Rényi entropies of the reduced density matrix ρA. The replica trick for
random tensor network models was first studied in [40], and it is the key tool
we apply throughout this work. Let H be a Hilbert space. The Rényi entropies
of a (normalized) density matrix ρ ∈ P=(H) are defined by

Hk(ρ) =
1

1 − k
log(tr[ρk])

for k ∈ (0, 1) ∪ (1,∞). For k = 0, 1,∞, there are well-defined limits, given by

H0(ρ) := log(rank(ρ))

H1(ρ) := − tr[ρ log(ρ)]

H∞ := − log(‖ρ‖∞).
(2.6)

In particular, we see that H(ρ) = H1(ρ) is the von Neumann entropy. We
will also write H(A)ρ := H(ρA) and Hk(A)ρ := Hk(ρA) for reduced density
matrices. If ρ ∈ P≤(H) is subnormalized, we let

Hk(ρ) =
1

1 − k
log

tr
[
ρk
]

tr[ρ]
. (2.7)
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Denote by R the representation of Sk on H⊗k which permutes the k copies
of H according to the action of Sk. We will write Rx(π) when H = Hx and
RA(π) if H = HA for A ⊆ V . We let τ denote the standard k-cycle in Sk, i.e.,

τ = (12 . . . k).

The key idea of the replica trick is the observation that the kth moment of
ρ ∈ P(H) can be written as

tr
[
ρk
]

= tr
[
R(τ)ρ⊗k

]
. (2.8)

Recall the notion of the cycle type of a permutation π: If π can be written
as a product of m disjoint cycles of lengths l1, . . . , lm, then π has cycle type
C(π) = {l1, . . . , lm}. Then, for an arbitrary π ∈ Sk,

tr
[
R(π)ρ⊗k

]
=
∏

l∈C(π)

tr
[
ρl
]
.

Note that this is the generalization of the well-known swap trick for two copies
of a state ρ. The other crucial ingredient is a property of the Gaussian random
vectors:

E
[
ψ⊗k

x

]
=
∑

π∈Sk

Rx(π). (2.9)

Using Eq. (2.4), we may then compute

E tr
[
ρk

A

]
= E tr

[
RA(τ)ρ⊗k

A

]

= E tr
[(

RA(τ) ⊗ RV∂\A(id)
)
ρ⊗k
]

= E tr
[(

RA(τ) ⊗ RV∂\A(id)
)
(IV∂

⊗ ψ)⊗k
φ⊗k
]

= tr
[(

RA(τ) ⊗ RV \A(id)
)
E
[
(IV∂

⊗ ψ)⊗k
]
φ⊗k
]
.

(2.10)

To further simplify this expression, we define the following set:

SA,σ =
{
{πx}x∈V : πx ∈ Sk, where πx = σ for x ∈ A and πx = id for x ∈ Ā

}
,

(2.11)

for any σ ∈ Sk and A ⊆ V∂ . An element of SA,σ assigns a permutation to each
vertex in V subject to a “boundary condition.” Now, using Eq. (2.9), we find
that

E tr
[
ρk

A

]
=

∑

{πx}∈SA,τ

tr

[
⊗

x∈V

Rx(πx)φ⊗k

]
.

Finally, we observe that for e = (xy)

tr
[
R(πx) ⊗ R(πy)φ⊗k

]
=

∏

l∈C(π−1
x πy)

tr
[
φl

e,x

]
,

where we recall that φe,x is the reduced density matrix of the link state on
edge e = (xy). Thus, we conclude that

E tr
[
ρk

A

]
=

∑

{πx}∈SA,τ

∏

e=(xy)∈E

∏

l∈C(π−1
x πy)

tr
[
φl

e,x

]
. (2.12)
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We can interpret the expectation as the partition function of a classical spin
model

E tr
[
ρk

A

]
=

∑

{πx}∈SA,τ

2−∑e=(xy)∈E Je(πx,πy), (2.13)

where the site variables in the spin model are permutations πx ∈ Sk, and the
interaction at the edges between sites is given by

Je(πx, πy) = −
∑

l∈C(π−1
x πy)

log(tr
[
φl

e,x

]
) =

∑

l∈C(π−1
x πy)

(l − 1)Hl(φe,x),

with Hl being the lth Rényi entropy, and the model as boundary conditions
such that the permutation must be τ on A and id on Ā. It turns out that Je

is a metric on the symmetric group Sk—see “Appendix D.” Similarly, we may
place an arbitrary permutation π on A instead of τ , which yields (by exactly
the same reasoning)

E tr
[
R(π)ρ⊗k

]
=

∑

{πx}∈SA,π

∏

e=(xy)∈E

∏

l∈C(π−1
x πy)

tr
[
φl

e,x

]
. (2.14)

2.2. Maximally Entangled Link States and Minimal Cuts

We will now discuss the special case where all the link states are maximally
entangled states of dimension D, which has been studied extensively in [40].
We will generalize the results we discuss here to a wider class of link states
in Sect. 3. In this case, the entanglement spectra of the link states are flat:
For e ∈ E, we have λe,i = 1

D for i = 1, . . . , D. In particular, for all l ∈ N we
have Hl(φe) = log(D) and hence

Je(πx, πy) = log(D)
∑

l∈C(π−1
x πy)

(l − 1).

This leads to the so-called Cayley distance on Sk:

d(πx, πy) =
∑

l∈C(π−1
x πy)

(l − 1) = k −
∣∣C(π−1

x πy)
∣∣ , (2.15)

where |C(π)| is the number of cycles in π. Moreover, d(πx, πy) is a metric and
equals the minimal number of transpositions needed to transform πx into πy.
We say that π ∈ Sk is on a geodesic between π1 and π2 if d(π1, π)+d(π, π2) =
d(π1, π2). (Recall that d is a metric.) We can rewrite the spin model in terms
of this distance:

E tr
[
ρk

A

]
=

∑

{πx}∈SA,σ

2− log(D)
∑

e=(xy)∈E d(πx,πy). (2.16)

The physically inclined reader may observe that the logarithm of the bond
dimension has the role of an inverse temperature, and for large D, the dominant
contribution to the partition function will be the ground state of the spin
model, subject to the relevant boundary conditions.

To describe the dominant contribution to the sum in Eq. (2.16) for
large D, we need the minimal cuts for A in G. A cut for A is a subset of
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the vertices ΓA ⊂ V such that ΓA ∩ V∂ = A. Throughout this work, we will
denote the set of all cuts for A by C(A). We will use the convention of denoting
cuts (i.e., subsets of vertices) by capital Greek letters. Given a cut ΓA ∈ C(A),
we will denote the set of edges crossing the cut, that is, edges connecting a
vertex in ΓA with a vertex in V \ΓA, by lowercase Greek letters γA. (And by
an abuse of language, also refer to this set as a “cut.”) A minimal cut for A
is a cut such that the number of edges |γA| is minimal. We write m(A) = |γA|
for a minimal cut γA ∈ C(A). If ΓA ∈ C(A), we write Γc

A = V \ΓA. Note that
Γc

A is a cut for Ā = V∂\A.
In the simplest case, there is a unique minimal cut γA. For this case,

one can show that the dominant configuration is the one in which πx = τ
for x ∈ ΓA and πx = id for x ∈ V \ΓA, see [39], or Proposition 3.3. That is,
there are two domains in the spin model corresponding to τ and id, and the
minimization of the domain wall corresponds to the minimal cut in the graph.

We will also be interested in the case of exactly two non-intersecting
minimal cuts ΓA,1 and ΓA,2. In this case, we have that ΓA,1 ⊂ ΓA,2, or ΓA,2 ⊂
ΓA,1. After relabeling, we may assume that the first is the case, and define three
domains in the graph: V = V1 � V2 � V3 given by V1 = ΓA,1, V2 = ΓA,2\ΓA,1

and V \ΓA,2. If there are exactly two minimal cuts, then multiple dominant
configurations contribute equally to the partition function Eq. (2.16). These
dominant configurations can be constructed as follows: For each π on a geodesic
between τ and id, set πx = τ for x ∈ V1, πx = π for x ∈ V2 and πx = id for
x ∈ V3. That these are the dominant configurations follows immediately from
the fact that d(τ, π) + d(π, id) ≥ d(τ, id), with equality if and only if π is on a
geodesic between τ and id.

To understand this degeneracy, we use the following fact [56]: the set of
permutations π on a geodesic between τ and id is in a one-to-one correspon-
dence with the set of non-crossing partitions NC(k) of [k]. See Sect. 3.1 for a
definition and properties of NC(k). Thus, the degeneracy for the kth moment
is |NC(k)| = Ck where

Ck =
1

k + 1

(
2k

k

)

is the kth Catalan number. These are the moments of the Marchenko–Pastur
distribution MP(t)

MP (t) = max(1 − t, 0)δ0 + νt

dνt(x) =

√
4t − (x − 1 − t)2

2πx
1(x−1−t)2≤4tdx.

(2.17)

This allows one to show the folklore result (which we prove and extend to
more general link states in Theorem 3.4) that upon an appropriate rescaling,
the empirical distribution of the spectrum of ρA converges to a Marchenko–
Pastur distribution. This is in line with the case of a single random tensor,
which precisely yields a Wishart matrix (see Sect. 3.1.1 for a brief introduction
to these objects). In the first case, where there is a unique minimal cut, the
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entanglement spectrum of ρA is flat, while, as we have seen, in the second case,
the degeneracy gives rise to a non-trivial spectrum in the right scaling limit.

2.3. The Replica Trick for General Background States

In Eq. (2.13), we computed the result of the replica trick for the kth moment for
a random tensor network state. We will also consider the more general setting
where the link state is replaced by some arbitrary state φV . In this setting,
there need not be a graph structure, and the Hilbert space at each vertex
x ∈ V can be some arbitrary Hilbert space, rather than a tensor product of
Hilbert spaces labeled by half-edges. We will refer to φV as a “background
state” instead of a “link state” (as the interpretation of links along the edges
does not necessarily make sense in this situation). That is, where before we
had a link state

|φ〉 =
⊗

e∈E

|φe〉,

we will now consider some arbitrary possibly mixed and subnormalized φV ∈
P≤(V ) in the tensor network construction. We can generalize Eq. (2.4) to also
apply for general background states to obtain a state ρ ∈ P(V∂) given by

ρ = trVb
[(IV∂

⊗ ψ) φV ] (2.18)

where |ψ〉 is a tensor product of random states at the bulk vertices. If φ is
pure, then so is ρ, since in that case

|ρ〉 = (IV∂
⊗ 〈ψ|) |φ〉.

If φ is not pure, we can consider a purification φV R ∈ P≤(V R) and consider R
as an additional boundary system; this leads to a random tensor network state
ρV∂R which is a purification of ρV∂

. This setup is illustrated in Fig. 3, while
formally very similar, the resulting state is no longer a PEPS tensor network
state in general.

Figure 3. The structure of a (purified) random tensor net-
work with a general background state
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There are multiple reasons to also allow general background states. The
first reason is of a technical nature: They are useful for estimates based on
smooth entropies, which we discuss in Sect. 4. In this application, the full state
on edges is still pure, but is no longer a tensor product of link states along the
edges. A second motivation for considering general background states is that
they can be used as a toy model for holographic systems where there is “bulk
entropy” present. Finally, these states are closely related to protocols for the
quantum information processing task of split transfer [26]. We comment on
this connection in “Appendix B.”

Even for a general background state, a version of the replica trick still
applies. Consider a boundary subsystem A ⊆ V∂ with corresponding boundary
state ρA. Then, the computation in Eq. (2.10) is still valid, and we find

E tr[ρk
A] =

∑

{πx}∈SA,τ

trV

[
⊗

x∈V

Rx(πx)φ⊗k
V

]
(2.19)

where τ = (12 . . . k). However, Eq. (2.19) no longer has the interpretation of a
spin model with local interactions.

For general background states, we will only need the replica trick for
k = 2. Since S2 has only two elements, each configuration of permutations
is completely characterized by the domain ΔA = {x ∈ V such that πx =
τ}. Because of the boundary conditions in SA,τ , the collection of these sets
coincides with C(A), and hence,

E tr[ρ2
A] =

∑

ΔA∈C(A)

tr[φ2
ΔA

] =
∑

ΔA∈C(A)

tr[φ]2−H2(ΔA)φ . (2.20)

Another useful fact is that by Eq. (2.9),

EρV∂
= φV∂

. (2.21)

We remark that if one only uses the k = 2 replica trick, one could also
use tensors which are drawn from a projective 2-design, a distribution which
produces tensors with the same first and second moments as uniformly random
tensors of unit norm [35,43]. An example of a projective 2-design is the set of
uniformly random stabilizer states. For tensors |ψx〉 drawn from a projective
2-design of dimension Dx, it holds that

Eψ⊗2
x =

1
Dx(Dx − 1)

I +
1

Dx(Dx − 1)
Rx(τ),

and hence,

E tr[ρ2
A] =

Dx

Dx + 1

∑

ΔA∈C(A)

tr[φ2
ΔA

],

which is close to Eq. (2.20) for large Dx. Thus, it is not hard to see that
all random tensor network results which only use the k = 2 replica trick are
also valid for states with tensors drawn from projective 2-designs. This was
already observed in [40], and random tensor networks with random stabilizer
tensors were further studied in [57]. The results of Sect. 4 only use the k = 2
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replica trick and thus will extend to states with tensors drawn from projective
2-designs. This will not be true for the results in Sect. 3, which requires usage
of the replica trick for all k ∈ N.

2.3.1. Normalization of Random Tensor Network States. One immediate con-
sequence of the replica trick for k = 2 is that the random tensor network state
ρ will be approximately normalized with high probability, so long as a mild
condition on the background state is satisfied: The bulk needs to be connected,
with sufficiently entangled edges. Let

η = max
Δ⊆Vb,Δ 
=∅

tr[φ2
Δ] = max

Δ⊆Vb,Δ 
=∅
tr[φ]2−H2(Δ)φ . (2.22)

If the state has enough correlations along each cut (or more precisely, if H2(Δ)φ

is large for each Δ), then η is small. Concretely, if we consider a random tensor
network state with maximally entangled link states of bond dimension D, we
will have η ≤ 1

D . We then have

Lemma 2.1. For any background state φ ∈ P≤(V ), with associated ρ ∈ P(V∂)
as in Eq. (2.18), it holds that for any ε > 0

Pr
(
|tr[ρ] − tr[φ]| ≥ ε

)
≤ 2|Vb| η

ε2

where η is defined in Eq. (2.22).

Proof. This follows from a special case of Eq. (2.20). In this case, the empty
cut contributes tr[φ]2, so we find

Var(tr[ρ]) = E |tr[ρ] − tr[φ]|2 = E
∣∣tr[ρ]2 − tr[φ]2

∣∣ ≤ 2Vb max
Δ⊆Vb,Δ 
=∅

tr[φ2
Δ],

where we have used the normalization of ρ in expectation E tr[ρ] = tr[φ], as in
Eq. (2.5). The result follows by an application of Chebyshev’s inequality. �

We can improve this result by taking advantage of the fact that our
random projectors are random Gaussian vectors, allowing us to use Gaussian
concentration of measure rather than the Chebyshev’s inequality. For instance,
using a concentration bound for Gaussian polynomials (see [9], Corollary 5.49)
one can show that for any ε ≥ (

√
2e)2Vbη:

Pr
(
|tr[ρ] − tr[φ]| ≥ ε

)
≤ exp

(
−|Vb|

2e
ε

1
|Vb| η

− 1
|Vb|
)

,

where η is defined as in Eq. (2.22). We will not need this refinement.

3. Link States with Bounded Spectral Variation

In this section, we study random tensor network states with link states that
have bounded spectral variation, meaning that there is an effective bond di-
mension D such that the Schmidt coefficients of the link state are of the order
1
D .

We start by providing background material on random matrix theory
and free probability, which is a key tool in the study of products of random
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matrices. In Sect. 3.2, we will precisely define the notion of bounded spectral
variation and generalize the results in Sect. 2.2 for random tensor network
states with maximally entangled link states to this wider class of link states.
This leads to the main result of this section, Theorem 3.4, which shows that
the asymptotic entanglement spectrum can be expressed in terms of a free
product of distributions. We will see that the results are similar to the quantum
gravity setup described in “Appendix A.3.” Finally, in Sect. 3.3, we investigate
the entanglement negativity for random tensor network states with link states
of bounded spectral variation.

3.1. Random Matrices, Free Probability, and Non-crossing Partitions

3.1.1. Random Matrix Theory and Wishart Matrices. We start by reviewing
relevant concepts from probability and random matrix theory that are relevant
for our analyses. This material can be found in any introduction to random
matrix theory, e.g., [3,15,58].

A fundamental question in random matrix theory is as follows: Given a
family of n × n matrices with entries selected according to some distribution,
what is the asymptotic distribution of the eigenvalues as n → ∞? This question
has been extensively studied and in many cases has an elegant and concise
answer. We discuss a basic example which is closely related to our purposes:
Wishart matrices. Consider an n × m matrix X whose entries are drawn i.i.d.
from a Gaussian distribution with mean zero and unit variance. The sample
covariance matrix of X is the n × n matrix defined as

Yn,m =
1
m

XXT . (3.1)

Such random matrices are called (real) Wishart matrices and can be thought
of as a sample second moment matrix (where one has m realizations of an
n-dimensional random variable). One can also consider complex Wishart ma-
trices: In this case, the entries of the n × m matrix X are complex i.i.d. stan-
dard (circularly symmetric) complex Gaussian random variables. We then let
Yn,m = 1

mXX†. We would like to understand the spectrum of Yn,m, and to
that end, we consider the empirical distribution of the eigenvalues. This em-
pirical distribution is itself random, depending on the particular realization
of Yn,m. To characterize the convergence, we recall that if {μn}n∈N is a se-
quence of random finite measures on R, we say that the sequence μn converges
weakly, in probability, to a finite measure μ, if, for any bounded continuous
function f ∈ Cb(R), it holds that for every ε > 0

lim
n→∞ Pr

(∣∣∣∣
∫

f(x)dμn(x) −
∫

f(x)dμ(x)
∣∣∣∣ ≥ ε

)
= 0.

The asymptotic distribution of the eigenvalues of Wishart matrices is
known to obey the Marchenko–Pastur law (see, for instance, Theorem 3.6 and
Theorem 3.7 in [15]):
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Theorem 3.1. Consider (real or complex) Wishart matrices Yn,m, and let

μn,m =
1
n

∑

λ∈spec(Yn,m)

δλ

be the empirical distribution of its eigenvalue spectrum. Suppose that the ratio
of dimensions n/m converges to a constant t > 0 as n → ∞. Then, μn,m

converges weakly, in probability, to the Marchenko–Pastur distribution MP(t)
with parameter t > 0, as defined in Eq. (2.17).

Generalizations to this result are possible. For example, one still has con-
vergence if the entries of X are chosen according to non-Gaussian distributions
with mean zero and unit variance. Also, one can prove weak convergence, al-
most surely (rather than just in probability); see [15].

If Yn,m = 1
mXX† is a complex Wishart matrix, X can also be interpreted

as a uniformly random pure quantum state on Cn ⊗ Cm, and Yn,m, up to
normalization, as the reduced density matrix on Cn [39]. Note that 1

nYn,m is
normalized in expectation in the sense that E 1

nYn,m = 1. So, complex Wishart
matrices can be used as a model for the reduced state of a random bipartite
quantum state, and this allows one to quantify the “typical entanglement” of a
random state. Equivalently, in the tensor network setting, 1√

n
X can be thought

of as a random tensor network state with a single bulk vertex, two boundary
vertices, and maximally entangled link states. We can then can interpret 1

nYn,m

as the reduced density matrix on one of the boundary vertices. We will provide
a generalization of Theorem 3.1 for the entanglement spectrum of random
tensor network states in Theorem 3.4.

3.1.2. Free Probability. The topic of probability distributions in random ma-
trix theory is closely related to free probability and, in particular, to the notion
of the free product. We provide a brief introduction here; the material in this
section is very standard, and we only review a few relevant aspects. For an
extensive treatment, see, for instance, Chapter 5 in [3] or the books [52,56,58].
As we will see later, the free product will allow us to concisely formulate replica
trick results involving multiple minimal cuts.

A non-commutative probability space is a pair (A, ω), where A is a C∗-
algebra and ω is a state on A. An element a ∈ A is called a non-commutative
random variable. The key example to have in mind is the space of n × n
random matrices, where the matrix entries are distributed according to some
probability distribution, and ω(a) = E 1

n tr[a] defines a tracial state. If a ∈ A,
the distribution (or law) μa of a is defined as a map on polynomials, which
evaluates on a polynomial p as μa(p) = ω(p(a)). If a is self-adjoint, it has
real spectrum and we can extend the domain of μa to all bounded continuous
functions f ∈ Cb(R), using the functional calculus to define f(a) and letting
μa(f) = ω(f(a)). In this case, we can identify μa with a distribution such
that, for f ∈ Cb(R), we have μa(f) =

∫
f(x)dμa(x). In particular, if a is

an n × n self-adjoint random matrix, then μa(f) = 1
nE
∑

λ∈spec(a) f(λ), and
we may identify μa with the empirical measure of the eigenvalues of a. If A is a
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commutative algebra, these notions reduce to the usual notions of probability
theory, where ω is the expectation.

We call a set of n non-commutative random variables {ai} on a non-
commutative probability space (A, ω) freely independent or just free if, for
any set of k ≥ 2 polynomials {pj}, the variables satisfy

ω(p1(ai1) . . . pk(aik
)) = 0

whenever ω(pm(aim
)) = 0 for all 1 ≤ m ≤ k and no two adjacent indices im

and im+1 for 1 ≤ m ≤ k−1 are equal. One can see that two freely independent
variables a1, a2 satisfy:

0 = ω((a1 − ω(a1))(a2 − ω(a2))) = ω(a1a2) − ω(a1)ω(a2), (3.2)

which, in the commutative case with random variables x1, x2, is the clas-
sical bivariate independence condition E[x1x2] = E[x1]E[x2]. The definition
of free independence does not specialize to independence in the commutative
case. (Commuting independent random variables are only free when they are
constant.) However, the role of free independence is analogous to the role of
classical independence for commuting random variables: It allows one to, in
principle, compute the joint mixed moments of the variables.

We will be interested in the multiplicative free convolution or free product
(there also exists an additive convolution or just free convolution) of distribu-
tions. Suppose a, b are non-commutative self-adjoint free random variables on
(A, ω) with distributions μa and μb. Then, we denote the distribution of ab
by μab = μa �μb. Note that, generally, ab need not be self-adjoint. However, if
ω is tracial (as in the random matrix case) and a is positive, the distribution of
ab coincides with that of

√
ab

√
a which is self-adjoint, and we can identify μab

with a distribution on R. If μa and μb are compactly supported distributions,
then so is μa � μb.

As a concrete example of the freeness and the free product, let Xn and
Yn be two families of random n × n positive diagonal matrices with uniformly
bounded norm, such that their spectrum converges weakly to probability dis-
tributions μ and ν, respectively. Let Un be a family of Haar random unitary
n×n matrices. Then, as n goes to infinity, Xn and Y ′

n = UnYnU†
n will be freely

independent (so they are asymptotically free), and we would like to study their
product. The product of positive matrices need not be self-adjoint, so we con-
sider Zn =

√
XnY ′

n

√
Xn which is a positive matrix. One may then show that

the distribution of the spectrum of Zn weakly converges in probability to μ�ν.
See Corollary 5.4.11 in [3] for a precise statement and proof.

The free product may be analyzed using generating functions: Given a
(non-commutative) random variable a with distribution μa, let

ma,k =
∫

xkdμa(x)
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be the kth moment of μa. Then, the moment-generating function is the formal
power series

Mμa
(z) =

∞∑

k=1

ma,kzk. (3.3)

We define the S-transform to be the formal power series

Sμa
(z) =

1 + z

z
M−1

a (z),

where M−1
a (z) is the power series corresponding to the formal inverse of Mμ(z)

under composition, which is well defined as long as ma,1 �= 0. For compactly
supported distributions, the moment-generating function, and hence the S-
transform, uniquely determines the distribution.

If a and b are non-commutative self-adjoint free random variables, then

Sμa�μb
(z) = Sμab

(z) = Sμa
(z)Sμb

(z). (3.4)

This also provides a completely combinatorial interpretation of the free prod-
uct, without reference to the associated non-commutative probability spaces.
That is, given compactly supported distributions μ and ν, we can define μ� ν
by Eq. (3.4): It is the compactly supported distribution with moments pre-
scribed by Sμa�μb

(z), and hence, Mμa�μb
(z). The free product is commutative

and associative.
As an example, we compute the S-transform of the Marchenko–Pastur

distribution μ ∼ MP(1). The distribution is given by

dμ(x) =
1
2π

√
4x−1 − 1dx.

The moments can be computed directly:

mk =
k−1∑

i=0

1
i + 1

(
k

i

)(
k − 1

i

)
(3.5)

After some work, one can show that the moments above lead to a closed-form
moment-generating function

M(z) =
2z − 1 −

√
1 − 4z

2z
.

One may then invert the expression and obtain the S-transform

S(z) =
1

1 + z
.

Similarly, for the Marchenko–Pastur distribution MP (t) with parameter t,
which has distribution as given in Eq. (2.17), we find that

S(z) =
1

t + z
.

See, for instance, [12].
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3.1.3. Non-crossing Partitions. Given k ∈ N, let NC(k) denote the set of
non-crossing partitions of [k]. A non-crossing partition of [k] is a partition
[k] = X1 � . . . � Xm which is such that if i < j ∈ Xα, then there are no
k, l ∈ Xβ for β �= α with k < i < l < j or i < k < j < l. To any non-
crossing partition, we associate a permutation π ∈ Sk by mapping each subset
{i1, . . . , il} to the cycle (i1, . . . , il) with i1 < · · · < il. In a slight abuse of
notation, we will write π ∈ NC(k). For any π ∈ Sk, and for a sequence of
numbers fk for k = 1, 2, . . ., we write

fπ =
∏

l∈C(π)

fl (3.6)

where C(π) is the cycle type of π. We will need the following result, which is
a straightforward consequence of the combinatorics of the S-transform.

Theorem 3.2. Consider compactly supported probability distributions μ, ν, η.
Suppose that the moments of η are given by

mη
k =

∑

π∈NC(k)

mμ
πmν

π−1τk

where τk = (12 . . . k) is the full cycle. Then,

η = MP(1) � μ � ν.

Proof. We let F be the transformation that sends a formal power series f(z)
to the power series 1

z f−1(z). This is such that for some distribution μ, the S-
transform is given by Sμ(z) = (1 + z)F(Mμ)(z). Moreover, given power series
f(z) =

∑
k fkzk and g(z) =

∑
k gkzk, define a convolution operation � by

(f � g)(z) =
∑

k

⎛

⎝
∑

π∈NC(k)

fπgπ−1τk

⎞

⎠ zk

where τk is the full cycle in Sk. Then, Theorem 18.14 in [56] states that for
any two f and g with f1 �= 0 and g1 �= 0, it holds that

F(f � g)(z) = F(f)(z)F(g)(z).

Then, the S-transform of η can be written:

Sη(z) = (1 + z)F(Mη)(z) = (1 + z)F(Mμ)(z)F(Mν)(z) =
1

1 + z
Sμ(z)Sν(z).

This implies the desired result, as the S-transform of MP(1) is given by 1
1+z ,

and the S-transform uniquely determines a compactly supported distribu
tion. �

We remark briefly that free independence can equivalently be formulated
in terms of the vanishing of free cumulants, which are themselves defined in
terms of sums over non-crossing partitions. We refer the interested reader to
any of the previously cited references for a more in-depth discussion on the role
of non-crossing partitions in free probability. For our purposes, the fact that
non-crossing partitions are intimately related to free independence will allow
us to later phrase random tensor network results in terms of free probability.
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3.2. Entanglement Spectrum of Random Tensor Network States as a Free
Product

We now return to studying random tensor network states. Consider a family
of states in P=(V ) composed of the tensor product of link states |φe〉 along
the edges e ∈ E as in Eq. (2.1), and assume that along each edge, the bond
dimensions scale with a parameter D, so De = Θ(D). Our key assumption is
that the link states have bounded spectral variation—by this we mean that the
empirical distribution of the rescaled entanglement spectrum of the link states

μ(D)
e :=

De∑

i=1

1
De

δDeλe,i
(3.7)

has all moments converging to the moments me,k of a compactly supported
probability distribution μe, as D goes to infinity. We assume that the link states
are normalized, so me,1 = 1. This condition implies that, up to a vanishing
fraction as D → ∞, the elements of the entanglement spectrum of the link
state are of order D−1.

For a minimal cut γA, let μ
(D)
γA be the distribution for the spectrum of

the tensor product of the link states in γA:

μ(D)
γA

=
⊗

e∈γA

μ(D)
e =

1
DγA

∑

{ie}
δDγA

∏
e∈γA

λe,ie

where ie = 1, . . . , De and DγA
=
∏

e∈γA
De. We define the tensor product

of distributions as follows: If X1 and X2 are independent real valued random
variables with distributions μX1 and μX2 , then μX1 ⊗ μX2 is defined as the
joint distribution of (X1,X2). The distribution μ

(D)
γA has kth moment given

by m
(D)
γA,k =

∏
e∈γA

m
(D)
e,k , and we can see that m

(D)
γA,k converges to mγA,k, the

moments of the distribution

μγA
:=
⊗

e∈γA

μe.

Let spec(ρA) = {λA,i}. (Recall that spec(ρA) is ordered in non-increasing
order.) Let γA be a cut for A. By a standard argument, the number of nonzero
eigenvalues of ρA (that is, rank(ρA)) is upper bounded by DγA

. If γA is the
unique minimal cut, then we define

μ
(D)
A :=

1
DγA

DγA∑

i=1

δDγA
λA,i

. (3.8)

If there are multiple minimal cuts, it is ambiguous which γA, and hence, which
DγA

, we should pick; we choose the cut for which DγA
is minimal in Eq. (3.8),

and we will denote this minimal cut by γA,1. The moments of μ
(D)
A are given

by

m
(D)
A,k :=

∫
zkdμA(z) = Dk−1

γA

DγA∑

i=1

(λA,i)k.
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Note that the distribution μ
(D)
A is random, and correspondingly, the mo-

ments m
(D)
A,k are random variables. In contrast, the moments m

(D)
e,k and m

(D)
γA,k

are numbers depending only on the bond dimension.
The theorem we want to prove will follow straightforwardly from a key

intermediate result: As D goes to infinity, all the moments of the boundary
distribution μ

(D)
A converge to the moments of μγA

. We use the notation in Eq.
(3.6) to write expressions like

mγA,π =
∏

l∈C(π)

mγA,l

for a permutation π ∈ Sk. We will then apply the method of moments to show
that convergence of moments implies convergence in distribution. As a remark
on notation, in the error bounds in both the current section and Sect. 4, when
we use O-notation, the constants may depend on the graph underlying the
tensor network. (Typically our bounds scale as 2|Vb|, where Vb is the set of
bulk vertices.)
Proposition 3.3. If there exists a unique minimal cut γA for A, then

lim
D→∞

Em
(D)
A,k = mγA,k. (3.9)

If there exist exactly two minimal cuts γA,1 and γA,2, which do not intersect

(so γA,1 ∩ γA,2 = ∅) and for which
DγA,1
DγA,2

converges to a constant t ≤ 1, then

lim
D→∞

Em
(D)
A,k =

∑

π∈NC(k)

td(π,id)mγA,1,τ−1πmγA,2,π. (3.10)

Moreover, in both cases the variance goes to zero as D goes to infinity: for
every k

E

[(
m

(D)
A,k − E

[
m

(D)
A,k

])2
]

= O
(

1
D

)
. (3.11)

Proof. We first provide a sketch of the proof. It proceeds via the following
steps:

1. Write the expectation of the moments of μ
(D)
A as the partition function

for a classical spin model, as in Sect. 2.1.
2. Show that the contributions from terms of the form given in the statement

of the proposition dominate the partition function by carefully tracking
the powers of D, and showing that all other contributions are suppressed
polynomially in D.

3. Show that the variance of the moments vanishes in the limit D → ∞ by
direct computation.

We begin with Step 1. First, we observe that the kth moment of μ
(D)
A is

given by m
(D)
A,k = Dk−1

γA
tr
[
ρk

A

]
. Consider the expression in Eq. (2.14) for the

replica trick with permutation π on A:

Zk,π := E tr
[
RA(π)ρ⊗k

A

]
=

∑

{πx}∈SA,π

∏

e=(xy)∈E

∏

l∈C(π−1
x πy)

tr
[
φl

e,x

]
. (3.12)
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Recall that the set SA,π, as defined in Eq. (2.11), consists of assignments of
permutations to each x ∈ V , subject to πx = π for x ∈ A and πx = id for
x ∈ Ā. As in Eq. (2.12), if π = τ , then we indeed have Zk,τ = E tr

[
ρk

A

]
, so

Em
(D)
A,k = Dk−1

γA
Zk,τ . (3.13)

On the other hand, if we let k = 2n and π = τ̃ = (12 . . . n)(n + 1n + 2 . . . 2n),
then Zk,π = E

[
tr [ρn

A]2
]
, and hence,

E

[(
m

(D)
A,n

)2
]

= D2n−2
γA

Zk,τ̃ . (3.14)

Recall that m
(D)
e,l = Dl−1

e tr
[
φl

e,x

]
, and write

Zk,π =
∑

{πx}∈SA,π

Zk({πx})

where

Zk({πx}) :=
∏

e=(xy)∈E

∏

l∈C(π−1
x πy)

tr
[
φl

e,x

]

=
∏

e=(xy)∈E

D
|C(π−1

x πy)|−k
e

∏

l∈C(π−1
x πy)

m
(D)
e,l

=
∏

e=(xy)∈E

D−d(πx,πy)
e m

(D)

e,π−1
x πy

.

(3.15)

This accomplishes Step 1: We have recast the problem of computing moments
into a question of computing a partition function for a classical spin model
with fixed boundary conditions.

For Step 2, we want to show that the dominant contribution(s) to Zk,π as
D goes to infinity are those given in the statement of the proposition. This will
simply be a matter of checking powers of D, and using the triangle inequality
property of the Cayley distance. If ΓA is the unique minimal cut, then we let
πmin

x = π for x ∈ ΓA and πmin
x = id for x ∈ V \ΓA, and we have

Zk({πmin
x }) = D−d(π,id)

γA

∏

e∈γA

m(D)
e,π = D−d(π,id)

γA
m(D)

γA,π. (3.16)

If there are exactly two minimal cuts ΓA,1 ⊂ ΓA,2, we let V = V1 � V2 �
V3, with V1 = ΓA,1, V2 = ΓA,2 ∩ Γc

A,1 and V3 = Γc
A,2. Now, consider the

permutations σ ∈ Sk that are on a geodesic between π and id (recall this
implies d(π, σ) + d(σ, id) = d(π, id)), and consider the configuration given
by πσ

x = π for x ∈ V1, πσ
x = σ for x ∈ V2, and πσ

x = id for x ∈ V3. By
hypothesis, γA,1 and γA,2 do not intersect, and hence, the edges in each cut
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are distinct. Then, this configuration has weight

Zk({πσ
x}) =

∏

e1∈γA,1

D−d(π,σ)
e1

∏

l1∈C(π−1σ)

m
(D)
e1,l1

∏

e2∈γA,2

D−d(σ,id)
e2

∏

l2∈C(σ)

m
(D)
e,l

= D−d(π,id)
γA,1

(
DγA,1
DγA,2

)d(σ,id) ∏

e1∈γA,1

m
(D)
e1,π−1σ

∏

e2∈γA,2

m(D)
e2,σ

= D−d(π,id)
γA,1

(
DγA,1
DγA,2

)d(σ,id)

m
(D)
γA,1,π−1σm(D)

γA,2,σ, (3.17)

where DγA,1/DγA,2 converges to t, by assumption. Now, to show that these
configurations yield the dominant contributions, we will need to use that De =
Θ(D), so let us write D

De
= C

(D)
e = Θ(1). Then for general configurations

labeled by πx, we may rewrite Eq. (3.15) as

Zk({πx}) =
∏

e=(xy)∈E

D−d(πx,πy)(C(D)
e )d(πx,πy)m

(D)

e,π−1
x πy

.

The configurations we claimed to be dominant satisfy Zk({π}) = Θ(D−m(A)d(π,id)),
where we recall that m(A) is the size of a minimal cut for A. Now, we will
show that all other configurations satisfy Zk({π}) = O(D−m(A)d(π,id)−1). To
this end, consider some arbitrary configuration {πx} ∈ SA,π. Let P be a max-
imal set of edge-disjoint paths in G from A to Ā. It is a well-known fact that
such a set has size m(A), by the max-flow min-cut theorem. Let

C
(D)
k :=

(
max

e∈E,l=1,...,k
(C(D)

e )l−1

)(
max

e∈E,π∈Sk

m(D)
e,π

)
.

Then, we may bound

Zk({πx}) ≤ (C(D)
k )|E| ∏

e=(xy)∈E

D−d(πx,πy) ≤ (C(D)
k )|E| ∏

p∈P

D−∑e=(xy)∈p d(πx,πy).

(3.18)

The first inequality is clear from the definition of C
(D)
k , and in the second

inequality, we simply restrict to a subset of the edges we multiply over. Note
that C

(D)
k = O(1). Then, by the triangle inequality for the Cayley distance d,

it holds that
∑

e=(xy)∈p

d(πx, πy) ≥ d(π, id)

with equality if and only if the only edges (xy) for which πx �= πy are on a
path in P , and each of the paths is a geodesic. Then, we conclude

Zk({πx}) ≤ C
(D)
k

∏

p∈P

D−d(π,id) = C
(D)
k D−m(A)d(π,id),

and we see that the weight of every configuration can be bounded by the
product of a O(1) number and a polynomial in D.
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Now, as promised, we show that if {πx} is not one of the minimal con-
figurations described above, we actually have

Zk({πx}) = O(D−m(A)d(π,id)−1). (3.19)

To see this, we rewrite the triangle inequality for the Cayley distance as:
∏

e=(xy)∈E

D−d(πx,πy) ≤
∏

p∈P

D−∑e=(xy)∈p d(πx,πy) ≤ D−m(A)d(π,id) (3.20)

with equality if and only if the πx are on a geodesic path in P . We now show
that this is satisfied only for the configurations we claimed to be minimal. As-
sume that {πx} ∈ SA,π is such that the inequalities in Eq. (3.20) are equalities
and let

Δn = {x ∈ V such that d(πx, π) ≤ n}.

Then, Δn ∈ C(A) for 0 ≤ n < d(π, id), and we denote by δn the associated
set of edges crossing the cut. Each edge (xy) ∈ δn must be such that πx �= πy,
so it must be on a path in P , and because the permutations are geodesics
along the paths, they must be on different paths. Hence |δn| ≤ |P | = m(A),
implying each Δn is a minimal cut. This immediately implies the claim if there
is a unique minimal cut, since we must have Δd(π,id)−1 = Δ0 = ΓA. If there
are exactly two minimal cuts, then we must have πx = π for x ∈ V1, πx = id
for x ∈ V3, and there must be some l such that for all x ∈ V2 we have d(π, πx) =
l and d(πx, id) = d(π, id) − l. Then in order to have equality in Eq. (3.20), we
must have that for all x ∈ V2, πx equals some fixed permutation σ, because
the assumption of having exactly two cuts implies that V2 is connected, and
we must have d(πx, πy) = 0 for all (xy) ∈ E with x, y ∈ V2. This proves Eq.
(3.19).

In conclusion, if there is a unique minimal cut, then by Eqs. (3.16) and
(3.19), we find

Zk,π = D−d(π,id)
γA

m(D)
γA,π + O(D−m(A)d(π,id)−1), (3.21)

and if there are exactly two (non-intersecting) cuts, then by Eqs. (3.17) and
(3.19), we find

Zk,π =
∑

σ, d(π,σ)+d(σ,id)=d(π,id)

D−d(π,id)
γA,1

(
DγA,1
DγA,2

)d(σ,id)

m
(D)
γA,1,π−1σm(D)

γA,2,σ

+ O(D−m(A)d(π,id)−1). (3.22)

Finally, we set π = τ for the full cycle τ and we use Eq. (3.13). For a
unique minimal cut γA, by Eq. (3.21)

EmγA,k = Dk−1
γA

Zk,τ

= m(D)
γA,π + O(Dk−1

γA
D−m(A)(k−1)−1)

= m
(D)
γA,k + O

(
1
D

)
.

(3.23)
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using d(τ, id) = k − 1 and DγA
= Θ(Dm(A)). This proves Eq. (3.9) as m

(D)
γA,k

converges to mγA,k.
For two non-intersecting minimal cuts, we saw that the dominant con-

tribution is due to configurations {πσ
x} for σ on a geodesic between τ and id.

Then, applying the observation that σ is on such a geodesic if and only if σ is
a non-crossing partition similarly yields that by Eq. (3.22)

EmγA,k = Dk−1
γA

Zk,τ

= Dk−1
γA

∑

σ∈NC(k)

(
DγA,1
DγA,2

)d(σ,id)

m
(D)
γA,1,π−1σm(D)

γA,2,σ

+ O(Dk−1
γA

D−m(A)(k−1)−1)

=
∑

σ∈NC(k)

(
DγA,1
DγA,2

)d(σ,id)

m
(D)
γA,1,τ−1σm(D)

γA,2,σ + O
(

1
D

)
.

(3.24)

Since m
(D)
γA,1,τ−1σ → mγA,1,τ−1σ, m

(D)
γA,2,σ → mγA,2,σ and DγA,1/DγA,2 → t, this

proves Eq. (3.10).
This accomplishes Step 2: We have shown that the configurations {πmin

x }
(in case of a unique minimal cut for A) and {πσ

x} (in case there are exactly
two non-intersecting minimal cuts for A) dominate in the computation of the
expectation of the kth moment of μA in terms of powers of D.

We complete the proof by showing that the variance of mA,k vanishes as
D → ∞. We use the observation in Eq. (3.14), applying the analysis of Z2k,π

to the case where π = τ̃ = (12 . . . k)(k + 1 k + 2 . . . 2k). If there is a unique
minimal cut, then using Eq. (3.21) and the fact that d(τ̃ , id) = 2k − 2, we find

E

[(
m

(D)
A,k

)2
]

= D2k−2
γA

Z2k,τ̃ =
∏

l∈C(τ̃)

m
(D)
γA,l + O(D2k−2

γA
D−m(A)(2k−2)−1)

= (m(D)
γA,k)2 + O

(
1
D

)
.

By Eq. (3.23), we know that (Em
(D)
A,k)2 = (m(D)

γA,k + O( 1
D ))2, and we conclude

that the variance obeys

E

[(
m

(D)
A,k − E

[
m

(D)
A,k

])2
]

= E
[
(m(D)

A,k)2
]

−
(
Em

(D)
A,k

)2

= O
(

1
D

)
.

For the case with exactly two minimal cuts, a similar argument holds. Here,
the key observation is that σ is on a geodesic between τ̃ and id if and only if
σ = σ1σ2 where σ1 is on a geodesic between (12 . . . k) and id and σ2 is on a
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geodesic between (k + 1 k + 2 . . . 2k) and id. Using Eq. (3.22), this implies

E(m(D)
A,k)2 = D2k−2

γA
Z2k,τ̃

=
∑

σ1,σ2∈NC(k)

(
DγA,1
DγA,2

)d(σ1,id)+d(σ2,id)

m
(D)
γA,1,τ−1σ1

m
(D)
γA,1,τ−1σ2

m(D)
γA,2,σ1

m(D)
γA,2,σ2

+ O
(

1
D

)

=

⎛

⎝
∑

σ∈NC(k)

(
DγA,1
DγA,2

)d(σ,id)

m
(D)
γA,1,τ−1σm(D)

γA,2,σ

⎞

⎠
2

+ O
(

1
D

)
.

By Eq. (3.24), we see that this coincides with (Em
(D)
A,k)2, up to O( 1

D ), and
hence, Eq. (3.11) holds. �

We now have the ingredients to prove that the entanglement spectrum of
random tensor networks with link states with bounded spectral variation can
be written in a simple fashion. We will use the method of moments to translate
the above result on convergence of moments to convergence in distribution.
The basic statement is that, given certain conditions on the distributions in
question, if the moments of a sequence of distribution μn converge to those of
μ, then μn ⇒ μ—see, for instance, Theorem 30.8 in [13].

The method of moments is valid, so long as a distribution μ is completely
determined by its moments. This occurs if, for all k, the kth moment mμ,k is
bounded as

mμ,k ≤ ABkk! (3.25)

for constants A,B independent of k. If the distributions have compact support,
as in Proposition 3.3, then this condition is satisfied.2

Now that we have established the convergence of moments in Proposi-
tion 3.3, we have our main result of the (conditional) convergence in distri-
bution. As in Proposition 3.3, we consider a family of random tensor network
states with link states with bounded spectral variation with increasing D, as
defined in the beginning of this section.

Theorem 3.4. If there exists a unique minimal cut γA for A, then μ
(D)
A ⇒ μγA

,
in probability, as D → ∞. If there exist exactly two minimal cuts γA,1 and γA,2,

which do not intersect and for which limD→∞
DγA,1
DγA,2

= t ≤ 1, then μ
(D)
A ⇒

MP(1) � μγA,1 � μγA,2(t), in probability, where μγA,2(t) = (1 − t)δ0 + tμγA,2

2A basic example of a distribution which does not have compact support, but is nevertheless
uniquely determined by its moments, is a standard Gaussian distribution. On the other hand,
a standard example of distributions that are not determined by their moments is the densities

on R≥0 with dμ1(x) =
√
2πx−1e−(log x)2/2dx and dμ2(x) = (1 + sin(2π log x))dμ1(x), for

which it can be verified that the nth moments of both distributions are equal to e−n2/2,
while the distributions are clearly not identical.
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Proof. It is straightforward to see that the kth moment of μγA,2(t) is given
by tk−1mγA,2,k, and then, the result follows immediately from Proposition 3.3,
Theorem 3.2, and the method of moments. Because we assumed that for any
minimal cut γA for A, the limiting distributions μγA

are compactly supported,
they are uniquely determined by their moments. Hence, the method of mo-
ments is valid, and the convergence of moments implies convergence in distri-
bution. �
Remark 3.5. In Theorem 3.4, we assumed that the two cuts were non-intersecting.
What happens if there are still only exactly two minimal cuts, but γA,1 ∩ γA,2

is non-empty? This extension is straightforward. Let γ
(a)
A := γA,1∩γA,2 and let

γ
(b)
A,i = γA,i\γ

(a)
A for i = 1, 2. In line with previous notation, let μ

γ
(a)
A

and μ
γ
(b)
A,i

denote the corresponding limiting distributions of the entanglement spectra
along these sets, with moments m

γ
(a)
A ,k

and m
γ
(b)
A,i,k

. The only step in the proof
of Proposition 3.3 where we used that the cuts were non-intersecting is when
we computed the value of Zk({πx}) for the optimal configuration. If the cuts
do intersect, and we consider the configuration with πx = τ for x ∈ V1 with τ
the complete cycle, πx = σ for x ∈ V2 and σ ∈ NC(k), and πx = id for x ∈ V3,
then a quick calculation shows

Zk({πx}) → D−d(π,id)
γA,1

(DγA,1/DγA,2)d(σ,id)
∏

e∈γ
(a)
A

me,k

∏

e1∈γ
(b)
A,1

me1,π−1σ

∏

e2∈γ
(b)
A,2

me2,σ.

Apart from this modification, the proof of Proposition 3.3 is still valid, leading
to

Zk,τ = m
γ
(a)
A ,k

∑

σ∈NC(k)

td(σ,id)m
γ
(b)
A,1,τ−1σ

m
γ
(b)
A,2,σ

.

If, in Theorem 3.4, we do not assume that the cuts are non-intersecting, then
the partition function above leads to a limiting distribution given by

μ
γ
(a)
A

⊗
(
MP (1) � μ

γ
(b)
A,1

� μ
γ
(b)
A,2

(t)
)

.

3.3. Non-trivial Link States and Entanglement Negativity

As another application of the theory of free probability, we will compute the
entanglement negativity spectrum for random tensor network states with link
states with bounded spectra. In [29], it was shown how to compute the en-
tanglement negativity spectrum for a random tensor network state with max-
imally entangled link states using a replica trick. Using the methods from the
previous subsection, we can analyze the negativity for entangled link states
with bounded spectral variation. We remark that similar computations have
recently been performed in [28] in the context of replica wormholes, and our
assumption on the link states is a generalization of the “pairwise connected
regime” in [28]. Another work investigating non-trivial entanglement negativ-
ity spectra in random tensor networks is [42], where they focus on the effect of
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having multiple minimal cuts in the network. As our analysis will be a straight-
forward combination of the arguments in [29] and Sect. 3.2, we will be rather
concise; the main message of this section is to show that the language of free
probability applies to other random tensor network computations as well.

We first recall how negativity functions as an entanglement measure for
mixed states. Let T be the superoperator which maps an operator X to its
transpose XT, and I be the identity superoperator. For ρAB ∈ P(AB),

ρTB

AB := (IA ⊗ TB)(ρAB)

is the partial transpose of ρAB on the B system. The logarithmic or entangle-
ment negativity is given by

EN (ρAB) = log
‖ρTB

AB‖1

tr[ρ]
.

It is a measure for the entanglement of the mixed state ρAB : if EN (ρAB) > 0
the state must be entangled. We call spec(

∣∣∣ρTB

AB

∣∣∣) the entanglement negativity
spectrum. In analogy to the Rényi entropies, we can generalize the logarithmic
negativity to a one-parameter family of negativities. The kth Rényi negativity
is given by

Nk(ρAB) = tr
[
(ρTB

AB)k
]
.

If we let N
(even)
m (ρAB) = N2m(ρAB), then the logarithmic negativity is ob-

tained as an analytic continuation in the Rényi index m → 1
2 of log(N (even)

m

(ρAB)). More precisely, in the expression

log
∑

λ∈spec(ρ
TB
AB)

|λ|α ,

we may take α → 1
2 to obtain EN (ρAB) + log tr[ρ].

In the context of random tensor networks, we partition the boundary
in three regions: V∂ = A � B � C, and we would like to compute the Rényi
negativities of the reduced state ρAB . We will then use this to determine the
entanglement negativity spectrum and compute the entanglement negativity.
The idea is that the kth Rényi negativity can be computed using a replica trick,
by placing the full cycle τk = (12 . . . k) ∈ Sk on A and τ−1

k = (k k − 1 . . . 1) on
B:

Nk(ρAB) = tr
[
ρ⊗k

AB

(
RA(τ) ⊗ RB(τ−1)

)]

= tr
[
ρ⊗k

ABC

(
RA(τ) ⊗ RB(τ−1) ⊗ RC(id)

)]
.

Let us first discuss the case with maximally entangled link states, follow-
ing [29]. The same arguments as in Sect. 2.2 show that one can compute the
expectation of Nk(ρAB) for a random tensor network state using a spin model,
now with boundary conditions of τk on A, τ−1

k on B and id on C. We will as-
sume that the minimal cuts ΓA, ΓB and ΓC are unique. Note that the minimal
cut for AB is given by ΓAB = Γc

C . From the theory of multi-commodity flows,
it is known that there exist sets of edge-disjoint paths P = PAB ∪ PAC ∪ PBC ,
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Figure 4. Tensor networks with one and two minimal cuts.
The relevant ground state configuration domains are denoted
by ΓA

where PAB consists of paths from A to B, and similarly for PAC and PBC ,
and which are such that

|PAB | + |PAC | = |γA| , |PAB | + |PBC | = |γB | , |PAC | + |PBC | = |γC | .
This can be used to show (in analogous fashion to the proof of Proposition 3.3)
that if k = 2n is even, any spin model configuration contributing to ENk(ρAB)
is of order O(D−(n−1)(|γA|+|γB |)−n|γC |). If k = 2n + 1 is odd, any spin model
configuration contributing to ENk(ρAB) is of order O(D−n(|γA|+|γB |+|γC |)).

In order to determine what happens as D → ∞, we need to determine
the dominant configurations. Let r be the number of connected components of
V \(ΓA ∪ΓB ∪ΓC). There are two distinct cases. The first is when the minimal
cut for AB (which is the complement of the minimal cut for C) is the union of
the minimal cuts for A and B, so ΓAB = ΓA ∪ ΓB and hence γAB = γA ∪ γB .
Then, the minimal cuts naturally partition the bulk vertices into three cuts
ΓA, ΓB , and ΓC , and we have r = 0. In this case, the dominant configurations
in the spin model are those where the vertices in ΓA are assigned τk, those
in ΓB are assigned τ−1

k and those in ΓC are assigned id. This is illustrated in
Fig. 4a.

The second case is when ΓA ∪ΓB � ΓAB and hence γAB �= γA ∪γB . Now,
we have again the domains ΓA, ΓB and ΓC , but upon removing these vertices,
there may also be connected components V1, . . . , Vr which are not connected
to A, B or C. Here, the minimal configurations are those for which, again, the
vertices in ΓA are assigned τk, those in ΓB are assigned τ−1

k and those in ΓC

are assigned id, and where in each component Vi the vertices are assigned a
permutation πi which is such that it satisfies three conditions: It must be on a
geodesic between τk and τ−1

k , on a geodesic between τk and id and on a geodesic
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between τ−1
k and id. If k = 2n is even, such permutations are given by non-

crossing pairings: permutations corresponding to non-crossing partitions in
which each cycle has length 2. The set of non-crossing pairings on 2n elements is
in bijection with the set of non-crossing partitions on n elements, so the number
of non-crossing pairings on 2n elements is given by |NC(n)| = Cn. One way
to obtain this correspondence is as follows. If π is a non-crossing pairing, τ2nπ
will map even numbers to even numbers, and restricting to the even numbers
and relabeling 2i �→ i yields a non-crossing partition σ ∈ NC(n). Moreover,
restricting to the odd numbers and relabeling 2i + 1 �→ i yields the non-
crossing partition σ−1τ ∈ NC(n). This leads to Cr

n dominant contributions
to EN2n(ρAB) of size D−(n−1)(|γA|+|γB |)−n|γC | since we can choose a non-
crossing pairing πi for each component. Such a configuration is illustrated in
Fig. 4b.

For odd k = 2n + 1, we similarly have permutations which correspond
to a non-crossing partition, and which have a single fixed point and all other
cycles with length 2. This leads to ((2n + 1)Cn)r dominant contributions to
EN2n(ρAB), of size D−(n−1)(|γA|+|γB |)−n|γC |. We also note that rank(ρTB

AB) ≤
D|γA|+|γB |. If spec(ρTB

AB) = {si}, then we define the measure

μ
(D)
AB =

1
D|γA|+|γB |

D|γA|+|γB |∑

i=1

δ
D

1
2 (|γA|+|γB |+|γC |)si

. (3.26)

This has moments given by

m
(D)
AB,k =

∫
xkdμ

(D)
AB (x) = D(

k
2 −1)(|γA|+|γB |)+k

2 |γC |Nk(ρAB).

If we take the expectation of the moments, we again need to distinguish the
two cases. If |γA| + |γB | = |γC |, we see that the powers of D cancel for the
dominant configurations, so m

(D)
AB,k → 1 for all k. On the other hand, for

|γA| + |γB | > |γC |, we see that for D → ∞ with odd k, we have Em
(D)
AB,k → 0.

For even k, we recover the degeneracy of the dominant configurations, leading
to

lim
D→∞

m
(D)
AB,k =

⎧
⎪⎨

⎪⎩

1 if |γA| + |γB | = |γC | ,
0 if k odd and |γA| + |γB | > |γC | ,
Cr

k/2 if k even and |γA| + |γB | > |γC | ,
(3.27)

where r is the number of connected components of V \(ΓA ∪ΓB ∪ΓC). In fact,
one can show that, as in Proposition 3.3, the variance goes to zero as well, and
hence, the method of moments allows one to conclude that μ

(D)
AB ⇒ μAB , in

probability, where

μAB =

⎧
⎪⎨

⎪⎩

σ⊗r if r > 0,
1
2δ1 + 1

2δ−1 if r = 0 and |γA| + |γB | > |γC | ,
δ1 if r = 0 and |γA| + |γB | = |γC | ,

(3.28)
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where σ is the semicircle distribution with density

dσ(x) =
1
2π

√
4 − x21|x|≤2 dx

Alternatively, one may study the empirical distribution of the squared entan-
glement negativity spectrum

ν
(D)
AB =

1
D|γA|+|γB |

∑

i

δ
D|γA|+|γB |+|γC |s2

i

. (3.29)

This distribution has kth moment given by m
(D)
AB,2k, and in comparison with

the limiting moments in Eq. (3.27), one can conclude that ν
(D)
AB ⇒ νAB , in

probability, where

νAB = MP (1)⊗r. (3.30)

The logarithmic negativity can be computed using the distribution μ
(D)
AB or

ν
(D)
AB as

EN (ρAB) = log
∫

|λ|dμ
(D)
AB (λ) +

log D

2
(|γA| + |γB | − |γC |) − log tr [ρ] (3.31)

= log
∫ √

λdν
(D)
AB (λ) +

log D

2
(|γA| + |γB | − |γC |) − log tr [ρ] .

(3.32)

The convergence of ν
(D)
AB to νAB implies3 that EN (ρAB) − log D

2 (|γA| + |γB | −
|γC |) converges in probability to

log
∫ √

λdνAB(λ) = r log
8
3π

.

See Appendix D of [29] for details and proofs.
A straightforward combination of the arguments in Sect. 3.2 and [29]

shows that the same configurations are the dominant contributions for link
states with bounded spectral variation as in Sect. 3.2. To determine the limiting
distribution in this case, we can generalize Eq. (3.28) in the same fashion as
in Sect. 3.2. We assume the minimal cuts ΓA, ΓB and ΓC are unique. We also
assume that γA ∩ γB = ∅, and in the case where γC = γAB �= γA ∪ γB (so
|γA|+|γB | > |γC |), all pairwise intersections between γA, γB and γC are empty.
This excludes the case where |γA| + |γB | > |γC |, but r = 0. We let γA,i and
γB,i denote the components of γA and γB which are connected to Vi, and we
let μ

(D)
γA,i and μ

(D)
γB,i denote the distribution of the spectrum along these sets,

with associated kth moments m
(D)
γA,i,k

, m
(D)
γB,i,k

, which we assume to converge to
the moments mγA,i,k, mγB,i,k of compactly supported distributions μγA,i

and
μγB,i

. For convenience, we assume De = D for all edges e ∈ E.
We can now compute the dominant contributions to ENk(ρAB). If γC =

γA ∪ γB , then there is a unique dominant configuration, which contributes

3The function f(λ) =
√

λ is not in Cb(R), but the method of moments actually shows a
stronger convergence, allowing test functions to have polynomial growth.
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D−(k−1)|γC |mγC ,k. If |γA| + |γB | > |γC | and k = 2n is even, consider the con-
figuration which assigns πi to Vi, where each πi is a non-crossing pairing. For
each edge e ∈ γC , we have m

(D)
e,πi = (m(D)

e,2 )n, so this configuration contributes

D−(n−1)(|γA|+|γB |)−n|γC |
(
m

(D)
γC ,2

)n r∏

i=1

(
m

(D)

γA,i,τ
−1
2n πi

m(D)
γB,i,τ2nπi

)
.

Recalling the construction of the equivalence between NC(n) and non-crossing
pairings on 2n elements, we see that

m(D)
γB,i,τ2nπi

= m(D)
γB,i,σi

m
(D)

γB,i,σ
−1
i τn

for some unique σi ∈ NC(n). Similarly, one may verify

m
(D)

γA,i,τ
−1
2n πi

= m(D)
γA,i,σi

m
(D)

γA,i,σ
−1
i τn

.

This implies that the contribution of all dominant configurations is given by
(
m

(D)
γC ,2

)n r∏

i=1

(
∑

σ∈NC(n)

m(D)
γA,i,σm(D)

γB,i,σm
(D)
γA,i,σ−1τn

m
(D)
γB,i,σ−1τn

)

As in the maximally entangled case, upon rescaling, the odd moments vanish
as D → ∞. In conclusion, the resulting asymptotic moments are given by

lim
D→∞

Em
(D)
AB,k =

⎧
⎪⎨

⎪⎩

mγC ,k if |γA| + |γB | = |γC | ,
0 if k odd and |γA| + |γB | > |γC | ,
mk if k even and |γA| + |γB | > |γC |

(3.33)

with

m2n = mn
γC ,2

r∏

i=1

(
∑

σ∈NC(n)

mγA,i,σmγB,i,σmγA,i,σ−1τn
mγB,i,σ−1τn

)
.

As before, one can also show, in similar fashion to the proof of Proposition 3.3,
that the variance of the moments goes to zero as D → ∞. For the case |γA| +
|γB | > |γC |, we consider ν

(D)
AB similar to Eq. (3.29), but with an additional

rescaling by mγC ,2:

ν
(D)
AB =

1
D|γA|+|γB |

∑

i

δ
D|γA|+|γB |+|γC |m−1

γC ,2s2
i

.

This has moments, which compute N
(even)
k (ρAB), converging to

lim
D→∞

E

∫
xkdν

(D)
AB (x) =

r∏

i=1

(
∑

σ∈NC(n)

mγA,i,σmγB,i,σmγA,i,σ−1τn
mγB,i,σ−1τn

)
.

Thus, by the method of moments and Theorem 3.2, it holds that ν
(D)
AB ⇒ νAB ,

in probability, where

νAB =

{⊗r
i=1 νi if r > 0,

μγC
if r = 0,

(3.34)
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and where νi is given by

νi = (μγA,i
⊗ μγB,i

)�2 � MP(1).

This reduces to Eq. (3.30) if the link states are maximally entangled. We can
use this to compute the logarithmic negativity, as we did previously. For r > 0,

EN (ρAB) = log
∫ √

λdν
(D)
AB (λ) +

log D

2
(|γA| + |γB | − |γC |)

+
1
2

log mγC,2 − log tr [ρ] ,

from which we find that EN (ρAB) − log D
2 (|γA| + |γB | − |γC |) converges in

probability to

log
∫ √

λdνAB(λ) +
1
2

log mγC,2 .

For the case |γA|+|γB | = |γC |, it is more elegant to use the limiting distribution
of μ

(D)
AB , as defined in Eq. (3.26). By the method of moments and Eq. (3.33),

μ
(D)
AB ⇒ μγC

, in probability. We may then compute the entanglement negativity
as

EN (ρAB) = log
∫

|λ| dμ
(D)
AB (λ) +

log D

2
(|γA| + |γB | − |γC |) − log tr [ρ] ,

and hence EN (ρAB) − log D
2 (|γA| + |γB | − |γC |) converges in probability to

log
∫

|λ| dμAB(λ).

4. Link States with Unbounded Spectral Variation

We will now consider a different regime, where the link states have unbounded
spectral variation. Our methods in this section are distinct from the previous
one, and the two sections can be considered separately.

4.1. One-Shot Entropies

We begin by introducing one of our main tools for studying entanglement
spectra in random tensor network states: one-shot entropies. In quantum in-
formation theory, the rates of certain important protocols, such as compression
or state merging can be expressed as entropic quantities. One-shot entropies
are the appropriate analogs for settings where one would like to analyze a task
for a single or finite number of copies of the relevant state. Asymptotic rates
in terms of ordinary von Neumann entropies are then recovered in the limit
of infinitely many independent copies. For an extensive introduction to this
point of view, see [74]; here, we provide the basic definitions and introduce the
relevant concepts.

A random tensor network built from link states that are maximally en-
tangled (or more generally have bounded spectral variation) can be analyzed
using asymptotic tools. Indeed, if we have a maximally entangled state of
large dimension D = 2n, then this is equal to the nth tensor power of a qubit
maximally entangled state, so we are effectively in an asymptotic situation.
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However, if we allow for link states with unbounded spectral variation or even
completely general background states, as in Sect. 2.3, then it is more natural
to use tools from one-shot quantum information theory.

We take the Rényi entropies as a starting point, which we defined in Eq.
(2.7) for subnormalized states. Let H be some Hilbert space and for ρ ∈ P≤(H)
we define the (unconditional) min-entropy and the max-entropy by

Hmin(ρ) = − log ‖ρ‖∞

Hmax(ρ) = log
(
tr[

√
ρ]2
)

which coincide with the Rényi entropies H∞(ρ) and H 1
2
(ρ) for ρ ∈ P=(H). As

usual, if ρA is the reduced density matrix on a system A, we write Hmin(A)ρ =
Hmin(ρA) and Hmax(A)ρ = Hmax(ρA).

Often, when applied to study quantum information processing tasks, it is
useful to allow a small error. This leads to the introduction of smooth entropies.
To define these, we use a distance measure known as the purified distance,
which is given for ρ, σ ∈ P≤(H) by

P (ρ, σ) =
√

1 − F∗(ρ, σ)2

where F∗(ρ, σ) is the generalized fidelity between ρ and σ, which is defined by

F∗(ρ, σ) = F (ρ, σ) +
√

(1 − tr [ρ])(1 − tr [σ])

in terms of the ordinary fidelity F (ρ, σ) = ‖√ρ
√

σ‖1. We define the smooth
min- and max-entropies of ρ ∈ P≤(H) as

Hε
min(ρ) = sup

ρε∈P≤(H),P (ρε,ρ)≤ε

Hmin(ρε)

Hε
max(ρ) = inf

ρε∈P≤(H),P (ρε,ρ)≤ε
Hmax(ρε).

The smooth entropies are such that one recovers the usual von Neumann en-
tropies in the limit of many independent copies. Indeed, the following asymp-
totic equipartition property holds:

lim
n→∞

1
n

Hε
min(ρ⊗n) = H(ρ) = lim

n→∞
1
n

Hε
max(ρ

⊗n)

for any 0 < ε < 1. Variations on this definition are possible. For instance, one
can choose a different distance measure, which will yield different entropies.
However, for the usual choices, the differences go to zero as ε goes to zero,
so the particular choice is often immaterial. For instance, consider the trace
distance between ρ, σ ∈ P≤(H), which is defined by

T (ρ, σ) =
1
2
‖ρ − σ‖1 +

1
2

|tr [ρ − σ]| ,

where the last term, which is absent in usual definitions of the trace distance,
accounts for subnormalized states. It is easy to see that T (ρ, σ) ≤ ‖ρ − σ‖1 ≤
2T (ρ, σ). The Fuchs–van de Graaff inequalities (see Lemma 3.17 in [74]) relate
the trace distance and purified distance:

T (ρ, σ) ≤ P (ρ, σ) ≤
√

2T (ρ, σ) (4.1)
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for ρ, σ ∈ P≤(H).
There are also conditional versions of the Rényi entropies. Consider a bi-

partite quantum state ρAB ∈ P=(AB). For the von Neumann entropy, the con-
ditional entropy can simply be defined as an entropy difference, namely H(A|B)ρ

= H(AB)ρ −H(B)ρ. However, it turns out that this is not a good definition in
the Rényi case. There are various ways to define a Rényi conditional entropy
Hk(A|B); we use a version based on the so-called sandwiched Rényi relative
entropy. For k = 2, this gives a quantum conditional collision entropy, which
will be useful for defining minimal cuts and which is defined as follows. For
ρAB ∈ P≤(AB), let

H2(A|B)ρ|ρ := − log tr
[(

(I ⊗ ρB)− 1
4 ρAB(I ⊗ ρB)− 1

4

)2
]

+ log tr [ρ] . (4.2)

Finally, there are also conditional versions of the min- and max-entropy. For
ρAB ∈ P≤(AB) and σB ∈ P≤(B), we define

Hmin(A|B)ρ|σ = − inf{λ : ρAB ≤ 2λIA ⊗ σB}
Hmax(A|B)ρ|σ = log ‖√ρAB

√
I ⊗ σB‖2

1

and we let

Hmin(A|B)ρ = sup
σ∈P≤(B)

Hmin(A|B)ρ|σ

Hmax(A|B)ρ = sup
σ∈P≤(B)

Hmax(A|B)ρ|σ.

We can also define their smoothed versions

Hε
min(A|B)ρ = sup

ρε∈P≤(AB),P (ρε,ρ)≤ε

Hmin(A|B)ρε

Hε
max(A|B)ρ = inf

ρε∈P≤(AB),P (ρε,ρ)≤ε
Hmax(A|B)ρε .

There is a duality between (smooth) max- and min-entropies. If ρ ∈ P≤(ABC)
is a pure state, it holds that

Hε
min(A|B)ρ = −Hε

max(A|C)ρ. (4.3)

We will use the fact that for a normalized state ρAB ∈ P=(AB) (Corollary
5.10 in [74])

Hmin(A|B)ρ ≤ H2(A|B)ρ|ρ. (4.4)

A final important property of conditional smooth entropies is the data pro-
cessing inequalities. Let Φ and Ψ be completely positive and trace-preserving
(CPTP) maps, mapping systems A to A′ and B to B′, respectively, and let
σ = (Φ ⊗ Ψ)(ρ). If Φ is also subunital, and 0 ≤ ε ≤ √

tr ρ, then Theorem 6.2
of [74] states

Hε
min(A′|B′)σ ≥ Hε

min(A|B)ρ and Hε
max(A

′|B′)σ ≥ Hε
max(A|B)ρ.

In fact, for the smooth min-entropy the data processing inequality is also valid
if Φ is only trace non-increasing rather than trace-preserving, see [73].
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4.2. Recovery Isometries

Recall that we study random tensor network states with link states, pure states
placed on each edge whose tensor product forms the full state on edges φ =⊗

e∈E φe ∈ P=(V ) for some graph G = (V,E). In Sect. 2.3, we considered more
general background states φV ∈ P≤(V ), where we no longer have a tensor
product structure along the edges of some graph, and applying the replica
trick does not yield a local spin model for the moments of the tensor network
state. This situation is of independent interest, but will also be useful as an
intermediate step when applying bounds based on one-shot entropies to link
states. In Sect. 3, we studied link states for which the entanglement spectrum
of the edge states φe had bounded variation, and we used the replica trick
to compute the moments of the spectrum of ρA for a boundary subsystem
A. For general background states, we saw that the replica trick for k = 2
extends as in Eq. (2.20). What are the minimal cuts in this setting? Based on
Eq. (2.20), a first guess would be that ΓA ∈ C(A) would be a minimal cut
(i.e., correspond to the dominant term in the replica trick) if for all other cuts
ΔA ∈ C(A) we would have H2(ΓA)φ � H2(ΔA)φ. If the state is a link state,
this corresponds to adding weights to the edges of the graph corresponding
to the Rényi-2 entropies along the edges, and computing a weighted minimal
cut. Indeed, this would yield an accurate approximation of tr[ρ2

A] and hence
of H2(ρA). However, if the spectrum of ρA is not close to a flat spectrum, this
does not imply that spec+(ρA) is close to spec+(φΓA

). We would like to show
that for link states with unbounded spectral variation, and an appropriate
minimal cut condition for ΓA ∈ C(A), it is still true that spec+(ρA) is close to
spec+(φΓA

).
We will adapt the k = 2 replica trick for general background states to get

a bound on the difference in trace norm between spec+(ρA) and spec+(φΓA
)

in terms of conditional Rényi-2 entropies,4 as defined in Eq. (4.2). In Sect. 4.3,
we will use this to formulate a condition for cut minimality in terms of smooth
entropies for link states.

The main result of this subsection is a tensor network version of one-shot
decoupling. Let φV ∈ P≤(V ). We allow φV to be a general state, which need
not be pure and also need not be a product state along the edges of some
graph. Let R be a purifying system and φV R ∈ P≤(V R) be a purification of
φV . Then, we can construct the random tensor network state ρV∂R where the
boundary systems are given by V∂ ∪ R, which is a purification of the random
tensor network state ρV∂

as in Eq. (2.18) by

φV∂R = trVb
[(IV∂R ⊗ ψ)φ] (4.5)

where ψ is a tensor product of random tensors. We briefly recall our notation
for boundary subsystems and cuts: For a boundary subsystem A ⊆ V∂ , we
denote its boundary complement by Ā = V∂\A, and for a cut ΓA ∈ C(A), we

4Note that while H(A|B)φ = H(AB)φ − H(B)φ, in general H2(A|B)φ|φ �= H2(AB)φ −
H2(B)φ.
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let Γc
A = V \ΓA, which is a cut for Ā. The purifying system R can be thought

of as an additional boundary system in the tensor network construction.
In Theorem 4.4, we will assume that we have a cut ΓA ∈ C(A) which is

such that for all cuts ΔA ∈ C(A) for which ΔA � ΓA we have
H2(ΓA\ΔA|Γc

AR)φ|φ � 1, and similarly for all cuts ΔA ∈ C(A) for which ΓA �

ΔA we have H2(ΔA\ΓA|ΓAR)φ|φ � 1. We show that this condition im-
plies that with high probability there exist isometries VA : HA → HΓA

and
VĀ : HĀ → HΓc

A
such that

(VA ⊗ VĀ ⊗ IR)|ρ〉 ≈ |φ〉. (4.6)

The approximation accuracy will be measured in trace norm. In particular,
this implies that spec+(ρA) ≈ spec+(φΓA

). If the state φ is a tensor product
of link states, spec+(φΓA

) is precisely the entanglement spectrum along the
cut γA. The isometries VA and VĀ are recovery isometries, which allow us to
“recover” ΓA from the A system, and similarly we can recover Γc

A from Ā.
The result is closely related to quantum error correction. One way to

interpret this is as follows: Consider a subspace HS of HV and let R be a
reference system of dimension dim(HS), and φV R a maximally entangled state
between S and R. Then, Eq. (4.6) can be interpreted as saying that if we en-
code the subspace S by projecting onto random tensors, the information in ΓA

is protected, after encoding, against an erasure error on Ā. This idea is also
discussed in [61] for perfect tensor network models, and in [40] for random
tensor networks with maximally entangled link states. In holography, the no-
tion of local recovery isometries and their error correction interpretation goes
under the name of entanglement wedge reconstruction or subregion-subregion
duality. See [6,7] for a detailed discussion of entanglement wedge reconstruc-
tion in holographic systems with bulk entropy, relating to one-shot entropies.
We provide more details in “Appendix B.”

Our approach to showing Eq. (4.6) is that we start by projecting only on
the random tensors in ΓA, and not on the random tensors in Γc

A. This yields
a random tensor network state σ on AΓc

AR.
We then show that, by a version of one-shot decoupling, the reduced

state on σΓc
AR has not changed much from φΓc

AR. By Uhlmann’s theorem,
this implies that there exists an isometry VA such that (VA ⊗ IΓc

AR)|σ〉 ≈ |φ〉.
Combining this with a similar result for Γc

A we obtain Eq. (4.6), as will be
made precise in Theorem 4.4.

In our construction of σ, we can relabel the vertices in the graph, and
think of the vertices in ΓA\A as the bulk vertices Vb, the boundary subsystem A
as the complete boundary V∂ , and relabel all other subsystems as the reference
system R. Then, we prove the following result, which is closely related to the
one-shot decoupling results in [24].

Proposition 4.1. Consider a random tensor network state ρV∂R as in Eq. (4.5)
with a (purified) background state φV R ∈ P≤(V R). Let A = V∂ and let ΓA = V
and suppose that for any cut ΔA ∈ C(A) other than ΓA

H2(ΓA\ΔA|R)φ|φ ≥ K
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then

E‖ρR − φR‖1 ≤ 2
|Vb|
2
√

tr[φ]2− 1
2 K .

Note that since ΓA = Vb ∪ A, the sets ΓA\ΔA for ΔA ∈ C(A)\{ΓA} are
exactly the non-empty subsets of Vb. The formulation in terms of ΔA ∈ C(A)
will be natural when we apply this result in Theorem 4.4.

Proof. We closely follow the strategy in [24,26]. We first note a basic fact
(Lemma 3.7 in [24]): For any operator X and ω a subnormalized density matrix,
it holds that

‖X‖1 ≤ ‖ω− 1
4 Xω− 1

4 ‖2. (4.7)

The proof is an application of the Cauchy–Schwarz inequality. We use Eq. (4.7)
with ω = φR and Jensen’s inequality to see that

E‖ρR − φR‖1 ≤
√

E tr[(ρ̃R − φ̃R)2]

where ρ̃V∂R = (I ⊗ φR)− 1
4 ρV∂R(I ⊗ φR)− 1

4 and φ̃V R = (I ⊗ φR)− 1
4 φV R(I ⊗

φR)− 1
4 . Now, Eρ̃R = φ̃R by Eq. (2.21), and the replica trick in Eq. (2.20)

yields

E tr[(ρ̃R − φ̃R)2] = E tr[ρ̃2
R] − tr[φ̃2

R]

=
∑

ΔA∈C(A),ΔA�ΓA

tr[φ̃2
(ΓA\ΔA)R]

=
∑

ΔA∈C(A),ΔA�ΓA

tr[φ]2−H2(ΓA\ΔA|R)φ|φ

using the definition of φ̃ and Eq. (4.2) and hence

(E‖ρR − φR‖1)
2 ≤ 2|Vb| tr[φ]2−K .

�

Suppose that in the setup of Proposition 4.1, we would have equality
ρR = φR. Then, by Uhlmann’s theorem, their purifications ρAR and φΓAR are
related by an isometry VA from A to ΓA. The following lemma is useful to
extend to the case where the reduced states are close in trace distance.

Lemma 4.2. Suppose ρAB ∈ P(AB) and σAC ∈ P≤(AC) are pure states on
Hilbert spaces HA ⊗ HB and HA ⊗ HC , respectively. Then,

min
V

‖(IA ⊗ V )ρAB(IA ⊗ V †) − σAC‖1 ≤ 2
√

2‖ρA − σA‖1 + 2‖ρA − σA‖2
1.

where the minimum is over all isometries V : HB → HC .

Proof. Uhlmann’s theorem states that if ρAB ∈ P(AB) and σAC ∈ P(AC) are
pure quantum states with dim(HB) ≤ dim(HC), then there exists an isometry
V : HB → HC such that

P (ρA, σA) = P ((IA ⊗ V )ρAB(IA ⊗ V †), σAC)
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and, in particular, the isometry is the solution to an optimization problem:

P (ρA, σA) = min
V

P ((IA ⊗ V )ρAB(IA ⊗ V †), σAC).

Moreover, if both ρ and σ are subnormalized, by Eq. (4.1), we can bound

min
V

‖(IA ⊗ V )ρAB(IA ⊗ V †) − σAC‖1 ≤ min
V

2P ((IA ⊗ V )ρAB(IA ⊗ V †), σAC)

= 2P (ρA, σA)

≤ 2
√

2‖ρA − σA‖1.

From this, it follows that if σ is subnormalized and ρ has tr[ρ] > 1,

min
V

‖(IA ⊗ V )ρAB(IA ⊗ V †) − σAC‖1 ≤ 2
√

2 tr[ρ]‖ρA − σA‖1.

Since tr[ρ] ≤ tr[σ] + ‖ρ − σ‖1 and tr[σ] ≤ 1, we conclude that

min
V

‖(IA ⊗ V )ρAB(IA ⊗ V †) − σAC‖1 ≤ 2
√

2‖ρA − σA‖1 + 2‖ρA − σA‖2
1.

for arbitrary ρ and subnormalized σ. �
Finally, we will need a basic lemma relating tensor network states with

differing background states:

Lemma 4.3. Suppose we consider random tensor network states ρV∂R and ρ̃V∂R

with (purified) background states φV R, φ̃V R ∈ P≤(V R) and projecting onto the
same random tensors. Then,

E‖ρV∂R − ρ̃V∂R‖1 ≤ ‖φV R − φ̃V R‖1.

Proof. Let φ− φ̃ = Δ+ −Δ− where both Δ+ and Δ− are positive semidefinite
and are such that ‖φ − φ̃‖1 = tr[Δ+ + Δ−]. Then, we can also consider the
random tensor network states σ+ and σ− which take Δ+ and Δ− as back-
ground states, and by the linearity of Eq. (4.5) in the background state we
have ρ − ρ̃ = σ+ − σ−. By Eq. (2.21), Eσ± = Δ±. We then estimate

E‖ρ − ρ̃‖1 = E‖σ+ − σ−‖1 ≤ E(‖σ+‖1 + ‖σ−‖1) = E tr[σ+ + σ−]

= tr[Δ+ + Δ−] = ‖φ − φ̃‖1.

where we have used that σ+ and σ− are positive semidefinite and hence
‖σ±‖1 = tr[σ±]. �

With all our tools assembled, we are ready to prove the main result of
this subsection. We again let φV R ∈ P≤(V R) be a background state with R
a purifying system, and we let ρV∂R be the associated random tensor network
state as constructed in Eq. (4.5). Let ΓA be an arbitrary cut for the boundary
region A. In Theorem 4.4, we provide a criterion to determine whether ΓA

is a minimal cut in terms of conditional entropies. Informally speaking, the
following result shows that if ΓA is a minimal cut in this sense, we can recover
the system ΓA from the boundary subsystem A, while we can recover Γc

A from
the boundary subsystem Ā. For general φ, Theorem 4.4 is closely related to
the task of split transfer, see “Appendix B” for a discussion. The following
result closely follows Proposition 18 of [26].
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Theorem 4.4 (Recovery isometries). Let φV R ∈ P≤(V R), and let ρV∂R be the
associated random tensor network state as in Eq. (4.5). Let ΓA ∈ C(A) and
suppose that

H2(ΓA\ΔA|Γc
AR)φ|φ ≥ K1 (4.8)

for all cuts ΔA ∈ C(A) such that ΔA � ΓA and

H2(ΔA\ΓA|ΓAR)φ|φ ≥ K2 (4.9)

for all cuts ΔA ∈ C(A) such that ΓA � ΔA. Then,

E min
VA,VĀ

‖(VA ⊗ VĀ ⊗ IR)ρV∂R(V †
A ⊗ V †

Ā
⊗ IR) − φV R‖1

= O(tr[φ]
1
4 (2− 1

4 K1 + 2− 1
4 K2)). (4.10)

where the minimum is over isometries VA : HA → HΓA
and VĀ : HĀ → HΓc

A
.

Proof. Let σAΓc
AR be the state where we have contracted along the tensors in

ΓA but not along those in Γc
A, and similarly let τĀΓAR be the state where we

have contracted along the tensors in Γc
A but not along those in ΓA. We first

use Proposition 4.1 to show that σΓc
AR ≈ φΓc

AR and τΓAR ≈ φΓAR. Indeed, for
σ we simply apply Proposition 4.1 with Vb ∩ ΓA as the set of bulk vertices, A
as the set of boundary vertices and Γc

AR as the reference system. This gives

E‖σΓc
AR − φΓc

AR‖1 = O(
√

tr[φ]2− 1
2 K1).

A similar application of Proposition 4.1, with Vb∩Γc
A as the set of bulk vertices,

Ā as the set of boundary vertices and ΓAR as the reference system, shows

E‖τΓAR − φΓAR
‖1 = O

(√
tr[φ]2− 1

2 K2

)
.

We note that for any isometries VA : HA → HΓA
and VĀ : HĀ → HΓc

A

‖(VA ⊗ VĀ ⊗ IR)ρ(V †
A ⊗ V †

Ā
⊗ IR) − φV R‖1

≤ ‖(IΓA
⊗ VĀ ⊗ IR)τ(IΓA

⊗ V †
Ā

⊗ IR) − φV R‖1

+ ‖τ − (VA ⊗ IĀR)ρ(V †
A ⊗ IĀR)‖1,

where we have applied the triangle inequality after adding and subtracting
(IΓA

⊗ VĀ ⊗ IR)τ(IΓA
⊗ V †

Ā
⊗ IR), and then using the invariance of the trace

norm under isometries in the second term. We use this to estimate

E min
VA,VĀ

‖(VA ⊗ VĀ ⊗ IR)ρ(V †
A ⊗ V †

Ā
⊗ IR) − φV R‖1

≤ E
(
min
VĀ

‖(IΓA
⊗ VĀ ⊗ IR)τ(IΓA

⊗ V †
Ā

⊗ IR) − φV R‖1

+ min
VA

‖τ − (VA ⊗ IĀR)ρ(V †
A ⊗ IĀR)‖1

)
,

(4.11)
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where the minimum is over isometries VA : HA → HΓA
and VĀ : HĀ → HΓc

A
.

For the first term of Eq. (4.11), we apply Lemma 4.2 to get

min
VĀ

‖(IΓA
⊗ VĀ ⊗ IR)τ(IΓA

⊗ V †
Ā

⊗ IR) − φV R‖1

≤ 2
√

2‖τΓAR − φΓAR
‖1 + 2‖τΓAR − φΓAR

‖2
1

≤ 2
√

2
(√

‖τΓAR − φΓAR
‖1 + ‖τΓAR − φΓAR

‖1

)

and by Jensen’s inequality

Emin
VĀ

‖(IΓA
⊗ VĀ ⊗ IR)τ(IΓA

⊗ V †
Ā

⊗ IR) − φV R‖1

≤ 2
√

2
(√

E‖τΓAR − φΓAR
‖1 + E‖τΓAR − φΓAR

‖1

)

= O(tr[φ]
1
4 2− 1

4 K2) (4.12)

For the second term of Eq. (4.11), we can think of τ and (VA⊗IĀR)ρ(V †
A⊗IĀR)

as the random tensor network states with φ and (VA ⊗ IΓc
AR)σ(V †

A ⊗ IΓc
AR) as

the full state on edges, applying random tensors in Γc
A. Then, denoting by EΓc

A

the expectation value over all random tensors in Γc
A, by Lemma 4.3

EΓc
A
‖τ − (VA ⊗ IĀR)ρ(V †

A ⊗ IĀR)‖1 = O(‖φV R − (VA ⊗ IĀR)σ(V †
A ⊗ IĀR)‖1).

We thus estimate

Emin
VA

‖τ − (VA ⊗ IĀR)ρ(V †
A ⊗ IĀR)‖1

= O(EΓA
min
VA

‖φV R − (VA ⊗ IĀR)σ(V †
A ⊗ IĀR)‖1)

for which we may argue exactly as in Eq. (4.12) and using Lemma 4.2 that

EΓA
min
VA

‖φV R − (VA ⊗ IΓc
AR)σ(V †

A ⊗ IΓc
AR)‖1 = O(tr[φ]

1
4 2− 1

4 K1).

We conclude that

E min
VA,VĀ

‖(VA ⊗ VĀ ⊗ IR)ρ(V †
A ⊗ V †

Ā
⊗ IR) − φV R‖1

= O(tr[φ]
1
4 (2− 1

4 K1 + 2− 1
4 K2)).

�

We hence find that the closeness of the boundary and background state
can be bounded via conditional Rényi-2 entropies of cuts. In particular, for
large K1,K2, the recovery isometries can recover states to good accuracy, and
we find that E‖spec+(ρA) − spec+(φΓA

)‖ is small. However, this result is not
yet completely satisfying. The conditional Rényi-2 entropy is not a “robust”
quantity, in the sense that a small deformation of φ can drastically change the
values of the conditional Rényi-2 entropies in Eqs. (4.8) and (4.9). For this
reason, we would like a condition with smoothed entropies. We first note that
one can actually show that for the condition in Eq. (4.8), we can bound

H2(ΓA\ΔA|Γc
AR)φ|φ ≥ Hmin(ΓA\ΔA|Γc

AR)φ (4.13)
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and similarly for Eq. (4.9),

H2(ΔA\ΓA|ΓAR)φ|φ ≥ Hmin(ΔA\ΓA|ΓAR)φ (4.14)

To make the condition “robust,” we would like to replace these by smoothed en-
tropies and express a condition in terms of Hε

min(ΓA\ΔA|Γc
AR)φ and Hε

min(ΔA

\ΓA|ΓAR)φ. This will require simultaneous smoothing : finding a state φε
V R ∈

P≤(V R) which is close to φ, such that Hmin(ΓA\ΔA|Γc
AR)φε ≥ Hε

min(ΓA\ΔA|
Γc

AR)φ and Hmin(ΔA\ΓA|ΓAR)φε ≥ Hε
min(ΔA\ΓA|ΓAR)φ for all relevant cuts

ΔA. If we have a general background state, it is not known how this can be
done [25,31]. However, if the background state is actually a tensor product of
link states, we can perform the simultaneous smoothing.

4.3. One Minimal Cut

The primary result in this subsection is Theorem 4.7, which states that if the
background state is actually a tensor product of link states as in Eq. (2.2), then
the spectrum of the boundary state is well approximated by the spectrum of
the minimal cut link state in expectation, where the approximation accuracy
is controlled by smooth one-shot entropies. It is a straightforward application
of Theorem 4.4.

For a cut ΓA ∈ C(A) we define

C1(ΓA) = {ΔA ∈ C(A) : ΔA � ΓA}
C2(ΓA) = {ΔA ∈ C(A) : ΓA � ΔA}.

The key result we need is the following lemma, which we prove in “Ap-
pendix C,” which shows that if we have a link state, we can perform the desired
joint smoothing.

Lemma 4.5. Let φ ∈ P=(V ) be a link state, A ⊆ V∂ a boundary subsystem and
ΓA ∈ C(A) a cut for A. Then, there exists a pure state φε ∈ P≤(V ) which is
such that

P (φ, φε) ≤ 2
(√

|C1(ΓA)| +
√

|C2(ΓA)|
)√

ε

and it holds that for any ΔA ∈ C1(ΓA)

Hmin(ΓA\ΔA|Γc
A)φε ≥ Hε

min(ΓA\ΔA|Γc
A)φ

and for any ΔA ∈ C2(ΓA)

Hmin(ΔA\ΓA|ΓA)φε ≥ Hε
min(ΔA\ΓA|ΓA)φ.

We now define the notion of a minimal cut for an arbitrary link state.

Definition 4.6. (Generalized minimal cut) A cut ΓA is an (ε,K)-minimal cut
if for all ΔA ∈ C1(ΓA)

Hε
min(ΓA\ΔA|Γc

A)φ ≥ K

and for all ΔA ∈ C2(ΓA)

Hε
min(ΔA\ΓA|ΓA)φ ≥ K.
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This definition is consistent with the smooth entropy conditions for min-
imal surfaces in holography from [6]. The following is now a straightforward
consequence of Theorem 4.4 and Lemma 4.5. It justifies our notion of a gen-
eralized minimal cut, as it controls the degree to which the spectrum of the
corresponding cut link state φΓA

is close to the boundary state ρA.

Theorem 4.7. Consider a random tensor network state ρ constructed with φ ∈
P=(V ) a tensor product of link states as in Eq. (2.2). Let A be a boundary
region of the network, ρA the corresponding boundary state, and ΓA an (ε,K)-
minimal cut. Then, the spectra of ρA and the state φΓA

on A are related as:

E‖spec+(ρA) − spec+(φΓA
)‖1 = O(2− 1

4 K +
√

ε).

Proof. Let φε be a state as constructed in Lemma 4.5, and let ρε be the random
tensor network state using this background state. Then, by Theorem 4.4

E‖spec+(ρε
A) − spec+(φε

ΓA
)‖1

≤ E min
VA,VĀ

‖(VA ⊗ VĀ ⊗ IR)ρε(V †
A ⊗ V †

Ā
⊗ IR) − φε‖1

= O(tr[φ]
1
4 (2− 1

4 K1 + 2− 1
4 K2))

where K1 is the minimal value over ΔA ∈ C1(ΓA) of

H2(ΓA\ΔA|Γc
A)φε|φε ≥ Hmin(ΓA\ΔA|Γc

A)φε − log tr[φε]

≥ Hε
min(ΓA\ΔA|Γc

A)φ − log tr[φε]

using Eq. (4.4), the defining property of φε from Lemma 4.5 and accounting
for the normalization. Similarly K2 is the minimal value over ΔA ∈ C2(ΓA) of

H2(ΔA\ΓA|ΓA)φε|φε ≥ Hmin(ΔA\ΓA|ΓA)φε − log tr[φε]

≥ Hε
min(ΔA\ΓA|ΓA)φ − log tr[φε]

and hence K1 ≥ K and K2 ≥ K, so

E‖spec+(ρε
A) − spec+(φ̃ε

ΓA
)‖1 = O(2− 1

4 K).

Moreover, ‖φ−φε‖1 ≤ 2T (φ, φε) ≤ 2P (φ, φε) = O(
√

ε) by Eq. (4.1) and hence
by Lemma 4.3

E‖ρ − ρε‖1 = O(
√

ε).

We conclude that

E‖spec+(ρA) − spec+(φΓA
)‖1 ≤ E‖spec+(ρε

A) − spec+(φε
ΓA

)‖1

+ E‖ρA − ρε
A‖1 + ‖φΓA

− φε
ΓA

‖1

= O(2− 1
4 K +

√
ε).

�
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4.4. Two Competing Minimal Cuts

We now consider the case of two minimal cuts for A, where the link states do
not have bounded spectral variation as in Sect. 3. We cannot directly apply
Theorem 4.7 if there are two competing minimal cuts (note that we will need to
define what this means exactly), nor can we assume that the empirical measure,
or even a rescaling of it, will converge. Instead, we will see that the spectrum
can be approximated in trace distance in a way that allows one to compute
entropies, as well as showing convergence of certain measures depending on the
spectrum of the reduced state. In particular, under these regularity conditions,
we will prove the main result of this subsection: The distribution defined by the
boundary state converges to the measure defined by the pushforward along the
min-function acting on the distributions of the two competing minimal cuts.
The intuition behind this is that the state on the edges can be approximated
by a superposition of two states which both do have a unique minimal cut.
As a corollary of this result, we will then show how to approximate the von
Neumann entropy of the boundary state in such a situation.

We begin by introducing the relevant family of probability distributions
for our purposes. Given a probability distribution vector p ∈ Rd of d outcomes
and f(d) > 0 and g(d) ∈ R, consider the random variable which takes value
f(d)[− log(pi) − g(d)] with probability pi. It has distribution

νp =
d∑

i=1

piδf(d)[− log(pi)−g(d)]. (4.15)

Typically, we will have families of probability distributions with increasing d,
let f(d) = (log d)−1 and choose g(d) such that it corresponds to the entropy of
p. We will also write νρ = νspec(ρ) for a quantum state ρ. We may also consider
Eq. (4.15) for the case where p ∈ Rd is positive but normalized, in which case
νp is a finite measure. To motivate the study of the distribution in Eq. (4.15),
we note that it is closely related to the central limit theorem. Let d = dn

0 and
ρ = ρ⊗n

0 for some state ρ0 on Cd0 . Then,

ν(n)
ρ =

∑

λ∈spec(ρ⊗n
0 )

λδ 1√
n

[− log(λ)−nH(ρ0)]

converges in distribution to a normal distribution by the central limit theorem.
We study this particular measure because the empirical measures we investi-
gated in Sect. 3 may not have good convergence properties if, for example, the
full state on edges consists of many copies of a single non-maximally entangled
link state. Moreover, the measure in Eq. (4.15) clearly captures information
about the entropy of the probability distribution, and turns out to capture
information about second-order asymptotics of information processing tasks
[38,72]. In fact, the example of many independent copies of a single link state
is not the only relevant situation. In [14,19], it was argued that the entan-
glement spectrum of conformal field theories with large central charge (which
are the motivating example to study random tensor networks) have similar
behavior.
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Before diving into more technical details, we can build some intuition for
how distributions of the form Eq. (4.15) will behave in the two-cut setting.
Consider the situation with a single random tensor. Let us take a single bulk
vertex x and two boundary vertices a and b, with edges (xa) and (xb). There
is a single random tensor at x, and we take link states |φ1〉⊗n along (xa) and
|φ2〉⊗n along (xb). We denote

|φj〉 =
∑

i

√
λi,j |ii〉

for j = 1, 2 and we let hj := H({λi,j}) be the entanglement entropies along
the two minimal link states. There are two separating cuts for the boundary
subsystem {a}: If h1 < h2, then (xa) is the minimal cut, and if h1 > h2, the
minimal cut is given by (xb). In these cases, for large n, the entanglement
spectrum of ρ{a} can be approximated by the entanglement spectrum along
the minimal cut. What happens at the “phase transition” where h1 = h2 =
h? The intuition is that we can split |φ1〉⊗n ⊗ |φ2〉⊗n into a superposition
of the two states, one for which the minimal surface is at (xa) and one for
which the minimal surface is at (xb). We find that in this case, if we let
σ2

j =
∑

i λi,j(log( 1
λi,j

) − h)2, then for any bounded continuous function f , the
quantity

∑

λ∈spec(ρ{a})

λf

(
− log(λ) − nh√

n

)

converges to

1
2πσ1σ2

∫ ∫
e
− (x1−h)2

2σ2
1

− (x2−h)2

2σ2
2 f(min(x1, x2))dx1dx2

in probability as n goes to infinity. Our goal in this section will be to prove a
general version of this result for full random tensor networks.

In Sect. 3, we used the method of moments. (If all moments of a dis-
tribution converge, and the distribution is uniquely determined by its mo-
ments, then we have weak convergence.) However, convergence of moments is
a stronger condition than weak convergence, and it requires computation of
all moments. In this section, we will use that for distributions of the form Eq.
(4.15), convergence in distribution follows from convergence in trace norm:

Lemma 4.8. Consider a sequence of increasing integers {dn}n∈N and for each
n, positive vectors p(n), q(n) ∈ Rdn . Let σ, h : N → R be such that σ(d) > 0
for d ∈ N and limd→∞ σ(d)−1 = 0. Let

ν(n)
p :=

dn∑

i=1

p
(n)
i δ 1

σ(dn) [− log(p
(n)
i )−h(dn))]

and similarly let

ν(n)
q =

dn∑

i=1

q
(n)
i δ 1

σ(dn) [− log(q
(n)
i )−h(dn)]

.
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1. Suppose ‖p(n) − q(n)‖1 goes to zero as n goes to infinity, and ν
(n)
p ⇒ ν

for some probability distribution ν. Then, ν
(n)
q ⇒ ν.

2. Suppose the vectors q(n) and p(n) are random, E‖p(n) − q(n)‖1 goes to
zero as n goes to infinity, and ν

(n)
p ⇒ ν in probability. Then, ν

(n)
q ⇒ ν in

probability.

Proof. We need to show that

∣∣∣∣
∫

f(x)dν(n)
q (x) −

∫
f(x)dν(x)

∣∣∣∣→ 0

for any f ∈ Cb(R). In fact, it suffices to show this for f uniformly continuous
(see, for instance, Theorem C.10 in [3]). Let ε > 0, then if we assume f to
be uniformly continuous, there exists δ > 0 such that for any x, y for which
|x − y| ≤ δ, it holds that |f(x) − f(y)| ≤ ε. We use a triangle inequality to
bound
∣∣∣∣
∫

f(x)dν(n)
q (x) −

∫
f(x)dν(x)

∣∣∣∣ ≤
∣∣∣∣
∫

f(x)dν(n)
q (x) −

∫
f(x)dν(n)

p (x)
∣∣∣∣

+
∣∣∣∣
∫

f(x)dν(n)
p (x) −

∫
f(x)dν(x)

∣∣∣∣ .

(4.16)

Since ν
(n)
p ⇒ ν, the second term on the right-hand side vanishes as n goes to

infinity. If we write gn(x) = 1
σ(dn) (log 1

x − h(dn)), then the first term on the
right-hand side of Eq. (4.16) is given by

∣∣∣∣∣

dn∑

i=1

q
(n)
i f(gn(q(n)

i )) − p
(n)
i f(gn(p(n)

i ))

∣∣∣∣∣ .

This can be bounded by

dn∑

i=1

∣∣∣q(n)
i f(gn(q(n)

i )) − p
(n)
i f(gn(p(n)

i ))
∣∣∣ ≤

dn∑

i=1

∣∣∣q(n)
i − p

(n)
i

∣∣∣
∣∣∣f(gn(q(n)

i ))
∣∣∣

+
dn∑

i=1

p
(n)
i

∣∣∣f(gn(q(n)
i )) − f(gn(p(n)

i ))
∣∣∣

In this expression, the first term is bounded by

dn∑

i=1

∣∣∣q(n)
i − p

(n)
i

∣∣∣
∣∣∣f(gn(q(n)

i ))
∣∣∣ ≤ C‖q(n) − p(n)‖1 (4.17)
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where C is a uniform upper bound for f (using f ∈ Cb(R)). For the second
term, we partition the sum over [dn] into three sets

I1 =

{
i ∈ [dn] such that 2−δσ(dn) ≤ p

(n)
i

q
(n)
i

≤ 2δσ(dn)

}

I2 =

{
i ∈ [dn] such that

p
(n)
i

q
(n)
i

> 2δσ(dn)

}

I3 =

{
i ∈ [dn] such that

p
(n)
i

q
(n)
i

< 2−δσ(dn)

}
.

The idea is that for i ∈ I1, pi and qi are sufficiently close that we may use the
continuity of f , whereas I2 and I3 cannot have too much weight (using that
p(n) and q(n) are close in trace distance). Let us now make this precise. For
the sum over the elements in I1, we have

∑

i∈I1

p
(n)
i

∣∣∣f(gn(q(n)
i )) − f(gn(p(n)

i ))
∣∣∣ ≤
∑

i∈I1

p
(n)
i ε ≤ ‖p(n)‖1ε, (4.18)

using the uniform continuity of f and the fact that for i ∈ I1, we have g(q(n)
i )−

g(p(n)
i ) = 1

σ(dn) log
(

p
(n)
i

q
(n)
i

)
, implying

∣∣∣g(q(n)
i ) − g(p(n)

i )
∣∣∣ ≤ δ by the definition

of I1. Next, we observe that

‖p(n) − q(n)‖1 ≥
∑

i∈I2

∣∣∣p(n)
i − q

(n)
i

∣∣∣ =
∑

i∈I2

p
(n)
i

(
1 − q

(n)
i

p
(n)
i

)

≥
∑

i∈I2

p
(n)
i

(
1 − 2−δσ(dn)

)
,

and hence for σ(dn) ≥ δ−1, we have
∑

i∈I2

p
(n)
i ≤ 2‖p(n) − q(n)‖1. (4.19)

In analogous fashion, we see that

‖p(n) − q(n)‖1 ≥
∑

i∈I3,p
(n)
i >0

∣∣∣p(n)
i − q

(n)
i

∣∣∣ =
∑

i∈I3,p
(n)
i >0

p
(n)
i

(
q
(n)
i

p
(n)
i

− 1

)

≥
∑

i∈I3

p
(n)
i

(
2δσ(dn) − 1

)
,

so for σ(dn) ≥ δ−1 we have
∑

i∈I3

p
(n)
i ≤ ‖p(n) − q(n)‖1. (4.20)
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In conclusion, for σ(dn) ≥ δ−1, collecting Eqs. (4.18), (4.19), (4.20) and using
that f is uniformly bounded by C, we can bound

dn∑

i=1

p
(n)
i

∣∣∣f(gn(q(n)
i )) − f(gn(p(n)

i ))
∣∣∣ ≤ ε‖p(n)‖1 + 3C‖p(n) − q(n)‖1.

Together with Eq. (4.17), this implies that for σ(dn) ≥ δ, we obtain the bound:
∣∣∣∣
∫

f(x)dν(n)
q (x) −

∫
f(x)dν(n)

p (x)
∣∣∣∣ ≤ 4C‖q(n) − p(n)‖1 + ε‖p(n)‖1. (4.21)

Since ν
(n)
p ⇒ ν, ‖p(n)‖1 → 1, and since ε > 0 was arbitrary, we conclude that

as n goes to infinity
∣∣∣∣
∫

f(x)dν(n)
q (x) −

∫
f(x)dν(x)

∣∣∣∣→ 0

proving 1.
To prove 2, we note that by Markov’s inequality, it suffices to show that

E

∣∣∣∣
∫

f(x)dν(n)
q (x) −

∫
f(x)dν(x)

∣∣∣∣→ 0, (4.22)

where f ∈ Cb(R) is a uniformly continuous function. By Eq. (4.16), it suffices
to show

E

∣∣∣∣
∫

f(x)dν(n)
q (x) −

∫
f(x)dν(n)

p (x)
∣∣∣∣→ 0.

Let ε > 0, and let δ such that if |x − y| ≤ δ, |f(x) − f(y)| ≤ ε. Then by Eq.
(4.21), for σ(dn) ≥ δ−1,

E

∣∣∣∣
∫

f(x)dν(n)
q (x) −

∫
f(x)dν(n)

p (x)
∣∣∣∣ ≤ 4CE‖q(n) − p(n)‖1 + εE‖p(n)‖1.

Since ε > 0 was arbitrary, E‖q(n) − p(n)‖1 goes to zero, and E‖p(n)‖1 goes to
one, we conclude that Eq. (4.22) holds, proving 2. �

The value of this result is clear: So long as we restrict ourselves to mea-
sures of the form Eq. (4.15), then we can prove convergence results by proving
convergence of trace norms.

We will also need a basic lemma to help estimate overlaps of states.

Lemma 4.9. Suppose we have two bipartite pure states ψAB , φAB ∈ P(AB).
Then,

‖trB [|ψ〉〈φ|]‖1 = F (ψB , φB).

Proof. For any operator MA on HA it holds that

‖MA‖1 = sup
UA

|tr[UAMA]|
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where the supremum is over unitary operators UA on HA, so

‖trB [|ψ〉〈φ|]‖1 = sup
UA

|tr[UA trB [|ψ〉〈φ|]]|

= sup
UA

|tr[UA ⊗ IB |ψ〉〈φ|]| = sup
UA

|〈φ|UA ⊗ IB |ψ〉|

which equals F (ψB , φB) by Uhlmann’s theorem. �

With these tools in hand, let us now return to the random tensor network
setting. Let ΓA,1 and ΓA,2 be two cuts with associated sets of edges γA,1 and
γA,2. We will assume these two cuts are non-intersecting: γA,1 ∩γA,2 = ∅, and,
without loss of generality ΓA,1 ⊂ ΓA,2. We will assume that the full state on
edges is a tensor product of link states along the edges, and that the associated
central limit measure for the spectrum along the cuts γA,1 and γA,2 converges
to a continuous probability distribution. The most obvious application is where
the link states on each edge φe are many copies of some single state φe,0, so
φe = (φe,0)⊗n, in which case the spectrum is subject to a central limit theorem
and the assumptions of Theorem 4.12 are satisfied.

We will now formalize what it means for these two cuts to be competing
minimal cuts. We have fixed ΓA,1 and ΓA,2 with ΓA,1 � ΓA,2. Then, we consider
three sets of cuts: C1(ΓA,1,ΓA,2) is the collection of cuts strictly contained in
ΓA,1, C2(ΓA,1,ΓA,2) is the collection of cuts which strictly contain ΓA,2, and
C3(ΓA,1,ΓA,2) is the collection of cuts which are “in between” ΓA,1 and ΓA,2.
That is,

C1(ΓA,1,ΓA,2) = {ΔA ∈ C(A) : ΔA � ΓA,1}
C2(ΓA,1,ΓA,2) = {ΔA ∈ C(A) : ΓA,2 � ΔA}
C3(ΓA,1,ΓA,2) = {ΔA ∈ C(A) : ΓA,1 � ΔA � ΓA,2}

and we let C = C1(ΓA,1,ΓA,2)∪C2(ΓA,1,ΓA,2)∪C3(ΓA,1,ΓA,2). As in the single
cut case, we would like to say that the surfaces ΓA,1 and ΓA,2 are minimal
cuts if an appropriate set of conditional entropies are sufficiently large for all
ΔA ∈ C. We formalize this as follows:

Definition 4.10. A pair of cuts ΓA,1 and ΓA,2 for A is a pair of (ε,K)-minimal
cuts if

Hε
min(ΓA,1\ΔA|Γc

A,1) ≥ K

for all cuts ΔA ∈ C1(ΓA,1,ΓA,2)

Hε
min(ΔA\ΓA,2|ΓA,2) ≥ K

for all cuts ΔA ∈ C2(ΓA,1,ΓA,2) and

Hε
min(ΔA\ΓA,1|ΓA,1) ≥ K

Hε
min(ΓA,2\ΔA|Γc

A,2) ≥ K

for all cuts ΔA ∈ C3(ΓA,1,ΓA,2).
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We will need a joint smoothing result similar to Lemma 4.5 for the par-
ticular case where ΓA,1 = A and Γc

A,2 = Ā. To this end we consider a graph
G = (V,E) with a set of boundary vertices V∂ , and a boundary subsystem
A ⊆ V∂ . We denote by γA,1 the edges incident to A, and γA,2 the edges inci-
dent to Ā, and assume these sets do not intersect. We let Eb = E\(γA,1∪γA,2).
For a cut ΔA ∈ C(A) we let Y ΔA be the set of half-edges

Y ΔA = {(e, x) : e = (xy), x ∈ Δc
A, y ∈ A}.

Lemma 4.11. Let φ ∈ P≤(V ) be a pure background state which is of the form
φ = φγA,1 ⊗ φγA,2 ⊗ φEb

, where

φEb
=
⊗

e∈Eb

φe

is a product state and the φγA,i
have a Schmidt decomposition in the standard

basis along the half-edges. Then, there exists a state φε which is such that

P (φ, φε) ≤ 2
√

2Vbε

and for all cuts ΔA ∈ C(A) it holds that

Hmin(ΔA\A|A)φε ≥ Hε
min(ΔA\A|AY ΔA)φ.

To state the main result of this section, recall that given a measurable
function f : X → Y between measure spaces, the pushforward of the function f
on a measure μ on X is defined by (f∗(μ))(A) = μ(f−1)(A) for any measureable
set A ⊆ Y. We apply this to the function min : R × R → R in the result:

Theorem 4.12. Consider a family of random tensor network states on a graph
G with pure state on edges φ, indexed by an increasing sequence of positive
integers n. We assume that ΓA,1,ΓA,2 ∈ C(A) are a pair of non-intersecting
(ε(n),K(n))-minimal cuts for all n where ε(n) = O(n−γ) for γ > 4 and
K(n) = Ω(log(n)2) as n goes to infinity. We let H : N → R, and we assume
that

νφΓA,i
=

∑

λ∈spec(φΓA,i
)

λδ 1√
n

[log( 1
λ )−H(n)]

for i = 1, 2, is such that νφΓA,i
⇒ νi, where νi is a probability distribution with

a continuous cumulative distribution function. Then, νρA
⇒ min∗(ν1, ν2) in

probability.

Proof. Proving this result will require several intermediate results. We provide
a very high-level, enumerated sketch of our proof here, involving the following
steps:

1. Study a reduced problem on a subnetwork; this subnetwork is such that
the minimal cuts γA,i are incident to the boundary.

2. Approximate the background state with superpositions of maximally en-
tangled states by binning eigenvalues, and construct approximate tensor
network states with the approximate background states.
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Figure 5. Illustration of the proof of Theorem4.12

3. Prove that the spectrum of the boundary state converges to the spec-
trum of the approximate tensor network state, which in turn converges
to the spectrum of the approximate background states. We write the
background state as a superposition of two states, one of which has γA,1
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Figure 5. (continued)

as its minimal cut, whereas the other state has γA,2 as its minimal cut.
We show that the resulting states are approximately orthogonal.

4. Show that the distribution of the approximate background states con-
verges to the min-distribution, and hence conclude that the spectrum of
the boundary state converges to the min-distribution.

Figure 5 provides a more detailed visual sketch of the intuition behind our
proof strategy. Lemma 4.8 will be a key tool, as it implies that it will suffice
to show convergence in trace norm.

We assume without loss of generality that ΓA,1 ⊂ ΓA,2. We now define
the subnetwork that we will analyze in our proof. Let G′ = (V ′, E′) be the
induced graph on V ′ = V ′

b ∪ V ′
∂ , where V ′

b = ΓA,2\ΓA,1, and V ′
∂ = B ∪ B̄, with

B the set of vertices in ΓA,1 which are incident to V ′
b and B̄ the set of vertices

in V \ΓA,2 which are incident to V ′
b . The subgraph G′ is depicted in Fig. 5b.
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We also define the random tensor network state τ as the state obtained
by applying random tensors only on bulk vertices in the complement of V ′

b .
Then for this state, by a slight variation on Theorem 4.7, it holds that

E min
VA,VĀ

‖(VA ⊗ VĀ ⊗ I)τ(V †
A ⊗ V †

Ā
⊗ I) − φ‖1 = O(2−K(n) +

√
ε(n)),

where the minimum is over isometries VA : HA → HΓA,1 and VĀ : HĀ →
HΓc

A,2
. Let τ̃ = (VA ⊗ VĀ ⊗ I)τ(V †

A ⊗ V †
Ā

⊗ I) where the VA and VĀ are the
isometries that realize the minimum.

Now, consider two random tensor network states on G′ obtained by ap-
plying the same random tensors on V ′

b with background states τ̃ and φ, re-
spectively. The state where we take τ̃ as the background state yields (VA ⊗
VĀ ⊗ I)ρ(V †

A ⊗ V †
Ā

⊗ I). Denote the state where we take φ as the background
state by σ. Then by Lemma 4.3:

E‖(VA ⊗ VĀ)ρ(V †
A ⊗ V †

Ā
) − σ‖1 = O(2−K(n) +

√
ε(n)).

If we let E1 denote the set of edges (xy) for which both x, y ∈ ΓA,1, and E2

the set of edges (xy) for which both x, y ∈ Γc
A,2, then σΓA,1 = φE1 ⊗ σB and

σΓA,2 = φE2 ⊗ σB̄ . This shows that

E‖spec+(ρA) − spec+(σB)‖1 = O(2−K(n) +
√

ε(n)) (4.23)

and spec+(σB) = spec+(σB̄), because σ is pure, which follows because its
background state φ is pure. We will continue to study σ on the reduced graph
G′, as in Fig. 5b, and at the end of the proof, we will see that Eq. (4.23) will
be sufficient to prove the desired properties of spec(ρA).

We have accomplished Step 1 by reducing the full network to a subnet-
work, and we now try to construct an approximation to σ. We will do so by
coarse-graining the spectrum of the background states along the two minimal
cuts: slicing the tails of the distribution, binning the remaining eigenvalues,
throwing away the smallest bins of the binned distribution, and then approxi-
mating the states as a superposition of maximally entangled states defined on
the bins. Consider the background states along the two minimal cuts in the
Schmidt basis:

|φγA,i
〉 =
∑

J

√
λi,J |JJ〉. (4.24)

Here, the |J〉 are a tensor product basis along the half-edges (which we again
may take to be the standard basis), so that

|JJ〉 =
⊗

e=(xy)∈γA,i

|ie,x〉 ⊗ |ie,y〉,

where the |ie,x〉 and |ie,y〉 are a basis for He,x and He,y. First, we truncate the
allowed range of eigenvalues by slicing off the tails of the distribution, as in
the left side of Fig. 5c. Let

In = [2−H(n)−C
√

n log(n), 2−H(n)+C
√

n log(n)]
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for some constant C, and let

|φ(1)
γA,i

〉 =
∑

λi,J∈In

√
λi,J |JJ〉.

Note that the entanglement spectrum of φγA,i
is given by the spectrum of

φΓA,i
. This implies that

∑

λi,J /∈In

λi,J = νφΓA,i
((−∞,−C log(n)) ∪ (C log(n),∞)) → 0

and hence

‖φγA,i
− φ(1)

γA,1
‖1 → 0.

Next, for λi,J ∈ In, we define new λ̃i,J according to log(λ̃i,J) = 1
nα �nα log(λi,J )�,

effectively binning the values of log(λi,J ) into intervals of size n−α, as in the
right side of Fig. 5c. We will choose α > 0 small (but other choices will be
useful for Corollary 4.14); to be precise, we choose α < 1

8 (γ − 4). We can now
define the background state

|φ(2)
γA,i

〉 =
∑

λi,J∈In

√
λ̃i,J |JJ〉.

Then by Lemma C.4

‖φ(1)
γA,i

− φ(2)
γA,i

‖1 ≤ 2
√∑

J

∣∣∣λi,J − λ̃i,J

∣∣∣,

which we may bound using the fact that 2− 1
nα ≤ λ̃i,J

λi,J
≤ 1, so

∑

J

∣∣∣λi,J − λ̃i,J

∣∣∣ =
∑

J

λi,J

(
1 − λ̃i,J

λiJ

)
≤ max

J

(
1 − λ̃i,J

λi,J

)

≤ 1 − 2− 1
nα = O

(
1

nα

)
.

Thus, ‖φ
(1)
γA,i−φ

(2)
γA,i‖1 = O(n− 1

2 α). Since the interval In has length O(
√

n log(n))
and the distinct values λ̃i,J are n−α apart, the λ̃i,J take O(nα+ 1

2 log(n)) dif-
ferent values. Denote these values by pi,j , and let di,j be their multiplicities.
Setting

qi,j = di,jpi,j ,

we can rewrite the state |φ(2)
γA,i〉 using the collected eigenvalues:

|φ(2)
γA,i

〉 =
∑

j

√
qi,j |Φ+

i,j〉,

where the |Φ+
i,j〉 are maximally entangled states of dimension di,j which are

orthogonal, i.e., 〈Φ+
i,j |Φ+

i,k〉 = δj,k. Note that 0 ≤ qi,j ≤ 1 and
∑

j qi,j ≤ 1.
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Now, we discard any bins that are too small: Let β > α + 1
2 and consider the

state

|φ(3)
γA,i

〉 =
∑

qi,j>n−β

√
qi,j |Φ+

i,j〉 (4.25)

where we restricted the sum to terms for which qi,j is sufficiently large. (And
hence pi,j will be sufficiently close to d−1

i,j .) Then, since the number of terms
is O(nα+ 1

2 log(n)) and using Lemma C.4, we have

‖φ(2)
γA,i

− φ(3)
γA,i

‖1 = O
(
n

1
2 α+ 1

4 − 1
2 β
√

log(n)
)

To summarize, φ
(3)
γA,i is the state obtained from the original background state

φγA,i
by 1) removing the tails of the spectrum, 2) binning the eigenvalues, and

finally 3) dropping any of the bins that are too small. The first approxima-
tion incurs an error ‖φγA,i

− φ
(1)
γA,i‖1, which converges to zero, and the second

and third approximations incur errors of order O(n− 1
2 α) and O

(
n

1
2 α+ 1

4 − 1
2 β

√
log(n)

)
, respectively.

Now, let φ̃ be the background state for which we have replaced φγA,i
by

φ
(3)
γA,i for i = 1, 2. Recall that σ is the state on the random tensor network state

constructed with background state φ on the subgraph G′, as in Fig. 5b. We
then define the approximation σ̃ to be the tensor network state on G′ which
uses φ̃ as its background state instead of φ. With these background states, we
see

‖φ − φ̃‖1 = O
(
‖φγA,i

− φ(1)
γA,i

‖1 + n− 1
2 α + n

1
2 α+ 1

4 − 1
2 β
√

log(n)
)

→ 0. (4.26)

We then apply Lemma 4.3 to find:

E‖σ − σ̃‖1 = O
(
‖φ − φ̃‖1

)
→ 0. (4.27)

We now make one final approximation to σ, in which we discard the parts of
the background state where the maximally entangled states along each cut are
close in dimension, as in Fig. 5d. Consider the state

|φ̄γA,1,γA,2〉 =
∑

2n
1/4

p2,k≤p2,j or 2−n
1/4

p2,k≥p2,j

√
q1,kq2,j |Φ1,k〉 ⊗ |Φ2,j〉,

where the sum is still only over those j and k for which q1,k > n−β and
q2,j > n−β . If we let

Dn = {(x, y) ∈ R2 : x − n− 1
4 − n− 1

2 ≤ y ≤ x + n− 1
4 + n− 1

2 , |x| ≤ log(n) + 1},

then as n increases, the measure of Dn converges to zero and since the measures
νφγA,i

⇒ νi and νi has continuous cumulative distribution function
∑

2−n
1/4

p1,j≤p2,k≤2n
1/4

p1,j

q1,jq2,k ≤ (νφΓA,1
× νφΓA,2

)(Dn) → 0. (4.28)
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Hence, if we let φ̄ denote the background state with φ̃γA,1 ⊗ φ̃γA,2 replaced by
φ̄γA,1,γA,2 , we get that ‖φ̄ − φ̃‖1 → 0. By Lemma 4.3, if we denote by σ̄ the
state we obtain on G′ by using φ̄ rather than φ̃ as the background state, we
get

E‖σ̄ − σ‖1 → 0. (4.29)

We pause here to note that we have accomplished Step 2: We have con-
structed an approximation σ̄ to σ by approximating the background state
along the cuts as superpositions of maximally entangled states. The utility in
doing so is that working with this approximated tensor network state allows
us to reduce to calculations where we restrict to a maximally entangled state
along one of the two surfaces. Our next major step is to then show that the
spectrum of σ̄ can be used to approximate the spectrum of ρ, which will then
allow us to analyze the convergence of the corresponding distribution. As a
first intermediate step, we will show that σ̄ can be approximated as a super-
position of a state with minimal cut γA,1 and a state with minimal cut γA,2.
This will allow us to more easily reason about how the background states are
related to the spectrum of σ̄, in turn, σ, and in turn, ρA.

Let us write

|φ(j,a)
γA,1,γA,2

〉 =
∑

k s.t. p1,k≥p2,j2n
1/4

√
q1,kq2,j |Φ+

1,k〉 ⊗ |Φ+
2,j〉

|φ(j,b)
γA,1,γA,2

〉 =
∑

k s.t. p2,k≥p1,j2n
1/4

√
q1,jq2,k|Φ+

1,j〉 ⊗ |Φ+
2,k〉,

allowing us to write the background state φ̄γA,1,γA,2 as a different superposition,
as depicted in Fig. 5e:

|φ̄γA,1,γA,2〉 =
∑

j

|φ(j,a)
γA,1,γA,2

〉 +
∑

j

|φ(j,b)
γA,1,γA,2

〉.

Let |φ(j,a)〉 and |φ(j,b)〉 denote the background states on G′ where we have
replaced |φ̄γA,1,γA,2〉 by |φ(j,a)

γA,1,γA,2〉 and |φ(j,b)
γA,1,γA,2〉, respectively, and let

|φa〉 =
∑

j

|φ(j,a)〉, |φb〉 =
∑

j

|φ(j,b)〉.

Denote by |σ(j,a)〉, |σ(j,b)〉 the random tensor network states on G′ with back-
ground states |φ(j,a)〉 and |φ(j,b)〉, respectively. Similarly, denote by |σ(a)〉 and
|σ(b)〉 the random tensor network states on G′ with background states |φ(a)〉
and |φ(b)〉, respectively.
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We start with the following bound on the rank of σ
(j,a)
B :

rank(σ(j,a)
B ) ≤ rank(φ(j,a)

B )

≤
∑

p1,k≥p2,j2n
1/4

d1,k

≤
∑

p1,k≥p2,j2n
1/4

q1,k

p1,k

≤
∑

k

q1,k2−n1/4

p2,j

≤ 2−n1/4

p2,j

(4.30)

By the same reasoning we may bound the rank of σ
(j,b)

B̄
as

rank(σ(j,b)

B̄
) ≤ 2−n1/4

p1,j
. (4.31)

Now, we will argue that the state σ(j,a) has minimal cut γA,1, and σ(j,b)

has minimal cut γA,2, as in Fig. 5f. Intuitively, it is sensible that for σ(j,a)

the unique minimal cut is along γA,1, as for φ(j,a), we have a fixed maximally
entangled state along γA,2, and a superposition of maximally entangled states
of lower dimension along γA,1. Similarly, for σ(j,b) the minimal cut is along
γA,2. To confirm this intuition, we will now show that σ

(j,a)
B ≈ φ

(j,a)
B and

σ
(j,b)

B̄
≈ φ

(j,b)

B̄
.

We show this for σ
(j,a)
B . In this case, the “minimal” cut is simply B. Let

ΔB be a cut for B unequal to B or to V ′
b ∪B. We denote by ΔA the associated

minimal cut for A on the original graph G given by ΔA = ΔB ∪ ΓA,1. We let

Y ΔB = {(e, x) : e = (xy), x ∈ Δc
B , y ∈ B}.

Note that as φ is a product state we have Hε
min(ΔB\B|B)φ = Hε

min(ΔB\B|B
Y ΔB )φ. We can obtain φ(j,a) from φ by acting with subunital CP maps on B
and B̄ and therefore (by two applications of data processing)

Hε
min(ΔB\B|BY ΔB )φ(j,a) ≥ Hε

min(ΔB\B|BY ΔB )φ = Hε
min(ΔB\B|B)φ

≥ Hε
min(ΔA\ΓA|ΓA)φ

We now consider ΔB = V ′
b ∪ B (in which case Y ΔB is empty, since we assume

γA,1 ∩ γA,2 = ∅). Then,

Hε
min(ΔB\B|B)φ(j,a) ≥ Hmin(ΔB\B|B)φ(j,a) = Hmin(B̄)φ(j,a) − Hmax(B)φ(j,a)

using the product structure of φ(j,a). Now, we compute

Hmin(B̄)φ(j,a) = − log(‖φ
(j,a)

B̄
‖∞) ≥ − log(p2,j),
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where we recall that p2,j is a binned eigenvalue. By Eq. (4.30), we can bound

Hmax(B)φ(j,a) ≤ log(rank(φ(j,a)
B )) ≤ log

(
2−n1/4

p2,j

)
= − log(p2,j) − n

1
4 .

In conclusion,

Hε
min(ΔB\B|B)φ(j,a) ≥ n

1
4 .

By Lemma 4.11, we can find φ(ε,j,a) such that P (φ(j,a), φ(ε,j,a)) = O(
√

ε)
and for all cuts ΔB �= B we have

Hmin(ΔB\B|B)φ(ε,j,a) ≥ Hε
min(ΔB\B|BY ΔB )φ(j,a)

and hence for ΔB �= V ′
b ∪ B

Hmin(ΔB\B|B)φ(ε,j,a) ≥ Hε
min(ΔA\ΓA|ΓA)φ

and for ΔB = V ′
b ∪ B

Hmin(ΔB\B|B)φ(ε,j,a) ≥ n
1
4 .

Therefore, Proposition 4.1 allows us to conclude that if we let σ(ε,j,a)

denote the random tensor network state with background state φ(ε,j,a), then

E‖σ
(ε,j,a)
B − φ

(ε,j,a)
B ‖1 = O

(
2− 1

2 K(n) + 2− 1
2 n

1
4

)
,

and by Lemma 4.3 and the fact that T (φ(j,a), φ(ε,j,a)) ≤ P (φ(j,a), φ(ε,j,a)) this
implies

E‖σ
(j,a)
B − φ

(j,a)
B ‖1 ≤ E‖σ

(ε,j,a)
B − φ

(ε,j,a)
B ‖1

+ E‖σ
(ε,j,a)
B − σ

(j,a)
B ‖1 + ‖φ

(ε,j,a)
B − φ

(j,a)
B ‖1

= O
(

2− 1
2 K(n) + 2− 1

2 n
1
4 +

√
ε(n)

)
.

It follows that

E‖σ
(a)
B − φ

(a)
B ‖1 ≤

∑

j

E‖σ
(j,a)
B − φ

(j,a)
B ‖1

= O
(

nα+ 1
2 log(n)(2− 1

2 K(n) + 2− 1
2 n

1
4 +

√
ε(n))

)
→ 0

(4.32)

using that the number of terms is O(nα+ 1
2 log(n)). This expression goes to

zero since we assume K(n) = Ω(log(n)2) and ε(n) = O(n−γ). A completely
symmetric argument shows that

E‖σ
(j,b)

B̄
− φ

(j,b)

B̄
‖1 = O

(
2− 1

2 K(n) + 2− 1
2 n

1
4 +

√
ε(n)

)
(4.33)

and hence

E‖σ
(b)

B̄
− φ

(b)

B̄
‖1 = O(nα+ 1

2 log(n)(2− 1
2 K(n) + 2− 1

2 n
1
4 + ε(n))) → 0. (4.34)

We have hence shown that σ
(j,a)
B ≈ φ

(j,a)
B and σ

(j,b)

B̄
≈ φ

(j,b)

B̄
in expectation.
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We now show that we can approximate the state σ̄B on G′ by the sum
of these states. We first claim that we can sum over the j index to obtain the
σ

(a)
B and σ

(b)
B . To see this, we introduce some notation: Given a self-adjoint

matrix X, let us write supp(X) for the image, or support, of X. In other
words, supp(X) is the space spanned by the eigenvectors of X with nonzero
eigenvalue. We let HB,j be the support of the reduced state of |Φ+

1,j〉 on the
B system, and we similarly let HB̄,j be the support of the reduced state of
|Φ+

2,j〉 on the B̄ system. Then for j �= k, the subspace HB,j is orthogonal to
HB,k and similarly HB̄,j is orthogonal to HB̄,k. By construction, it is clear that
supp(σ(j,a)

B̄
) ⊆ HB̄,j and supp(σ(j,b)

B ) ⊆ HB,j . This orthogonality for indices
j �= k then makes it clear that we can sum the reduced states, as in Fig. 5g:

σ
(a)
B =

∑

j

σ
(j,a)
B , σ

(b)

B̄
=
∑

j

σ
(j,b)

B̄
,

and by the purity of σ(b), we have that σ
(b)
B has the same spectrum as σ

(b)

B̄
, We

remind the reader that the (a) and (b) indices indicate that the minimal cut
for the state is given by γA,1 and γA,2, respectively. Naturally, this also holds
for the summed states, by orthogonality of the summands.

We now claim that σ̄B ≈ σ
(a)
B +σ

(b)
B , i.e., the spectrum of the approximate

state on G′, as in Eq. (4.29), is well approximated by the sum of two states
with differing minimal cuts. We estimate their difference by

E‖σ
(a)
B + σ

(b)
B − σ̄B‖1 = E‖

∑

j,k

trB̄ [|σ(j,a)〉〈σ(k,b)| + |σ(k,b)〉〈σ(j,a)|]‖1

≤ 2
∑

j,k

E‖trB̄ [|σ(j,a)〉〈σ(k,b)|]‖1

= 2
∑

j,k

EF (σ̄(j,a)

B̄
, σ̄

(k,b)

B̄
)

by Lemma 4.9. Now, if ρ, σ1 and σ2 are positive operators, then by Lemma
B.9 in [34], we have

|F (ρ, σ1) − F (ρ, σ2)| ≤
√

‖σ1 − σ2‖1 tr[ρ].

So, we find that

EF (σ(j,a)

B̄
, σ

(k,b)

B̄
) ≤ E

∣∣∣F (σ(j,a)

B̄
, σ

(k,b)

B̄
) − F (σ(j,a)

B̄
, φ

(k,b)

B̄
)
∣∣∣+ EF (σ(j,a)

B̄
, φ

(k,b)

B̄
))

≤ E

√
tr[σ(j,a)

B̄
]‖σ

(k,b)

B̄
− φ

(k,b)

B̄
)‖1 + EF (σ(j,a)

B̄
, φ

(k,b)

B̄
)

≤
√

E tr[σ(j,a)

B̄
]
√

E‖σ
(k,b)

B̄
− φ

(k,b)

B̄
)‖1 + EF (σ(j,a)

B̄
, φ

(k,b)

B̄
),

where we used Cauchy–Schwarz in the last step. For the first term, we may
use Eq. (4.33) and E tr[σ̄(j,a)

B̄
] ≤ 1 to see

√
E tr[σ(j,a)

B̄
]
√

E‖σ
(k,b)

B̄
− φ

(k,b)

B̄
)‖1 = O(2− 1

4 K(n) + 2− 1
4 n

1
4 + (ε(n))

1
4 ).
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For the second term we use a basic estimate on the fidelity: If ρ and σ are
positive operators, then

F (ρ, σ) = ‖√ρ
√

σ‖1 ≤ ‖√ρ‖1‖
√

σ‖∞

≤
√

rank(ρ)‖√ρ‖2‖
√

σ‖∞ =
√

rank(ρ) tr[ρ]‖σ‖∞,

which follows by Hölder’s inequality and the standard relation between Schat-
ten 1 and 2-norms. Then, the second term can be estimated as follows: Write
PB̄,j for the projection onto HB̄,j , then

F (σ(j,a)

B̄
, φ

(k,b)

B̄
) = F (σ(j,a)

B̄
, PB̄,jφ

(k,b)

B̄
PB̄,j)

≤
√

tr[σ(j,a)

B̄
] rank(σ(j,a)

B̄
)‖PB̄,jφ

(k,b)

B̄
PB̄,j‖∞

≤

√

tr[σ(j,a)

B̄
]
2−n1/4

p2,j
p2,j

≤
√

tr[σ(j,a)

B̄
]2−n1/4

using Eq. (4.30) and ‖PB̄,jφ
(k,b)

B̄
PB̄,j‖∞ ≤ p2,j . Thus

EF (σ(j,a)

B̄
, φ

(k,b)

B̄
) ≤
√

E tr[σ(j,a)

B̄
]2−n1/4 ≤ 2− 1

2 n1/4

and we may estimate

EF (σ(j,a)

B̄
, σ

(k,b)

B̄
) = O(2− 1

4 K(n) + 2− 1
4 n

1
4 + (ε(n))

1
4 ).

and therefore

E‖σ
(a)
B + σ

(b)
B − σ̄B‖1 ≤ 2

∑

j,k

EF (σ̄(j,a)

B̄
, σ̄

(k,b)

B̄
)

= O(n2α+1 log(n)2(2− 1
4 K(n) + 2− 1

4 n
1
4 + (ε(n))

1
4 )) → 0

(4.35)

using that the number of terms is O(n2α+1 log(n)2), K(n) = Ω(log(n)2) and
ε(n) = O(n−γ), and our choice of α is such that O(n2α+1 log(n)2n− 1

4 γ) goes
to zero.

To summarize, we have shown that we can approximate the random ten-
sor network state σ̄B on G′ by σ

(a)
B + σ

(b)
B , and we can approximate σ

(a)
B by

φ
(a)
B . Moreover, we can approximate σ

(b)

B̄
by φ

(b)

B̄
, so the spectrum of σ

(b)
B can

be approximated by the spectrum of φ
(b)

B̄
. Recall that σ(a) and σ(b) are the

random tensor network states on G′ which take φ(a) and φ(b) as background
states, respectively. Furthermore, recall that our larger goal is to show that
the spectra of the reduced background states φ

(a)
B and φ

(b)
B are, in some sense,

close to the spectrum of the approximate random tensor network state σB on
the subgraph G′. This is a two-step process:

1. Show that φ
(a)
B and σ

(a)
B can be slightly deformed to φ

(a,⊥)
B and σ

(a,⊥)
B ,

states with support orthogonal to supp(σ(j,b)
B ) for all j.
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2. Use the slightly deformed states to show that spec+(φ(a)
B ⊕ φ

(b)
B ) is close

to spec+(σ(a)
B + σ

(b)
B ), and follow the chain of approximations: σ

(a)
B +

σ
(b)
B ≈ σ̄B ≈ σB along with spec+(σB) ≈ spec+(ρA) to conclude that

spec+(φ(a)
B ⊕ φ

(b)
B ) ≈ spec+(ρA)

Now, consider the state σ
(j,b)
B . It has support contained in HB,j and by

Eq. (4.31), it has rank(σ(j,b)
B ) ≤ 2−n1/4

p−1
1,j . Let Qj be the projection onto

supp(σ(j,b)
B ), so supp(Qj) ⊆ HB,j and rank(Qj) ≤ 2−n1/4

p−1
1,j . We find that

‖Qjφ
(a)
B ‖1 ≤ rank(Qj)‖PB,jφ

(a)
B PB,j‖∞ ≤ 2−n1/4

p1,j
p1,j = 2−n1/4

.

If we let Q =
∑

j Qj , then we see that (I−Q)φ(a)(I−Q) is a small deformation

of φ
(a)
B :

‖φ
(a)
B − (I − Q)φ(a)(I − Q)‖1 ≤ 2‖Qφ(a)‖1 ≤ 2

∑

j

‖Qjφ
(a)
B ‖1

= O(n9/2 log(n)2−n1/4
) → 0. (4.36)

With this property in hand, we can show that σ
(a)
B can similarly be deformed.

Let σ
(a,⊥)
B = (I−Q)σ(a)(I−Q). By construction, σ

(a,⊥)
B has support orthogonal

to that of σ
(b)
B , and hence, spec+(σ(a,⊥)

B + σ
(b)
B ) = spec+(σ(a,⊥)

B ⊕ σ
(b)

B̄
). We

observe that σ
(a,⊥)
B is a small deformation of σ

(a)
B :

E‖σ
(a)
B − σ

(a,⊥)
B ‖1 ≤ E‖σ

(a)
B − φ

(a)
B ‖1

+ E‖(I − Q)σ(a)
B (I − Q) − (I − Q)φ(a)

B (I − Q)‖1

+ ‖φ
(a)
B − (I − Q)φ(a)(I − Q)‖1

≤ 2E‖σ
(a)
B − φ

(a)
B ‖1 + ‖φ

(a)
B − (I − Q)φ(a)(I − Q)‖1

(4.37)

which goes to zero, using Eq. (4.32) for the first term, and Eq. (4.36) for the
second term. By construction, (I − Q)φ(a)(I − Q) has support orthogonal to
supp(σ(b)

B ). This allows us to bound

E‖spec+(φ(a)
B ⊕ φ

(a)

B̄
) − spec+(σ(a)

B + σ
(b)
B )‖1

≤ E‖σ
(a)
B − σ

(a,⊥)
B ‖1 + E‖spec+(φ(a)

B ⊕ φ
(a)

B̄
) − spec+(σ(a,⊥)

B ⊕ σ
(b)
B )‖1

= E‖σ
(a)
B − σ

(a,⊥)
B ‖1 + E‖spec+(φ(a)

B )

− spec+(σ(a,⊥)
B ) + spec+(φ(a)

B̄
) − spec+(σ(b)

B )‖1

≤ E‖σ
(a)
B − σ

(a,⊥)
B ‖1 + E‖φ

(a)
B − σ

(a,⊥)
B ‖1 + E‖spec+(φ(a)

B̄
) − spec+(σ(b)

B )‖1,

where we have used the bound on the difference of spectra by the trace distance
of the corresponding states Eq. (1.5). Each term on the RHS can be shown
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to converge to zero. The first term goes to zero by Eq. (4.37). Similarly, the
second term can be bounded by

E‖φ
(a)
B − σ

(a,⊥)
B ‖1 ≤ E‖φ

(a)
B − σ

(a)
B ‖1 + E‖σ

(a)
B − σ

(a,⊥)
B ‖1

which goes to zero by Eq. (4.37) and Eq. (4.32). The third term can be esti-
mated by observing that spec+(σ(b)

B ) = spec+(σ(b)

B̄
) and

E‖spec+(φ(a)

B̄
) − spec+(σ(b)

B )‖1 ≤ E‖φ
(a)

B̄
− σ

(b)

B̄
‖1

which goes to zero by Eq. (4.34). We conclude that E‖spec+(φ(a)
B ⊕ φ

(a)

B̄
) −

spec+(σ(a)
B + σ

(b)
B )‖1 → 0.

We now follow a chain of approximations to get the desired closeness
between spec+(φ(a)

B ⊕ φ
(a)

B̄
) and spec+(ρA). Using Eqs. (4.29) and (4.35), we

can see that

E‖σB − (σ(a)
B + σ

(b)
B )‖1 ≤ E‖σB − σ̄B‖1 + E‖σ

(a)
B + σ

(b)
B − σ̄B‖1 → 0,

so E‖σB − (σ(a)
B + σ

(b)
B )‖1 will converge to 0. This then implies

E‖spec+(σB) − spec+(φ(a)
B ⊕ φ

(a)

B̄
)‖1

≤ E‖σB − (σ(a)
B + σ

(b)
B )‖1

+ E‖spec+(φ(a)
B ⊕ φ

(a)

B̄
) − spec+(σ(a)

B + σ
(b)
B )‖1,

and as we have just shown, both terms on the RHS converge to zero. Together
with Eq. (4.23), this yields the desired relationship to the spectrum of ρ:

E‖spec+(φ(a)
B ⊕ φ

(b)

B̄
) − spec+(ρA)‖1

≤ E‖spec+(φ(a)
B ⊕ φ

(b)

B̄
) − spec+(σB)‖1

+ E‖spec+(ρA) − spec+(σB)‖1 → 0.

(4.38)

We pause here again to note that we have accomplished Step 3: approx-
imating the spectrum of ρA by the spectra of the (approximate) background
states. The final step will then be to consider the convergence properties of
the distributions on the background states, which will then translate to con-
vergence for the distribution on ρA.

Explicitly, we want to relate the above result to min∗(ν1, ν2). First, we
observe that by Lemma 4.8 and Eq. (4.26), νφ̃B

⇒ ν1 and νφ̃B̄
⇒ ν2, and since

min is a continuous function, convergence holds for the pushforward measure:

min∗(νφ̃B
, νφ̃B̄

) ⇒ min∗(ν1, ν2). (4.39)
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We compute

min∗(νφ̃B
, νφ̃B̄

) =
∑

j,k

q1,kq2,jδ 1√
n

[min(log( 1
p1,k

),log( 1
p2,j

))−H(n)]

=
∑

j

⎛

⎜⎝
∑

p1,k≥2n1/4
p2,j

q1,kq2,jδ 1√
n

[log( 1
p1,k

)−H(n)]

+
∑

p1,k≤2−n
1/4

p2,j

q1,kq2,jδ 1√
n

[log( 1
p2,j

)−H(n)]

⎞

⎟⎠

+
∑

2−n
1/4

p2,j≤p1,k≤2n
1/4

p2,j

q1,kq2,jδ 1√
n

[min(log( 1
p1,k

),log( 1
p2,j

))−H(n)]

=
∑

k

q1,kq2,>kδ 1√
n

[log( 1
p1,k

)−H(n)]

+
∑

j

q1,>jq2,jδ 1√
n

[log( 1
p2,j

)−H(n)] + ν0

(4.40)

where we have written

q1,>j =
∑

p1,k≥2n1/4
p2,j

q1,k

q2,>k =
∑

p1,k≤2−n
1/4

p2,j

q2,j

and

ν0 =
∑

2−n
1/4

p2,j≤p1,k≤2n
1/4

p2,j

q1,kq2,jδ 1√
n

[min(log( 1
p1,k

),log( 1
p2,j

))−H(n)].

Then by Eq. (4.28), we see that ν0 ⇒ 0. Using Eq. (4.39), we conclude

min∗(νφ̃B
, νφ̃B̄

) − ν0 ⇒ min∗(ν1, ν2). (4.41)

On the other hand, by construction, we have

ν
spec(φ

(a)
B ⊕φ

(b)
B̄

)
= ν

φ
(a)
B

+ ν
φ

(b)
B̄

.

We can explicitly write down

ν
φ

(a)
B

+ ν
φ

(b)
B̄

=
∑

k

q1,kq2,>kδ 1√
n

[log( 1
p1,kq2,>k

)−H(n)]

+
∑

j

q1,>kq2,jδ 1√
n

[log( 1
p2,jq1,>k

)−H(n)].

Since the q1,k and q2,j are at least n−β (if the corresponding term is nonzero),
|log(q1,>j)| ≤ β log(n) and |log(q2,>k)| ≤ β log(n). With these bounds in mind,
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we can compare to the last line of Eq. (4.40). More precisely, if we let ν ′̄
φ

=
min∗(νφ̃B

, νφ̃B̄
) − ν0, then for uniformly continuous f ∈ Cb(R), we have

lim
n→∞

∣∣∣∣
∫

f(x)dν ′̄
φ(x) −

∫
f(x)dν

φ
(a)
B

(x) −
∫

f(x)dν
φ

(b)
B̄

(x)
∣∣∣∣ = 0

We conclude that

ν
φ

(a)
B

+ ν
φ

(b)
B̄

⇒ min∗(ν1, ν2). (4.42)

Now, we can finally put all of our ingredients together. Recall the statement
of convergence in probability implied by the convergence of spectra, in ex-
pectation, as in the second part of Lemma 4.8. Then using Eq. (4.38) as the
vectors p(n) and q(n) in the statement of Lemma 4.8 and the convergence of
distributions in Eq. (4.42), we conclude

νρA
⇒ min∗(ν1, ν2) (4.43)

�

4.5. Computing Entropies with Two Minimal Cuts

Ideally, we would like to use Theorem 4.12 to compute von Neumann entropies
of random tensor network states. However, Theorem 4.12 alone is too weak to
allow us to directly compute entropies up to o(

√
n) corrections, as weak con-

vergence of the spectrum does not directly imply convergence of the mean.
However, we kept track of various approximation errors in the proof of Theo-
rem 4.12, and we will use these to show that with slightly stronger assumptions,
these errors allow to compute the entropy up to O(log(n)) corrections.

To begin, we first bound the difference in the entropy of a sum of density
matrices and the sum of the entropies of the individual density matrices:

Lemma 4.13. Suppose {pi}m
i=1 is a subnormalized distribution and {ρi ∈ P(H)}m

i=1

is a collection of (unnormalized) density matrices and let ρ =
∑

i piρi ∈ P(H).
Suppose that C−1 ≤ tr[ρi] ≤ C, and C−1 ≤ tr[ρ] ≤ C, then

∣∣∣∣∣H(ρ) −
m∑

i=1

piH(ρi)

∣∣∣∣∣ ≤ C(log(m) + 2 log(C)).

Proof. If the ρi are normalized and
∑

i pi = 1, then by the Holevo bound we
have
∑

i

piH(ρi) ≤ H

(∑

i

piρi

)
≤
∑

i

piH(ρi) + H({pi}) ≤
∑

i

piH(ρi) + log(m).

Now let qi = tr[ρi], P =
∑

i qipi and let σi = ρi

qi
, ri = piqi

P . Then, H(
∑

i piρi) =
H(P

∑
i riσi) = PH(

∑
i riσi) − P log(P ). On the other hand

P
∑

i

riH(σi) =
∑

i

piH(ρi) +
∑

i

pi log(qi)
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so it follows that
∣∣∣∣∣H
(∑

i

piρi

)
−
∑

i

piH(ρi)

∣∣∣∣∣ ≤ P log(m) + |P log(P )| + max |log(qi)|

≤ C(log(m) + 2 log(C)).

�

The idea is that for a random tensor network state, we will split up the
background state as a superposition of states which are maximally entangled
along the two minimal cuts and then use Lemma 4.13. This approach formalizes
an argument sketched in [6].

To state our result, we introduce a new function: For vectors of positive
numbers p ∈ Rd1 , q ∈ Rd2 , we let

H∗(p, q) :=
∑

i,j

piqj min
(

log
(

1
pi

)
, log

(
1
qj

))
.

A key tool we will need is the continuity of the entropy: If ρ, σ ∈ P≤(H) are
quantum states on a Hilbert space H of dimension d with T (ρ, σ) ≤ 1

e , then
the Fannes–Audenaert inequality states that

|H(ρ) − H(σ)| ≤ T (ρ, σ) log d − T (ρ, σ) log(T (ρ, σ)). (4.44)

Let η be the function defined by η(x) = x log x. Then, if we write spec(ρ) =
{pj}d

j=1 and spec(σ) = {qj}d
j=1 for Eq. (4.44) one can actually show

|H(ρ) − H(σ)| ≤
d∑

j=1

|η(pj) − η(qj)| ≤ T (ρ, σ) log d − T (ρ, σ) log(T (ρ, σ)).

We will use this to show continuity of H∗ as well. Consider ρi, σi ∈ P≤(Hi) with
dim(Hi) ≤ d for i = 1, 2. We let spec(ρi) = {pi,j}di

j=1 and spec(σi) = {qi,j}di
j=1.

For real numbers xi, yi we have

|min(x1, y1) − min(x2, y2)| ≤ |x1 − x2| + |y1 − y2| .

Then, we see that

|H∗(spec(ρ1), spec(ρ2)) − H∗(spec(σ1), spec(σ2))|

≤
∑

j,k

∣∣∣∣p1,jp2,k min
(

log
(

1
p1,j

)
, log

(
1

p2,k

))

−q1,jq2,k min
(

log
(

1
q1,j

)
, log

(
1

q2,k

))∣∣∣∣

≤
∑

j,k

|p1,jp2,k log p1,j − q1,jq2,k log q1,j | + |p1,jp2,k log p2,k − q1,jq2,k log q2,k| .
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We may estimate the first term by
∑

j,k

|p1,jp2,k log p1,j − q1,jq2,k log q1,j |

≤
∑

j,k

p2,k |p1,j log p1,j − q1,j log q1,j | −
∑

j,k

|p2,k − q2,k| q1,j log q1,j

≤
∑

j

|η(p1,j) − η(p2,j)| + ‖ρ2 − σ2‖1H(σ1)

≤ T (ρ1, σ1) log d − T (ρ1, σ1) log(T (ρ1, σ1)) + 2T (ρ2, σ2) log d

The second term may be estimated in similar fashion. We conclude that if
T (ρ1, σ1) ≤ ε ≤ e−1 and T (ρ2, σ2) ≤ ε ≤ e−1

|H∗(spec(ρ1), spec(ρ2)) − H∗(spec(σ1), spec(σ2))| ≤ 6ε log d − 2ε log(ε).
(4.45)

We will now show that we can approximate the entropy as would be
expected from Theorem 4.12, if we make some additional assumptions (which
in particular are satisfied if the state along each edge is a copy of n states,
φe = φ⊗n

e,0 ).

Corollary 4.14. Let ρ be a random tensor network state satisfying the same
assumptions as in Theorem 4.12, and assume additionally that the νφγA,i

have
uniformly exponentially decaying tail probabilities and ε(n) = O(n−γ) for γ >
10. Assume that for each edge e = (xy), the bond dimension is De = 2O(n)

and tr[φ2
e,x] ≤ 2−Ω(n). Then with high probability

∣∣H(ρA) − H∗(spec(φγA,1), spec(φγA,2))
∣∣ = O(log(n)).

Proof. The basic proof strategy will be that of Theorem 4.12: We study a
slightly reduced problem on the approximated tensor network states σ̃ with
approximate background states φ̃, work out the entropies for σ̃ and φ̃, and
then argue that the closeness of the resulting entropies will continue to hold
for the original tensor network state and background state, up to errors that
we carefully keep track of.

First of all, we note that we can reduce to the tensor network state σ on
the reduced graph G′, with error as in Eq. (4.23); in particular

E‖spec+(ρA) − spec+(σB)‖1 = O(n− γ
2 ). (4.46)

Next we adapt the part of the proof of Theorem 4.12 where we modify
the state along the minimal cuts. In the proof of Theorem 4.12, we first ob-
served that if the (regularized) spectrum along each cut νφΓA,i

has uniformly
exponentially decaying tail probabilities, then for sufficiently large C, we can
slice off the tails with vanishing probability mass:

∑

λi,j /∈In

λi,j = νφΓA,i
((−∞,−C log(n)) ∪ (C log(n),∞)) = O

(
1
n4

)
.
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We also binned the eigenvalues of φ in the reduced spectrum:

qi,j = di,jpi,j ,

where pi,j are the bins and di,j is the multiplicity of each bin. We then removed
bins that were too small, leading to a state φ̃. In the notation of the proof of
Theorem 4.12 we choose α and β such that α > 2 and 5

2 + α < β ≤ 1
2 (γ − 1).

By Eq. (4.26) this yields an error

‖φ̃ − φ‖1 = o(n−1). (4.47)

Note that in the proof of Theorem 4.12, we performed one more approx-
imation of removing the “middle” or “diagonal” part of the spectrum and
obtained a state φ̄; we will not need to do this here. Now, we recall that the
binning of eigenvalues allows us to write φ̃ as a superposition over maximally
entangled states along each cut:

|φ̃γA,1,γA,2〉 =
∑

j,k

√
q1,jq2,k|Φ+

1,j〉 ⊗ |Φ+
2,k〉,

and use this to decompose φ̃ as

|φ̃〉 =
∑

j,k

√
q1,jq2,k|ψ(j,k)〉,

where in |ψ(j,k)〉, we have replaced |φ̃γA,1,γA,2〉 with the maximally entangled
state |Φ+

1,j〉 ⊗ |Φ+
2,k〉. The states |ψ(j,k)〉 are normalized background states on

the graph G′. We let

|φ(j,k)〉 =
√

q1,jq2,k|ψ(j,k)〉
which are subnormalized states. At this point, the key idea of the argument
is straightforward. We will consider the random tensor network states which
have (a smoothed version) of the background states |ψ(j,k)〉. These will have
entropy close to min(log(d1,j), log(d2,k)). Then, we will use Lemma 4.13 to
argue that the entropy of ρA is approximated up to O(log(n)) terms by the
convex combination

∑
j,k q1,jq2,k min(log(d1,j), log(d2,k)), which we can relate

to the desired result. To make this easy argument precise, we will need to
take care of smoothing the background state appropriately and ensure that
the relevant states are close to normalized.

We will now argue that we can smoothen the states φ(j,k). We may assume
without loss of generality that the states φ(j,k) have nonnegative coefficients in
the standard basis |I〉 =

∏
e∈E′ |ieie〉 where I = {ie}e∈E′ runs over all possible

basis elements over each edge, so we can write

|φ(j,k)〉 =
∑

I

√
λ

(j,k)
I .

By the same argument as in Theorem 4.12 we find a state

φ(j,k,ε) =
∑

I

√
λ

(j,k,ε)
I
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which is such that for any ΔB ∈ C(B) not equal to B or V ′
b ∪ B and ΔA =

ΓA,1 ∪ ΔB

Hmin(ΔB\B|B)φ(j,k,ε) ≥ Hε
min(ΔA\ΓA|ΓA)φ,

while for ΔB = B and ΔB = B ∪ V ′
b we have

Hmin(B)φ(j,k,ε) ≥ Hmin(B)φ(j,k) = log
1

q2,kp1,j

Hmin(B̄)φ(j,k,ε) ≥ Hmin(B̄)φ(j,k) = log
1

q1,jp2,k
.

Moreover, φ(j,k,ε) is close to φ(j,k) in the sense that

‖φ(j,k,ε) − φ(j,k)‖1 = O

⎛

⎝
√∑

I

∣∣λ(j,k,ε) − λ(j,k)
∣∣

⎞

⎠ = O(
√

ε).

By the remark after Lemma 4.11 we may assume that λ(j,k,ε) ≤ λ(j,k).
By a chain rule (e.g., Theorem 5.13 in [74], proven in [30]) for any ΔB ∈

C(B) it holds that

H2(ΔB)φ(j,k,ε) ≥ Hmin(ΔB\B|B)φ(j,k,ε) + Hmin(B)φ(j,k,ε) .

We now let

|φε〉 =
∑

j,k

|φ(j,k,ε)〉.

Then, by Lemma C.4

‖φ̃ − φε‖1 ≤
√

2
∑

j,k

∑

I

∣∣∣λ(j,k)
I − λ

(j,k,ε)
I

∣∣∣ = O(
√

n2α log(n)2ε(n))

= O(nα− 1
2 γ log(n)) = O(n−3). (4.48)

Therefore, if we let σε
B be the random tensor network state with background

state φε

E‖σ − σε‖1 ≤ ‖φ − φ̃‖1 + ‖φ̃ − φε‖1 = o

(
1
n

)
. (4.49)

Finally, let

|φ(j,k,ε)〉 =
√

q1,jq2,k|ψ(j,k,ε)〉
By Eq. (C.2) in the remark after the proof of Lemma 4.11 we have

∣∣∣tr[ψ(j,k,ε)] − 1
∣∣∣ =

1
q1,jq2,k

∣∣∣tr[φ(j,k,ε)] − tr[φ(j,k)]
∣∣∣

= O
(

ε

q1,jq2,k

)
= O(n2β−γ) = O(n−1).

using that q1,j , q2,k > n−β and β ≤ 1
2 (γ − 1). We denote the random tensor

network states with background states ψ(j,k,ε) by σ(j,k), and the random tensor
network states with background states

∑
j

√
q1,jψ

(j,k,ε) by σ(k).
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We introduce the event N , which entails that ρ, σ and σ(j,k) for all j, k
are close to normalized, that is

|tr[ρ] − 1| ≤ 1
n2

and |tr[σ] − 1| ≤ 1
n2

and
∣∣∣tr[σ(j,k)] − tr[ψ(j,k,ε)]

∣∣∣ ≤ 1
n2

.

By assumption, for each edge e = (xy) we have tr[φ2
e,x] ≤ 2−Ω(n). Moreover,

using that q1,j , q2,k ≥ n−β

tr[(φ(j,k,ε)
Δ )2] ≤ q−2

1,j q
−2
2,k tr[φ2

Δ] = O(poly(n)2−Ω(n))

and therefore the quantity η in Lemma 2.1 is O(2−Ω(n)) for ρ, σ and σ(j,k).
So, by Lemma 2.1 and the union bound the event N has probability

pN ≥ 1 −

⎛

⎝Pr
(

|tr[ρ] − 1| ≥ 1
n2

)
+ Pr

(
|tr[σ] − 1| ≥ 1

n2

)

+
∑

j,k

Pr
(∣∣∣tr[σ(j,k)] − tr[ψ(j,k,ε)]

∣∣∣ ≥ 1
n2

)⎞

⎠

= 1 − O(poly(n)2−Ω(n)) = 1 − O(2−Ω(n)).

We denote by EN the expectation value over the random tensors conditioned
on this event.

We now use Lemma 4.13 to approximate the entropy of σε
B conditioned

on N : ∣∣∣∣∣H(σε
B) −

∑

k

q2,kH(σ(k)
B )

∣∣∣∣∣ = O(log(n)).

Because σ(k) is pure, we have H(σ(k)
B ) = H(σ(k)

B̄
). We apply Lemma 4.13 again,

this time to the decomposition of σ
(k)

B̄
to see:

∣∣∣∣∣∣
H(σ(k)

B̄
) −
∑

j

q1,jH(σ(j,k)

B̄
)

∣∣∣∣∣∣
= O(log(n)).

Thus,
∣∣∣∣∣∣
H(σε

B) −
∑

j,k

q1,jq2,kH(σ(j,k)
B )

∣∣∣∣∣∣
= O(log(n)).

Since rank(σ(j,k)
B ) ≤ min{d1,j , d2,k} (and taking into account the normalization

of σ(j,k))

H(σ(j,k)
B ) ≤ tr[σ(j,k)]min (log d1,j , log d2,k) − tr[σ(j,k)] log tr[σ(j,k)].

Conditioned on N and using
∣∣tr[ψ(j,k,ε)] − 1

∣∣ = O(n−1), this implies

H(σ(j,k)
B ) ≤ min (log d1,j , log d2,k) + O(1).
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For a lower bound, we use that

ENH(σ
(j,k)
B ) ≥ EN tr[σ(j,k)]

(
− log tr

[
(σ

(j,k)
B )2

]
+ log tr[σ

(j,k)
B ]

)

≥
(
tr[ψ(j,k,ε)] − 1

n2

)(
− logEN tr

[
(σ

(j,k)
B )2

]
+ log

(
tr[ψ(j,k,ε)] − 1

n2

))

≥ − logEN tr
[
(σ

(j,k)
B )2

]
− O(1)

where in the first and second inequality we have used Jensen’s inequality, and
in the second and third inequality we have used tr[σ(j,k)

B ] ≥ tr[ψ(j,k,ε)] − 1
n2 ≥

1 − O( 1
n ). We use the replica trick to estimate

E tr
[
(σ(j,k)

B )2
]

=
∑

ΔB∈C(B)

tr[(ψ(j,k,ε)
ΔB

)2]

In this expression, we have contributions from ΔB = B and ΔB = B ∪ V ′
b ,

which yield contributions

tr[(ψ(j,k,ε)
B )2] ≤ d−1

1,j

tr[(ψ(j,k,ε)

B̄
)2] ≤ d−1

2,k.

For any other cut ΔB , we have a contribution at most

tr[(ψ(j,k,ε)
ΔB

)2] = q−2
1,j q

−2
2,k tr[φ(j,k,ε)]2−Hmin(B)

φ(j,k,ε)−Hε
min(ΔA\ΓA|ΓA)φ

≤ q−1
1,j q

−1
2,k2−Hmin(B)

φ(j,k,ε) ≤ d−1
1,j

using that tr[φ(j,k,ε)] ≤ q1,jq2,k and 2−Hmin(B)
φ(j,k,ε) ≤ q2,kp1,j = q1,jq2,kd−1

1,j .
Therefore

EN tr
[
(σ(j,k,ε)

B )2
]

≤ p−1
N E tr

[
(σ(j,k,ε)

B )2
]

= d−1
1,j + d−1

2,k + O(d−1
1,j).

so

− logEN tr
[
(σ(j,k,ε)

B )2
]

≥ − log
(
max

(
d−1
1,j , d

−1
2,k

)
(2 + O(1))

)

≥ min(log d1,j , log d2,k) − O(1).

We find that

EN

∣∣∣H(σ(j,k)
B ) − min(log d1,j , log d2,k)

∣∣∣ = O(1)

and hence

EN

∣∣∣∣∣∣

∑

j,k

q1,jq2,kH(σ(j,k)
B ) −

∑

j,k

q1,jq2,k min(log d1,j , log d2,k)

∣∣∣∣∣∣
= O(1). (4.50)
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We collect the various estimates we have found:

EN‖spec+(ρA) − spec+(σB)‖1 ≤ p−1
N E‖spec+(ρA) − spec+(σB)‖1 = o

(
1
n

)

EN‖σB − σε
B‖1 ≤ p−1

N E‖σB − σε
B‖1 = o

(
1
n

)

EN

∣∣∣∣∣∣

∑

j,k

q1,jq2,kH(σ(j,k)
B ) −

∑

j,k

q1,jq2,k min(log d1,j , log d2,k)

∣∣∣∣∣∣
= O(1).

Let M be the event that N holds and moreover

‖spec+(ρA) − spec+(σB)‖1 ≤ 1
n

‖σB − σε
B‖1 ≤ 1

n∣∣∣∣∣∣

∑

j,k

q1,jq2,kH(σ(j,k)
B ) −

∑

j,k

q1,jq2,k min(log d1,j , log d2,k)

∣∣∣∣∣∣
≤ log(n).

By Markov’s inequality and the union bound, the probability that M holds
goes to one as n goes to infinity. Moreover, if M holds, it is easy to verify that
by the Fannes–Audenaert inequality Eq. (4.44) and the fact that ρ, σ and σε

are close to normalized
∣∣∣∣∣H
(

ρA

tr[ρ]

)
− H

(
σε

B

)∣∣∣∣∣ = O(1).

Also, if M holds, by Eq. (4.50)
∣∣∣∣∣∣
H(σε

B) −
∑

j,k

q1,jq2,k min(log d1,j , log d2,k)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∑

j,k

q1,jq2,kH(σ(j,k)
B ) −

∑

j,k

q1,jq2,k min(log d1,j , log d2,k)

∣∣∣∣∣∣
+ O(log(n)) = O(log(n))

so we conclude that
∣∣∣∣∣∣
H

(
ρA

tr[ρ]

)
−
∑

j,k

q1,jq2,k min(log d1,j , log d2,k)

∣∣∣∣∣∣
= O(log(n)).

Since qi,j = di,jpi,j ≥ n−β from the binning procedure, we have the simple
observation

1
nβpi,j

≤ qi,j

pi,j
= di,j ≤ 1

pi,j
,
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and hence
∣∣∣min(log d1,j , log d2,k) − log(min( 1

p1,k
, 1

p2,j
))
∣∣∣ = O(log(n)). We con-

clude that
∣∣∣∣∣∣
H

(
ρA

tr[ρ]

)
−
∑

j,k

q1,kq2,j log
(

min
(

1
p1,k

,
1

p2,j

))∣∣∣∣∣∣
= O(log(n)).

Finally, we need to relate the result back to the original background state. In
the above approximation to H(σ̃B), we see that

∑

j,k

q1,kq2,j log
(

min
(

1
p1,k

,
1

p2,j

))
= H∗(spec(φ̃γA,1), spec(φ̃γA,2)).

Then by Eqs. (4.47) and (4.45), this will converge to the appropriate quantity
on the non-approximated background state:

∣∣∣H∗(spec(φ̃γA,1), spec(φ̃γA,2)) − H∗(spec(φγA,1), spec(φγA,2))
∣∣∣→ 0,

proving the desired result. �
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A. Euclidean Gravity Path Integrals and Entanglement Spectra

In this appendix, we give a heuristic description of certain Euclidean grav-
ity path integrals in holography whose descriptions are in close analogy with
random tensor network models. This section serves as a motivation for the
random tensor network models we study, but is not needed to understand the
random tensor network results. In “Appendix A.1,” we review the replica trick
in quantum field theory and the role of Euclidean path integrals. We review
an application of such tools in “Appendix A.2,” and we discuss the problem of
studying the entanglement entropy near a phase transition between two min-
imal surfaces, which agrees with results in Sect. 4. Then, in “Appendix A.3,”
we discuss a simplified model of quantum gravity which is in very close corre-
spondence to a random tensor network model with link states with bounded
spectral variation, as in Sect. 3.

A.1. The Replica Trick and Euclidean Path Integrals

In order to compute entropies in quantum field theory, one often uses a ver-
sion of the replica trick to compute the Rényi entropies, which can then be
analytically continued to deduce von Neumann entropies. We consider a pure
quantum field theory state |ρ〉 on a space M , which is prepared by a Euclidean
path integral on M × (−∞, 0]. Correspondingly, 〈ρ| is prepared by the time-
reflected path integral on M × [0,∞). Let A be a subregion of M . The reduced
density matrix on A is given by taking |ρ〉 and 〈ρ|, then integrating over the
field configurations on the complement of A (the equivalent of the partial trace
for field theories), as shown in Fig. 6a. Analogous to Eq. (2.8), we may now
compute tr[ρk

A] by taking k copies of this path integral, and gluing the bound-
aries at the A system cyclically, then integrating over the field configurations
at each boundary. This operation is manifestly invariant under cyclic permu-
tations, a symmetry called replica symmetry. This is illustrated in Fig. 6b. We
conclude that tr[ρk

A] is computed by a path integral ZA,k on a manifold MA,k,
allowing us to compute Hk(ρA). The space MA,k is a k-fold cover of M × R,
branching at the boundary ∂A of the subregion A.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Figure 6. The path integral replica trick to compute tr[ρk
A]

Of course, the path integral ZA,k is formally infinite. One “normalizes”
the path integral by normalizing by Z1 which can be thought of as tr[ρ]. We
have the expression for the kth Rényi entropy:

Hk(ρA) = log
ZA,k

Zk
1

. (A.1)

Note that this is a slightly different normalization convention (the denominator
is Zk

1 instead of Z1) to match the standard convention in the quantum gravity
literature. To get a finite result, one has to impose a UV cutoff of size ε, an
aspect we will ignore in our discussion. By employing such a cutoff, we will
pretend that the relevant Hilbert spaces are finite-dimensional Hilbert spaces
that factorize with respect to spatial decompositions of M .

What happens if the quantum field theory is a holographic CFT? In this
case, we have a correspondence between the path integral of the CFT on the
one hand, and a bulk quantum gravity path integral on the other hand, which,
for large effective central charge, we may approximate by its semiclassical
saddle point geometry. This can be used to derive the Ryu–Takayanagi formula
[45], by finding a bulk manifold BA,k which has MA,k as its boundary. In
other words, one obtains the gravitational dual by setting MA,k as a boundary
condition, then allowing the system to evolve according to the gravitational
theory.

The saddle point solution will be such that the bulk copies are glued
along a cyclic permutation in an area adjacent to A and along the identity
permutation in an area adjacent to Ā, the boundary complement of A. The
boundary between these two regions is a surface γA,k anchored at the bound-
ary at ∂A. After orbifolding with respect to the replica symmetry, this leads
to a bulk spacetime which has M as its boundary and a “cosmic brane” at the
surface γA,k. The orbifold procedure gives rise to a conical deficit, correspond-
ing to the fixed points under the action of the replica symmetry. Comparing
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the action of BA,k and B1, we find that in the computation of Eq. (A.1), only
the conical deficit at γA,k does not cancel, yielding

Hk(ρA) ≈ |γA,k|
4GN

. (A.2)

where |γA,k| is the area of the brane in the saddle point solution. This can be
analytically continued to non-integer values, and in particular, continuation to
k = 1 yields the RT formula:

H(ρA) ≈ |γA|
4GN

. (A.3)

where γA is the surface of minimal area out of all bulk surface homologous to
A and anchored at ∂A.

The spectrum of ρA can be recovered from the Rényi entropies. In Eq.
(A.2), we see that |γA,k| depends on k, but is otherwise fixed as we let GN go
to zero in the classical limit. It was argued in [14] that this behavior implies a
spectrum that is flat at leading order:

Hε
min(ρA) = H(ρA) − O(G− 1

2
N ) = H(ρA) − O(

√
H(ρA))

Hε
max(ρA) = H(ρA) + O(G− 1

2
N ) = H(ρA) + O(

√
H(ρA))

This is precisely the link state regime we investigated in Sect. 4.4, and shows
that the large c limit in a holographic CFT is similar to considering the many-
copy limit in quantum information theory.

A.1.1. Fixed-Area States. A useful variation on the derivation of the RT for-
mula is to consider fixed-area states [27]. We consider the “area operator” γ̂A

for a subsystem A, which measures the area of a minimal surface. The opera-
tor γ̂A actually has fluctuations when we consider a state with a semiclassical
gravity dual, and we may write

|ρ〉 =
∫

dα|ψα〉

where ψα is an eigenvector of Â with eigenvalue α. The state |ψα〉 is a fixed-
area state: While it is not itself a physical state, they form a basis with which to
construct physical states. These fixed-area states can be thought of as prepared
by a bulk path integral where we have restricted to bulk geometries for which
|γA| = α. The same derivation as above now leads to

Hk(ρA) ≈ α

4GN
,

since the area of the minimal surface is fixed to be α. Thus, for fixed-area
states, all Rényi entropies are (to good approximation) equal, which implies
that the state has flat entanglement spectrum. This corresponds to a random
tensor network state with maximally entangled link states.
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A.2. States at a Minimal Surface Phase Transition

Consider, again, a holographic CFT state ρA on a boundary subregion A.
In the case where there is a unique minimal surface, the previous subsection
showed how the replica trick leads to the RT formula.

We would now like to investigate the entanglement spectrum of ρA when
there are two RT surfaces for A that have area of the same order of magnitude.
Let us denote the two competing minimal surfaces in the bulk by γA,1 and γA,2.
In [54], it was shown how the entanglement entropy should behave at this
phase transition between the two minimal surfaces. A similar computation
was performed in [6] for the setting with two competing minimal surfaces and
bulk matter. We will briefly sketch their argument, referring the interested
reader to [6] for more details.

A.2.1. Fixed-Area States with Two Minimal Surfaces. We begin by consider-
ing bipartite fixed-area states ρAĀ prepared by a Euclidean path integral, in
which we have fixed the size of the two competing surfaces γA,1 and γA,2. In
this case, saddle points of the path integral have to satisfy the equations of
motion everywhere except at the surfaces γA,i, where there could be conical
singularities. The two surfaces divide the bulk into 3 regions: a1, a2, and a3.

The saddle points are states with smooth geometries in the regions where
the copies of regions ai are glued to each other—the k copies of region a1 are
glued cyclically, while the copies of region a3 are glued along the identity
permutation. On the middle region a2, we are free to glue along an arbitrary
permutation π, giving solutions that can break the replica symmetry. However,
it is often the case that the dominant solutions of the path integral are those
that respect the replica symmetry, and we assume this to be the case for all
solutions we consider.

Let us denote a saddle point solution of the path integral with permuta-
tion π by BA,π, and let us write φi for the conical singularity angle at γA,i. It
turns out that these saddle points lead to an action of the form

I(BA,π) = kIaway(BA,π) + (kφ1 − 2π |C(π)|) |γA,1|
8πGN

+ (kφ2 − 2π
∣∣C(τ−1π)

∣∣) |γA,2|
8πGN

,

where Iaway is the action away from the surfaces, |γA,i| is the area of the surface
γA,i, and we recall that |C(π)| is the number of cycles of π, and τ is the full
cycle (12 . . . k). In particular, for k = 1, we have

I(BA,π) = Iaway(BA,π) + (φ2 − 2π)
|γA,1|
8πGN

+ (φ2 − 2π)
|γA,2|
8πGN

,
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so when we look at the normalized path integral and sum over all permutations

ZA,k

(ZA,1)k
≈
∑

π∈Sk

e
(|C(π)|−k)

|γA,1|
4GN

+(|C(τ−1π)|−k)
|γA,2|
4GN

=
∑

π∈Sk

e
d(id,π)

|γA,1|
4GN

+d(π,τ)
|γA,2|
4GN .

Note that the areas γA,i are of the same order of magnitude, and are divergent.
As a result, only the permutations for which d(id, π) + d(π, τ) is minimal
will contribute. In other words, only the configurations where π ∈ NC(k)
contribute, as all other permutations are suppressed by at least a factor of the
area of γA,i in the action. We conclude that

ZA,k

(ZA,1)k
≈

∑

π∈NC(k)

e
d(id,π)

|γA,1|
4GN

+d(π,τ)
|γA,2|
4GN . (A.4)

This computation is in one-to-one correspondence with the computation
of the moments for a subsystem of a single random tensor, as observed in [60].
It also corresponds more generally to a random tensor network computation
with two minimal cuts and maximally entangled link states, as is clear from
the computations in Sects. 2 and 3. This is in agreement with the claim that
random tensor network states are a model for fixed-area states. One can also
add bulk matter in this path integral computation, which will again be in
correspondence to a similar computation in a random tensor network [6] with
a background state, as in Sect. 2.3. From the moment computation in Eq. (A.4)
and applying the results for the entanglement of a single random tensor, we
observe that for two fixed surfaces of exactly equal size, the (appropriately
scaled) entanglement spectrum is a Marchenko–Pastur distribution, giving an
O(1) correction to the entanglement entropy, agreeing with the gravitational
replica trick computation in [54].

A.2.2. General States at the Minimal Surface Phase Transition. We now relax
the fixed-area restriction, and study similar calculations performed in [27], [54],
and [6]. Denote by ZA,k(α1, α2) the path integral where we have fixed the areas
of γA,i to be αi. Then, following Section 2.3 in [27], the full path integral is
given by

ZA,k =
∫

dα1dα2 Zk(α1, α2).

Again, we consider the semiclassical limit, so we take our saddle point approx-
imation of Zk(α1, α2) in Eq. (A.4), and we also take a saddle point approxima-
tion for the integral over α1 and α2. This saddle point will be at the values for
αi where the deficit angles are φi = 2π

n (since then the saddle point geometry
is smooth), which leads to

ZA,k

(ZA,1)k
≈

∑

π∈NC(k)

e
(|C(π)|−k)

|γ(k)
A,1|

4GN
+(|C(τ−1π)|−k)

|γ(k)
A,2|

4GN (A.5)
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where γ
(k)
A,i are now minimal surfaces, with a dependence on k. Analytic con-

tinuation to k = 1 yields the usual surface prescription. In particular, if there
are two surfaces that are of almost equal area, the contribution of the larger
term is exponentially suppressed for any O(1) or larger difference in areas.

To zoom in on the region where the two surfaces are nearly equal, we
write the state as a superposition of fixed-area states, as in Section 3 of [54].
We discretize the area size α1 and α2 over poly( 1

GN
) values and approximate

the full holographic pure state with boundary regions A and B = Ac as a
(finite) sum

|ψ〉AB =
∑

α1,α2

√
p(α1, α2)|ψα1,α2〉

where |ψα1,α2〉 is the state where the areas are fixed as |γA,i| = αi, and p
is a probability distribution over the possible areas. Then, a straightforward
calculation of the reduced density matrix ρA yields a state of the form:

ρA =
∑

α1,α2

p(α1, α2)ρA,α1,α2 +
∑

α1 
=α′
1,α2 
=α′

2

√
p(α1, α2)p(α′

1, α
′
2) trB

(
|ψα1,α2〉〈ψα′

1,α′
2
|
)
,

=
∑

α1,α2

p(α1, α2)ρA,α1,α2 + ODA,

where ODA are the off-diagonal elements of ρA. One can argue that the states
ρA,α1,α2 are all mutually orthogonal by entanglement wedge reconstruction—
the area operator can be reconstructed on A, and hence, each ρA,α1,α2 is per-
fectly distinguishable from each other by measuring the area operator. Then,
the entropy of the diagonal part of the state is easily computed as

H

(
∑

α1,α2

p(α1, α2)ρA,α1,α2

)
=
∑

α1,α2

p(α1, α2)H(ρA,α1,α2)

−
∑

α1,α2

p(α1, α2) log p(α1, α2). (A.6)

The second term is the so-called entropy of mixing, and it is a standard argu-
ment that this term is suppressed relative to the first term [54] as O(ln GN ) or
smaller. The entropies appearing in the first term can be computed using the
methods in the previous subsection, for which one finds that H(ρA,α1,α2) =
min{α1,α2}

4GN
.

Returning to the off-diagonal terms ODA, [54] argued that such terms
should be subleading in the analytic continuation due to the relevant surfaces
breaking replica symmetry. At the same time, [6] argued that such terms should
be subleading due to reasons similar to those for the orthogonality of the
diagonal elements: Complementary entanglement wedge reconstruction implies
one may reconstruct the bulk area operator on B, and hence, such states are
perfectly distinguishable on B. Therefore, the partial trace over B vanishes for
α1 �= α′

1, α2 �= α′
2.
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One reaches the conclusion:

H(ρA) =
∑

α1,α2

p(α1, α2)
min{α1, α2}

4GN
+ O(ln GN ), (A.7)

In this computation, the O(1) corrections due to the Marchenko–Pastur dis-
tribution along each pair of minimal cuts of equal size (or equivalently, the
degeneracy in the contributions to the saddle point approximation) is irrele-
vant, as the entropy of mixing already leads to O(ln GN ) deviations.

Our results in Sect. 4 can be seen as a rigorous version of the above result
for random tensor networks.

A.3. Replica Wormholes and JT Gravity

One of the most basic holographic models of quantum gravity is JT gravity,
a 1 + 1-dimensional model of gravity; see [67] for a review. JT gravity is also
a useful model for the near-horizon dynamics of extremal black holes in any
dimension. In this case, the dual theory should be 0 + 1-dimensional. In other
words, it should be regular quantum mechanics rather than a quantum field
theory. Indeed, in [68], it was shown that JT gravity theory is dual to a random
matrix model, where the Hamiltonian is a random self-adjoint matrix according
to some distribution, providing another strong connection between quantum
gravity and random matrix theory. It also appears that such gravitational
systems may be dual to an ensemble of boundary theories [16], rather than a
single one. Whether this is fundamental, a special feature of 1+1-dimensional
models, or due to averaging over microscopic features of the gravity theory, is
a line of active research [69].

We now sketch a variation on a calculation in [60], providing a proof of
principle that the free probability techniques used in Sect. 3 provide an elegant
framework to understand such results. We refer the interested reader to [60]
for more in-depth motivation and detailed computations.

We consider JT gravity with an end of the world (EOW) brane containing
a large number n of internal states. This model has action

I = IJT + μ

∫

brane

ds,

where the action of a manifold M with metric g, induced boundary metric h,
(trace of) extrinsic curvature K, and dilaton φ is given by

IJT[M, g] = −S0

2π

[
1
2

∫

M

√
gR +

∫

∂M

√
hK

]

−
[
1
2

∫

M

√
gφ(R + 2) +

∫

∂M

√
hφK

]
.

The details of this action are not very important for us; we just note that we
will take the S0 parameter to be large, and that this suppresses contributions
where the manifold M has genus γ > 0 in the Euclidean path integral.
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Figure 7. Path integrals and the replica trick for JT grav-
ity. See [60] for a detailed explanation of the diagrammatic
notation

Such systems are of interest when studying a simple version of an evap-
orating black hole. Let

|ψ〉 =
1√
n

n∑

i=1

|ψB,i〉|iRad〉

where |ψB,i〉 is the state of the black hole with the EOW brane in state i, and
|iRad〉 is a reference state, which can be thought of as the radiation system.
Notice that the entanglement spectrum of this state is flat. We generalize this
to

|ψ〉 =
n∑

i=1

√
pi|ψB,i〉|iRad〉,

where the entanglement between the black hole and the radiation has some
non-trivial spectrum, which we will assume to be close to uniform, so that pi

n
is bounded by a constant for all i. In other words, we assume this distribution
satisfies the bounded spectral variation assumption from Sect. 3. We let

mk =
n∑

i=1

nk−1pk
i

be the (appropriately scaled) moments of the entanglement spectrum of the
EOW brane. Moreover, we write the path integral on a disk geometry with k
boundary components and k EOW branes as e−S0Zk. Then following the ar-
guments of [60], one can compute the kth moment of the radiation system for
large n and large eS0 (large n enforces a planar limit with only non-crossing par-
titions, while large eS0 ensures that only genus γ = 0 geometries contribute),
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as illustrated in Fig. 7b. The contributions of path integral configurations con-
necting different replicas are called replica wormholes. This diagrammatic com-
putation shows that

tr[ψk
Rad] =

∑

π∈NC(k)

mπ
Zπ−1τ

Zk
1

n−d(π,id)e−S0d(π,τ). (A.8)

In this expression, recall that Zσ =
∏

l∈C(σ) Zl, where C(σ) is the cycle type
of σ, and l ∈ C(σ) are the lengths of the cycles of σ. This expression implies
that if n � eS0 , the dominant contribution in Eq. (A.8) is given by π = τ . On
the other hand, if n � eS0 , the dominant contribution in Eq. (A.8) is given
by π = id. This corresponds to the situation where there is a unique minimal
surface (more precisely, a unique quantum extremal surface). We are interested
in the regime at the phase transition, which is analogous to the Page time of
an evaporating black hole, so we assume ne−S0 → 1. The coefficients mσ

correspond to the weight of the σ configuration, as determined by the number
and length of the cycles in σ, and the probability distribution of eigenstates pi.
In the case of the flat entanglement spectrum, this number equals the number
of closed loops between the connected components. This will also be the case
for the non-trivial entanglement spectrum, but each loop will have a different
weight that depend on the pi’s.

The mk are the (scaled) moments of a probability distribution. While
the explicit expression itself is not important for our purposes, the Zl can be
written as the lth moments of a probability distribution [60]. Hence, Eq. (A.8)
is a product of moments, summed over all non-crossing partitions of length k.
As a result, tr[ψk

Rad] can be calculated in the planar limit very simply by way
of free probability theory.

More precisely, we may define moment-generating functions for EOW,
JT, and Rad:

MJT(z) =
∞∑

k=1

Zk

Zk
1

zk,

MEOW(z) =
∞∑

k=1

mkzk,

MRad =
∞∑

k=1

eS0(k−1) tr[ψk
Rad]zk.

Given a moment-generating function M(z), which is a formal power series,
recall that its S-transform is given by

S(z) =
1 + z

z
M−1(z).

We use this to define the S-transforms SJT, SEOW and SRad. From Theo-
rem 3.2, we see that the relation between the moments in Eq. (A.8) implies
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that these are related as

SRad(z) =
1

1 + z
SJT(z)SEOW(z). (A.9)

This means that, at the phase transition where n ≈ eS0 , the spectrum of ψRad

can be described as a free product of the spectra of the end of the world brane,
the JT gravity spectrum and a Marchenko–Pastur distribution.

A.3.1. A Recursion Relation for the Resolvent. Given a moment-generating
function M(z), we may also define the resolvent function R(z) by

R(z) =
1
z

(
1 + M

(
1
z

))
.

To relate to previous results, we consider the case where the entanglement with
the radiation is maximally entangled. In this case, SEOW(z) = 1 and SRad(z) =

1
1+z SJT(z). By definition of the S-transform and setting z → MRad(z), this
implies

1
1 + MRad(z)

SJT(MRad(z)) =
1 + MRad(z)

MRad(z)
z,

which we may rewrite as (again using the definition of the S-transform):

MRad(z) = MJT[z(1 + MRad(z))].

In terms of the resolvent, this becomes

R(z) =
1
z

+
1
z
MR

(
1
z

)

=
1
z

+
1
z
MJT(R(z))

=
1
z

+
∞∑

k=1

Zk

Zk
1

R(z)k

z
,

which is a recursion relation previously derived in [60] by a diagrammatic argu-
ment. More generally, we can interpret Eq. (A.9) as a (complicated) recursion
relation that directly generalizes the above recursion relation.

B. Random Tensor Network States and Split Transfer Protocols

Our results involving general background states are closely related to the
quantum-information-theoretic task of split transfer introduced in [26], which
can be understood as a variant of quantum state merging. The standard setup
is as follows: two parties, Alice and Bob, share a state φABC1...Cm

, with Al-
ice controlling A, Bob controlling B, and the systems C1, . . . , Cm being m
“helpers.” Let R be a reference system and φABRC1...Cm

a purification of φ.
Initially, the state is shared not only by Alice and Bob, but also with all the
helper systems Ci. The goal of split transfer is to try to redistribute the state
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to Alice, Bob, and R, using local quantum operations and classical communi-
cation (LOCC) between Alice, Bob and the helper systems, and possibly with
the assistance of additional maximally entangled states.

A split transfer protocol consists of

1. A partitioning of the set of the helper systems: TA �TB = {C1, . . . , Cm}.
2. For each Ci ∈ TA, a number KA,i of shared maximally entangled qubits

between Alice and Ci, and for each Ci ∈ TB , a number KB,i of shared
maximally entangled qubits between Bob and Ci.

3. An LOCC operation between Alice, Bob and the helper systems, such
that after applying the protocol, Alice and Bob share a state ψABRC1...Cm

,
which is close to φABRC1...Cm

, and is such that Alice possesses systems
A and TA, while Bob controls B and TB . Moreover, after applying the
protocol they may be in possession of a number LA,i or LB,i of (approx-
imately) maximally entangled qubits between Ci, and, respectively, A or
B.

In this case, we say that the split transfer protocol has entanglement costs
KA,i − LA,i for all Ci ∈ TA and KB,i − LB,i for all Ci ∈ TB . A precise
definition can be found as Definition 14 in [26].

Intuitively, the helper systems need to transfer their correlations with R
to Alice and Bob, but without touching R. For instance, a simple protocol
would be that the helpers simply teleport their full system to either Alice
or Bob, consuming EPR pairs, leading to large entanglement costs. We can
construct a potentially much more efficient protocol by way of random mea-
surements, as detailed in Proposition 16 of [26]. Roughly speaking, such a
protocol functions because random measurements have the effect of decou-
pling the helper systems from R. The helpers perform simultaneous random
measurements on their systems and send the results of their measurements to
Alice and Bob. Then, Alice and Bob can use their share of the global state
and their portions of the maximally entangled states to perform a decoding
operation conditioned on the results of the random measurements. The state
they receive will be a purification of ψABC1...Cm

, which will then be equivalent
to the original ψABRC1...Cm

up to local isometries. The way we set up the split
transfer protocol above was in a one-shot fashion: We get a single copy of φ
and need to determine the optimal entanglement cost for the protocol.

One can also consider asymptotic variants of split transfer, where one
has many copies available and aims to achieve an optimal transfer rate. An
example application is the entanglement of assistance. Suppose that Alice,
Bob, and the helper systems Ci get many copies of a pure state φ. At what
rate can they distill maximally entangled pairs between Alice and Bob, if Alice
and Bob are allowed to perform LOCC operations with all the helper systems?
In this case, the answer is that the rate is given by

min
TA

S(ATA)φ,
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that is, by minimizing the entanglement entropy over all bipartitions. This rate
is reminiscent of the importance of minimal cuts in a random tensor network,
and the connection was explored in [40].

To see how the task of split transfer relates to random tensor networks,
we consider three boundary regions, A and B, under the control of Alice and
Bob, and the purifying system R. Each of the bulk vertices on the network
correspond to a “helper” party. We would like to know whether there exists a
protocol in which the assisting parties are allowed to perform local operations
and classical communication (LOCC) such that the state φV R is redistributed
into a state ρABR held by Alice and Bob that can be transformed by local
isometries, acting only on A and B, to a state close to φV R. The protocol
given in [26] consists of simultaneous random measurements by each of the
helpers. This precisely corresponds to the random projections performed in
constructing the random tensor network state with this background state!

In this light, we can interpret Theorem 4.4 as a result on split transfer. Let
us assume that φ ∈ P=(ABRC1 . . . Cn), denote the associated random tensor
network state by ρABR, and choose a partitioning TA � TB of the assisting
(bulk) parties. Since H2(A|B)φ|φ ≥ Hmin(A|B)φ, Theorem 4.4 directly yields

Theorem. Suppose that

Hmin(SA|BRTB)φ ≥ K1 (B.1)

for all non-empty subsets SA ⊆ TA and

Hmin(SB |ARTA)φ ≥ K2 (B.2)

for all non-empty subsets SB ⊆ TB. Then,

E min
VA,VB

‖(VA ⊗ VB ⊗ IR)ρ(V †
A ⊗ V †

B ⊗ IR) − φABRC1...Cn
‖1

= O((2− 1
4 K1 + 2− 1

4 K2). (B.3)

where the minimum is over isometries VA : HA → HATA
and VB : HB →

HBTB
.

This result shows that if K1 and K2 are sufficiently large, then after
measurement in a random basis, the state possessed by Alice and Bob can,
with high probability, be used to approximately reconstruct φ by acting with
local isometries on the systems of Alice and Bob.

Suppose we fix values for K1 and K2. If the conditions in Eqs. (B.1)
and (B.1) are not satisfied for the initial state φ, we can use another state
where we have added an appropriate number of maximally entangled Bell pairs
between the assisting parties, increasing the entanglement cost of the protocol.5

An interesting open question in this context is whether one can generalize
this result using smooth entropies in Eqs. (B.1) and (B.1). As alluded to in
Sect. 4, the problem is that for a general state φ, one would need to perform

5In fact, the protocol in [26] is slightly more general than what we describe; rather than
measuring a random state one could also measure a random projection of rank greater than
1. This can be used to obtain EPR pairs between the helpers and Alice and Bob to get
nonzero LA,i and LB,i.
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simultaneous smoothing for all the relevant subsystems, which remains an open
problem.

There is an alternative approach, in which it is straightforwardly possible
to use smooth entropies [26]. In this approach, one merges each party in TA

one by one, and similarly for TB . That is, we choose some ordering TA =
{1, . . . , m} = [m] and we apply a sequence of state merging protocols where
we merge the state in m steps, where a single step merges A ∪ TA\[i − 1]
into A ∪ TA\[i]. In this case, it is not hard to see that, if we allow some
error the entanglement cost is determined by the smooth conditional entropies
Hε

min({i+1}|BR[i]TB)φ. We perform a similar protocol for B and the assisting
TB systems.

B.1. Split Transfer and Recovery in Holography

Split transfer is closely related to subregion-subregion duality, or entanglement
wedge reconstruction, in holography. Consider an asymptotically AdS, station-
ary semiclassical geometry which is dual to a boundary CFT state ρ. We fix a
time-reversal invariant spatial slice and partition the boundary into A and Ā.
Let γA be the minimal surface for A, and recall that ∂γA = ∂A. The region
enclosed by A and γA is the entanglement wedge of A, which we denote by
ΓA. The claim of entanglement wedge reconstruction is that if we act with a
low-energy local bulk operator in the entanglement wedge of A, we can recon-
struct the action of this operator as a corresponding operator acting on the
boundary system A.

One way to make this more precise is by considering a code subspace of
bulk states S, which can be thought of as a set of states obtained by acting
with low-energy operators on a fixed semiclassical spacetime. The action of the
operators is small, in the sense that they do not create a significant backre-
action that changes the geometry. We then introduce a reference system R of
the same dimension as S. In this framework, the AdS/CFT correspondence de-
scribes an encoding of the bulk into the boundary, taking a bulk state φΓAΓc

AR

to a boundary state ρAĀR. In this setup, the claim of entanglement wedge re-
construction is that we can act with an isometry on A to recover φΓAR. (And
ΓA is actually the maximal such region.) This situation corresponds to quan-
tum state merging—there is a single decoder A. However, in AdS/CFT, one
usually requires the stronger condition of complementary entanglement wedge
reconstruction, in which the entanglement wedge for Ā is also the complement
of ΓA, so that φΓc

AR is recoverable from Ā. This stronger requirement with
two decoders is closely related to split transfer. These ideas and the precise
relation to quantum information theory remain an active area of research, e.g.,
[6,7,36,40].

In particular, [6,7,14] have argued that one-shot quantum information is
the correct framework to understand entanglement wedge reconstruction, as
holography is fundamentally a one-shot setting—we are provided with a single
copy of a gravitational or CFT state, rather than asymptotically many copies.
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The limit of large effective central charge, and hence small GN , does
reproduce certain aspects of the many-copy limit, as we reviewed in “Ap-
pendix A.1.” However, the distinction between the one-shot and asymptotic
regimes becomes apparent in the presence of large bulk entropy, where the
bulk entropy, and hence R, is large. Such situations arise when studying, for
example, the black hole information paradox. In this case, where we assume we
have a bulk state φ, the minimal surface prescription in Eq. (A.3) is replaced
by quantum extremal surface prescription:

H(ρA) = min extγA

{
|γA|
4GN

+ H(ΓA)φ

}
,

where we minimize over extremal surfaces γA, and we minimize the joint con-
tribution of the area of γA and the bulk entropy contained in the associated
entanglement wedge ΓA. This formula has a natural tensor network inter-
pretation: Consider a random tensor network state with background state
φ = φV (b)R ⊗ φV (l) , where φV (b)R is a general background state (account-
ing for bulk entropy) and φV (l) is a tensor product of link states on a graph
G = (V,E). Let us take maximally entangled link states with dimension D.
Then, for some cut ΓA with edge set γA, we have

H(φΓA
) = log(D) |γA| + H(φ(b)

ΓA
),

and we may hope that minimization over this quantity along the cuts gives
a good approximation to the entropy. Whether such a prescription is valid
depends on the structure of the background state φ. A proposal put forth
in [6] is that the surface γA with entanglement wedge ΓA gives the max-
entanglement wedge, if ΓA is the largest region such that, for any other surface
δA homologous to A, with ΔA the region enclosed by A and δA, and where
ΔA is contained in ΓA, it holds that

Hε
min(ΓA\ΔA|Γc

AR) � |γA| − |δA|
4GN

.

In this case, ΓA should be the largest region which can be (approximately)
reconstructed from A. Again, one can think of a random tensor network where
the background state is a tensor product of a bulk state and a maximally entan-
gled link state of dimension D with log(D) = Θ(G−1

N ) along the discretization
of the space. Then, this condition is (apart from the simultaneous smoothing
problem) equivalent to Eq. (4.13). Enforcing complementary reconstruction, in
which ΓA is the max-entanglement wedge for A, and its complement Γc

A is the
max-entanglement wedge for Ā, allows us to interpret the holographic encod-
ing of the bulk state into the boundary as a version of one-shot split transfer.
See [6] for a detailed discussion of this proposal for holographic systems.

C. Joint Smoothing of Link States

In this section, we provide a proof of Lemma 4.5. In our application of one-
shot entropy estimates in Sects. 4.3 and 4.4, we needed to jointly smooth over
different subsystems for the background state φ. For general background states,
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joint smoothing is an open problem [25,31]; however, if the background state
is a product of link states as in Eq. (2.2), we can straightforwardly do so. In
order to prove Lemma 4.5, we first need some intermediate lemmas. These
lemmas involve quantum states which can be expanded in some preferential
basis with positive coefficients. Therefore, for Lemmas C.1 to C.3 and C.5, we
assume that each quantum system has a preferential basis, which we assume
without loss of generality to be the standard basis.

Lemma C.1. Suppose that φ ∈ P≤(XST ) can be written as

φXST =
∑

i

|i〉〈i| ⊗ φST,i

where each φST,i is a pure state such that |φST,i〉 can be written with positive
coefficients in the standard basis. If

φ̃XST =
∑

i

|i〉〈i| ⊗ φ̃ST,i

is such that each φ̃ST,i is a pure state satisfying |φ̃ST,i〉 ≤ |φST,i〉 elementwise,
then

Hmax(XS|T )φ̃ ≤ Hmax(XS|T )φ.

Proof. We start by arguing that for the max-entropy

Hmax(XS|T )φ̃ = max
σT ∈P≤(T )

log F (φ̃XST , IXS ⊗ σT )2 (C.1)

we may choose σT in the optimization problem with nonnegative matrix ele-
ments in the standard basis. Indeed, suppose that σT realizes the maximum in
Eq. (C.1). Then, we can write a spectral decomposition σT =

∑
j pj |ej〉〈ej |.

Now let |ẽj〉 =
∑

k |〈ej |k〉| |k〉. Then, σ̃T =
∑

j pj |ẽj〉〈ẽj | ∈ P≤(T ) has non-
negative matrix elements in the standard basis. Moreover,

F (φ̃XST , IXS ⊗ σT )2 =
∑

i

F (φ̃ST,i, IS ⊗ σT )2

≤
∑

i,j

pj

∣∣∣〈φ̃ST,i|IS ⊗ |ej〉〈ej |
∣∣∣ |φ̃ST,i〉

≤
∑

i,j

pj〈φ̃ST,i|IS ⊗ |ẽj〉〈ẽj | |φ̃ST,i〉

= F (φ̃XST , IXS ⊗ σ̃T )2.

Let σT be optimal for Eq. (C.1) with nonnegative matrix elements. It is clear
that if |φ̃ST,i〉 ≤ |φST,i〉, then

F (φ̃XST , IXS ⊗ σT )2 =
∑

i

〈φ̃ST,i|IS ⊗ σT |φ̃ST,i〉

≤
∑

i

〈φST,i|IS ⊗ σT |φST,i〉

= F (φXST , IXS ⊗ σT )2
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and hence

Hmax(XS|T )φ̃ = log F (φ̃XST , IXS ⊗ σT )2 ≤ log F (φXST , IXS ⊗ σT )2

≤ Hmax(XS|T )φ.

�
Lemma C.2. Suppose that φ ∈ P≤(XY ST ) can be written as

φXY ST =
∑

i

|i〉〈i| ⊗ |j〉〈j| ⊗ φST,ij

where each φST,ij is a pure state such that |φST,ij〉 can be written with positive
coefficients in the standard basis. If

φ̃XY ST =
∑

i

|i〉〈i| ⊗ |j〉〈j| ⊗ φ̃ST,ij

is such that each φ̃ST,ij is a pure state satisfying |φ̃ST,ij〉 ≤ |φST,ij〉 element-
wise, then

Hmax(XS|Y T )φ̃ ≤ Hmax(XS|Y T )φ.

Proof. If we have a state ρ ∈ P≤(XY ST ) which is of the form
∑

j

|j〉〈j| ⊗ ρj

where each ρj ∈ P≤(XST ), then (Proposition 4.6 in [73])

Hmax(XS|Y T ) = log

⎛

⎝
∑

j

2Hmax(XS|T )ρj

⎞

⎠ .

Together with Lemma C.1, this implies the result. �
The background states we consider are tensor products of link states, and

they can be expressed with positive coefficients in a product basis along the
half-edges. The following lemma will help us to show that when we perform
smoothing we can retain some of this structure.

Lemma C.3. Suppose that φ ∈ P≤(XST ) can be written as

φXST =
∑

i

|i〉〈i| ⊗ φST,i

where each φST,i is pure and has a Schmidt decomposition

|φST,i〉 =
∑

j

√
λi,j |jj〉

in the standard basis. Then,

Hε
min(XS|T )φ = Hmin(XS|T )φ̃

for a state φ̃ ∈ P≤(XST ) which is such that P (φ, φ̃) ≤ ε and

φ̃XST =
∑

i

|i〉〈i| ⊗ φ̃ST,i
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with

|φ̃ST,i〉 =
∑

j

√
λ̃i,j |jj〉.

for some 0 ≤ λ̃i,j ≤ 1.

Proof. Let Y be a copy of X and let R be an additional reference system of
sufficiently large dimension. Then, we let

|φXY STR〉 =
∑

i,j

√
λi,j |ii〉 ⊗ |jj〉 ⊗ |0〉

be a purification of φXST . Now, by duality of smooth entropies

Hε
min(XS|T )φ = −Hε

max(XS|Y )φ

By Lemma 6.13 of [74], we can find a state

φ̄SXY =
∑

j

|j〉〈j| ⊗ φ̄XY,j

such that P (φ, φ̄) ≤ ε and Hε
max(XS|Y )φ = Hmax(XS|Y )φ̄. Now, an arbitrary

purification of φ̄SXY will be of the form

|φ̄STXY R〉 =
∑

j,k

|jk〉 ⊗ |φ̄XY R,jk〉.

We see that
∣∣〈φ|φ̄〉

∣∣ =
∑

i,j,k

δj,k

√
λi,j |(〈ii| ⊗ 〈0|) |φXY R,jk〉|

so, optimizing over the choice of purification |φ̄〉, by Uhlmann’s theorem we
find a purification of the form

|φ̄STXY R〉 =
∑

j

|jj〉 ⊗ |φ̄XY R,j〉

such that F (φXY S , φ̄XY S) =
∣∣〈φ|φ̄〉

∣∣. We define the projector ΠXY =
∑

j |jj〉〈jj|.
Then for any σY ∈ P≤(Y ) we note that (IS ⊗ ΠXY )IXS ⊗ σY (IS ⊗ ΠXY ) ≤
IXS ⊗ σ′

Y where σ′
Y =

∑
j〈j|σY |j〉 |j〉〈j| and hence

F ((IS ⊗ ΠXY )φ̄(IS ⊗ ΠXY ), IXS ⊗ σY )

= F (φ̄, (IS ⊗ ΠXY )IXS ⊗ σY (IS ⊗ ΠXY )) ≤ F (φ̄, IXS ⊗ σ′
Y ).

If we let |φ′
XY STR〉 = (ΠXY ⊗ ISTR)|φ̄XY STR〉 this implies that

Hmax(XS|Y )φ′ ≤ Hmax(XS|Y )φ̄.

Moreover, it is easy to see that |〈φ′|φ〉| =
∣∣〈φ̄|φ〉

∣∣. Again using duality, we find
that

Hε
min(XS|T )φ ≤ Hmin(XS|TR)φ′ .

Finally, let

|φ̃〉 = (IXY ST ⊗ 〈0|)|φ′〉
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then by data processing (Theorem 5.7 of [73], note that data processing for the
conditional min-entropy is valid for trace non-increasing completely positive
maps) it holds that

Hmin(XS|TR)φ′ ≤ Hmin(XS|T )φ̃.

By construction
∣∣∣〈φ̃|φ〉

∣∣∣ = |〈φ′|φ〉| and hence P (φ̃, φ) ≤ ε. Finally, by construc-

tion φ̃ is of the desired form

|φ̃STXY 〉 =
∑

i,j

√
λ̃i,j |ii〉 ⊗ |jj〉.

�
The following lemmas will be used in our joint smoothing construction

to bound the purified distance of the smoothed state.

Lemma C.4. Suppose φ, ψ ∈ P≤(H) are pure states, and suppose

|φ〉 =
∑

i

√
λi|i〉 |ψ〉 =

∑

i

√
μi|i〉

for some λi, μi ≥ 0. Then,

T (φ, ψ) ≤ P (φ, ψ) ≤
√

2
∑

i

|λi − μi|.

Proof. Let

ρ = Δ(φ), σ = Δ(ψ)

where Δ is the completely dephasing channel, so

ρ =
∑

i

λi |i〉〈i| σ =
∑

i

μi |i〉〈i| .

Then, since ρ and σ are diagonal in the same basis

P (φ, ψ) = P (ρ, σ),

we then estimate the trace distance by

T (ρ, σ) ≤ ‖ρ − σ‖1 =
∑

i

|λi − μi|

and we apply the Fuchs–van de Graaff inequalities, Eq. (4.1), to estimate

T (φ, ψ) ≤ P (φ, ψ) = P (ρ, σ) ≤
√

2T (ρ, σ) ≤
√

2
∑

i

|λi − μi|.

�
Lemma C.5. Suppose φ, φj ∈ P≤(H) are pure states for j ∈ [n], and suppose

|φ〉 =
∑

i

√
λi|i〉 |φj〉 =

∑

i

√
λj,i|i〉

for some λ, λi,j ≥ 0 and suppose P (φ, φj) ≤ ε for all j. Then, if we let

|φ̃〉 =
∑

i

min
j

√
λj,i|i〉
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it holds that P (φ, φ̃) ≤ 2
√

nε.

Proof. Let

ρ =
∑

i

λi |i〉〈i| ρj =
∑

i

λj,i |i〉〈i| .

Then, P (ρ, ρj) = P (φ, φj) and using the Fuchs–van de Graaff inequalities
∑

i

∣∣∣∣λi − min
j

λj,i

∣∣∣∣ ≤
∑

j

∑

i

|λi − λj,i| =
∑

j

‖ρ − ρj‖1

≤ 2
∑

j

T (ρ, ρj) ≤ 2
∑

j

P (φ, φj) ≤ 2nε.

The result now follows from Lemma C.4. �

Finally, we prove our main joint smoothing result. We again consider the
setting of a tensor product of link states on a graph G = (V,E), where we
consider some boundary subsystem A ⊆ V∂ . Recall that for a cut ΓA ∈ C(A)
we define

C1(ΓA) = {ΔA ∈ C(A) : ΔA � ΓA}
C2(ΓA) = {ΔA ∈ C(A) : ΓA � ΔA}.

Lemma 4.5. Let φ ∈ P=(V ) be a link state, A ⊆ V∂ a boundary subsystem and
ΓA ∈ C(A) a cut for A. Then, there exists a pure state φε ∈ P≤(V ) which is
such that

P (φ, φε) ≤ 2
(√

|C1(ΓA)| +
√

|C2(ΓA)|
)√

ε

and it holds that for any ΔA ∈ C1(ΓA)

Hmin(ΓA\ΔA|Γc
A)φε ≥ Hε

min(ΓA\ΔA|Γc
A)φ

and for any ΔA ∈ C2(ΓA)

Hmin(ΔA\ΓA|ΓA)φε ≥ Hε
min(ΔA\ΓA|ΓA)φ.

Proof. We may assume without loss of generality that φ =
⊗

e∈E φe is such
that each φe has Schmidt decomposition in the standard basis,

|φe〉 =
De∑

i=1

√
λe,i|ii〉

This means we may write

|φ〉 =
∑

I

√
λI |I〉

where I runs over all possible basis elements along each edge I = {ie}e∈E and

λI =
∏

e∈E

λe,ie
|I〉 =

⊗

e∈E

|ieie〉.
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We also let

E1 = {e = (xy) ∈ E, x, y ∈ ΓA}
E2 = {e = (xy) ∈ E, x, y ∈ Γc

A}.

so E = E1 � E2 � γA.
Consider a cut ΔA ∈ C1(ΓA). Let

X = {(e, x) : e = (xy), x ∈ ΓA\ΔA, y ∈ ΔA}
S = {(e, x) : e = (xy), x ∈ ΓA\ΔA, y ∈ Δc

A}
T = {(e, x) : e = (xy), x ∈ Γc

A, y ∈ Δc
A}

Then, we see that Hε
min(ΓA\ΔA|Γc

A)φ = Hε
min(XS|T )φ and we can write (as

φ is a product state)

φXST = φX ⊗ φST .

Here, φST is pure, whereas φX is diagonal in the standard basis along the
half-edges in X. From Lemma C.3 (applied with φST,i = φST for each i), we
find that we obtain a state φΔA,ε which is such that P (φΔA,ε, φ) ≤ ε and

Hmin(ΓA\ΔA|Γc
A)φΔA,ε ≥ Hε

min(ΓA\ΔA|Γc
A)φ

and which can be written as

|φΔA,ε〉 =
∑

I

√
λΔA,ε

I |I〉.

for some coefficients λΔA,ε
I . Moreover, we can write

|φΔA,ε〉 =
∑

i

|ii〉 ⊗ |φΔA,ε
E1,i 〉 ⊗ |φE2〉

where i runs over all possible basis elements along the cut γA, i = {ie}e∈γA

and |i〉 =
⊗

e∈γA
|ie〉, and the φΔA,ε

E1,i are pure states with positive coefficients
in the standard basis. We now let

|φε
1〉 =

∑

I

√
λε

I |I〉

λε
I = min

ΔA∈C1(ΓA)
λΔA,ε

I .

By construction, this state can be written as

|φε
1〉 =

∑

i

|ii〉 ⊗ |φε
E1,i〉 ⊗ |φE2〉

By Lemma C.5, it holds that

P (φ, φε
1) ≤ 2

√
|C1(ΓA)| ε.
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An analogous construction can be used to construct φΔA,ε for ΔA ∈
C2(ΓA), and taking the minimum over all such cuts, we get a state φε

2 of the
form

|φε
2〉 =

∑

i

|ii〉 ⊗ |φE1〉 ⊗ |φε
E2,i〉

which satisfies

P (φ, φε
2) ≤ 2

√
|C2(ΓA)| ε.

We now define

|φε〉 =
∑

i

|ii〉 ⊗ |φε
E1,i〉 ⊗ |φε

E2,i〉.

We will now show that φε has the desired properties. First of all, since φ
is normalized, F∗(φ, φε) = F (φ, φε) and F (φ, φε) = F (φε

1, φ
ε
2) so

P (φ, φε) = P (φε
1, φ

ε
2) ≤ P (φ, φε

1) + P (φ, φε
2) ≤ 2

(√
|C1(ΓA)| +

√
|C2(ΓA)|

)√
ε

using the fact that the purified distance is a metric.
Next, consider ΔA ∈ C1(A). We note that by duality Hmin(ΓA\ΔA|Γc

A)φε =
−Hmax(ΓA\ΔA|ΔA)φε . We define the following subsystems of half-edges,

X ′ = {(e, x) : e = (xy), x ∈ ΓA\ΔA, y ∈ Γc
A}

Y ′ = {(e, x) : e = (xy), x ∈ ΔA, y ∈ Γc
A}

S′ = {(e, x) : e = (xy), x ∈ ΓA\ΔA, y ∈ ΓA}
T ′ = {(e, x) : e = (xy), x ∈ ΔA, y ∈ ΓA}.

so Hmax(ΓA\ΔA|ΔA)φε = Hmax(X ′S′|Y ′T ′)φε . Next, we observe that by con-
struction, φε is of the form

φε
X′Y ′S′T ′ =

∑

i,j

|i〉〈i| ⊗ |j〉〈j| ⊗ φε
S′T ′,ij

where i runs over all possible basis elements along γA\δA, i = {ie}e∈γA\δA
and

|i〉 =
⊗

e∈γA\δA
|ie〉, which forms a basis for HX ; and j runs over all possible

basis elements along γA ∩δA, j = {je}e∈γA∩δA
and |j〉 =

⊗
e∈γA∩δA

|je〉, which
forms a basis for HY . Each φε

S′T ′,ij is a pure state. Similarly,

φΔA,ε
X′Y ′S′T ′ =

∑

i,j

|i〉〈i| ⊗ |j〉〈j| ⊗ φΔA,ε
S′T ′,ij

where the φΔA,ε
S′T ′,ij are pure states. Moreover, by construction |φε

S′T ′,ij〉 ≤
|φΔA,ε

S′T ′,ij〉 elementwise in the standard basis. Therefore, by Lemma C.2 it holds
that

Hmax(X ′S′|Y ′T ′)φε ≤ Hmax(X ′S′|Y ′T ′)φΔA,ε .

Finally, by duality Hmin(ΓA\ΔA|Γc
A)φΔA,ε = −Hmax(X ′S′|Y ′T ′)φΔA,ε and we

conclude

Hmin(ΓA\ΔA|Γc
A)φε ≥ Hmin(ΓA\ΔA|Γc

A)φΔA,ε ≥ Hε
min(ΓA\ΔA|Γc

A)φ.
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A similar argument is valid for ΔA ∈ C2(ΓA), showing that

Hmin(ΔA\ΓA|ΓA)φε ≥ Hmin(ΔA\ΓA|ΓA)φΔA,ε ≥ Hε
min(ΔA\ΓA|ΓA)φ.

�

In the proof of Theorem 4.12, we need a similar smoothing lemma for a
slightly different situation as stated in Lemma 4.11.

Recall the setup: We consider a graph G = (V,E) and we have a set of
boundary vertices V∂ , and A ⊆ V∂ . We denote by γA,1 the edges incident to A,
and γA,2 the edges incident to Ā, and we assume these sets do not intersect.
We let Eb = E\(γA,1 ∪ γA,2). For a cut ΔA ∈ C(A), we let Y ΔA be the set of
half-edges

Y ΔA = {(e, x) : e = (xy), x ∈ Δc
A, y ∈ A}.

Lemma 4.11. Let φ ∈ P≤(V ) be a pure background state which is of the form
φ = φγA,1 ⊗ φγA,2 ⊗ φEb

, where

φEb
=
⊗

e∈Eb

φe

is a product state and the φγA,i
have a Schmidt decomposition in the standard

basis along the half-edges. Then, there exists a state φε which is such that

P (φ, φε) ≤ 2
√

2Vbε

and for all cuts ΔA ∈ C(A) it holds that

Hmin(ΔA\A|A)φε ≥ Hε
min(ΔA\A|AY ΔA)φ.

Proof. The argument is much the same as the proof of Lemma 4.5. We again
assume without loss of generality that each φe has Schmidt decomposition in
the standard basis, and we may write

|φ〉 =
∑

I

√
λI |I〉

as in the proof of Lemma 4.5. Consider a cut ΔA ∈ C(A). Then, we let

X = {(e, x) : e = (xy), x ∈ ΔA, y ∈ Δc
A}

S = {(e, x) : e = (xy), x ∈ ΔA, y ∈ ΔA\A}
T = {(e, x) : e = (xy), x ∈ A, y /∈ A} ∪ Y ΔA

so Hε
min(ΔA\A|AY ΔA)φ = Hε

min(XS|T )φ. Moreover, by the structure of the
state, φXST = φX ⊗φST , where φST is pure and φX is diagonal in the standard
basis. So, from Lemma C.3 we obtain a state

|φΔA,ε〉 =
∑

I

√
λΔA,ε

I |I〉
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for some real coefficients λΔA,ε
I ≥ 0 which is such that P (φ, φΔA,ε) ≤ ε and

Hmin(XS|T )φε ≥ Hε
min(XS|T )φ. As before, we define

|φε〉 =
∑

I

√
λε

I |I〉

λε
I = min

ΔA∈C(A)
λΔA,ε

I .

By Lemma C.5 P (φ, φε) ≤ 2
√

|C(A)| ε = 2
√

2|Vb|ε. If we define the following
subsystems

X ′ = {(e, x) : e = (xy), x ∈ ΔA, yA}
Y ′ = {(e, x) : e = (xy), x ∈ Δc

A, yA}
S′ = {(e, x) : e = (xy), x ∈ ΔA, y /∈ A}
T ′ = {(e, x) : e = (xy), x ∈ Δc

A, y /∈ A}

then φε
X′S′T ′ can be written as

φε
X′Y ′S′T ′ =

∑

i,j

|i〉〈i| ⊗ |j〉〈j| ⊗ φε
S′T ′,ij

where i runs over all possible basis elements along γA,1\δA, i = {ie}e∈γA,1\δA

and |i〉 =
⊗

e∈γA,1\δA
|ie〉, which forms a basis for HX′ ; and j runs over

all possible basis elements along γA,1 ∩ δA, j = {je}e∈γA,1∩δA
and |j〉 =⊗

e∈γA,1∩δA
|je〉, which forms a basis for HY ′ . The φε

S′T ′,ij are pure states.
We can therefore apply Lemma C.1, and

Hmax(X ′S′|T ′Y ′)φε ≤ Hmax(X ′S′|T ′Y ′)φΔA,ε

and hence, by applying duality and data processing

Hmin(ΔA\A|A)φε = −Hmax(ΔA\A|T ′Y ′)φε = −Hmax(X ′S′|T ′Y ′)φε

≥ Hmax(X ′S′|T ′Y ′)φΔA,ε = Hmin(ΔA\A|A)φΔA,ε

≥ Hmin(ΔA\A|AY ΔA)φΔA,ε ≥ Hε
min(ΔA\A|AY ΔA)φ.

�

Remark C.6. We may make two observations on Lemmas 4.5 and 4.11. In both
cases, if we construct the coefficients as min λε

I , λI we find that we may assume
the resulting state has coefficients in the basis |I〉 which are upper bounded
by λI (affecting only the constant factor in the upper bound for P (φ, φε)).
Secondly, we note that

|tr[φ] − tr[φε]| ≤
∑

I

|λI − λε
I | = O(ε) (C.2)

rather than the naive O(
√

ε) estimate.
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D. A Family of Metrics on the Symmetric Group

In analogy to the Cayley distance on the symmetric group Sk, we consider the
following function dρ : Sk × Sk → R≥0 given some arbitrary density matrix
ρ ∈ P=(H):

dρ(π1, π2) =
∑

l∈C(π−1
1 π2)

(l − 1)Hl(ρ) = −
∑

l∈C(π−1
1 π2)

log tr[ρl].

As we saw in Sect. 2.1, this function is closely related to the replica trick for
random tensor networks with non-trivial link states. In the case where ρ is a
maximally mixed state, this function is precisely proportional to the Cayley
distance (2.15). In this appendix, we show that dρ is a metric for any non-pure
quantum state ρ. (If it is pure, then dρ vanished identically.)

We say that two permutations α, β ∈ Sk are disjoint if any point not
fixed by α is fixed by β and vice versa.

Lemma D.1. The function dρ defines a metric on Sk for any state ρ which is
not pure. Moreover, if ρ does not have flat spectrum the following holds for all
π1, π2, π3 ∈ Sk:

dρ(π1, π2) + dρ(π2, π3) = dρ(π1, π3)

if and only if π−1
1 π2 and π−1

2 π3 are disjoint permutations.

Proof. The fact that dρ(π1, π2) = 0 if and only if π1 = π2 follows from the
assumption that ρ is not pure. The symmetry dρ(π1, π2) = dρ(π2, π1) is clear
from C(π−1

1 π2) = C(π−1
2 π1). Thus, the only non-trivial property we have to

show in order for dρ to be a metric is the triangle inequality. We let d = dim(H)
and we write spec(ρ) = {λi}d

i=1. Then, by letting α = π−1
1 π2 and β = π−1

2 π3

the triangle inequality

dρ(π1, π2) + dρ(π2, π3) ≥ dρ(π1, π3)

is equivalent to

∏

l∈C(α)

(
d∑

i=1

λl
i

)
∏

m∈C(β)

(
d∑

i=1

λm
i

)
≤

∏

n∈C(αβ)

(
d∑

i=1

λn
i

)
. (D.1)

Moreover, we need to show that if the spectrum is not flat, we have equality
if and only if α and β are disjoint permutations. It suffices to show this for
the case where β is a cycle, as we can write β as a product of disjoint cycles
in general and iteratively apply the result for the case where β is a cycle. We
write β = (i1 . . . im) and βq = (i1 . . . iq) for q ≤ m and we let αq = αβq and
α0 = α.

We can then find a unique sequence of numbers q0 = 0 < q1 < q2 < . . . <
m such that, if one compares αqj

and αqj+1 , then either qj+1 − qj + 1 cycles
have merged into a single cycle, or a single cycle has split into qj+1 − qj + 1
cycles. Moreover, these two operations are alternating in the sense that if αqj

to αqj+1 is a merge, then αqj+1 to αqj+2 is a split and vice versa. Indeed,
βq+1 = βq(iq iq+1), so αq+1 = αq(iq iq+1). If iq and iq+1 are in different cycles
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in αq, then applying (iq iq+1) merges these two cycles, and if iq and iq+1 are in
the same cycle in αq, then applying (iq iq+1) splits this cycle into two cycles.
Let

J = {j : αqj
to αqj+1 is a merge}

and for j ∈ J let mj = qj+1 − qj +1, then
∑

j∈J mj ≤ m. Now, it is clear that
for any collection n1, . . . , nr of numbers with

∑r
j=1 nj ≤ n it holds that

r∏

j=1

(
d∑

i=1

λ
nj

i

)
≥

d∑

i=1

λn
i (D.2)

where the inequality is strict unless r = 1 and n1 = n (since we assume that
ρ is not pure). In particular (recall that we assumed β to be a cycle of length
m), we may estimate the left-hand side of Eq. (D.1) by

∏

l∈C(α)

(
d∑

i=1

λl
i

)(
d∑

i=1

λm
i

)
≤
∏

l∈C(α)

(
d∑

i=1

λl
i

)
∏

j∈J

(
d∑

i=1

λ
mj

i

)
. (D.3)

with equality if and only if {mj}j∈J = {m}. (So β only merges cycles.) We
will next argue that for j /∈ J

∏

l∈C(αqj
)

(
d∑

i=1

λl
i

)
≤

∏

l∈C(αqj+1 )

(
d∑

i=1

λl
i

)
. (D.4)

and for j ∈ J

∏

l∈C(αqj
)

(
d∑

i=1

λl
i

)(
d∑

i=1

λ
mj

i

)
≤

∏

l∈C(αqj+1 )

(
d∑

i=1

λl
i

)
(D.5)

with equality if and only if the spectrum is flat or all the cycles that are merged
are 1-cycles. Then, combining Eqs. (D.3), (D.4) and (D.5) we may conclude
that Eq. (D.1) holds, with equality if and only if β is a disjoint cycle from α.

Equation (D.4) follows immediately from Eq. (D.2), so it remains to show
Eq. (D.5). To this end we will apply Jensen’s inequality. In Eq. (D.5) let us
assume that s cycles of lengths l1, . . . , ls are merged into a cycle of length l,
so l =

∑s
p=1 lp. We let ls+1 = s. Let fp : [d] → R≥0 be the function defined

by i �→ λ
lp−1
i , for p ∈ [s + 1]. Moreover, let

ηp =
lp − 1
l − 1

for p ∈ [s].

We consider expectation values over the probability measure on [d] where i
has probability λi. Since ηp ≤ 1 for all p, by Jensen’s inequality for ηp �= 0

(
Ef

1
ηp
p

)ηp

≥ Efp (D.6)
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with equality if and only if the spectrum is flat or ηp = 1. Note that for ηp = 0
(equivalently lp = 1), Efp = 1. Using that

s+1∑

p=1

ηp =
s∑

p=1

lp − 1
l − 1

+
s − 1
l − 1

=
l − s + s − 1

l − 1
= 1

and for ηp �= 0

Ef
1

ηp
p =

d∑

i=1

λl
i

we find that
s∏

p=1

(
d∑

i=1

λ
lp
i

)
d∑

i=1

λs
i =

s+1∏

p=1

Efp ≤
∏

p,ηp 
=0

(
Ef

1
ηp
p

)ηp

=
d∑

i=1

λl
i.

Here, we have equality if and only if the spectrum is flat or for all p ∈ [s + 1]
it holds that ηp = 1 or ηp = 0. Since ηp < 1 for p ∈ [s] and ls+1 > 1, this
only happens if lp = 1 for p ∈ [s] and s = ls+1 = l (in other words, if all the
merged cycles are 1-cycles). Applying this with s = mj for each j ∈ J proves
Eq. (D.5). �
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