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Abstract: This report presents the space-time convergence analysis of two implicit discretization
strategies for the mixed formulation of wave equations, based for the first on the Störmer-Verlet
scheme and for the second on the Crank-Nicolson scheme. This analysis is uniform with respect to
the space-time convergence ratio. For each discretization strategy, after obtaining an exploitable
energy identity, a uniform stability result is achieved through a technique of projection onto well-
chosen eigensubspaces of a certain symmetric real matrix appearing in the construction of the
schemes. Uniform convergence is then demonstrated using increasingly refined techniques to reduce
the regularity assumptions on the semi-discrete solution.
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Analyse de convergence espace temps de stratégies de discrétisation
implicites de la formulation mixte des équations d’ondes linéaires.

Résumé : Ce rapport présente l’analyse de convergence espace temps de deux stratégies implicites de discréti-
sation de la formulation mixte des équations d’onde, basées pour la première sur le schéma de Störmer-Verlet et
pour la seconde sur le schéma de Crank-Nicolson. Cette analyse est uniforme par rapport au ratio espace temps
de convergence. Pour chaque stratégie de discrétisation, après avoir obtenu une identité d’énergie exploitable, un
résultat de stabilité uniforme est atteint grâce à une technique de projection sur des sous espaces propres bien choisis
d’une certaine matrice réelle symétrique apparaissant dans la construction des schémas. La convergence uniforme
est ensuite montrée en utilisant des techniques de plus en plus raffinées afin de réduire les hypothèses de régularité
sur la solution semi discrète.

Mots-clés : analyse numérique, convergence spatio-temporelle, discrétisation implicite, formulation mixte



Space time convergence of implicit schemes for the mixed formulation 3

Contents
1 Introduction 4

1.1 General model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Space discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Implicit parametrized discretizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Analysis of the parametrized implicit discretization based on the Crank-Nicolson scheme 5
2.1 Parametrized Crank-Nicolson (✓-CN) and energy identities . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 A first space/time uniform convergence result for smooth enough solutions . . . . . . . . . . . . . . . 7
2.4 A second space/time uniform convergence result for less regular solution . . . . . . . . . . . . . . . . 9

3 Analysis of the parametrized implicit discretization based on Störmer-Verlet scheme 12
3.1 Parametrized Störmer-Verlet (✓-SV) and energy identities . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Space/time uniform convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Conclusion 16

A Spectral decomposition of B
⇤
h
Bh and projectors identities 17

B Some technical results for the ✓-CN analysis 18

RR n° 9529



4 Chabassier

1 Introduction

1.1 General model
The mixed formulation of linear wave equations is one possible modeling of wave propagation phenomena. It
is chosen over its second order formulation counterpart in situations where the unknowns are more relevant to
the physical context [Makridakis and Monk, 1995, Lanteri and Scheid, 2013], or where these unknowns are more
natural for modeling purposes (as for instance coupling with other parts [Banjai et al., 2015]), or even where it is
not possible to formulate the equations as a second order equation (as for instance in presence of intricate dissipative
[Bilbao and Harrison, 2016] or nonlinear phenomena [He and Sun, 2020]).
On an abstract level, this system reads, for 0  t  T ,

8
>>><

>>>:

p(0) = p0

v(0) = v0

ṗ+ B⇤
v = f

v̇ � Bp = ġ

(1.1a)
(1.1b)
(1.1c)
(1.1d)

where B : H1(B) ⇢ P ! D is an operator and B⇤ its adjoint. The source terms and the initial conditions are
supposed regular enough so that the following hypothesis holds, in three Hilbert spaces P , H1(B) = {p 2 P |Bp 2
D} ⇢ P and D :
Hypothesis 1.1 (Stability of the continuous system). The source terms and the initial conditions are regular enough

such that there exists a constant C > 0 such that

kpkC3(0,T ;P ) + kpkC2(0,T ;H1(B) + kvkC2(0,T ;D)  C (1.2)

1.2 Space discretisation
Numerical methods to solve this system are numerous and can rely on several analysis tools. In this work, we
want to introduce and compare two parametrized time discretisation strategies, and we therefore suppose that
the spatial discretisation is done with usual methods such as Finite Differences [Zuazua, 2005], Finite Elements
[Brezzi and Fortin, 1991], Finite Volumes [Eymard et al., 2000], or any other method that provides the following
semi discrete system, along with some necessary bounds on the space discretisation error. More precisely, we
assume that, after introducing a small space discretization parameter h, and following the steps that lead to the
semi discrete system, the semi discrete solution (ph, vh) is sought in finite dimensional spaces Uh ⇢ H

1(B) ⇢ P and
Dh ⇢ D, where P and D are two Hilbert spaces naturally prompted by the equation as the variational spaces for
both variables:

8
>>><

>>>:

ph(0) = ph,0

vh(0) = vh,0

ṗh +B
⇤
h
vh = fh

v̇h �Bhph = ġh

(1.3a)
(1.3b)
(1.3c)
(1.3d)

where Bh : Uh ! Dh is a discrete approximation of the operator B, and B
⇤
h
: Dh ! Uh is its adjoint, and ph,0, vh,0,

fh and gh are discrete representations of p0, v0, f and g in Uh and Dh. We also denote Ih the identity operator of Uh.

For the sequel, we will suppose that the spatial discretisation satisfies the
Hypothesis 1.2 (Stability of the semi discrete system). The spatial discretisation is such that there exists a constant

C > 0 independent of h such that

kphkC3(0,T ;P ) + kphkC2(0,T ;H1(B)) + kvhkC2(0,T ;D)  C (1.4)

Additional hypothesis of stability of the semi discrete system will be assumed when necessary in the analysis of the
two considered discretisation (see Hyp. 2.1, Hyp. 2.2 and Hyp. 3.1).
Hypothesis 1.3 (Convergence of the semi discrete system). The spatial discretisation is such that there exists a

function � : R+
⇤ ! R+

, such that

kp� phkC0(0,T ;P ) + kv � vhkC0(0,T ;D)  �(h), with �(h) �!
h!0

0 (1.5)

Inria



Space time convergence of implicit schemes for the mixed formulation 5

1.3 Implicit parametrized discretizations
The following sections aim at analyzing the two parametrized implicit discretization proposed in [Chabassier, 2023b].
They are two numerical schemes based on the mixed form (1.3). Let ✓ � 0 be a real number and �t > 0 a time
step, which will be used in both discretizations. The first one is a generalization of the Crank-Nicolson scheme
called ✓-CN, where both unknowns are sought on the same time grid. The choice ✓ = 1/4 amounts to the usual
Crank-Nicolson scheme. The second one is a generalization of the Störmer-Verlet scheme called ✓-SV, where both
unknowns are sought on interleaved time grids. The choice ✓ = 0 amounts to the usual Störmer-Verlet scheme.
The first scheme ✓-CN is considered in section 2, while the second scheme ✓-SV is considered in section 3. Both
sections follow the same analysis strategy: first the scheme is presented along with an energy identity, then the
stability is shown, and finally the convergence is shown relying on some regularity assumptions on the semi-discrete
solution of (1.3).
A first work [Chabassier, 2023a] has focused on obtaining uniform space/time convergence of the 0-SV scheme, in
the sense of

• obtaining convergence between the fully discrete solution and the semi discrete solution that do not depend
on the space discretization parameter h,

• ensuring that these results are uniform with respect to the space/time convergence ratio.

The aim of the present work is to generalize this to the ✓-SV and the ✓-CN schemes, which are parametrized
implicit generalizations of the Störmer-Verlet and Crank-Nicolson schemes. The aim here was to obtain stability
and convergence results that are uniform with the space/time convergence ratio, especially when ✓ < 1/4, in which
case the schemes are conditionally stable. Note that the usual Crank-Nicolson scheme amounts to ✓ = 1/4, hence
showing uniform space/time convergence does not need such refinements in the stability and convergence proofs.

2 Analysis of the parametrized implicit discretization based on the
Crank-Nicolson scheme

In this section, a parametrized implicit discretization, introduced in [Chabassier, 2023b], based on the Crank-
Nicolson scheme is analyzed. The unknowns of the scheme are sought on the regular time grid {tn = n�t}0nN .
Let us define the discrete operators � and µ as

�w
n+ 1

2
h

=
w

n+1
h

� w
n

h

�t
, µw

n+ 1
2

h
=

w
n+1
h

+ w
n

h

2
, �q

n+ 1
2

h
=

q
n+1
h

� q
n

h

�t
, µq

n+ 1
2

h
=

q
n+1
h

+ q
n

h

2
(2.1)

They satisfy the useful following properties, for X a general sequence,

k�Xk  2

�t
µ kXk (2.2a)

�X
n+ 1

2µX
n+ 1

2 =
1

2
�(X2)n+

1
2 (2.2b)

In order to reduce the technicality of the proofs, the appendix B shows useful general results on a template system of
discrete equations. The same general results will be used to show the stability and the convergence of the considered
scheme.

2.1 Parametrized Crank-Nicolson (✓-CN) and energy identities
The numerical scheme that is considered to solve (1.3) is to seek two sequences {wn

h
}0nN and {qn

h
}0nN such

that 8
>>>>>>><

>>>>>>>:

w
0
h
= vh(0)

q
0
h
= ph(0)✓
Ih + (✓ � 1

4
)�t

2
B

⇤
h
Bh

◆
�q

n+ 1
2

h
+B

⇤
h
µw

n+ 1
2

h
= f

n+ 1
2

h
, 0  n  N

�w
n+ 1

2
h

�Bhµq
n+ 1

2
h

= �g
n+ 1

2
h

, 0  n  N

(2.3a)
(2.3b)

(2.3c)

(2.3d)
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6 Chabassier

Definition 2.1 (Modified mass matrix). In the following, we denote eIh = Ih +(✓� 1
4 )�t

2
B

⇤
h
Bh the modified mass

matrix of the ✓-CN scheme that we analyze.

Proposition 2.1 (Energy identity). Any solution to (2.3) satisfies, for n 2 [0, N ],

�En+ 1
2

h
= f

n+ 1
2

h
· µpn+

1
2

h
+ �g

n+ 1
2

h
· µwn+ 1

2
h

where En

h
=

1

2
kqn

h
k2eIh +

1

2
kwn

h
k2
D

(2.4)

Proof. Take the scalar product of (2.3c) with µq
n+ 1

2
h

and of (2.3d) with µw
n+ 1

2
h

and use (2.2b), and denote

kqn
h
k2eIh = (eIhqnh , qnh)P (2.5)

Proposition 2.2 (Stability condition). If ✓ � 1
4 , the discrete energy En

h
is always positive. If ✓ <

1
4 , the discrete

energy is positive if

⌘  1, where ⌘ =
�t

2

p
1� 4✓

q
⇢(B⇤

h
Bh) (2.6)

Proof. This directly follows from the definition of eIh.

Definition 2.2. In the sequel, we will write that the “stability condition holds” if the choices of spatial discretisation

and time step ensure that the discrete energy En

h
is positive, which is specified in the previous proposition. This will

be true either if ✓ � 1/4, either if Eq. (2.6) holds.

The following proposition is trivial to obtain if ✓ � 1/4 since in this case, the modified mass matrix is definite
positive and defines an equivalent norm to the canonic norm. The difficulty here was to obtain a result that is
uniform as ⌘ ! 1 when ✓ < 1/4.
Proposition 2.3. Suppose that the stability condition holds. Then, there exists � > 0, independant of h, �t and

⌘, such that for all n � 0,

kµqn+
1
2

h
kP  2�µ

p
2Eh

n+ 1
2 + �

�
kgn+1

h
kD + kgn

h
kD
�
, kwn

h
kD 

p
2Eh

n

, kµwn+ 1
2

h
kD  µ

p
2Eh

n+ 1
2 (2.7)

where � only depends on the choice of ✓, and is independant of h, �t and ⌘.

Proof. Apply Prop. B.1 to the system (2.3), with a
n

h
= q

n

h
, bn

h
= w

n

h
, ⌘n+

1
2

1 = f
n+ 1

2
h

, ⌘n+
1
2

2 = 0, ⌘n+
1
2

3 = 0 and
⌘
n

4 = g
n

h
. The constant � is defined in (B.12).

2.2 Stability analysis
Proposition 2.4. Suppose that the stability condition holds. The discrete energy {En

h
}n satisfies

p
En

h

q
3E0

h
+
p
2�
⇣p

T + 4tn
⌘
kfhkC0(0,T ;P ) +

p
2(2

p
T + t

n)kghkC1(0,T ;D) (2.8)

where � only depends on the choice of ✓, and is independant of h, �t and ⌘.

Proof. From (2.4) we see that we can apply Prop. B.3 to our problem, with a
n

h
= q

n

h
, bn

h
= w

n

h
, ⌘n+

1
2

1 = f
n+ 1

2
h

,
⌘
n+ 1

2
2 = 0, ⌘n+

1
2

3 = 0 and ⌘
n

4 = g
n

h
. This prompts

p
En

h
 A+ 2tnB (2.9)

with

A =
p
2

p
T

N

sup
k=0

⇣
�kfk+ 1

2
h

k+ 2µkghkk+
1
2

⌘
+
q
3E0

h

�
(2.10)

B =
p
2

N

sup
k=0

⇣
2�kfk+ 1

2
h

k+ k�gk+
1
2

h
k
⌘

(2.11)

The term k�gk+
1
2

h
k can be upper bounded by the C1(0, T ;D) norm of gh, hence the expected result.

Inria
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Theorem 2.1 (Stability of the ✓-CN scheme). Suppose that the stability condition holds. Any solution to the ✓-CN

scheme (2.3) satisfies for all n � 0

kwn

h
kD 

q
6E0

h
+ 2�

⇣p
T + 4tn

⌘
kfhkC0(0,T ;P ) + 2(2

p
T + t

n)kghkC1(0,T ;D) (2.12)

and

kµqn+
1
2

h
kP  2�

q
6E0

h
+ 4�2

⇣p
T + 4tn

⌘
kfhkC0(0,T ;P ) + 4�(2

p
T + t

n +
1

2
)kghkC1(0,T ;D) (2.13)

where � only depends on the choice of ✓, and is independant of h, �t and ⌘.

Proof. Using again the results of Prop. B.3 with a
n

h
= q

n

h
, b

n

h
= w

n

h
, ⌘

n+ 1
2

1 = f
n+ 1

2
h

, ⌘
n+ 1

2
2 = 0, ⌘

n+ 1
2

3 = 0 and
⌘
n

4 = g
n

h
, we get

kµqn+
1
2

h
k  2

p
2� (A+ 2tnB) + �C (2.14)

kwn

h
k 

p
2 (A+ 2tnB) (2.15)

where A and B are defined in (2.10) and (2.11), and

C = 2
N

sup
k=0

µkghkn+
1
2 (2.16)

Hence,

kwn

h
k 

q
6E0

h
+ 2�

⇣p
T + 4tn

⌘
kfhkC0(0,T ;P ) + 2(2

p
T + t

n)kghkC1(0,T ;D) (2.17)

kµqn+
1
2

h
k  2�

q
6E0

h
+ 4�2

⇣p
T + 4tn

⌘
kfhkC0(0,T ;P ) + 4�(2

p
T + t

n)kghkC1(0,T ;D) + 2�kghkC0(0,T ;D) (2.18)

Hence the expected result.

2.3 A first space/time uniform convergence result for smooth enough solutions
Hypothesis 2.1. Let (vh, ph) be the solution to (1.3). We suppose that there exist Ck,` > 0 independent of h such

that

kphkC`(0,T ;Hk(B))  Ck,`, 8 (k, `) = {(0, 3), (1, 2)} (2.19)

kvhkC`(0,T ;Hk(B⇤)  C̃k,`, 8(k, `) = {(0, 3), (1, 2)} (2.20)
kghkC`(0,T ;Hk(B⇤)  Gk,`, 8(k, `) = {(0, 3), (1, 2)} (2.21)

where implicitly, H
0(B) = P and H

0(B⇤) = D.

Theorem 2.2 (Convergence of the ✓-CN scheme for a smooth enough discrete solution). Suppose that the stability

condition holds and that hypothesis 2.1 is satisfied by the semi discrete solution (vh, ph) of (1.3). The solution

(wn

h
, q

n

h
) to the ✓-CN scheme (2.3) satisfies

kp̄n
h
� µq

n

h
kP  c�t

2


C0,3 + |✓ � 1

4
|(C̃1,2 +G1,2) +G0,3 + C̃0,3 + C1,2)

�
(2.22)

kv̄n
h
� v

n

h
kD  c�t

2


C0,3 + |✓ � 1

4
|(C̃1,2 +G1,2) +G0,3 + C̃0,3 + C1,2)

�
(2.23)

where c > 0 depends on T and � but is independent of h, ⌘ and �t.

Proof. Define ep and ev the error of the ✓-CN scheme (2.3) to the semi discrete system (1.3) as

e
n

p
= p̄

n

h
� q

n

h
, e

n

v
= v̄

n

h
� w

n

h
(2.24)
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8 Chabassier

These errors satisfy

eIh�e
n+ 1

2
p +B

⇤
h
µe

n+ 1
2

v = eIh�p̄
n+ 1

2
h

+B
⇤
h
µv̄

n+ 1
2

h
� eIh�q

n+ 1
2

h
�B

⇤
h
µw

n+ 1
2

h

= ṗ
n+ 1

2
h

+ "̇
n+ 1

2
p +�t

2(✓ � 1

4
)B⇤

h
Bh�p̄

n+ 1
2

h
+B

⇤
h
(v

n+ 1
2

h
+ ⌘

n+ 1
2

v )� f
n+ 1

2
h

= f
n+ 1

2
h

+ "̇
n+ 1

2
p +B

⇤
h
⇠
n+ 1

2
p +B

⇤
h
⌘
n+ 1

2
v � f

n+ 1
2

h

= "̇
n+ 1

2
p +B

⇤
h
⇠
n+ 1

2
p +B

⇤
h
⌘
n+ 1

2
v (2.25a)

and

�e
n+ 1

2
v �Bhµe

n+ 1
2

p = �v
n+ 1

2
h

�Bhµp
n+ 1

2
h

� (�w
n+ 1

2
h

�Bhµq
n+ 1

2
h

)

= v̇
n+ 1

2
h

+ "̇
n+ 1

2
v �Bhp

n+ 1
2

h
�Bh⌘

n+ 1
2

p � �g
n+ 1

2
h

= ġ
n+ 1

2
h

+ "̇
n+ 1

2
v �Bh⌘

n+ 1
2

p � �g
n+ 1

2
h

= "
n+ 1

2
g + "̇

n+ 1
2

v �Bh⌘
n+ 1

2
p (2.25b)

where there exist t
n  t1, t2, t3, t4, t5, t6  t

n+1 such that

"̇
n+ 1

2
p =

�t
2

24
p
(3)
h

(t1), ⌘
n+ 1

2
v =

�t
2

8
v
(2)
h

(t2),

⇠
n+ 1

2
p = �t

2(✓ � 1

4
)Bhp

(1)
h

(t3) ⌘ d
dt (1.3) �t

2(✓ � 1

4
)
h
v
(2)
h

(t3)� g
(2)
h

(t3)
i

"
n+ 1

2
g =

�t
2

24
g
(3)
h

(t4), "̇
n+ 1

2
v =

�t
2

24
v
(3)
h

(t5), ⌘
n+ 1

2
p =

�t
2

8
p
(2)
h

(t6) (2.26)

and
e
0
p
= 0, e

0
v
= 0 (2.27)

We can apply the results of Prop. B.3 with

a
n

h
= e

n

p
, b

n

h
= e

n

v
, ⌘

n+ 1
2

1 = "̇
n+ 1

2
p +B

⇤
h
⇠
n+ 1

2
p +B

⇤
h
⌘
n+ 1

2
v , ⌘

n+ 1
2

2 = "
n+ 1

2
g + "̇

n+ 1
2

v �Bh⌘
n+ 1

2
p ,

⌘
n+ 1

2
3 = 0, ⌘

n

4 = 0, En

h
⌘ En

e
=

1

2
ken

p
k2eIh +

1

2
ken

v
k2 (2.28)

where, from the hypothesis 2.1, we know that there exists c > 0 such that

H
N

1 :=
N

sup
k=0

k⌘k+
1
2

1 k  c�t
2

✓
C0,3 + |✓ � 1

4
|(C̃1,2 +G1,2)

◆�
(2.29)

H
N

2 :=
N

sup
k=0

k⌘k+
1
2

2 k  c�t
2
h
G0,3 + C̃0,3 + C1,2)

i
(2.30)

Hence,

kµen+
1
2

p k  2
p
2� (A+ 2tnB) + �C (2.31)

ken
v
k 

p
2 (A+ 2tnB) (2.32)

where

A =
p
2
hp

T
⇥
�H

N

1 + (1 +�t)HN

2

⇤
+
p
3E0

e

i
(2.33)

B =
p
2
�
2�HN

1 +H
N

2

�
(2.34)

C = �tH
N

2 (2.35)

We know that E0
e
= 0 from the initial conditions. Moreover, �t  t

n  T . Hence,

A+ 2tnB 
p
2
p
T
⇥
�H

N

1 + (1 + T )HN

2

⇤
+ 2T

p
2
�
2�HN

1 +H
N

2

�
(2.36)


p
2�
hp

T + 4T
i
H

N

1 +
p
2
h
(1 + T )

p
T + 2T

i
H

N

2 (2.37)
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Space time convergence of implicit schemes for the mixed formulation 9

kµen+
1
2

p k  2
p
2� (A+ 2tnB) + �TH

N

2 (2.38)

 4�2
hp

T + 4T
i
H

N

1 + 4�


(1 + T )

p
T +

9T

4

�
H

N

2 (2.39)

 c(HN

1 +H
N

2 ) (2.40)

and

ken
v
k  2�

hp
T + 4T

i
H

N

1 + 2
h
(1 + T )

p
T + 2T

i
H

N

2 (2.41)

 c(HN

1 +H
N

2 ) (2.42)

where c > 0 is a constant that can change from line to line, and only depends on � and T . Finally,

kp̄n+
1
2

h
� µq

n+ 1
2

h
k  kp̄n+

1
2

h
� µp̄

n+ 1
2

h
k+ kµ(p̄n+

1
2

h
� q

n+ 1
2

h
)k (2.43)

 k⌘n+
1
2

p k+ kµen+
1
2

p k (2.44)

 c�t
2


C02 + C0,3 + |✓ � 1

4
|(C̃1,2 +G1,2) +G0,3 + C̃0,3 + C1,2)

�
(2.45)

and
kv̄n

h
� v

n

h
k  c�t

2


C0,3 + |✓ � 1

4
|(C̃1,2 +G1,2) +G0,3 + C̃0,3 + C1,2)

�
(2.46)

Remark 2.1. Notice that the specific choice ✓ = 1
4 , which leads to the usual Crank-Nicolson scheme, removes the

terms in (C̃1,2 +G1,2) in the error constant.
Remark 2.2. This result is not optimal, it is indeed possible to reduce the regularity assumptions on the semi-discrete
solution, as done in the following paragraph.

2.4 A second space/time uniform convergence result for less regular solution
Hypothesis 2.2. Let (vh, ph) be the solution to (1.3). We suppose that there exist constants Ck,` > 0 independent

of h such that

kphkC`(0,T ;Hk(B))  Ck,`, 8 (k, `) = {(0, 3), (1, 2)} (2.47)

kvhkC`(0,T ;Hk(B⇤)  C̃k,`, 8(k, `) = {(0, 3)} (2.48)
kghkC`(0,T ;Hk(B⇤)  Gk,`, 8(k, `) = {(0, 3)} (2.49)

where implicitly, H
0(B) = P and H

0(B⇤) = D.

Theorem 2.3 (Convergence of the ✓-CN scheme for a less regular discrete solution). Suppose that the stability

condition holds and that hypothesis 2.2 is satisfied by the semi discrete solution (vh, ph) of (1.3). The solution

(wn

h
, q

n

h
) to the ✓-CN scheme (2.3) satisfies

kp̄n
h
� µq

n

h
kP  c�t

2
⇥
kphkC3(0,T ;P ) + kphkC1(0,T ;H1(B)) + kvhkC3(0,T ;D) + kghkC3(0,T ;D)

⇤
(2.50)

kv̄n
h
� w

n

h
kD  c�t

2
⇥
kphkC3(0,T ;P ) + kphkC1(0,T ;H1(B)) + kvhkC3(0,T ;D) + kghkC3(0,T ;D)

⇤
(2.51)

where c depends on T and � but is independent of h, ⌘ and �t.

Proof of Thm 2.3 with usual manipulation. The proof begins exactly as Proof 2.3, to write the scheme satisfied by
the error terms. However, we choose to apply the results of Prop. B.3 with another interpretation of the RHS terms
of (2.25):

a
n

h
= e

n

p
, b

n

h
= e

n

v
, ⌘

n+ 1
2

1 = "̇
n+ 1

2
p , ⌘

n+ 1
2

2 = "
n+ 1

2
g + "̇

n+ 1
2

v �Bh⌘
n+ 1

2
p ,

⌘
n+ 1

2
3 = ⇠

n+ 1
2

p + ⌘
n+ 1

2
v , ⌘

n

4 = 0, En

h
⌘ En

e
=

1

2
ken

p
k2eIh +

1

2
ken

v
k2 (2.52)
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10 Chabassier

When ⌘3, the proof of Prop. B.3 makes use of an Abel summation formula to “exchange” spatial differentiation
with B

⇤
h

with discrete time differentiation. Hence,

kµen+
1
2

p k  2
p
2� (A+ 2tnB) + �C (2.53)

ken
v
k 

p
2 (A+ 2tnB) (2.54)

where

A =
p
2
hp

T
⇥
�H

N

1 + (1 +�t)HN

2 +H
N

3

⇤
+ 2

p
2HN

3

i
(2.55)

B =
p
2
⇣
2�HN

1 +H
N

2 + 2H 0
3
N
⌘

(2.56)

C = �tH
N

2 (2.57)

where, from the hypothesis 2.1, we know that there exists c > 0 such that

H
N

1 :=
N

sup
k=0

k⌘k+
1
2

1 k  c�t
2
C0,3 (2.58)

H
N

2 :=
N

sup
k=0

k⌘k+
1
2

2 k  c�t
2
h
G0,3 + C̃0,3 + C1,2)

i
(2.59)

H
N

3 :=
N

sup
k=0

k⌘k+
1
2

3 k  c�t
2

����✓ �
1

4

����C1,1 + C̃0,2

�
(2.60)

H
0
3
N

:=
N

sup
k=0

k�⌘k+
1
2

3 k  c�t
2

����✓ �
1

4

����C1,2 + C̃0,3

�
(2.61)

Hence, there exists a constant c > 0 that only depends on � and T such that

kµen+
1
2

p k  c�t
2
h
C0,3 +G0,3 + C̃0,3 + C1,2

i
(2.62)

ken
v
k  c�t

2
h
C0,3 +G0,3 + C̃0,3 + C1,2

i
(2.63)

The rest of the proof follows the end of Proof 2.3.

Proof of Thm 2.3 based on the field. Let us prove the same theorem with another approach. Let uh 2 Uh be the
field defined as

u̇h = ph (2.64)

with uh(0) chosen such that Bhuh(0) = vh(0). We also define a discrete field {un+ 1
2

h
}0nN�1 as

�u
n

h
= q

n

h
(2.65)

with u
0
h

chosen such that Bhu
0
h
= w

0
h
. Then, the semi discrete and discrete unknowns are solution to

8
>><

>>:

üh +B
⇤
h
vh = fh

vh �Bhuh = gh

u̇h = ph

(2.66a)

(2.66b)
(2.66c)

8
>><

>>:

eIh�2u
n+ 1

2
h

+B
⇤
h
µw

n+ 1
2

h
= f

n+ 1
2

h
, 0  n  N

w
n

h
�Bhµu

n

h
= g

n

h
, 0  n  N

�u
n

h
= q

n

h
, 0  n  N

(2.67a)
(2.67b)
(2.67c)

Therefore, letting eu, ev and ep be defined as

e
n+ 1

2
u = ū

n+ 1
2

h
� u

n+ 1
2

h
, e

n

v
= v̄

n

h
� w

n

h
, e

n

p
= p̄

n

h
� q

n

h
(2.68)
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Space time convergence of implicit schemes for the mixed formulation 11

we get that

eIh�2e
n+ 1

2
u +B

⇤
h
µe

n+ 1
2

v = eIh�2ū
n+ 1

2
h

� eIh�2u
n+ 1

2
h

+B
⇤
h
µv̄

n

h
�B

⇤
h
µw

n

h

= �
2
ū
n+ 1

2
h

+B
⇤
h
µv̄

n

h
� eIh�2u

n+ 1
2

h
�B

⇤
h
µw

n

h
+�t

2(✓ � 1

4
)B⇤

h
Bh�

2
ū
n+ 1

2
h

= ū
(2)
h

(tn+
1
2 ) + "̈

n+ 1
2

u +B
⇤
h

h
v̄h(t

n+ 1
2 ) + ⌘

n+ 1
2

v

i
� f

n+ 1
2

h
+�t

2(✓ � 1

4
)B⇤

h
Bh�

2
ū
n+ 1

2
h

= "̈
n+ 1

2
u +B

⇤
h
⌘
n+ 1

2
v + (✓ � 1

4
)B⇤

h
⌘
n+ 1

2
u (2.69)

e
n

v
�Bhµe

n

u
= �Bh⌘

n

u
, (2.70)

�e
n

u
� e

n

p
= "̇

n

u
(2.71)

where there exist t
n�1  t1, t2, t3, t

n+ 1
2

4  t
n+1

, t5 such that

"̈
n+ 1

2
u = �

2
ū
n+ 1

2
h

� u
(2)
h

(tn+
1
2 ) =

�t
2

12
u
(4)
h

(t1) =
�t

2

12
p
(3)
h

(t1) (2.72)

⌘
n+ 1

2
v = µv̄

n+ 1
2

h
� vh(t

n+ 1
2 ) =

�t
2

8
v
(2)
h

(t2), (2.73)

"̇
n

u
= �ū

n

h
� u

(1)
h

(tn) =
�t

2

3
u
(3)
h

(t3) =
�t

2

3
p
(2)
h

(t3) (2.74)

⌘
n

u
= µū

n

h
� uh(t

n) =
�t

2

8
u
(2)
h

(t5) (2.75)

⌫
n+ 1

2
u = �t

2
Bh�

2
ū
n+ 1

2
h

= �t
2
Bhüh(t

n+ 1
2

4 ) = �t
2
Bhṗh(t

n+ 1
2

4 ) (2.76)

At this point, we introduce the sequence {en
p
}0nN as

en
p
= e

n

p
+ "̇

n

u
such that �e

n

u
= en

p
(2.77)

The first order system on (en
p
, e

n

v
) reads

8
>>>>>><

>>>>>>:

eIh�enp +B
⇤
h
µe

n+ 1
2

v = "̈
n+ 1

2
u +B

⇤
h
⌘
n+ 1

2
v + (✓ � 1

4
)B⇤

h
⌫
n+ 1

2
u

�e
n+ 1

2
v �Bhµe

n+ 1
2

p = �Bh�⌘
n+ 1

2
u

e0
p
= "̇

0
u

e
0
v
= 0

(2.78a)

(2.78b)
(2.78c)
(2.78d)

Hence, we can apply the results of Prop. B.3 with (note in blue between parenthesis the upper bounds of each
corresponding term)

a
n

h
= en

p
, b

n

h
= e

n

v
, ⌘

n+ 1
2

1 = "̈
n+ 1

2
u (C0,3), ⌘

n+ 1
2

2 = 0,

⌘
n+ 1

2
3 = ⌘

n+ 1
2

v (C̃0,2) + (✓ � 1

4
)⌫

n+ 1
2

u (C1,1), ⌘
n

4 = �Bh⌘
n

u
(C1,1) (2.79)

Hence,

kµen+
1
2

p k  2
p
2� (A+ 2tnB) + �C (2.80)

ken
v
k 

p
2 (A+ 2tnB) (2.81)

where

A =
p
2

p
T

N

sup
k=0

h
�k⌘k+

1
2

1 k+ 2µk⌘4kk+
1
2 + k⌘k+

1
2

3 k+
i
+
p
2k⌘N3 k+

p
2k⌘03k+

q
3E0

h

�
(2.82)

B =
p
2

N

sup
k=0

⇣
2�k⌘k+

1
2

1 k+ k�⌘k+
1
2

4 k+ 2k�⌘k+
1
2

3 k
⌘

(2.83)

C = 2
N

sup
k=0

k⌘4kn+
1
2 (2.84)
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12 Chabassier

Hence there exists c > 0 such that

kµen+
1
2

p k  c�t
2


C0,3 + C0,1 + C̃0,2 +

����✓ �
1

4

���� (C1,1 + C1,2) + C0,2 + C1,2 + C̃0,3

�
(2.85)

 c�t
2
h
C0,3 + C1,2 + C̃0,3

i
(2.86)

ken
v
k  c�t

2
h
C0,3 + C1,2 + C̃0,3

i
(2.87)

The rest of the proof follows the end of the previous one.

3 Analysis of the parametrized implicit discretization based on Störmer-
Verlet scheme

In this section, a parametrized implicit discretization, introduced in [Chabassier, 2023b], based on the Crank-
Nicolson scheme, is analyzed. The unknowns of the scheme are sought on interleaved time grids : vh is discretized
on the regular time grid {tn = n�t}0nN while ph is discretized on the interleaved time grid {tn+ 1

2 = (n +
1
2 )�t}0nN . Let us define the discrete operators � and µ as

�v
n+ 1

2
h

=
v
n+1
h

� v
n

h

�t
, µv

n+ 1
2

h
=

v
n+1
h

+ v
n

h

2
, �p

n

h
=

p
n+ 1

2
h

� p
n� 1

2
h

�t
, µp

n

h
=

p
n+ 1

2
h

+ p
n� 1

2
h

2
(3.1)

A new useful property is the following one:

v
n� 1

2±
1
2

h
= µv

n� 1
2

h
± �t

2
�v

n� 1
2

h
(3.2)

3.1 Parametrized Störmer-Verlet (✓-SV) and energy identities

The numerical scheme that is considered to solve (1.3) is to seek two sequences {vn
h
}0nN and {pn+

1
2

h
}0nN such

that 8
>>>>>><

>>>>>>:

v
0
h
= vh(0)

p

1
2
h
= ph(0) +

�t

2

⇥
f
0
h
+B

⇤
h
vh(0)

⇤

(Ih + ✓�t
2
B

⇤
h
Bh)�p

n

h
+B

⇤
h
v
n

h
= f

n

h
, 1  n  N

�v
n+ 1

2
h

�Bhp
n+ 1

2
h

= �g
n+ 1

2
h

, 0  n  N

(3.3a)

(3.3b)

(3.3c)

(3.3d)

The case ✓ = 0 corresponds to the usual Störmer-Verlet scheme. Its space/time convergence was showed in
[Chabassier, 2023a]. The obtained results are here generalized to the ✓-SV scheme in the following propositions and
theorems.
Proposition 3.1 ( Naïve energy identity). Any solution to (3.3) satisfies, for n 2 [1, N ],

�En

pv,h
= (fn

h
, µp

n

h
)P + (µ�gn

h
, v

n

h
)D with En+ 1

2
pv,h

=
1

2
((Ih + ✓�t

2
B

⇤
h
Bh)p

n+ 1
2

h
, p

n+ 1
2

h
)P +

1

2
(vn+1

h
, v

n

h
)D (3.4)

Proof. Take the scalar product of (3.3c) with µp
n

h
and of µ(3.3d) with v

n+ 1
2

h

Proposition 3.2.

�En

h
= (fn

h
, µp

n

h
)P � (B⇤

h
g
n

h
, µp

n

h
)P

with En+ 1
2

h
=

1

2
((Ih + ✓�t

2
B

⇤
h
Bh)p

n+ 1
2

h
, p

n+ 1
2

h
) +

1

2
(vn+1

h
� g

n+1
h

, v
n

h
� g

n

h
)D (3.5)

Proof. This is obtained by subtracting and adding the term B
⇤
h
g
n

h
to the first line and taking the scalar product of

µ (3.3d) with v
n+ 1

2
h

� g
n+ 1

2
h

, and of (3.3c) with µp
n

h
.
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Space time convergence of implicit schemes for the mixed formulation 13

Proposition 3.3 (Reformulation of the energy).

En+ 1
2

h
=

1

2
(p

n+ 1
2

h
, p

n+ 1
2

h
)eIh +

1

2
(µx

n+ 1
2

h
, µx

n+ 1
2

h
)D (3.6)

where the sequence x
n

h
is defined as

x
n

h
= v

n

h
� g

n

h
(3.7)

and the modified mass matrix eIh is defined as

eIh = Ih + (✓ � 1

4
)�t

2
B

⇤
h
Bh (3.8)

Proof. This is obtained by applying formula (3.2) on the sequence {xn

h
} and using Eq. (3.3d) to replace the

occurences of �xn+ 1
2

h
.

Proposition 3.4 ( Stability condition). If ✓ � 1
4 , the discrete energy En

h
is always positive. If ✓ <

1
4 , the discrete

energy is positive if

⌘  1, where ⌘ =
�t

2

p
1� 4✓

q
⇢(B⇤

h
Bh) (3.9)

Definition 3.1. In the sequel, we will write that the “stability condition holds” if the choices of spatial discretisation

and time step ensure that the discrete energy En+ 1
2

h
is positive, which is specified in the previous proposition. This

will be true either if ✓ � 1/4, either if Eq. (3.9) holds.

Remark 3.1. Note that the stability condition is exactly the same as the ✓-CN scheme, which is consistant with the
fact that, up to the initial conditions, the two schemes can be seen as two algorithmic strategies to compute the
same quantities (see [Chabassier, 2023b]).

3.2 Stability analysis
The stability analysis of this parametrized implicit scheme is very similar to the one in [Chabassier, 2023a], so we
only provide here the main results.
Proposition 3.5. Any {pn+

1
2

h
}n 2 Uh solution to (3.3) satisfies

8
>>>><

>>>>:

k⇧kµp
n

h
kP 

C
�1/2
k

2

✓q
2En+ 1

2
h

+

q
2En� 1

2
h

◆

k⇧pµp
n

h
kP  C

�1/2
p

✓q
2En+ 1

2
h

+

q
2En� 1

2
h

◆
(3.10a)

(3.10b)

where Ck and Cp are defined in Appendix A.

Proof. See the results of Appendix A and proof of Prop. 2.7 of [Chabassier, 2023a].

Proposition 3.6 (Majoration of the averaged unknowns).

kµvn+
1
2

h
kD 

q
2En+ 1

2
h

+ µkghk
n+ 1

2
D

kµpn
h
kP  �

✓q
2En+ 1

2
h

+

q
2En� 1

2
h

◆
(3.11)

where

� =
C

�1/2
k

2
+ C

�1/2
p

(3.12)

Proof. See the results of Appendix A and proof of Prop. 2.8 of [Chabassier, 2023a]. We get

kµxn+ 1
2

h
kD 

q
2En+ 1

2
h

, kµpn
h
kP  �

✓q
2En+ 1

2
h

+

q
2En� 1

2
h

◆
(3.13)

So,

kµvn+
1
2

h
kD  kµxn+ 1

2
h

kD + kµgn+
1
2

h
kD 

q
2En+ 1

2
h

+ µkghk
n+ 1

2
D

(3.14)
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Proposition 3.7 (Stability of the energy). The energy satisfies

q
En+ 1

2
h


q
E

1
2
h
+
p
2��t

nX

k=1

⇥
kfk

h
kP + kB⇤

h
g
k

h
kP
⇤

(3.15)

where q
E

1
2
h
 1 +

p
2

2
kph(0)kP +

1 +
p
2

2

�t

2
kf0

h
kP +

1 + 2
p
2

2
kvh(0)kD +

1p
2
kg0

h
kD (3.16)

Proof. See proof of Prop. 2.9 of [Chabassier, 2023a].

3.3 Space/time uniform convergence
Hypothesis 3.1. Let (vh, ph) be the solution to (1.3). We suppose that there exist constants Ck,` > 0 independent

of h such that

kphkC`(0,T ;Hk(B))  Ck,`, 8 (k, `) = {(0, 3), (1, 2)} (3.17)

kvhkC`(0,T ;Hk(B⇤)  C̃k,`, 8(k, `) = {(0, 2)} (3.18)

where implicitly, H
0(B) = P and H

0(B⇤) = D.

The following theorem extends Thm 3.1 of [Chabassier, 2023a] which was only valid for ✓ = 0. It generalizes the
proof technique in order to encompass the resulting additional terms of the ✓-SV scheme analysis, but nicely reduces
to the expected result in the case ✓ = 0.
Theorem 3.1. Suppose that the stability condition holds. Then there exists a constant C > 0 independent of h and

⌘, such that

kp̄n
h
� µp

n

h
kP  C�t

2
⇣
kphkC3(0,T,P ) +

p
✓kphkC2(0,T,H1(B))

⌘
(3.19)

kv̄n+
1
2

h
� µv

n+ 1
2

h
kD  C�t

2
⇣
kvhkC2(0,T ;D) + kphkC3(0,T,P ) +

p
✓kphkC2(0,T,H1(B))

⌘
(3.20)

Proof. The proof of this theorem follows the one of Thm 3.1 in [Chabassier, 2023a] but adds a manipulation based
on the Abel discrete summation recalled in Lemma B.2. Let uh 2 Uh be the field defined as

u̇h = ph (3.21)

with uh(0) chosen such that Bhuh(0) = vh(0). We also define a discrete field {un

h
}0nN�1 as

�u
n+ 1

2
h

= p
n+ 1

2
h

(3.22)

with u
0
h

chosen such that Bhu
0
h
= v

0
h
. Then, the semi discrete and discrete unknowns are solution to

8
>><

>>:

üh +B
⇤
h
vh = fh

vh �Bhuh = gh

u̇h = ph

(3.23a)

(3.23b)
(3.23c)

8
>><

>>:

(Ih + ✓�t
2
B

⇤
h
Bh)�

2
u
n

h
+B

⇤
h
v
n

h
= f

n

h
, 1  n  N

v
n

h
�Bhu

n

h
= g

n

h
, 0  n  N

�u
n+ 1

2
h

= p
n+ 1

2
h

, 0  n  N

(3.24a)
(3.24b)

(3.24c)

Therefore, letting eu, ev and ep be defined as

e
n+ 1

2
u = ū

n+ 1
2

h
� u

n+ 1
2

h
, e

n

v
= v̄

n

h
� v

n

h
, e

n+ 1
2

p = p̄
n+ 1

2
h

� p
n+ 1

2
h

(3.25)

we get that

(Ih + ✓�t
2
B

⇤
h
Bh)�

2
e
n

u
+B

⇤
h
e
n

v
= (Ih + ✓�t

2
B

⇤
h
Bh)�

2
ū
n

h
+B

⇤
h
v̄
n

h
� (Ih + ✓�t

2
B

⇤
h
Bh)�

2
u
n

h
�B

⇤
h
v
n

h

= "̈
n

u
+ ✓�t

2
B

⇤
h
Bh�

2
ū
n

h
(3.26)

e
n

v
�Bhe

n

u
= 0 (3.27)

�e
n+ 1

2
u � e

n+ 1
2

p = �ū
n+ 1

2
h

� �u
n+ 1

2
h

� p̄
n+ 1

2
h

+ p
n+ 1

2
h

= "̇
n+ 1

2
u (3.28)
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Space time convergence of implicit schemes for the mixed formulation 15

where there exists t
n�1  t1, t2  t

n+1 such that

"̈
n

u
= �

2
ū
n

h
� u

(2)
h

(tn) =
�t

2

12
u
(4)
h

(t1), "̇
n+ 1

2
u = �ū

n+ 1
2

h
� u̇h(t

n+ 1
2 ) =

�t
2

3
u
(3)
h

(t2) (3.29)

Let us introduce the field {en+
1
2

p } as

e
n+ 1

2
p = e

n+ 1
2

p + "̇
n+ 1

2
u ) �e

n+ 1
2

u = e
n+ 1

2
p (3.30)

such that (en
v
, e

n+ 1
2

p ) is solution to

(
(Ih + ✓�t

2
B

⇤
h
Bh)�e

n

p
+B

⇤
h
e
n

v
= "̈

n

u
+ ✓�t

2
B

⇤
h
Bh�

2
ū
n

h

�e
n+ 1

2
v �Bhe

n+ 1
2

p = 0

(3.31a)

(3.31b)

Taking the scalar product of the first line of this system with µen
p

and of µ operator applied to the second line with
e
n

v
yields

�En+ 1
2

e = (⌘n1 , µe
n

p
) + ✓(⌘n2 , Bhµe

n

p
), En+ 1

2
e =

1

2
ken+

1
2

p k2eIh +
1

2
kµen+

1
2

v k2
D

(3.32)

where
⌘
n

1 = "̈
n

u
, ⌘

n

2 = �t
2
Bh�

2
ū
n

h
(3.33)

We apply the µ operator on (3.31b) to replace Bhµenp in the previous identity, and we sum from 1 to n to get

�t

nX

k=1

�Ek+ 1
2

e = �t

nX

k=1

(⌘k1 , µe
k

p
) + ✓�t

nX

k=1

(⌘k2 , �µe
k

v
) (3.34)

We can now apply the Abel discrete summation lemma (see Eq (46) from [Chabassier and Imperiale, 2021]) to get

En+ 1
2

e � E
1
2
e = �t

nX

k=1

(⌘k1 , µe
k

p
) + ✓

"
��t

n�1X

k=1

(�⌘
k+ 1

2
2 , µe

k+ 1
2

v ) + (⌘n2 , µe
n+ 1

2
v )� (⌘12 , µe

1
2
v )

#
(3.35)

Using the results of Appendix A, we can show as was done in Prop. 3.6 that

kµek+
1
2

v k 
q
2Ek+ 1

2
e , kµek

p
k  �

q
2Ek+ 1

2
e +

q
2Ek� 1

2
e

�
(3.36)

Let us call

H
N

1 =
N

sup
k=0

k⌘k1k  C�t
2
C0,3, H

N

2 =
N

sup
k=0

k⌘k2k  C�t
2
C1,1, (H 0

2)
N =

n

sup
k=0

k�⌘k+
1
2

2 k  C�t
2
C1,2 (3.37)

Hence

En+ 1
2

e  E
1
2
e +�tH

N

1 �

nX

k=1

✓q
2Ek+ 1

2
e +

q
2Ek� 1

2
e

◆
+ ✓

"
�t(H 0

2)
N

nX

k=1

q
2Ek+ 1

2
e +H

N

2

q
2En+ 1

2
e +H

1
2

q
2E

1
2
e

#

(3.38)

We perform a Young’s inequality on the two last terms and we get (note that H
1
2  H

N

2 )

1

2
En+ 1

2
e  3

2
E

1
2
e + 2✓2(HN

2 )2 +�t�H
N

1

 
nX

k=1

q
2Ek+ 1

2
e +

n�1X

k=0

q
2Ek+ 1

2
e

!
+ ✓�t(H 0

2)
N

n�1X

k=1

q
2Ek+ 1

2
e (3.39)

En+ 1
2

e  3E
1
2
e + 4✓2(HN

2 )2 + 2
p
2�t

�
2�HN

1 + ✓(H 0
2)

N
� nX

k=0

q
Ek+ 1

2
e (3.40)
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16 Chabassier

This inequality has the form of the discrete Grönwall Lemma B.1 with

a = 3E
1
2
e + 4✓2(HN

2 )2, b = 2
p
2�t

�
2�HN

1 + ✓(H 0
2)

N
�

(3.41)

Hence, q
En+ 1

2
e  A+ 2TB (3.42)

with

A =
p
2

✓q
3E

1
2
e + 2✓HN

2

◆
, B = 2

p
2
�
2�HN

1 + ✓(H 0
2)

N
�

(3.43)

and we get thus
kµek+

1
2

v k 
p
2 (A+ 2TB), kµek

p
k  2

p
2�(A+ 2TB) (3.44)

To finish, we must evaluate E
1
2
e by writing the energy at time t

1
2 in the naïve formulation:

E
1
2
e =

1

2
((Ih + ✓�t

2
B

⇤
h
Bh)e

1
2
p , e

1
2
p ) +

1

2
(e0

v
, e

1
v
) (3.45)

Since e
0
v
= 0 only the first term remains, where

e
1
2
p = e

1
2
p + "̇

1
2
u = e

1
2
p =

�t
2

8
p
(2)
h

(t5) +
�t

2

3
u
(3)
h

(t2) (3.46)

Hence q
E

1
2
e  1p

2
ke

1
2
p + "̇

1
2
u kP +

p
✓
�tp
2
kBh

⇣
e

1
2
p + "̇

1
2
u

⌘
kD  C�t

2
C0,2 +

p
✓C�t

2
C1,2 (3.47)

Then,

kµen
p
k  kµen

p
k+ kµ"̇n

u
k  C

q
E

1
2
e +H

N

1 + ✓(HN

2 + (H 0
2)

N )

�
(3.48)

Finally,

kp̄n
h
� µp

n

h
k  kp̄n

h
� µp̄

n

h
k+ kµen

p
k (3.49)

 C�t
2
h
C02 + C0,2 +

p
✓C1,2 + C0,3 + ✓(C1,1 + C1,2)

i
(3.50)

 C�t
2
h
C0,3 +

p
✓C1,2

i
(3.51)

and

kv̄n+
1
2

h
� µv

n+ 1
2

h
k  kv̄n+

1
2

h
� µv̄

n+ 1
2

h
k+ kµen+

1
2

v k (3.52)

 C�t
2
h
C̃0,2 + C0,2 +

p
✓C1,2 + C0,3 + ✓(C1,1 + C1,2)

i
(3.53)

 C�t
2
h
C̃0,2 + C0,3 +

p
✓C1,2

i
(3.54)

4 Conclusion
In this work, we have obtained uniform space/time convergence of the ✓-SV and the ✓-CN schemes, which are
parametrized implicit generalizations of the Störmer-Verlet and Crank-Nicolson schemes. The aim here was to
obtain stability and convergence results that are uniform with the space/time convergence ratio, especially when
✓ < 1/4, in which case the schemes are conditionally stable. The obtained results generalize the ones known for the
usual 0-SV and 1/4-CN. We note that our results for ✓-SV (Thm 3.1) and for ✓-CN (Thm 2.3) do not require the
same regularity on the semi-discrete solution. More precisely, the requirements are stronger for the ✓-CN scheme.
However, one intriguing fact is that in [Chabassier, 2023b] the two schemes are shown to be equivalent (providing
that the initial data are well chosen), in the sense that the time series of ✓-CN can be reconstructed from the time
series of ✓-SV, and reciprocally. Therefore an open question remains to achieve uniform space time convergence
results for both schemes and based on the same regularity assumptions.
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Space time convergence of implicit schemes for the mixed formulation 17

A Spectral decomposition of B⇤
h
Bh and projectors identities

Proposition A.1 (Spectral decomposition of B⇤
h
Bh). The operator B

⇤
h
Bh : Uh ! Uh is diagonalizable in R. We

call (�h,i, eh,i) its eigenpairs which are chosen orthonormal in P .

Proof. In finite dimensional spaces, any symmetric real operator is diagonalizable in an orthonormal basis.

Following [Chabassier and Imperiale, 2017], we introduce the polynomial

Pk(x) = 1 + (✓ � 1

4
)x (A.1)

which is non-negative on the interval [0, 4/(1 � 4✓)] for 0  ✓ < 1/4 and on [0,+1[ for ✓ � 1/4. Then eIh can be
expressed as a polynomial of the operator �t

2
B

⇤
h
Bh:

eIh = Ih +�t
2(✓ � 1

4
)B⇤

h
Bh = Pk(�t

2
B

⇤
h
Bh) (A.2)

Proposition A.2 (Partitionning). The interval of non-negativity can be partitionned as Jk [ Jp with Jk \ Jp = ;
such that there exist Ck > 0 and Cp > 0 such that for all x 2 Jk, Pk(x) � Ck and for all x 2 Jp, x � Cp.

Proof. See [Chabassier and Imperiale, 2017, appendix] for the scheme called “TS”.

Proposition A.3. Let us define the two projectors ⇧k and ⇧p such that for all uh 2 Uh

⇧kuh =
X

�t
2
�h,i2Jk

�h,i2Sp(Kh)

(uh, eh,i)P eh,i, ⇧puh =
X

�t
2
�h,i2Jp

�h,i2Sp(Kh)

(uh, eh,i)P eh,i (A.3)

Then, for all uh 2 Uh (
k⇧kuhk2P  C

�1
k

(eIhuh, uh)P

k⇧puhk2P  �t
2
C

�1
p

(Bhuh, Bhuh)D

(A.4a)
(A.4b)

Proof. See [Chabassier and Imperiale, 2017].
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18 Chabassier

B Some technical results for the ✓-CN analysis
In the following of this appendix, we will prove some useful results on arbitrary sequences {an

h
}n and {bn

h
}n which

satisfy 8
<

:
Ĩh�a

n+ 1
2

h
+B

⇤
h
µb

n+ 1
2

h
= ⌘

n+ 1
2

1 +B
⇤
h
⌘
n+ 1

2
3

�b
n+ 1

2
h

�Bhµa
n+ 1

2
h

= ⌘
n+ 1

2
2 + �⌘

n+ 1
2

4

(B.1a)

(B.1b)

and a sequence En

h
defined by

En

h
=

1

2
kan

h
k2
Ĩh

+
1

2
kbn

h
k2 (B.2)

where the sequences ⌘
n+ 1

2
1 , ⌘n+

1
2

2 , ⌘n+
1
2

3 and ⌘
n

4 are given.
Proposition B.1. Let {an

h
}n and {bn

h
}n satisfying (B.1) and En

h
defined as (B.2). Then, there exists � > 0 such

that

kbn
h
k 

p
2En

h
, kµbn+

1
2

h
k  µ

p
2Eh

n+ 1
2
, kµan+

1
2

h
k  2�

✓
µ

p
2Eh

n+ 1
2 + µk⌘4kn+

1
2

◆
+ ��tk⌘n+

1
2

2 k (B.3)

Proof. The identities

kbn
h
k 

p
2Eh

n

and kµbn+
1
2

h
k  µ

p
2Eh

n+ 1
2 (B.4)

directly follow from the definition of En

h
. The rest of the proof relies on the spectral decomposition technique

developed in [Chabassier and Imperiale, 2017] and used in [Chabassier and Imperiale, 2021]. Using the relations in
Prop. A.3,

k⇧pµa
n+ 1

2
h

k (A.4b) �tC
�1/2
p

kBhµa
n+ 1

2
h

k (B.5)

(B.1a) �tC
�1/2
p

k� (bh � ⌘4)
n+ 1

2 � ⌘
n+ 1

2
2 k (B.6)

(2.2a) 2C
�1/2
p

µkbh � ⌘4kn+
1
2 +�tC

�1/2
p

k⌘n+
1
2

2 k (B.7)

 C
�1/2
p

h
kbn+1

h
k+ kbn

h
k+ k⌘n+1

4 k+ k⌘n4 k+�tk⌘n+
1
2

2 k
i

(B.8)

 C
�1/2
p

q
2En+1

h
+
p
2En

h
+ k⌘n+1

4 k+ k⌘n4 k+�tk⌘n+
1
2

2 k
�

(B.9)

Morerover,

k⇧ka
n

h
k (A.4a) C

�1/2
k

kan
h
keIh  C

�1/2
k

p
2En

h
) k⇧kµa

n+ 1
2

h
k  C

�1/2
k

µ

p
2Eh

n+ 1
2 (B.10)

Finally,
kµan+

1
2

h
k  k⇧kµa

n+ 1
2

h
k+ k⇧pµa

n+ 1
2

h
k (B.11)

This shows the expected result with
� = C

�1/2
k

/2 + C
�1/2
p

(B.12)

and noticing that C
�1/2
p  �.

Lemma B.1. Let a > 0, b > 0, and Eh be a sequence that satisfies

En

h
 a+�tb

nX

k=0

q
Ek

h
(B.13)

Then, p
En

h


p
2a+ 2tnb (B.14)
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Proof. First, let us apply Young’s inequality on the last term of the sum, to get that

1

2
En

h
 a+

1

2
�t

2
b
2 +�tb

n�1X

k=0

q
Ek

h
(B.15)

Let

F
n = a+

1

2
�t

2
b+�tb

nX

k=0

q
Ek

h
(B.16)

Notice that F
0 = a+ 1

2�t
2
b
2 and that En

h
 2Fn�1. Then, for all n � 1,

F
n � F

n�1 = �tb
p
En

h
 �tb

p
2Fn�1 

p
2�tb

⇣p
Fn +

p
Fn�1

⌘
(B.17)

Adding this telescopic sum from 0 to n� 1 yields

p
Fn�1 

p
F 0 +

p
2b

n�2X

k=0

�t 
r
a+

1

2
�t2b2 +

p
2btn�1 (B.18)

Using the Grönwall assumption, we get
p
En

h


p
2Fn�1 

p
2a+�tb+ 2btn�1 

p
2a+ 2btn (B.19)

Lemma B.2 (Discrete summation by part : Abel transformation).

�t

nX

k=0

b
k
�a

k+ 1
2 = ��t

n�1X

k=0

�b
k+ 1

2 a
k+1 + b

n
a
n+1 � b

0
a
0 (B.20)

Proposition B.2. Let {an
h
}n, {bn

h
}n and {En

h
}n be sequences satisfying

kµan+
1
2

h
k  2�µ

p
2Eh

n+ 1
2 + �r

n+ 1
2

h
(B.21)

kbn
h
k 

p
2En

h
(B.22)

�En+ 1
2

h
= (e

n+ 1
2

1 , µa
n+ 1

2
h

) + (e
n+ 1

2
2 , µb

n+ 1
2

h
) + (e

n+ 1
2

3 , e
n+ 1

2
4 ) + (e

n+ 1
2

5 , �b
n+ 1

2
h

) (B.23)

Then, p
En

h
 A+ 2tnB (B.24)

where

A =
p
2

p
T

N

sup
k=0

h
�kek+

1
2

1 k+ r
k+ 1

2
h

+ kek+
1
2

3 k+ kek+
1
2

4 k
i
+
p
2keN5 k+

p
2ke05k+

q
3E0

h

�
(B.25)

B =
p
2

N

sup
k=0

⇣
2�kek+

1
2

1 k+ kek+
1
2

2 k+ 2k�ek+
1
2

5 k
⌘

(B.26)

and therefore,

kµan+
1
2

h
k  2

p
2� (A+ 2tnB) + �C (B.27)

kbn
h
k 

p
2 (A+ 2tnB) (B.28)

where

C =
N

sup
k=0

r
k+ 1

2
h

(B.29)
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Proof. Let us multiply (B.23) by �t and sum from 0 to n:

�t

nX

k=0

�En+ 1
2

h
= �t

nX

k=0

h
(e

k+ 1
2

1 , µa
k+ 1

2
h

) + (e
k+ 1

2
2 , µb

k+ 1
2

h
) + (e

k+ 1
2

3 , e
k+ 1

2
4 ) + (e

k+ 1
2

5 , �b
k+ 1

2
h

)
i

(B.30)

Let us use Lemma B.2 on the last term and use Cauchy-Schwarz inequality to get

En+1
h

� E0
h
 �t

nX

k=0

h
kek+

1
2

1 kkµak+
1
2

h
k+ kek+

1
2

2 kkµbk+
1
2

h
k+ kek+

1
2

3 kkek+
1
2

4 k
i

+�t

n�1X

k=0

k�ek+
1
2

5 kkbk+1
h

k+ ken5kkbn+1
h

k+ ke05kkb0hk (B.31)

We now use the majoration hypothesis on ah and bh:

En+1
h

� E0
h
 �t

nX

k=0


�kek+

1
2

1 k
✓
2µ
p
2Eh

k+ 1
2 + r

k+ 1
2

h

◆
+ kek+

1
2

2 kµ
p
2Eh

k+ 1
2 + kek+

1
2

3 kkek+
1
2

4 k
�

+�t

n�1X

k=0

k�ek+
1
2

5 k
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Using Young’s inequality and grouping similar terms, we get
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We get that
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We can use Lemma B.1 to get that q
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Proposition B.3. Let {an
h
}n and {bn

h
}n satisfying (B.1) and En
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Proof. Taking the scalar product of (B.1a) with µa
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and of (B.1b) with µb
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, we get that
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Since from (B.1b)
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The energy identity becomes
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Moreover from Prop. B.1, we get that the hypotheses of Prop. B.2 are satisfied with
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(B.56)

which yields the result.
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