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High intensity transient signals (HITS) can be detected using transcranial Doppler ultrasound monitoring to help stroke prevention. The various types of HITS are by nature imbalanced: solid emboli are rare events, compared to artifacts or gaseous emboli. Therefore, when training deep models on these data, one have to take into account the class imbalance. In this work, we propose a deep embedded clustering (DEC) based regularization technique, DEC-R to handle imbalanced datasets. Our proposed method decompose a classification model into an encoder and a classifier, with DEC-R applied to the former during supervised training. We validate our method on four synthetic datasets and one HITS datasets. The results show that our approach is robust against imbalanced datasets, allowing to increase the classification performances of different models on both, imbalanced (maximum imbalance ratio of 20) and balanced datasets. We achieve an increase of 4.86% and 1.27% in terms of Matthews correlation coefficient on two imbalanced datasets, a synthetic dataset (of 3D points) and a HITS clinical dataset, respectively. Our code can be found in GitHub.

I. INTRODUCTION

Stroke is a large public health problem as it is one of the leading cause of disability and death in the world [START_REF] George | CDC Grand Rounds: Public Health Strategies to Prevent and Treat Strokes[END_REF]. Cerebral emboli (CE) can be associated to the risk of ischemic stroke [START_REF] Rosenkranz | The amount of solid cerebral microemboli during carotid stenting does not relate to the frequency of silent ischemic lesions[END_REF] as they can block a cerebral artery. Therefore, its detection is crucial to help clinicians to prevent stroke.

Moreover, as CE are rare events, a long-duration monitoring is necessary to be able to detect them. To do this, transcranial Doppler ultrasound can be used to monitor the cerebral blood flow over long periods of time. CE are then detected using high intensity transient signals (HITS) which are potential solid or gaseous emboli. What is more, a portable transcranial Doppler can be used to allow longer recordings in ambulatory patients. The two main challenges with this technique are that [START_REF] George | CDC Grand Rounds: Public Health Strategies to Prevent and Treat Strokes[END_REF] portable TCD is more prone to artifacts, and (2) the set of obtained HITS is imbalanced, the majority being artifacts and gaseous emboli, whereas the minority are solid emboli.

Furthermore, since the early 2000s, several works have used signal processing and machine learning techniques to detect and classify CE. Signal processing techniques mainly focus on frequency-based approaches using Fourier or wavelet transforms, often combined with machine learning techniques such as support vector machines, random forest, naive Bayes, or fuzzy-rules based classifiers [START_REF] Karahoca | A polynomial based algorithm for detection of embolism[END_REF]- [START_REF] Guepie | Sequential emboli detection from ultrasound outpatient data[END_REF]. Deep learning techniques often use time-frequency representations (TFRs) combined with convolutional neural networks (CNN) [START_REF] Sombune | Automated embolic signal detection using deep convolutional neural network[END_REF], [START_REF] Vindas | Semiautomatic data annotation based on feature-space projection and local quality metrics: an application to cerebral emboli characterization[END_REF]. More recent work have exploited both TFRs and raw signals to classify CE using CNNs and Transformers models [START_REF] Vindas | An hybrid cnn-transformer model based on multi-feature extraction and attention fusion mechanism for cerebral emboli classification[END_REF]. Although both types of methods have reached great performances, to our knowledge, few works use portable TCD data [START_REF] Guepie | Sequential emboli detection from ultrasound outpatient data[END_REF], [START_REF] Vindas | An hybrid cnn-transformer model based on multi-feature extraction and attention fusion mechanism for cerebral emboli classification[END_REF], or take into account gaseous emboli for classification [START_REF] Vindas | Semiautomatic data annotation based on feature-space projection and local quality metrics: an application to cerebral emboli characterization[END_REF], [START_REF] Vindas | An hybrid cnn-transformer model based on multi-feature extraction and attention fusion mechanism for cerebral emboli classification[END_REF]. Moreover, none of these works directly handle the imbalance in the used datasets. On the other hand, deep embedded clustering (DEC) [START_REF] Xie | Unsupervised deep embedding for clustering analysis[END_REF] has proven to be effective for unsupervised classification and relatively robust against imbalanced datasets. Therefore, it has been studied in biomedical applications [START_REF] Li | Deep embedded clustering with multiple objectives on scRNA-seq data[END_REF]- [START_REF] Ajay | Unsupervised hyperspectral microscopic image segmentation using deep embedded clustering algorithm[END_REF] and adapted to semi-supervised learning contexts [START_REF] Ren | Semi-supervised deep embedded clustering[END_REF] for classification and segmentation [START_REF] Enguehard | Semi-supervised learning with deep embedded clustering for image classification and segmentation[END_REF].

In this work, we propose a regularization term based on DEC allowing to partially handle imbalanced datasets while improving the generalization capability of the trained models. Indeed, as shown in [START_REF] Xie | Unsupervised deep embedding for clustering analysis[END_REF], DEC is fairly robust against cluster imbalance in an unsupervised context. In contrast, we propose to adapt DEC to a supervised learning context. Therefore, we propose to apply DEC to the encoder's latent space of a supervised learning model. This unsupervised clustering task is done in parallel with the supervised classification task. Thus, any supervised learning can be regularized by our approach.

To summarize, our contributions are the following:

• Proposition of DEC-R, a DEC based regularization term adapting it for a supervised learning context. • Proposition of DEC-R as a new method to handle imbalanced dataset in a supervised learning context, without the use of the label information (label noise robustness). • Extensive evaluation using different datasets and classification models. We validate our proposed approach on five datasets, four 3D synthetic datasets and one HITS datasets. The results show that our proposed method allows improving the classification performances of different types of models trained on several imbalanced and balanced datasets (maximum imbalance ratio of 20).

The rest of the paper is structured as follows. In section II we present our regularization DEC-R for supervised learning classification. In sections III and IV we present the used datasets in the different experiments as well as their results. Finally, in section V we conclude and present the guidelines of our future work.

II. METHOD

The global pipeline of our method can be found in figure 1. We decompose our classification model into an encoder and a classifier. We handle the problem as a multitask learning problem where the encoder latent's space is used for both unsupervised clustering and supervised classification. We denote as c 1 , . . . , c K the centroids of the different clusters, which are initialized using k-means. Note that, as we are in a supervised learning context, we choose the number of centroids to be equal to the number of classes. We can now define, for all i ∈ [1, N ] and j ∈ [1, K], the soft assignments q ij (interpreted as the probability to assign sample E(X i ) to the cluster of centroid c j ) using the Student's t-distribution:

∀i ∈ [1, N ], ∀j ∈ [1, K], q ij = K p=1 (1 + ||E(Xi)-cp|| 2 α ) α+1 2 (1 + ||E(Xi)-cj || 2 α ) α+1 2 
(1) where α is the degrees of freedom of the Student's tdistribution, fixed to α = 1 for all the experiments presented in this work (as in [START_REF] Xie | Unsupervised deep embedding for clustering analysis[END_REF]). We denote as Q the predicted labels' distribution obtained by the q ij . Moreover, in order to train the encoder model and the centroids, a target distribution P is introduced in [START_REF] Xie | Unsupervised deep embedding for clustering analysis[END_REF], defined as follows:

∀i ∈ [1, N, j ∈ [1, K], p ij = q 2 ij fj K p=1 q 2 ip fp (2)
where f j = K p=1 q jp is the soft frequency of cluster j. The DEC module is then optimized using the Kullback-Leibler (KL) divergence between the target distribution P and the predicted labels' distribution Q:

L DEC = KL(P ||Q) = N i=1 K j=1 p ij × log( p ij q ij ) (3) 
2) Supervised classification loss: Our main objective is to do classification, so, in parallel to the unsupervised clustering task, we train a classifier in a supervised manner using the Cross-Entropy loss, L CE , using the encodings E(X 1 ), . . . , E(X N ) and their respective labels are y 1 , ..., y N .

L CE (C) = 1 N × N i=1 K j=1 y ij × log(ỹ ij ) (4)
where y ij is the j th component of y i corresponding to the true probability that sample E(X i ) is of class j, and ỹij = C(E(X i )) j is the j th component of ỹi = C(E(X i )) corresponding to the predicted probability that sample E(X i ) is of class j.

B. Proposed approach 1) Deep embedded clustering regularization (DEC-R) loss for a supervised learning context: In the original paper [START_REF] Xie | Unsupervised deep embedding for clustering analysis[END_REF], DEC was applied to pre-trained unsupervised models. In our context, DEC-R adapts DEC to supervised models in an endto-end manner. To do this, we introduce a hyperparameter e init corresponding to the epoch at which DEC is activated. This means that the proposed DEC regularization is only applied for all epochs greater than e init . Hence, the DEC-R unsupervised loss is denoted here as L DEC-R (E, e init ). In short, from epoch e init , the centroids c 1 , . . . , c K of the K clusters are computed and updated over the iterations thanks to gradient descent on L DEC-R . In this way, the computation of the centroids also has an influence on the encoder's parameters.

2) Final loss: The final loss that we used is the combination of L CE (C) and L DEC-R (E), with a hyperparameter γ corresponding to the importance of the deep clustering task:

L = L CE (C) + γ × L DEC-R (E, e init ). (5) 
Both terms of the final loss depend on the parameters of the E as L CE uses the encoded representations of the input samples. The main difference between the two terms is that, L DEC-R (E, e init ) takes into account the centroids c 1 , ..., c K , whereas L CE (C) takes into account the classification predictions ỹ1 , ..., ỹN .

III. DATASETS

A. HITS dataset

The HITS dataset is composed of 8685 HITS (696 solid emboli, 1 002 gaseous emboli, 6 987 artifacts) extracted from TCD recordings (30 to 180 minutes), performed on 52 subjects (20 men, 25 women, and 6 unknown; median age 68.5, range 21 to 91, computed with the available information) coming from 10 different centers. The recordings were obtained using two Atys Medical devices, the TCD-X Holter and the WAKIe R3, with a 1.5-2.0 MHz robotized probe. Moreover, for each HITS sample, a TFR was extracted, following [START_REF] Vindas | An hybrid cnn-transformer model based on multi-feature extraction and attention fusion mechanism for cerebral emboli classification[END_REF]. Thus, a HITS sample is composed of a raw signal and its TFR. For more details about the acquisition and pre-processing parameters, we invite the reader to refer to [START_REF] Vindas | An hybrid cnn-transformer model based on multi-feature extraction and attention fusion mechanism for cerebral emboli classification[END_REF].

Last, we split the dataset according to subjects into two subsets, one for training, composed of 84% of the samples, and one for testing, composed of 16% of the samples.

B. Synthetic datasets

In an attempt to study the robustness of DEC-R against imbalanced datasets (and potentially nonlinearly separable), we propose to use four synthetic datasets, D SB , D SI , D N B , D N I , with controlled structures. Each dataset is composed of three different clusters of 3D points, C 1 , C 2 , and C 3 . We denote as N k the number of samples in the k th cluster. Moreover, the points of C k are defined as follows:

∀x ∈ C k , x ∼ N (µ k , Σ k )
where µ k = µ k × 1 is the mean vector (center of the cluster) with 1 = [1, 1, 1], and Σ k = σ k × I 3 is the covariance matrix, with I 3 ∈ R 3 is the identity matrix. Using this, we create four different datasets with the following characteristics: Even if these datasets are multi-class, we use the binary classification term nonlinearly separable in the sens that at least two classes are nonlinearly separable (in D N B and D N I , there is an overlap between C 1 and C 2 ). What is more, the synthetic dataset D N I was designed to have two important characteristics of the HITS dataset: (1) imbalanced classes, and (2) two nonlinearly separable classes. Indeed, as mentioned in subsection III-A, the HITS dataset is by nature imbalanced, with the majority class (artifact), being linearly separable with respect to the two other classes. On the contrary, the minority class (solid emboli class), overlap with the gaseous emboli class (nonlinearly separable), which has twice more samples.

Last, for evaluation, we did a 80/20% train/test split.

IV. EXPERIMENTS AND ANALYSIS

We conduct different experiments on the four synthetic datasets and the HITS dataset. We evaluate all the experiments using the Mathew Correlation Coefficients (MCC) and the F1-score. Moreover, all the models were trained with Adam optimizer with a batch size of 32, and all the experiments were repeated 10 times, with the same partitioning, but different weights initialization. The reported metrics correspond to the median and mean absolute deviation over the repetitions.

A. Experiment 1: Influence of DEC-R hyperparameters

The objective of this experiment is to study the influence of the two hyperparameters, e init and γ. To do this, we trained a simple classification model using only D N I , and we tried different combinations of the two hyperparameters: e init ∈ [0, 1, 5, 10, 20, First, for a fixed value of e init , decreasing the value of γ globally reduces the classification performances. Conversely, when γ increases, DEC-R term becomes stronger, giving a more clustered and separable latent space. Secondly, for a fixed value of γ, increasing the value of e init globally increases the classification performances (the original DEC was designed to be used with pre-trained models). Thirdly, we can see that the classification performances obtained with e init = 0 are globally smaller compared to the other values of e init . This is because DEC-R is initialized with k-means, and for e init = 0, the latent space where DEC-R is applied does not have a rich structure, so the initialized centroids are not optimal, leading to poor results. Based on these remarks, we recommend choosing the hyperparameters, γ and e init as follows. First, choose e init starting from low values for a fixed small γ value. This allows measuring the impact of DEC-R without an important degradation of the classification performance. Then, choose γ by gradually increasing it for the previously chosen e init .

B. Experiment 2: Robustness of DEC-R against imbalanced datasets

The objective of this experiment is to study the robustness of DEC-R regularization in a controlled environment using synthetic datasets. Therefore, we used D SB , D SI , D N B , and D N I to train the same classification model of experiment 1 with and without DEC-R. Furthermore, following the recommendations of our hyperparameter study in experiment 1 (IV-A), we obtained the following values: γ = 1 and e init = 5 for D SB and D N I ; γ = 10 and e init = 5 for D SI ; γ = 0.5 and e init = 1 for D N B . Moreover, on D SB , D N I , and D SI , we trained the models during 50 epochs with a learning rate of 0.05 for the two first datasets and 0.005 for the last one. Last, for D N B the model was trained during 100 epochs with a learning rate of 0.01. All the models used a weight decay of 10 -7 , and the results can be found in table I.

For both imbalanced datasets, D SI and D N I , the regularized model outperformed the unregularized one by a margin of 4.86% and 1.64% in terms of MCC respectively. Indeed, the DEC-R regularized models tend to produce more compact clusters, allowing a better separability when doing classification. Additionally, we observe that regularizing with DEC-R does not reduce significantly the classification performances in any dataset, while often reducing the variability, thus giving more stable models.

C. Experiment 3: Application to cerebral emboli classification

The objective of this experiment is twowise: (1) apply our proposed method to a real HITS imbalanced dataset for CE classification, and (2) compare our proposed method to other commonly used state-of-the-art methods for imbalanced classification, namely undersampling (to reach the number of samples of the minority class) and class weights [START_REF] King | Logistic regression in rare events data[END_REF]. Therefore, we applied our method to two different models of [START_REF] Vindas | An hybrid cnn-transformer model based on multi-feature extraction and attention fusion mechanism for cerebral emboli classification[END_REF]: (1) a 2D CNN model taking as input the TFR, and (2) a 1D CNN-Transformer taking as input the raw signal. Hereafter we list the small changes that we did for the 1D CNN-Transformer model compared to the original work in [START_REF] Vindas | An hybrid cnn-transformer model based on multi-feature extraction and attention fusion mechanism for cerebral emboli classification[END_REF]: last 1D convolutional layer is applied 4 times, 16 attention heads (per multi-head attention), 4 Transformer encoder layers, a Transformer intermediate hidden dimension of 64, and a dimension of 16 for the projected representation used for final classification. Additionally, to test the resistance of DEC-R to noisy-labels, we added symmetric noise to the labels with a noise rate of 20%, following [START_REF] Song | Learning from noisy labels with deep neural networks: A survey[END_REF]. Furthermore, the 2D CNN models were trained with a weight decay of 10 -4 , and a learning rate of 10 -3 , whereas the 1D CNN-Transformers used a weight decay of 10 -5 and a learning rate of 0.1 when undersampling was applied and 0.04 when not. The DEC-R parameters can be found in table II. Last, all models were trained during 75 epochs expect for the 1D CNN-Transformer models with undersampling (required 100 epochs). We computed the MCC and F1-score over the last 5 epochs, and results can be found in table III.

First, we can observe that, with respect to undersampling, DEC-R allows increasing the performances of the models, with up to 2.85% in terms of MCC. Indeed, DEC-R allows not only to use all the available samples (compared to undersampling), but it also enforces clustering 1 . Moreover, for the 1D CNN-Transformer model, DEC-R alone outperforms all the other methods. Nevertheless, for the 2D CNN model, class weights (combined to DEC-R) improves the results, but it stays below the 1D CNN-Transformer. However, contrary to class weights, our method does not depend on the labels of the samples, which makes it more robust against noisy-labeled datasets as the results in table IV show it. Thus, for imbalanced noisy labels classification, our method outperforms the two tested state-of-the-art methods.

Finally, for both models, the best performing methods are the ones using DEC-R (with class weights for the 2D CNN model and without for the 1D CNN-Transformer), with an increase in MCC up to 2.02% with respect to baselines where no imbalance classification method is used.

V. CONCLUSION

In this work, we proposed DEC-R, a regularization for supervised learning models based on deep embedded clustering.

Fig. 1 .

 1 Fig. 1. Pipeline of the proposed method. The DEC-R regularization is applied to the encoder latent's space in parallel to the classification task.

A. Preliminaries 1 )

 1 Deep embedded clustering: Let us suppose that we have a labeled dataset (X 1 , y 1 ), . . . , (X N , y N ), composed of N labeled samples distributed in K classes, where the samples are X 1 , . . . , X N and the labels are y 1 , ..., y N . Let us suppose that we have a classification model M = C • E composed of an encoder E and a classifier C. DEC [10] does clustering on the latent space of E by using the embedded representations E(X 1 ), . . . , E N = E(X N ) of the input samples.

•

  D SB : linearly separable and balanced dataset with (µ 1 , σ 1 ) = (-2, 0.5), (µ 2 , σ 2 ) = (0, 0.5), (µ 3 , σ 3 ) = (2, 0.5), and N 1 = N 2 = N 3 = 500. • D SI : linearly separable and imbalanced dataset. Same as D SB but with N 1 = 1000, N 2 = 200, and N 3 = 4000. • D N B : nonlinearly separable and balanced dataset with (µ 1 , σ 1 ) = (-1, 0.5), (µ 2 , σ 2 ) = (0, 0.45), (µ 3 , σ 3 ) = (2.5, 0.5), and N 1 = N 2 = N 3 = 500. • D N I : nonlinearly separable and imbalanced dataset. Same as D N B but with N 1 = 1000, N 2 = 200, and N 3 = 4000.

n epochs 2 ]

 2 (with n epochs the total number of training epochs) and γ ∈ [10, 1, 0.1, 0.01, 0.001]. The used model is composed of an encoder with one fully connected (FC) linear layer followed by a softplus activation function. Then, a FC layer is applied followed by a softmax function to do classification. The training parameters were the same for all the combinations of γ and e init : 50 epochs and a learning rate of 0.05. The results of this experiment are given in figure 2.

Fig. 2 .

 2 Fig. 2. Experiment 1: influence of the hyperparameters γ and e init on the classification performance (MCC) of the trained model in D N I . The blue zone corresponds to the best choice of hyperparameters used for all the synthetic datasets in experiment 2.

TABLE I EXPERIMENT 1 :

 I1 RESULTS OF THE EVALUATION OF DEC-R ON SYNTHETIC DATASETS (D SB , D SI , D N B , AND D N I ).

	Dataset	DEC-R	MCC	F1-Score
	D SB	No Yes	100 ± 0 100 ± 0	100 ± 0 100 ± 0
	D SI	No Yes	89.65 ± 2.37 94.51 ± 2.09 97.88 ± 0.77 95.62 ± 0.91
	D N B	No Yes	96.99 ± 0.51 96.25 ± 0.74	98.0 ± 0.33 97.50 ± 0.50
	D NI	No Yes	91.74 ± 1.98 93.38 ± 0.9	96.59 ± 0.77 97.60 ± 0.38

We refer the reader to the GitHub associated to our work for more experimental details assessing this point.

ACKNOWLEDGMENT This work was carried out in the context of the CAREMB project funded by the Auvergne-Rhône-Alpes region, within the Pack Ambition Recherche program. This work was performed within the framework of the LABEX CELYA (ANR-10-LABX-0060) and PRIMES (ANR-11-LABX-0063) of Université de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

Our method decomposes a classification model into an encoder and a classifier, with an unsupervised DEC regularization applied to the encoder while doing supervised training of the entire model. Our experiments show that, on both synthetic data and real TCD data, a DEC-R regularization on the encoder allows facing class imbalance with a more clustered latent space: it improves the classification performances of different classification models (DNN, CNN, and Transformers) in imbalanced and balanced datasets, with inputs of different natures, specially when noise is present in the labels. In future work, we plan to apply DEC-R to multi-feature models.