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ABSTRACT

With increasing advances in the field of medical brain imag-
ing, we can now assess the presence of punctate white mat-
ter lesions (PWML) in the preterm infant. While some stu-
dies report a link between these lesions and adverse long-term
outcomes, automatic detection of PWML through ultrasound
(US) imaging could better assist doctors in diagnosis, at a
lower cost than MRI. Many papers focus on MR biomedical
image benchmark datasets, but few methods seem to tackle
the detection of very small lesions in US images, because
it is really challenging due to high class imbalance and low
contrast. In this work, we propose a two-phase strategy: 1)
Segmentation with a vision transformer to increase the num-
ber of detected lesions. 2) Multi-view classification of the
lesions predicted in the output mask to reduce the number of
false alarms and improve precision. We also compare 3 me-
thods of preprocessing for input data. As a result, our method
achieves better performances for PWML detection in US ima-
ges compared to the best published models, with recall and
precision reaching 82% and 60% respectively.

Index Terms— Deep Learning, Anomaly Detection, 3D
Ultrasound, White Matter Injury, Vision Transformers.

1. INTRODUCTION

Punctate white matter lesions (PWML) usually appear dur-
ing embryonic development in the central and periventricu-
lar regions of the brain. Their location is particularly impor-
tant since it is linked to neurodevelopmental outcomes and
can later cause cognitive and motor sequelae in early child-
hood [1]. Brain lesions are generally identified using MRI,
but this procedure is expensive and not always accessible. As
ultrasound is the paediatric routine, this modality could be of
real interest for a broader screening of children with PWML
and to assist medical diagnosis and treatment process.

However, the detection and segmentation of PWML on
cranial ultrasound (cUS) is very challenging. First, despite a
higher resolution than MRI, US images are difficult to analyse
because of their low contrast, the presence of speckle and the
high variability related to the data acquisition process. Se-
cond, PWML are very small (in our dataset, the median lesion

volume is 1mm3), which leads to a significant imbalance in
the data between lesion pixels and background pixels, making
it difficult to train deep learning models.

Many papers present approaches using CNNs for tumors
classification and segmentation, but few methods seem to
tackle the detection of very small lesions, and even less in ul-
trasound. The problem of PWML detection in MRI was first
adressed by Liu et al. [2], but despite the high contrast and
low noise of MR images, the reported accuracy for the task
remains low with a Dice under 0.60 and a recall at 0.65. In
2020, Erbacher et al. [3] started working on this task with cUS
and introduced the Priority U-Net, with recall and precision
reaching 0.53 and 0.50 respectively.

As stated above, the detection and segmentation of
PWML on cUS is very difficult, not only because of the
small size of lesions, but also considering the presence of
numerous artifacts in cUS images that are very similar to
true lesions in terms of gray levels, sometimes location or
even shape and which tend to produce a large number of
false positives and greatly reduce accuracy. In order to tackle
this issue, we previously developed a 2 stage pipeline in-
spired by the work of Dakak et al. [4] on the detection of
discontinuities in industrial CT volumes. A first step of over-
segmentation was performed with the Priority U-Net trained
on an expanded groundtruth, before applying a second step of
multi-view classification with the 2.5D SC-Net [5] to reduce
the number of false alarms. This approach achieved higher
performance than existing methods, with recall and precision
for the PWML detection reaching 0.72 and 0.56 respectively.

Motivated by the global context modeling capability of
Vision Transformer [6], the TransUNet was proposed by
Chen et al. [7] for medical image segmentation. As trans-
formers have matched or even exceeded state-of-the-art in
many applications, it was expected that integrating the Trans-
UNet in our 2-step approach could also improve our results.

In this work, we demonstrate that performing segmen-
tation with the TransUNet helps to increase the number of
detected lesions (higher recall). In addition, we compare 3
methods of preprocessing for input data. Finally, the classi-
fication step that follows with the 2.5D SC-Net also helps to
improve the precision of our results, while limiting the com-
putational cost of adding more spatial context as well.



Fig. 1: Full pipeline : The Transunet takes 3 consecutive coronal slices as a 3-channel input and returns a segmented mask. The intermediate
mask contains objects that may be PWML or false alarms. Hence step 2, where connected components are classified from sagittal and
coronal views as a 2-channel input, to improve accuracy. In the end, the final mask is compared to the 3D groundtruth for evaluation.

2. METHODOLOGY

2.1. Segmentation with TransUNet

TransUNet [7] proved that Transformers could serve as po-
werful encoders for medical image segmentation tasks, with
the combination of U-Net to enhance finer details by recove-
ring localized spatial information. To add even more spatial
context, 3 consecutive coronal slices from the US volume are
given as a 3-channel input to the model 1.

Image sequentialization: We perform tokenization by re-
shaping the input image into a sequence of flattened 2D
patches, where each patch is of size 16 × 16. A CNN is first
used as a feature extractor to generate a feature map for the
input image. In a second step, tokenized image patches are
recovered from the CNN feature map and used as the input
sequence for extracting global context with the transformer
encoder.

Patch embedding: Patch embedding is applied to the patches
extracted from the CNN feature map mentioned above. This
process allows us to leverage the intermediate high-resolution
CNN feature maps in the decoding path. Besides, it is found
that the hybrid CNN-Transformer encoder performs better
than simply using a pure Transformer as the encoder.

Cascaded upsampling (CUP): The decoder part of the net-
work consists of multiple upsampling steps to decode the
hidden feature for outputting the segmentation mask by com-
bining the encoded features from the Transformer with the
high-resolution CNN feature maps to enable precise localiza-
tion. Besides, the CUP and the hybrid encoder actually form
a U-shaped architecture which enables feature aggregation
at different resolution levels via skip-connections. An inter-
mediate 3D mask is then recovered by concatenating the 2D
predictions along the coronal projection.

2.2. Classification of PWML & False alarms

The multi-view classifier 2.5D SC-Net [5] is trained on the
joint fusion of the sagittal and coronal projections of the brain
to differentiate true PWML from artifacts present in the brain,
at a smaller scale but with more spatial context, while limiting
the computational costs by using 2.5D instead of 3D volumes.

Patches of size 32 × 32 × 2 centered on each connected
components (CC) from the 3D intermediate mask are fed to
the network as a 2-channel input (corresponding to each pro-
jection) to predict the class of the corresponding CC. During
training, features are extracted through convolutional blocks
for each projection separatly, then joint fusion is performed by
computing the weighted average on the flatten output of the
feature extraction part of the network. Note that the weights
are learned automatically for each projection during training.

During the testing phase, once the 3D intermediate mask
is obtained after the first step of segmentation with Trans-
UNet, 2D patches are extracted around the regions of interest
(thumbnails from the image, centered around the connected
components of the predicted mask) from the sagittal and coro-
nal projections of the brain, concatenated and sent to the 2.5D
SC-Net to identify the true PWML. The intermediate mask is
then corrected (i.e. the connected components predicted as
false alarms are removed from the mask) 1.

3. EXPERIMENTS & RESULTS

3.1. Dataset

The 2D images are extracted from 54 reconstructed US brain
volumes (including 29 with PWML) from 45 preterm babies
whose mean age at birth was 31.6 ± 2.5 gestational weeks.

As the acquisition process of the ultrasound images
is performed manually by the pediatrician along the ante-
rior/posterior axis of the brain, the brain scan does not always
results in the same number of dynamic sequences (DICOM).



In order to recover a complete volume, we completed this
process by a reconstruction algorithm [8].

In total, the dataset without preprocessing contains 473
lesions. The smallest lesion barely reaches 0.03mm3, while
the largest is more than 58mm3. The median lesion size is
1.08mm3, which is extremely tiny compared to what is ob-
servable in MRI. Besides, PWML have quite varied contrasts
and do not really have specific shapes (punctate, ovoid or
sometimes linear) 2. They are usually located in the center
of hemispheres, near the lateral ventricles.

Fig. 2: PWML examples from the Brain US Dataset (Top row : US
images. Bottom row : groundtruth masks). PWML have varied
contrasts and shapes, and are often difficult to distinguish from

peripheral vessels or arteries in cross-section.

3.2. Data Preprocessing

A first preprocessing phase consists of extracting a sub-
volume of size 128× 128× 128 in the top-right hemisphere,
periventricular region of the brain for each patient.

In order to reduce class imbalance, a first filtering is per-
formed on the size of the lesions for each volume to limit the
number of lesions that are too small and to make the problem
less complex. As a result, only 90% of the lesional volume is
kept for each patient, which allows us to get rid of the tiniest
lesions, that are usually not even visible in the MRI.

Additionally, several methods of data preprocessing were
explored separately in order to obtain the optimal input for
the TransUNet :

Duplicated grayscale (2D): The input to the network is a
2D grayscale coronal slice duplicated 3 times and given as a
3-channel input of dimensions 3× 128× 128 to the segmen-
tation network.

Expanded groundtruth (HF): The PWML in the groundtruth
are artificially expanded by aggregating the foreground pixels
within a 5-slices sliding window along the coronal projection
of the brain. This results in a mask with a higher percentage
of foreground pixels which is expected to cause additional
loss and helps to make training more effective.

3 consecutive grayscale (3S): The input to the TransUNet is
the concatenation of 3 consecutive 2D slices extracted from
the volume along the coronal projection of the brain, given as
a 3-channel input of dimensions 3× 128× 128 to the model.
The idea was to use these 3 channels to give the model more
spatial information. Our intuition was that thickening the
lesions seen by the model might help it to over-segment the
groundtruth, and thus better detect small lesions.

Horizontal flipping and rotation are randomly applied to the
chosen input with a probability of 0.5 for data augmentation.

3.3. Experimental Setup

The proposed pipeline 1 was implemented in Python 3.8 with
PyTorch (TransUNet) and TensorFlow (2.5D SC-Net) back-
end. All the models were trained and tested with GPU. For
each model, we performed a 10-fold cross-validation and
computed the median of scores.

The TransUNet was trained for about 40 epochs with the
Dice Loss, whereas the 2.5D SC-Net was trained for approxi-
mately 20 epochs using the Weighted-Binary Cross-Entropy
Loss. The batch size is 4 for the segmentation and 32 for the
classification. The initial learning rate was fixed at 10e-3 with
the Adam optimizer and automatically decreased by a factor
0.1 when validation loss did not improved after 10 epochs.

3.4. Results

Table 1: Final results of the proposed approach (TransUNet (3S) +
2.5D SC-Net) compared to state-of-the-art. All these results are the
medians of 10-folds cross-validation (± median absolute deviation).

Model Recall Precision Dice (TP)

U-Net [9] 55.83 (± 8) 58.59 (± 10) 47.21 (± 12)

Priority U-Net [3] 71.63 (± 12) 48.96 (± 11) 59.03 (± 6)

Priority U-Net (HF)
+ 2.5D SC-Net [5] 79.02 (± 8) 56.35 (± 10) 58.89 (± 9)

TransUNet (2D) [7] 80.32 (± 11) 50.65 (± 9) 62.22 (± 8)

TransUNet (HF) 78.13 (± 11) 56.25 (± 12) 58.10 (± 9)

TransUNet (3S) 82.31 (± 8) 51.56 (± 10) 62.20 (± 12)

TransUNet (3S)
+ 2.5D SC-Net 82.19 (± 9) 60.00 (± 9) 66.63 (± 4)

To quantitatively assess the quality of the PWML detection
produced by the target pipeline, we employed 3 criteria to
evaluate each model : the Recall and the Precision for the
detection task but also the Dice on true positives (TP) to get
an overview of the segmentation ability of the model. For
each of these metrics, the value closer to 1 the better. The
quantitative results are shown in Table 1. Note that the high

1The source code is available here: https://github.com/
FloWPs/PWML_Automatic_Detection_IUS_2023

https://github.com/FloWPs/PWML_Automatic_Detection_IUS_2023
https://github.com/FloWPs/PWML_Automatic_Detection_IUS_2023


Fig. 3: Visual examples of the PWML detection with our method (TransUNet 3S + 2.5D SC-Net) compared to state-of-the-art approaches.
The input is the US image given to the network, the corresponding groundtruth is in the second column and the last 4 columns show the

comparison of predictions from the different models.

variability in results may be explained by the limited number
of patients available for each validation fold.

In our study, we observe that expanding the lesions to train
the TransUNet (HF) does not necessarily improve results. On
the other hand, giving 3 consecutive slices as a 3-channel in-
put (3S) to the model slightly improves recall and precision
(+2% and +1% respectively). Besides, as shown in the pa-
per [5], we demonstrate that applying a second step of multi-
view classification with the 2.5D SC-Net after the segmenta-
tion significantly helps to improve the precision (+9%) and
the dice (+4%) with nearly no impact on the recall.

This can also be illustrated in Fig. 3, where we find that
our full pipeline (last column) tend to include fewer false po-
sitives after classification, while still detecting PWML better
than most other approaches.

As a result, our model achieves better performances for
PWML detection in US images compared to other methods.

4. DISCUSSION AND CONCLUSION

Detecting PWML in US is challenging due to high class im-
balance and low contrast imaging. By giving 3 consecutive
slices to the TransUNet and thickening the input, the over
segmentation allows a better detection of PWML. During the
classification step, giving more spatial context as a 2 channel
input and implementing joint fusion in the multiview classi-
fier 2.5D SC-Net helps to reduce the number of false alarms

and also to improve the segmentation performance. At the
end of the proposed pipeline, we reach a higher recall and pre-
cision (82% and 60% respectively) than those obtained with
other state-of-the-art techniques.

While most people have conducted this task on MR ima-
ges, this work highlights once again the possibility of detec-
ting brain lesions through ultrasound imaging.

However, we are aware that the limited number of patients
available for each validation fold induces high variability in
the results. Hence future works will focus on enriching the
database. Besides, we also plan to integrate attention mecha-
nisms into the multi-view classifier as well.
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