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Around the asymptotic properties of a two-dimensional parametrized Euler flow

Introduction

In this paper we study the asymptotic behavior of the following two-dimensional Euler flow X(t, x), for x in the torus T 2 := R 2 /2πZ 2 , solution to the ODEs system (1.1) where A, B are two fixed non-zero real parameters.

   ∂ t X 1 (t, x) = -A cos Ä X 1 (t, x) ä -B sin Ä X 2 (t, x) ä =: b 1 Ä X(t, x) ä ∂ t X 2 (t, x) = A sin Ä X 1 (t, x) ä + B cos Ä X 2 (t, x) ä =: b 2 Ä X(t, x) ä , t ∈ [0, ∞),
The vector field b defined by (1.1) represents the velocity solution to the steady Euler equation (see, e.g., [START_REF] Wirosoetisno | Nonlinear stability of Euler flows in two-dimensional periodic domains[END_REF])

∂ t ω + ψ 1 ω 2 -ψ 2 ω 1 = 0, (1.2) 
where the function ω denotes the (scalar) fluid vorticity, and ψ solution to -∆ψ = ω, denotes the stream function. By definition (1.1) we have

ω(x) = (curl b)(x) = (∂ x 1 b 2 -∂ x 2 b 1 )(x) = A cos x 1 + B cos x 2 and ψ(x) = ω(x).
Conditions of non-linear stability for plane stationary flows were derived by Arnold [START_REF] Arnold | Sur la topologie des écoulements stationnaires des fluides parfait[END_REF][START_REF] Arnold | On conditions for non-linear stability of plane stationary curvilinear flows of an ideal fluid[END_REF] in the Sixties. According to [START_REF] Wirosoetisno | Nonlinear stability of Euler flows in two-dimensional periodic domains[END_REF][START_REF] Constantin | Stratospheric planetary flows from the perspective of the Euler equation on a rotating sphere[END_REF] the study of the stability of the flow (1.1) is actually relevant for the atmospheric flows. For example, Saturn's E Ring may be regarded as a two-dimensional flat torus, considering as in [START_REF] Wirosoetisno | Nonlinear stability of Euler flows in two-dimensional periodic domains[END_REF] (see in particular [START_REF] Constantin | Stratospheric planetary flows from the perspective of the Euler equation on a rotating sphere[END_REF]Section 1.4.] and the references therein) the non-stationary Euler equation (1.2). First of all, note that the existence of a global first integral of system (1.1) having a periodic gradient of period 2πZ 2 , is far to be evident. Indeed, when |A| = |B|, we prove (see Corollary 3.5) that for any first integral u ∈ C 1 (R 2 ) of (1.1), i.e. satisfying

∀ x ∈ T 2 , ∀ t ∈ [0, ∞), u Ä X(t, x) ä = u(x), (1.3) 
with a periodic gradient, the gradient ∇u has at least a cluster point in T 2 . This strong constraint compared to the non vanishing property of the very simple vector field b associated with the flow X (1.1) makes difficult or even impossible the derivation of a global first integral of X, but in the same time shows the interest of the flow X.

In the present context, we focus on the asymptotic properties of the flow X through the limits lim t→∞ X(t, x) t for any x ∈ T 2 , (

and on the probability measures on T 2 which are invariant for this flow (see Section 3.1). Actually, these two notions are strongly connected in dimension two in view of the Misiurewicz-Ziemian [START_REF] Misiurewicz | Rotation sets for maps of tori[END_REF]Theorem 3.4] in the case of general two-dimensional flows, or in view of the Peirone result [12, Theorem 3.1] (see also [START_REF] Peirone | Homogenization of ODE's in R N[END_REF]Theorem 4.1]) in the case of the ODE's flow. On the one hand, in Section 2 we provide (see Theorem 2.1) the limits (1.4) of the flow X(•, x) for each point x ∈ T 2 . Two cases have to be distinguished according to the non-zero parameters A, B (the case AB = 0 has been studied in [START_REF] Briane | Fine asymptotic expansion of the ODE's flow[END_REF]Section 5.3.1]):

• If we have |A| = |B|, then the flow X can be computed explicitly thanks to a change of variables (see formula (2.21)), which gives immediately the asymptotics of X(•, x).

• Otherwise we have |A| = |B|, then the general Lemma 2.5 combined with the case (2) of the proof of [START_REF] Peirone | Convergence of solutions of linear transport equations[END_REF]Theorem 3.1] allows us to prove that one of the coordinate X i (•, x), i = 1, 2, of the flow is bounded with an explicit bound, while the other one X 3-i (t, x) is equivalent to a(x) t as t → ∞ for some non-zero real a(x). We also provide (see the part iii) of Theorem 3.1) uniform bounds from below and above for a, which depend on the two parameters A, B.

On the other hand, in Section 3 we characterize in the case |A| = |B| (see Theorem 3.1) the invariant probability measures on T 2 for the flow X (1.1), i.e. the probability measures µ on T 2 such that for any 2 . We prove that there does not exist any invariant probability measure with Lebesgue's density σ(x) dx where σ is a non-negative function in L 1 (T 2 ) satisfying some weak positivity condition (see (3.11)). Moreover, we obtain any limit (1.4) of X(•, x) as the mass of the vector field b by a singular probability measure depending on x ∈ T 2 .

t ∈ R, µ • X -1 (t, •) = µ • X(-t, •) = µ on T

Notation

• (e 1 , e 2 ) denotes the canonical basis of R 2 , and 0 R 2 denotes the null vector of R 2 .

• I 2 is the unit matrix of R 2×2 . • R ⊥ denotes the (2 × 2) rotation matrix Å 0 -1 1 0 ã . For any ξ ∈ R 2 , ξ ⊥ denotes the perpen- dicular vector R ⊥ ξ.
• " • " denotes the scalar product and | • | the euclidean norm in R 2 .

• B(x, R) denotes the euclidean open ball of R 2 centered on x ∈ R 2 and of radius R > 0.

• dx denotes the Lebesgue measure on R 2 .

• T k denotes the torus R k /(2πZ k ) for k = 1, 2.

• M (T 2 ) denotes the set of Radon measures on the torus T 2 , and M p (T 2 ) denotes the set of probability measures on T 2 .

• D (Ω) denotes the set of the distributions on some open set Ω of R 2 .

• C k c (R 2 ), k ∈ N ∪ {∞}, denotes the space of the real-valued functions in

C k (R 2 ) with compact support in R 2 . • C k (T 2 ), resp. W 1,k (T 2 ), k ∈ N ∪ {∞}, denotes the space of the real-valued functions f ∈ C k (R 2 ), resp. f ∈ W 1,k (R 2 ) which are 2πZ 2 -periodic, i.e. ∀ k ∈ Z 2 , ∀ x ∈ R 2 , f (x + 2πk) = f (x). (1.5) 
• For any function f ∈ L 1 (T 2 ), we denote

           f x 1 (x 2 ) := ˆT1 f (x 1 , x 2 ) dx 1 f x 2 (x 1 ) := ˆT1 f (x 1 , x 2 ) dx 2 ,
and f :=

ˆT2 f (x) dx. (1.6)
and for any Borel measure µ on T 2 and any function f ∈ L 1 (T 2 , µ), we denote

µ(f ) := ˆT2 f (x) µ(dx), (1.7) 
which is also extended to vector-valued functions in L 1 (T 2 , µ) 2 .

• C denotes a positive constant which may vary from line to line.

2 Asymptotics of the flow

The main result

We have the following result.

Theorem 2.1. Let A, B ∈ R \ {0}. Then, the flow X defined by (1.1) satisfies the following asymptotic alternative:

• Either we have (-1) i Ä |A| -|B| ä < 0 for some i = 1, 2. Then, we obtain that

∀ x ∈ T 2 ,        X i (•, x) -x < 2π in [0, ∞) lim t→∞ X 3-i (t, x) t = a(x)
where a(x) = 0.

(2.1)

• Or we have B = ε A with ε = ± 1. Then, for any x ∈ T 2 , the orbit X(R, x) is bounded in R 2 . More precisely, defining the (2 × 2) matrix

J := 1 2 Ç 1 ε -ε 1 å with J -1 := Ç 1 -ε ε 1 å (2.2)
and the closed grid of R 2

G := m∈Z ï π 4 + mπ ò × R n∈Z R × ï π 2 + nπ ò , (2.3) 
we get that 

∀ i = 1, 2, ∀ x ∈ J -1 (R 2 \ G ), X i (•, x) -x i < 2π. ( 2 
X(t, x) = x -A t e 2 + O K (1), ∀ t ∈ [0, ∞), ∀ x ∈ K × R, (2.5) 
where O K (1) is bounded uniformly with respect to t ∈ [0, ∞), to x 2 ∈ R, and to x 1 in any fixed compact set K of (-π 2 , π 2 ) modulo π. Expansion (2.5) can be thus regarded as a limit expansion as B → 0 of (2.1). However, expansion (2.1) is finer than (2.5) for the coordinate X 1 (t, x), while it is the converse for the coordinate X 2 (t, x).

Remark 2.4. Assume that (-1) i Ä |A| -|B| ä < 0 for some i = 1, 2.
Since the smooth vector field b associated with the flow X (1.1) satisfies

∀ x = (x 1 , x 2 ) ∈ R 2 , |b(x)| 2 = A 2 + B 2 + 2 AB sin(x 1 + x 2 ) ≥ Ä |A| -|B|) ä 2 > 0, (2.6) 
it does not vanish in R 2 . Then, applying the non vanishing final argument of the proof of [3, Theorem 3.1] ( 1 ) we deduce that the limit function a does not vanish either in T 2 . Peirone's [12, Theorem 3.1] allows us to characterize more precisely the function a in (2.1). Indeed, following the case (1) of the proof of [START_REF] Peirone | Convergence of solutions of linear transport equations[END_REF]Theorem 3.1], it turns out that for any x ∈ T 2 , there exist T x > 0 and an integer k x ∈ Z \ {0} such that the function a satisfies

a(x) = 2π k x T x .
Actually, there exists a periodic solution of period T x in the torus T 2 (rather than in the space R 2 ) X(•, z x ) to (1.1) with z x ∈ T 2 , satisfying

X Ä T x , z x ä = z x + 2π k x e 3-i and lim t→∞ X(t, x) t = a(x) e 3-i . (2.7)
However, it is not obvious to derive explicitly such a periodic solution Z, even for a simple system like (1.1).

There is an alternative to derive the limit (2.7). By virtue of [START_REF] Misiurewicz | Rotation sets for maps of tori[END_REF]Theorem 2.4,3.4] and [11, Remark 2.5] (see also [4, Appendix A]) involving the properties of the Herman rotation set [START_REF] Herman | Existence et non existence de tores invariants par des difféomorphismes symplectiques[END_REF] associated with a flow, for any x ∈ T 2 , there exists a probability measure µ x on T 2 invariant for the flow (1.1) such that

lim t→∞ X(t, x) t = µ x (b) = ˆT2 b(y) µ x (dy). (2.8) 
Using Liouville's theorem (see, e.g., [14, Lecture 11]) the invariance of the probability measure

µ x is characterized by div (b µ x ) = 0 in T 2 . (2.9) 
But once again, it is difficult to get generally an explicit invariant probability measure for a given flow. This is the aim of Theorem 3.1 below for the two-dimensional Euler flow (1.1).

2.2 Proof of Theorem 2.1

Proof of the case |A| = |B|

The proof is based on the following general result.

Lemma 2.5. Let f be a function in W 1,∞ (R/T Z), T > 0 (i.e. f is Lispschitz and periodic of period T in R), let x 0 ∈ R, and let x be a function in

C 1 ([0, ∞)) such that f (x(0)) = f (x 0 ).
Then, we have the two following implications:

   x + f (x) < f (x 0 ) in [0, ∞) ⇒ x -x(0) < T in [0, ∞), x + f (x) > f (x 0 ) in [0, ∞) ⇒ x -x(0) > -T in [0, ∞), (2.10) 
where f (x) := f • x.

Assume for instance that |A| > |B|, and set

α := A |A| = ± 1 and β := B |A| ∈ (-1, 1). (2.11)
Then, consider the new coordinates y := x/|A| which leads us to the flow Y (t, y) := X(t, x)/|A| solution to the ODEs system

   ∂ t Y 1 (t, y) = -α cos Ä |A| Y 1 (t, y) ä -β sin Ä |A| Y 2 (t, y) ä ∂ t Y 2 (t, y) = α sin Ä |A| Y 1 (t, y) ä + β cos Ä |A| Y 2 (t, y) ä .
(2.12)

Fix y = (y 1 , y 2 ) ∈ R 2 , and let θ ∈ [0, π/|A|] be such that

|β| < α cos(|A| θ) = ± α cos(|A| y 1 ).
Then, the first equation of (2.12) implies that

   ∂ t Y 1 (•, y) + α cos Ä |A| Y 1 (•, y) ä < α cos(|A| θ) in [0, ∞) cos(|A| θ) = ± cos(|A| y 1 ).
Therefore, applying the first inequality of (2. 

Y 1 (•, y) -y 1 < T in [0, ∞),
which implies the first estimate of (2.1) for i = 1. The proof is quite similar for i = 3, replacing Y 1 by Y 2 and permuting the roles of A and B.

On the other hand, let i := 1, 2. Then, recalling Remark 2.4 combined with the first estimate of (2.1) (we have just proved before) we get that for any

x ∈ T 2 , ∃ lim t→∞ X(t, x) t = 0 R 2 and lim t→∞ X i (t, x) t = 0,
which yields immediately the limit of (2.1). Therefore, the proof of the case |A| = |B| is done.

Proof of Lemma 2.5. First of all, there exists a unique n ∈ Z such that

x 0 + n T ≤ x(0) < x 0 + (n + 1) T.
Moreover due to the periodicity of f and to f (x(0)) = f (x 0 ), we have x(0) = x 0 + n T . Hence, we deduce that x 0 + n T < x(0) < x 0 + (n + 1) T.

(2.13) Now, assume that the left hand-side of the first implication of (2.10) holds, and consider the solution y to the ODE

y + f (y) = f (x 0 ) in [0, ∞), y(0) = x(0). (2.14)
Assume by contradiction that there exists t ∈ [0, ∞) such that y(t) = x 0 + n T . Then, y and the constant function y s := x 0 + n T are both solutions to the ODE:

u + f (u) = f (x 0 ) in [0, ∞),
and they agree at point t. Then, by an uniqueness argument we get that y = y s , which due to (2.13) and (2.14) is not satisfied at the point 0. This leads us to a contraction. Similarly, the trajectory y([0, ∞)) cannot meet the point x 0 + (n + 1) T . Therefore, by a connectedness argument we obtain that

x 0 + n T < y < x 0 + (n + 1) T in [0, ∞). (2.15)
This combined with (2.13) implies that

|y -x(0)| < T in [0, ∞). (2.16)
Next, define the function z := x -y. Subtracting the equality (2.14) to the inequality satisfied by x, and using that f is k-Lipschitz for some k > 0, we get that

z < f (x 0 ) -f (x) + f (y) -f (x 0 ) ≤ k |z| in [0, ∞).
(2.17)

Since by (2.14) z(0) = 0, inequality (2.17) shows that z (0) < 0, which implies that z < 0 in some interval [0, t 0 ] with t 0 > 0. We can then consider

S := sup ¶ t ∈ [t 0 , ∞) : z < 0 in [t 0 , t] © ∈ [t 0 , ∞].
Assume by contradiction that S < ∞. Then, we have z < 0 in [0, S) and z(S) = 0, which combined with (2.17) implies that

∀ t ∈ [0, S), d dt Ä e k t z(t) ä = e k t Ä z (t) + k z(t) ä < 0.
Hence, it follows that 0 = e k S z(S) < e 0 z(0) = 0, which leads us to a contradiction. Therefore, we have S = ∞, and by the same argument as above, we get that z = x -y < 0 in [0, ∞). Finally, recalling (2.16) we obtain that x < y < x(0) + T . The proof of the second implication of (2.10) is quite similar leading us to the inequality in [0, ∞), which concludes the proof of Lemma 2.5.

Proof of the case |A| = |B|

Assume that B = ε A with ε = ± 1. Then, consider the new coordinates

y = Ç y 1 y 2 å = 1 2 Ç x 1 + ε x 2 -ε x 1 + x 2 å = J Ç x 1 x 2 å = J x. (2.18)
where the marix J is defined by (2.2). By (1.1) we are led to the new flow Y (t, y) := J X(t, x) solution to the ODEs system

         ∂ t Y 1 (t, y) = A 2 Å -cos Ä X 1 (t, x) ä -ε sin Ä X 2 (t, x) ä + ε sin Ä X 1 (t, x) ä + cos Ä X 2 (t, x) ä ã ∂ t Y 2 (t, y) = A 2 Å ε cos Ä X 1 (t, x) ä + sin Ä X 2 (t, x) ä + sin Ä X 1 (t, x) ä + ε cos Ä X 2 (t, x) ä ã
, or equivalently, using trigonometrical formulas we have

                   ∂ t Y 1 (t, y) = A sin Ä X 1 (t,x)+X 2 (t,x) 2 ä sin Ä X 1 (t,x)-X 2 (t,x) 2 ä + ε A cos Ä X 1 (t,x)+X 2 (t,x) 2 ä sin Ä X 1 (t,x)-X 2 (t,x) 2 ä ∂ t Y 2 (t, y) = A sin Ä X 1 (t,x)+X 2 (t,x) 2 ä cos Ä X 1 (t,x)-X 2 (t,x) 2 ä + ε A cos Ä X 1 (t,x)+X 2 (t,x) 2 ä cos Ä X 1 (t,x)-X 2 (t,x) 2 ä .
This combined with (2.18) thus implies the new system depending on ε = ± 1,

       ∂ t Y 1 (t, y) = -ε A Å sin Ä Y3-ε 2 (t, y) ä + ε cos Ä Y3-ε 2 (t, y) ä ã sin Ä Y 3+ε 2 (t, y) ä ∂ t Y 2 (t, y) = A Å sin Ä Y3-ε 2 (t, y) ä + ε cos Ä Y3-ε 2 (t, y) ä ã cos Ä Y3+ε 2 (t, y) ä .
(2.19) Now, assume for example that ε = 1. Then, system (2.19) reads as

   ∂ t Y 1 (t, y) = -A √ 2 sin Ä Y 1 (t, y) + π 4 ä sin Ä Y 2 (t, y) ä ∂ t Y 2 (t, y) = A √ 2 sin Ä Y 1 (t, y) + π 4 ä cos Ä Y 2 (t, y) ä .
(2.20)

It is clear that for any m ∈ Z and y 2 ∈ R, Y (•, y) = y := (-π 4 + mπ, y 2 ) is a stationary solution to system (2.20). Moreover, we can check that for any y 1 ∈ -π 4 + 2nπ + (-π, π),

       Y 1 (t, y) = - π 4 + 2nπ + 2 arctan ï e (-1) n+1 A √ 2 t tan Å y 1 2 + π 8 ã ò Y 2 (t, y) = π 2 + nπ, t ∈ R, (2.21) 
is also solution to system (2.20). Then, collecting all these solutions we obtain that the closed set G defined by (2.3) is composed of trajectories of the flow Y : either stationary points along lines parallel to direction y 2 , or closed line segments parallel to direction y 1 . Hence, since the trajectories of the flow do not intersect, for any y ∈ R 2 \ G , the trajectory Y (R, y) lies in one of the connected components of R 2 \ G which are the open squares of side π defined by

Q m,n := Å - π 4 + mπ, - π 4 + (m + 1) π ã × Å π 2 + nπ, π 2 + (n + 1) π ã for (m, n) ∈ Z 2 . (2.22)
Therefore, we get that

∀ i = 1, 2, ∀ y ∈ R 2 \ G , Y i (•, y) -y i < π.
Finally, this combined with the change of coordinates (2.18) yields the desired estimates (2.4).

The case ε = -1 is quite similar, which concludes the proof of Theorem 2.1.

3 Invariant measures and rotation set

Some recalls of ergodic theory

Let b a vector field in C 1 (T 2 ). A probability measure µ in M (T 2 ) is said to invariant for some flow X associated with the vector field b by

   ∂ t X(t, x) = b Ä X(t, x) ä , t ∈ R X(0, x) = x ∈ T 2 , (3.1) 
if one has 

∀ t ∈ R, ∀ ψ ∈ C 0 (T 2 ), ˆT2 ψ Ä X(t, y) ä dµ(y) = ˆT2 ψ(y) dµ(y). ( 3 
∀ ϕ ∈ C 1 (T 2 ), ˆT2 b(x) • ∇ϕ(x) µ(dx) = 0. (3.4)
Alternatively, define the set

I b := ¶ µ ∈ M p (T 2 ) : µ invariant for the flow X © , (3.5) 
where M p (T 2 ) is the set of probability measures on T 2 . Also define the two following non-empty subsets of R 2 :

• The set of all the limit points of the sequences Ä X(n, x)/n ä n≥1 for x ∈ T 2 (denoted by ρ p (b) in [START_REF] Misiurewicz | Rotation sets for maps of tori[END_REF])

A b := x∈T 2   n≥1 ® X(k, x) k : k ≥ n ´  . (3.6)
When b does not vanish in T 2 , by virtue of Peirone's [START_REF] Peirone | Convergence of solutions of linear transport equations[END_REF]Theorem 3.1] the former definition is reduced to

A b = ® lim t→∞ X(t, x) t : x ∈ T 2 ´. (3.7)
• The so-called Herman [START_REF] Herman | Existence et non existence de tores invariants par des difféomorphismes symplectiques[END_REF] rotation set (recall notation (1.7))

C b := ¶ µ(b) : µ ∈ I b © (3.8) which is a compact convex subset of R 2 .
An implicit consequence of the Misiurewicz-Ziemian results [11, Theorem 2.4, Remark 2.5] and [START_REF] Misiurewicz | Rotation sets for maps of tori[END_REF]Corollary 2.6] shows that

A b ⊂ C b = conv (A b ).
However, in dimension two [START_REF] Misiurewicz | Rotation sets for maps of tori[END_REF]Theorem 3.4 (c)] shows that actually the set A b (3.6) is convex which thus implies that

C b = A b . (3.9)
When in addition b does not vanish in T 2 , we thus deduce from (3.7) that

C b = ¶ µ(b) : µ ∈ I b © = ® lim t→∞ X(t, x) t : x ∈ T 2 ´= A b . (3.10) 
This links closely the invariant probability measures for the flow X (3.1) and the limit points of the flow.

The case of the two-dimensional Euler flow

The invariant probability measures (3.2) and the Herman rotation set (3.8) for the flow X defined by (1.1) are characterized as follows.

Theorem 3.1. Assume that |A| = |B| for the vector field b defined in (1.1). Then, we have the following results:

i) There does not exist any non-negative function σ ∈ L 1 (T 2 ) whose integrals over its two sections are a.e. positive, i.e.

           σ x 2 (x 1 ) = ˆT1 σ(x 1 , x 2 ) dx 2 > 0 a.e. x 1 ∈ T 1 σ x 1 (x 2 ) = ˆT1 σ(x 1 , x 2 ) dx 1 > 0 a.e. x 2 ∈ T 1 , (3.11)
such that the σ(x) dx is an invariant probability measure for the flow X.

ii) Moreover, for any ζ ∈ C b , there exist T ∈ (0, ∞) and z ∈ T 2 such that the orbit X(•, z) is periodic of period T in the torus T 2 , i.e.

∃ k ∈ Z 2 , X(T, z) = z + 2π k, (3.12) 
and

ζ = µ T,z (b) where µ T,z (ϕ) := 1 T ˆT 0 ϕ Ä X(t, z) ä dt for ϕ ∈ C 0 (T 2 ), (3.13) 
is an invariant probability measure which is singular with respect to Lebesgue's measure. In other words, Herman's rotation set is characterized by

C b = ¶ µ T,z (b) , T > 0, z ∈ T 2 : X(T, z) -z ∈ 2πZ 2 © . (3.14) iii) Finally, assume that |A| > |B|. Denoting    ξ µ := µ(cos x 1 ) e 1 + µ(sin x 1 ) e 2 η µ := µ(sin x 2 ) e 1 + µ(cos x 2 ) e 2 , for µ ∈ I b , (3.15) 
the asymptotics flow function a defined by (2.1) satisfies the bounds from below and above (with the convention: inf

Ø = ∞)            inf x∈T 2 |a(x)| ≥ min Ç m AB Ä |A| -|B| ä , inf {µ∈I b : |ξµ|≤|ηµ|} A ξ µ + B η µ å > 0, m AB := 1 √ 2 inf µ∈I b » |ξ µ | 2 + |η µ | 2 ∈ (0, 1], (3.16) 
and

           sup x∈T 2 |a(x)| ≤ … Ä |A| + |B| ä 2 -M 2 AB , M AB := inf µ∈I b ˆT2 |b -µ(b)| µ(dx) > 0.
(3.17) Remark 3.2. Due to (2.6) the vector field b in (1.1) does not vanish when |A| = |B|. Hence, thanks to the first step of the proof of Peirone's [12, Theorem 3.1], for any periodic orbit in the torus the integer vector k in (3.12) is not null.

Remark 3.3. The part i) of Theorem 3.1 means that for any non-negative function σ in L 1 (T 2 ) satisfying the weak positivity condition (3.11), the vector field σ b is not realizable as a divergence free field, or in conductivity term, as a current field. The dual problem (which is equivalent in dimension two) i.e. the realizability of a gradient field as an electric field has been addressed in [START_REF] Briane | Which electric fields are realizable in conducting materials?[END_REF] with a very simple counter-example [6, Example 2.7], but involving both regular (at least continuous) and positive functions σ. Here, the two-dimensional Euler flow induced by the vector field b (1.1) provides a more definite counter-example of realizability, since here the functions σ are only assumed to be in L 1 (T 2 ) rather than regular, and are only non-negative with condition (3.11) rather than positive a.e. in T 2 .

Remark 3.4. On the one hand, as |A| -|B| tends to 0, the bound from below (3.16) clearly converges to 0. This asymptotic result is consistent with the picture of bounded orbits in the case |A| = |B| (see above the second part of Theorem 2.1 and Section 2.2.2), which due to the set equality (3.9) implies that the Herman rotation set C b (3.8) is reduced to the unit set {0 R 2 }.

On the other hand, the bound from above (3.17) has actually a general scope. Indeed, the proof of the part iii) of Theorem 3.1 below shows that the vector field b ∈ C 1 (T 2 ) 2 needs to satisfy the two following conditions

¶ x ∈ T 2 : b(x) = 0 R 2 © = Ø and ∀ ξ ∈ R 2 , # ¶ x ∈ T 2 : b(x) = ξ © < ∞.
(3.18)

Then, we still deduce from (3.10) the extension of (3.17)

           sup x∈T 2 lim t→∞ X(t, x) t ≤ b 2 L ∞ (T 2 ) 2 -M 2 b , M b := inf µ∈I b ˆT2 |b -µ(b)| µ(dx) > 0.
(3.19) Corollary 3.5. Assume there exists a first integral u in C 1 (R 2 ) of the flow (1.1) having a periodic gradient of period 2πZ 2 . Then, ∇u has at least a cluster point of roots in the torus T 2 .

Proof of Theorem 3.1. Proof of part i). Assume for instance that |A| > |B|, and that there exists an invariant probability measure σ(x) dx for the flow X (1.1) with Lebesgue's density σ ∈ L 1 (T 2 ) satisfying the weak positivity (3.11). By Liouville's theorem (3.3) combined with a classical duality result there exists a function ψ with ∇ψ ∈ L 1 (T 2 ) such that (recall the third notation)

σ b = ∇ ⊥ ψ in R 2 , (3.20) 
or equivalently, 

   σ(x) Ä A cos x 1 + B sin x 2 ä = ∂ x 2 ψ(x) σ(x) Ä A sin x 1 + B cos x 2 ä = ∂ x 1 ψ(x) a.e. x = (x 1 , x 2 ) ∈ T 2 . ( 3 
= - Ä σ b ä ⊥ = - Ç lim t→∞ X(t, x σ ) t å ⊥ = -a(x σ ) e ⊥ 2 = a(x σ ) e 1 , with a(x σ ) = 0.
Then, since the function ψ : y

→ Ä ψ(y) -∇ψ • y ä is in W 1,1 (T 2 ), we get that ∂ x 2 ψ x 2 (x 1 ) = 1 2π ˆπ -π ∂ x 2 ψ(x 1 , x 2 ) dx 2 = 1 2π ˆπ -π ∂ x 2 ψ (x 1 , x 2 ) dx 2 = 0 a.e. x 1 ∈ T 1 . (3.22)
Therefore, integrating the second equality of (3.21) with respect to variable x 2 and taking into account (3.11) and (3.22), it follows that Then, consider the T x -periodic (in the torus T 2 ) orbit X(•, z x ) satisfying (2.7) for some i = 1, 2, and consider the probability measure µ Tx,zx defined by (3.13). Due to the semi-group property satisfied by the flow, we have for any s ∈ R and any ϕ ∈ C 0 (T 2 ),

| cos x 1 | = - B A σ sin x 2 x 2 (x 1 ) σ x 2 (x 1 ) ≤ |B| |A| a.e. x 1 ∈ T 1 , (3.23 
µ Tx,zx Ä ϕ(X(s, •)) ä = 1 T x ˆTx 0 ϕ Ä X(s, X(t, z x )) ä dt = 1 T x ˆTx 0 ϕ Ä X(s + t, z x ) ä dt = 1 T x ˆs+Tx s ϕ Ä X(t, z x ) ä dt = 1 T x ˆTx 0 ϕ Ä X(t, z x ) ä dt, since the function ϕ Ä X(•, z x )
ä is T x -periodic in R taking into account the first equality of (2.7). Hence, µ Tx,zx is an invariant probability measure for the flow X. Moreover, again using (2.7) we get that Then, by the Cauchy-Schwarz inequality we have

µ Tx,zx (b) = 1 T x ˆTx 0 b Ä X(t, z x ) ä dt = 1 T x ˆTx 0 ∂ t X(t, z x ) dt = X(T x , z x ) -z x T x = a(x)
|ξ µ | 2 + |η µ | 2 ≤ 2 i=1 Ä µ(cos 2 x i ) + µ(sin 2 x i ) ä = 2.
Again applying the Cauchy-Schwarz inequality the constant m AB of (3.16) thus satisfies the estimate This combined with the compactness of the set I b of the invariant probability measures implies that the infimum M AB of (3.17 The proof of Theorem 3.1 is now complete.

1 ≥ m AB = 1 √ 2 inf µ∈I b » |ξ µ | 2 + |η µ | 2 ≥ 1 » 2 (A 2 + B 2 ) inf µ∈I b Ä A |ξ µ | + B |η µ | ä ≥ 1 » 2 (A 2 + B 2 ) inf µ∈I b A ξ µ + B η µ > 0.
Proof of Corollary 3.5. Assume by contradiction that for |A| = |B|, there exists a first integral u in C 1 (R 2 ) of system (1.1), whose periodic gradient ∇u ∈ C 0 (T 2 ) 2 has a finite number of roots in the torus T 2 . Hence, taking the derivative of (1.3) with respect to t, we have

∀ t ∈ [0, ∞), ∇u Ä X(t, x) ä • b Ä X(t, x) ä = 0,
and for t = 0, we get that ∇u • b = 0 in T 2 . Since the vector field does not vanish in T 2 (recall (2.6)), there exists a function σ ∈ C 0 (T 2 ) such that ∇ ⊥ u = σ b in T 2 . The continuous function σ does not vanish in R 2 \ {∇u = 0} which by assumption is a connected open set of R 2 . It follows that σ has a constant sign, say positive, in R 2 \ {∇u = 0}. This combined with the continuity of σ implies that the weak positivity condition (3.11) holds true, and thus contradicts the part i) of Theorem 3.1.

  10) to the function x(•) := Y 1 (•, y 1 ) with x 0 := θ and f (•) := α cos(|A| •) (which is |A|-Lipschitz and periodic of period T := 2π/|A| in R), then applying the second inequality of (2.10) to the function x(•) := Y 1 (•, y 1 ) with x 0 := π/|A| -θ and f , we get that

) which, making x 1

 1 tend to 0, contradicts our assumption |A| > |B|. Proof of part ii). Let ζ ∈ C b . By (3.10) there exists x ∈ T 2 such that

  e 3-i , which combined with (3.24) implies the desired equalities ζ = µ Tx,zx (b) and (3.14).Proof of bound(3.16). By the definition of the vector field b in (1.1) and the definitions (3.15) of the vectors ξ µ , η µ , we have∀ µ ∈ I b , µ(b) = A ξ µ + B η µ .Since the vector field b does not vanish in T 2 by (2.6), from the set equality (3.10) and the non vanishing property of the function a in (2.1), we deduce thatinf x∈T 2 |a(x)| = inf µ∈I b |µ(b)| and ∀ µ ∈ I b , |µ(b)| = A ξ µ + B η µ > 0. (3.25) This combined with the continuity of the mapping µ ∈ I b → A ξ µ + B η µ defined on the compact set of invariant probability measures I b for the weak- * measures topology, implies that inf µ∈I b A ξ µ +B η µ = min Ç inf {µ∈I b : |ξµ|≥|ηµ|} A ξ µ + B η µ , inf {µ∈I b : |ξµ|≤|ηµ|} A ξ µ + B η µ å > 0. (3.26)

Now, focus on

  the second infimum of(3.26). Using the triangle inequality we have for anyµ ∈ I b satisfying |ξ µ | ≥ |η µ | which also implies that |ξ µ | ≥ m AB , A ξ µ + B η µ = |ξ µ | A ξ µ |ξ µ | + B η µ |ξ µ | ≥ |ξ µ | Ç |A| -|B| |η µ | |ξ µ | å ≥ m AB Ä |A| -|B|ä . Therefore, recalling (3.25) and (3.26) we obtain immediately the bound (3.16) with m AB > 0. Proof of bound (3.17). Assume by contradiction that there exists an invariant probability measure µ ∈ I b for the flow X, satisfying b = µ(b) µ-a.e. in T 2 . Then, the set J of the points z ∈ T 2 solutions to the equation b(z) = µ(b) is clearly finite (we can check that 1 ≤ #J ≤ 4). Hence, there exists a non-empty subset I of J such that the probability measure µ reads as µ = z∈I µ({z}) δ z on T 2 , with ∀ z ∈ I, µ({z}) > 0 and z∈I µ({z}) = 1. Hence, recalling (3.4) we have ∀ ϕ ∈ C 1 (T 2 ), ˆT2 b(x) • ∇ϕ(x) µ(dx) = z∈I µ({z}) b(z) • ∇ϕ(z) = 0, which due to the arbitrariness of the function ϕ implies that for any z ∈ I, b(z) = 0 R 2 , and leads us to contradiction. Therefore, we get that ∀ µ ∈ I b , ˆT2 |b -µ(b)| µ(dx) > 0.

2 = A 2 + B 2 + 2AB LjT 2 sin(x 1 + x 2 )ä 2

 222122 ) is positive. Next, by the Cauchy-Schwarz inequality we have for any µ ∈ I b ,M 2 AB ≤ ˆT2 |b -µ(b)| 2 µ(dx) = µ(|b| 2 ) -|µ(b)| -|µ(b)| 2 , which implies that ∀ µ ∈ I b , |µ(b)| 2 ≤ Ä |A| + |B| ä 2 -M 2AB . This combined with (2.1) and (3.10) thus yields the desired bound (3.17).

This argument is based on the two-dimensional Franks [8, Theorem 3.5].
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