Juliette Chabassier 
  
Space time convergence of implicit discretization strategies for the mixed formulation of linear wave equations

Keywords: numerical analysis, space time convergence, implicit discretization, mixed formulation analyse numérique, convergence spatio-temporelle, discrétisation implicite, formulation mixte

This report presents the space-time convergence analysis of two implicit discretization strategies for the mixed formulation of wave equations, based for the first on the Störmer-Verlet scheme and for the second on the Crank-Nicolson scheme. This analysis is uniform with respect to the space-time convergence ratio. For each discretization strategy, after obtaining an exploitable energy identity, a uniform stability result is achieved through a technique of projection onto wellchosen eigensubspaces of a certain symmetric real matrix appearing in the construction of the schemes. Uniform convergence is then demonstrated using increasingly refined techniques to reduce the regularity assumptions on the semi-discrete solution.

Introduction

General model

The mixed formulation of linear wave equations is one possible modeling of wave propagation phenomena. It is chosen over its second order formulation counterpart in situations where the unknowns are more relevant to the physical context [Makridakis andMonk, 1995, Lanteri andScheid, 2013], or where these unknowns are more natural for modeling purposes (as for instance coupling with other parts [START_REF] Banjai | Stable numerical coupling of exterior and interior problems for the wave equation[END_REF]), or even where it is not possible to formulate the equations as a second order equation (as for instance in presence of intricate dissipative [START_REF] Bilbao | Passive time-domain numerical models of viscothermal wave propagation in acoustic tubes of variable cross section[END_REF] or nonlinear phenomena [START_REF] He | Energy-preserving finite element methods for a class of nonlinear wave equations[END_REF]). On an abstract level, this system reads, for 0  t  T , 8 > > > < > > > :

p(0) = p 0 v(0) = v 0 ṗ + B ⇤ v = f v Bp = ġ (1.1a) (1.1b) (1.1c) (1.1d)
where B : H 1 (B) ⇢ P ! D is an operator and B ⇤ its adjoint. The source terms and the initial conditions are supposed regular enough so that the following hypothesis holds, in three Hilbert spaces P , H 1 (B) = {p 2 P |Bp 2 D} ⇢ P and D : Hypothesis 1.1 (Stability of the continuous system). The source terms and the initial conditions are regular enough such that there exists a constant C > 0 such that kpk C 3 (0,T ;P ) + kpk C 2 (0,T ;H 1 (B) + kvk C 2 (0,T ;D)  C (1.2)

Space discretisation

Numerical methods to solve this system are numerous and can rely on several analysis tools. In this work, we want to introduce and compare two parametrized time discretisation strategies, and we therefore suppose that the spatial discretisation is done with usual methods such as Finite Differences [Zuazua, 2005], Finite Elements [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF], Finite Volumes [START_REF] Eymard | Finite volume methods[END_REF], or any other method that provides the following semi discrete system, along with some necessary bounds on the space discretisation error. More precisely, we assume that, after introducing a small space discretization parameter h, and following the steps that lead to the semi discrete system, the semi discrete solution (p h , v h ) is sought in finite dimensional spaces U h ⇢ H 1 (B) ⇢ P and D h ⇢ D, where P and D are two Hilbert spaces naturally prompted by the equation as the variational spaces for both variables:

8 > > > < > > > : p h (0) = p h,0 v h (0) = v h,0 ṗh + B ⇤ h v h = f h vh B h p h = ġh (1.3a) (1.3b) (1.3c)
(1.3d) where B h : U h ! D h is a discrete approximation of the operator B, and B ⇤ h : D h ! U h is its adjoint, and p h,0 , v h,0 , f h and g h are discrete representations of p 0 , v 0 , f and g in U h and D h . We also denote I h the identity operator of U h .

For the sequel, we will suppose that the spatial discretisation satisfies the Hypothesis 1.2 (Stability of the semi discrete system). The spatial discretisation is such that there exists a constant C > 0 independent of h such that kp h k C 3 (0,T ;P ) + kp h k C 2 (0,T ;H 1 (B)) + kv h k C 2 (0,T ;D)  C (1.4)

Additional hypothesis of stability of the semi discrete system will be assumed when necessary in the analysis of the two considered discretisation (see Hyp. 2.1,Hyp. 2.2 and Hyp. 3.1).

Hypothesis 1.3 (Convergence of the semi discrete system). The spatial discretisation is such that there exists a function : R + ⇤ ! R + , such that kp p h k C 0 (0,T ;P ) + kv v h k C 0 (0,T ;D)  (h), with (h) ! h!0 0 (1.5) Inria

Implicit parametrized discretizations

The following sections aim at analyzing the two parametrized implicit discretization proposed in [START_REF] Chabassier ; Chabassier | Two implicit parametrized discretization strategies for the mixed formulation of linear wave equations[END_REF]. They are two numerical schemes based on the mixed form (1.3). Let ✓ 0 be a real number and t > 0 a time step, which will be used in both discretizations. The first one is a generalization of the Crank-Nicolson scheme called ✓-CN, where both unknowns are sought on the same time grid. The choice ✓ = 1/4 amounts to the usual Crank-Nicolson scheme. The second one is a generalization of the Störmer-Verlet scheme called ✓-SV, where both unknowns are sought on interleaved time grids. The choice ✓ = 0 amounts to the usual Störmer-Verlet scheme.

The first scheme ✓-CN is considered in section 2, while the second scheme ✓-SV is considered in section 3. Both sections follow the same analysis strategy: first the scheme is presented along with an energy identity, then the stability is shown, and finally the convergence is shown relying on some regularity assumptions on the semi-discrete solution of (1.3).

A first work [Chabassier, 2023a] has focused on obtaining uniform space/time convergence of the 0-SV scheme, in the sense of

• obtaining convergence between the fully discrete solution and the semi discrete solution that do not depend on the space discretization parameter h,

• ensuring that these results are uniform with respect to the space/time convergence ratio.

The aim of the present work is to generalize this to the ✓-SV and the ✓-CN schemes, which are parametrized implicit generalizations of the Störmer-Verlet and Crank-Nicolson schemes. The aim here was to obtain stability and convergence results that are uniform with the space/time convergence ratio, especially when ✓ < 1/4, in which case the schemes are conditionally stable. Note that the usual Crank-Nicolson scheme amounts to ✓ = 1/4, hence showing uniform space/time convergence does not need such refinements in the stability and convergence proofs.

2 Analysis of the parametrized implicit discretization based on the Crank-Nicolson scheme

In this section, a parametrized implicit discretization, introduced in [START_REF] Chabassier ; Chabassier | Two implicit parametrized discretization strategies for the mixed formulation of linear wave equations[END_REF], based on the Crank-Nicolson scheme is analyzed. The unknowns of the scheme are sought on the regular time grid {t n = n t} 0nN .

Let us define the discrete operators and µ as

w n+ 1 2 h = w n+1 h w n h t , µw n+ 1 2 h = w n+1 h + w n h 2 , q n+ 1 2 h = q n+1 h q n h t , µq n+ 1 2 h = q n+1 h + q n h 2 (2.1)
They satisfy the useful following properties, for X a general sequence,

k Xk  2 t µ kXk (2.2a) X n+ 1 2 µX n+ 1 2 = 1 2 (X 2 ) n+ 1 2 (2.2b)
In order to reduce the technicality of the proofs, the appendix B shows useful general results on a template system of discrete equations. The same general results will be used to show the stability and the convergence of the considered scheme.

Parametrized Crank-Nicolson (✓-CN) and energy identities

The numerical scheme that is considered to solve (1.3) is to seek two sequences {w n h } 0nN and

{q n h } 0nN such that 8 > > > > > > > < > > > > > > > : w 0 h = v h (0) q 0 h = p h (0) ✓ I h + (✓ 1 4 ) t 2 B ⇤ h B h ◆ q n+ 1 2 h + B ⇤ h µw n+ 1 2 h = f n+ 1 2 h , 0  n  N w n+ 1 2 h B h µq n+ 1 2 h = g n+ 1 2 h , 0  n  N (2.3a) (2.3b) (2.3c) (2.3d) RR n°9529
Definition 2.1 (Modified mass matrix). In the following, we denote e I h = I h + (✓ 1 4 ) t 2 B ⇤ h B h the modified mass matrix of the ✓-CN scheme that we analyze. Proposition 2.1 (Energy identity). Any solution to (2.3) satisfies, for n 2 [0, N],

E n+ 1 2 h = f n+ 1 2 h • µp n+ 1 2 h + g n+ 1 2 h • µw n+ 1 2 h where E n h = 1 2 kq n h k 2 e I h + 1 2 kw n h k 2 D (2.4)
Proof. Take the scalar product of (2.3c) with µq

n+ 1 2 h
and of (2.3d) with µw

n+ 1 2 h
and use (2.2b), and denote

kq n h k 2 e I h = ( e I h q n h , q n h ) P (2.5) Proposition 2.2 (Stability condition). If ✓ 1 4 , the discrete energy E n h is always positive. If ✓ < 1 4 , the discrete energy is positive if ⌘  1, where ⌘ = t 2 p 1 4✓ q ⇢(B ⇤ h B h ) (2.6)
Proof. This directly follows from the definition of e I h .

Definition 2.2. In the sequel, we will write that the "stability condition holds" if the choices of spatial discretisation and time step ensure that the discrete energy E n h is positive, which is specified in the previous proposition. This will be true either if ✓ 1/4, either if Eq. (2.6) holds.

The following proposition is trivial to obtain if ✓ 1/4 since in this case, the modified mass matrix is definite positive and defines an equivalent norm to the canonic norm. The difficulty here was to obtain a result that is uniform as ⌘ ! 1 when ✓ < 1/4. Proposition 2.3. Suppose that the stability condition holds. Then, there exists > 0, independant of h, t and ⌘, such that for all n 0, kµq

n+ 1 2 h k P  2 µ p 2E h n+ 1 2 + kg n+1 h k D + kg n h k D , kw n h k D  p 2E h n , kµw n+ 1 2 h k D  µ p 2E h n+ 1 2 (2.7)
where only depends on the choice of ✓, and is independant of h, t and ⌘.

Proof. Apply Prop. B.1 to the system (2.3), with

a n h = q n h , b n h = w n h , ⌘ n+ 1 2 1 = f n+ 1 2 h , ⌘ n+ 1 2 2 = 0, ⌘ n+ 1 2 3 = 0 and ⌘ n 4 = g n h .
The constant is defined in (B.12).

Stability analysis

Proposition 2.4. Suppose that the stability condition holds. The discrete energy

{E n h } n satisfies p E n h  q 3E 0 h + p 2 ⇣ p T + 4t n ⌘ kf h k C 0 (0,T ;P ) + p 2(2 p T + t n )kg h k C 1 (0,T ;D) (2.8)
where only depends on the choice of ✓, and is independant of h, t and ⌘.

Proof. From (2.4) we see that we can apply Prop. B.3 to our problem, with

a n h = q n h , b n h = w n h , ⌘ n+ 1 2 1 = f n+ 1 2 h , ⌘ n+ 1 2 2 = 0, ⌘ n+ 1 2 3 = 0 and ⌘ n 4 = g n h . This prompts p E n h  A + 2t n B (2.9) with A = p 2  p T N sup k=0 ⇣ kf k+ 1 2 h k + 2µkg h k k+ 1 2 ⌘ + q 3E 0 h (2.10) B = p 2 N sup k=0 ⇣ 2 kf k+ 1 2 h k + k g k+ 1 2 h k ⌘ (2.11)
The term k g

k+ 1 2 h
k can be upper bounded by the C 1 (0, T ; D) norm of g h , hence the expected result.

Inria

Theorem 2.1 (Stability of the ✓-CN scheme). Suppose that the stability condition holds. Any solution to the ✓-CN scheme (2.3) satisfies for all n 0

kw n h k D  q 6E 0 h + 2 ⇣ p T + 4t n ⌘ kf h k C 0 (0,T ;P ) + 2(2 p T + t n )kg h k C 1 (0,T ;D) (2.12)
and kµq

n+ 1 2 h k P  2 q 6E 0 h + 4 2 ⇣ p T + 4t n ⌘ kf h k C 0 (0,T ;P ) + 4 (2 p T + t n + 1 2 )kg h k C 1 (0,T ;D) (2.13)
where only depends on the choice of ✓, and is independant of h, t and ⌘.

Proof. Using again the results of Prop. B.3 with

a n h = q n h , b n h = w n h , ⌘ n+ 1 2 1 = f n+ 1 2 h , ⌘ n+ 1 2 2 = 0, ⌘ n+ 1 2 3 = 0 and ⌘ n 4 = g n h , we get kµq n+ 1 2 h k  2 p 2 (A + 2t n B) + C (2.14) kw n h k  p 2 (A + 2t n B) (2.15)
where A and B are defined in (2.10) and (2.11), and

C = 2 N sup k=0 µkg h k n+ 1 2 (2.16) Hence, kw n h k  q 6E 0 h + 2 ⇣ p T + 4t n ⌘ kf h k C 0 (0,T ;P ) + 2(2 p T + t n )kg h k C 1 (0,T ;D) (2.17) kµq n+ 1 2 h k  2 q 6E 0 h + 4 2 ⇣ p T + 4t n ⌘ kf h k C 0 (0,T ;P ) + 4 (2 p T + t n )kg h k C 1 (0,T ;D) + 2 kg h k C 0 (0,T ;D) (2.18)
Hence the expected result.

2.3 A first space/time uniform convergence result for smooth enough solutions

Hypothesis 2.1. Let (v h , p h ) be the solution to (1.3). We suppose that there exist C k,`> 0 independent of h such that

kp h k C `(0,T ;H k (B))  C k,`, 8 (k, `) = {(0, 3), (1, 2)} (2.19) kv h k C `(0,T ;H k (B ⇤ )  Ck,`, 8(k, `) = {(0, 3), (1, 2)} (2.20) kg h k C `(0,T ;H k (B ⇤ )  G k,`, 8(k, `) = {(0, 3), (1, 2)} (2.21)
where implicitly, H 0 (B) = P and H 0 (B ⇤ ) = D. Theorem 2.2 (Convergence of the ✓-CN scheme for a smooth enough discrete solution). Suppose that the stability condition holds and that hypothesis 2.1 is satisfied by the semi discrete solution

(v h , p h ) of (1.3). The solution (w n h , q n h ) to the ✓-CN scheme (2.3) satisfies kp n h µq n h k P  c t 2  C 0,3 + |✓ 1 4 |( C1,2 + G 1,2 ) + G 0,3 + C0,3 + C 1,2 ) (2.22) kv n h v n h k D  c t 2  C 0,3 + |✓ 1 4 |( C1,2 + G 1,2 ) + G 0,3 + C0,3 + C 1,2 ) (2.23)
where c > 0 depends on T and but is independent of h, ⌘ and t.

Proof. Define e p and e v the error of the ✓-CN scheme (2.3) to the semi discrete system (1.3) as

e n p = pn h q n h , e n v = vn h w n h (2.24) RR n°9529
These errors satisfy

e I h e n+ 1 2 p + B ⇤ h µe n+ 1 2 v = e I h pn+ 1 2 h + B ⇤ h µv n+ 1 2 h e I h q n+ 1 2 h B ⇤ h µw n+ 1 2 h = ṗn+ 1 2 h + "n+ 1 2 p + t 2 (✓ 1 4 )B ⇤ h B h pn+ 1 2 h + B ⇤ h (v n+ 1 2 h + ⌘ n+ 1 2 v ) f n+ 1 2 h = f n+ 1 2 h + "n+ 1 2 p + B ⇤ h ⇠ n+ 1 2 p + B ⇤ h ⌘ n+ 1 2 v f n+ 1 2 h = "n+ 1 2 p + B ⇤ h ⇠ n+ 1 2 p + B ⇤ h ⌘ n+ 1 2 v (2.25a) and e n+ 1 2 v B h µe n+ 1 2 p = v n+ 1 2 h B h µp n+ 1 2 h ( w n+ 1 2 h B h µq n+ 1 2 h ) = vn+ 1 2 h + "n+ 1 2 v B h p n+ 1 2 h B h ⌘ n+ 1 2 p g n+ 1 2 h = ġn+ 1 2 h + "n+ 1 2 v B h ⌘ n+ 1 2 p g n+ 1 2 h = " n+ 1 2 g + "n+ 1 2 v B h ⌘ n+ 1 2 p (2.25b)
where there exist

t n  t 1 , t 2 , t 3 , t 4 , t 5 , t 6  t n+1 such that "n+ 1 2 p = t 2 24 p (3) h (t 1 ), ⌘ n+ 1 2 v = t 2 8 v (2) h (t 2 ), ⇠ n+ 1 2 p = t 2 (✓ 1 4 )B h p (1) h (t 3 ) ⌘ d dt (1.3) t 2 (✓ 1 4 ) h v (2) h (t 3 ) g (2) h (t 3 ) i " n+ 1 2 g = t 2 24 g (3) h (t 4 ), "n+ 1 2 v = t 2 24 v (3) h (t 5 ), ⌘ n+ 1 2 p = t 2 8 p (2) h (t 6 ) (2.26
) and

e 0 p = 0, e 0 v = 0 (2.27)
We can apply the results of Prop. B.3 with

a n h = e n p , b n h = e n v , ⌘ n+ 1 2 1 = "n+ 1 2 p + B ⇤ h ⇠ n+ 1 2 p + B ⇤ h ⌘ n+ 1 2 v , ⌘ n+ 1 2 2 = " n+ 1 2 g + "n+ 1 2 v B h ⌘ n+ 1 2 p , ⌘ n+ 1 2 3 = 0, ⌘ n 4 = 0, E n h ⌘ E n e = 1 2 ke n p k 2 e I h + 1 2 ke n v k 2 (2.
28) where, from the hypothesis 2.1, we know that there exists c > 0 such that

H N 1 := N sup k=0 k⌘ k+ 1 2 1 k  c t 2 ✓ C 0,3 + |✓ 1 4 |( C1,2 + G 1,2 ) ◆ (2.29) H N 2 := N sup k=0 k⌘ k+ 1 2 2 k  c t 2 h G 0,3 + C0,3 + C 1,2 ) i (2.30) Hence, kµe n+ 1 2 p k  2 p 2 (A + 2t n B) + C (2.31) ke n v k  p 2 (A + 2t n B) (2.32)
where

A = p 2 h p T ⇥ H N 1 + (1 + t)H N 2 ⇤ + p 3E 0 e i (2.33) B = p 2 2 H N 1 + H N 2 (2.34) C = tH N 2 (2.35)
We know that E 0 e = 0 from the initial conditions. Moreover, t  t n  T . Hence,

A + 2t n B  p 2 p T ⇥ H N 1 + (1 + T )H N 2 ⇤ + 2T p 2 2 H N 1 + H N 2 (2.36)  p 2 h p T + 4T i H N 1 + p 2 h (1 + T ) p T + 2T i H N 2 (2.37) Inria kµe n+ 1 2 p k  2 p 2 (A + 2t n B) + T H N 2 (2.38)  4 2 h p T + 4T i H N 1 + 4  (1 + T ) p T + 9T 4 H N 2 (2.39)  c(H N 1 + H N 2 ) (2.40) and ke n v k  2 h p T + 4T i H N 1 + 2 h (1 + T ) p T + 2T i H N 2 (2.41)  c(H N 1 + H N 2 ) (2.42)
where c > 0 is a constant that can change from line to line, and only depends on and T . Finally,

kp n+ 1 2 h µq n+ 1 2 h k  kp n+ 1 2 h µp n+ 1 2 h k + kµ(p n+ 1 2 h q n+ 1 2 h )k (2.43)  k⌘ n+ 1 2 p k + kµe n+ 1 2 p k (2.44)  c t 2  C 02 + C 0,3 + |✓ 1 4 |( C1,2 + G 1,2 ) + G 0,3 + C0,3 + C 1,2 ) (2.45)
and

kv n h v n h k  c t 2  C 0,3 + |✓ 1 4 |( C1,2 + G 1,2 ) + G 0,3 + C0,3 + C 1,2 ) (2.46)
Remark 2.1. Notice that the specific choice ✓ = 1 4 , which leads to the usual Crank-Nicolson scheme, removes the terms in ( C1,2 + G 1,2 ) in the error constant.

Remark 2.2. This result is not optimal, it is indeed possible to reduce the regularity assumptions on the semi-discrete solution, as done in the following paragraph.

A second space/time uniform convergence result for less regular solution

Hypothesis 2.2. Let (v h , p h ) be the solution to (1.3). We suppose that there exist constants C k,`> 0 independent of h such that

kp h k C `(0,T ;H k (B))  C k,`, 8 (k, `) = {(0, 3), (1, 2)} (2.47) kv h k C `(0,T ;H k (B ⇤ )  Ck,`, 8(k, `) = {(0, 3)} (2.48) kg h k C `(0,T ;H k (B ⇤ )  G k,`, 8(k, `) = {(0, 3)} (2.49)
where implicitly, H 0 (B) = P and H 0 (B ⇤ ) = D. Theorem 2.3 (Convergence of the ✓-CN scheme for a less regular discrete solution). Suppose that the stability condition holds and that hypothesis 2.2 is satisfied by the semi discrete solution

(v h , p h ) of (1.3). The solution (w n h , q n h ) to the ✓-CN scheme (2.3) satisfies kp n h µq n h k P  c t 2 ⇥ kp h k C 3 (0,T ;P ) + kp h k C 1 (0,T ;H 1 (B)) + kv h k C 3 (0,T ;D) + kg h k C 3 (0,T ;D) ⇤ (2.50) kv n h w n h k D  c t 2 ⇥ kp h k C 3 (0,T ;P ) + kp h k C 1 (0,T ;H 1 (B)) + kv h k C 3 (0,T ;D) + kg h k C 3 (0,T ;D) ⇤ (2.51)
where c depends on T and but is independent of h, ⌘ and t.

Proof of Thm 2.3 with usual manipulation. The proof begins exactly as Proof 2.3, to write the scheme satisfied by the error terms. However, we choose to apply the results of Prop. B.3 with another interpretation of the RHS terms of (2.25):

a n h = e n p , b n h = e n v , ⌘ n+ 1 2 1 = "n+ 1 2 p , ⌘ n+ 1 2 2 = " n+ 1 2 g + "n+ 1 2 v B h ⌘ n+ 1 2 p , ⌘ n+ 1 2 3 = ⇠ n+ 1 2 p + ⌘ n+ 1 2 v , ⌘ n 4 = 0, E n h ⌘ E n e = 1 2 ke n p k 2 e I h + 1 2 ke n v k 2 (2.52) RR n°9529
When ⌘ 3 , the proof of Prop. B.3 makes use of an Abel summation formula to "exchange" spatial differentiation with B ⇤ h with discrete time differentiation. Hence,

kµe n+ 1 2 p k  2 p 2 (A + 2t n B) + C (2.53) ke n v k  p 2 (A + 2t n B) (2.54)
where

A = p 2 h p T ⇥ H N 1 + (1 + t)H N 2 + H N 3 ⇤ + 2 p 2H N 3 i (2.55) B = p 2 ⇣ 2 H N 1 + H N 2 + 2H 0 3 N ⌘ (2.56) C = tH N 2 (2.57)
where, from the hypothesis 2.1, we know that there exists c > 0 such that

H N 1 := N sup k=0 k⌘ k+ 1 2 1 k  c t 2 C 0,3 (2.58) H N 2 := N sup k=0 k⌘ k+ 1 2 2 k  c t 2 h G 0,3 + C0,3 + C 1,2 ) i (2.59) H N 3 := N sup k=0 k⌘ k+ 1 2 3 k  c t 2  ✓ 1 4 C 1,1 + C0,2 (2.60) H 0 3 N := N sup k=0 k ⌘ k+ 1 2 3 k  c t 2  ✓ 1 4 C 1,2 + C0,3 (2.61) 
Hence, there exists a constant c > 0 that only depends on and T such that

kµe n+ 1 2 p k  c t 2 h C 0,3 + G 0,3 + C0,3 + C 1,2 i (2.62) ke n v k  c t 2 h C 0,3 + G 0,3 + C0,3 + C 1,2 i (2.63)
The rest of the proof follows the end of Proof 2.3.

Proof of Thm 2.3 based on the field. Let us prove the same theorem with another approach. Let u h 2 U h be the field defined as

uh = p h (2.64) with u h (0) chosen such that B h u h (0) = v h (0).
We also define a discrete field {u

n+ 1 2 h } 0nN 1 as u n h = q n h (2.65)
with u 0 h chosen such that B h u 0 h = w 0 h . Then, the semi discrete and discrete unknowns are solution to 8 > > < > > :

üh + B ⇤ h v h = f h v h B h u h = g h uh = p h (2.66a) (2.66b) (2.66c) 8 > > < > > : e I h 2 u n+ 1 2 h + B ⇤ h µw n+ 1 2 h = f n+ 1 2 h , 0  n  N w n h B h µu n h = g n h , 0  n  N u n h = q n h , 0  n  N (2.67a) (2.67b) (2.67c)
Therefore, letting e u , e v and e p be defined as where there exist t n 1  t 1 , t 2 , t 3 , t 

e n+ 1 2 u = ūn+ 1 2 h u n+ 1 2 h , e n v = vn h w n h , e n p = pn h q n h (2.68) Inria we get that e I h 2 e n+ 1 2 u + B ⇤ h µe n+ 1 2 v = e I h 2 ūn+ 1 2 h e I h 2 u n+ 1 2 h + B ⇤ h µv n h B ⇤ h µw n h = 2 ūn+ 1 2 h + B ⇤ h µv n h e I h 2 u n+ 1 2 h B ⇤ h µw n h + t 2 (✓ 1 4 )B ⇤ h B h 2 ūn+ 1 2 h = ū(2) h (t n+ 1 2 ) + "n+ 1 2 u + B ⇤ h h vh (t n+ 1 2 ) + ⌘ n+ 1 2 v i f n+ 1 2 h + t 2 (✓ 1 4 )B ⇤ h B h 2 ūn+ 1 2 h = "n+ 1 2 u + B ⇤ h ⌘ n+ 1 2 v + (✓ 1 4 )B ⇤ h ⌘ n+ 1 2 u (2.69) e n v B h µe n u = B h ⌘ n u , ( 
n+ 1 2 4  t n+1 , t 5 such that "n+ 1 2 u = 2 ūn+ 1 2 h u (2) h (t n+ 1 2 ) = t 2 12 u (4) h (t 1 ) = t 2 12 p (3) h (t 1 ) (2.72) ⌘ n+ 1 2 v = µv n+ 1 2 h v h (t n+ 1 2 ) = t 2 8 v (2) h (t 2 ), (2.73) "n u = ūn h u (1) h (t n ) = t 2 3 u (3) h (t 3 ) = t 2 3 p (2) h (t 3 ) (2.74) ⌘ n u = µū n h u h (t n ) = t 2 8 u (2) h (t 5 ) (2.75) ⌫ n+ 1 2 u = t 2 B h 2 ūn+ 1 2 h = t 2 B h üh (t n+ 1 2 4 ) = t 2 B h ṗh (t n+ 1 2 4 ) (2.
> > > > > > < > > > > > > : e I h e n p + B ⇤ h µe n+ 1 2 v = "n+ 1 2 u + B ⇤ h ⌘ n+ 1 2 v + (✓ 1 4 )B ⇤ h ⌫ n+ 1 2 u e n+ 1 2 v B h µe n+ 1 2 p = B h ⌘ n+ 1 2 u e 0 p = "0 u e 0 v = 0 (2.78a) (2.78b) (2.78c) (2.78d)
Hence, we can apply the results of Prop. B.3 with (note in blue between parenthesis the upper bounds of each corresponding term)

a n h = e n p , b n h = e n v , ⌘ n+ 1 2 1 = "n+ 1 2 u (C 0,3 ), ⌘ n+ 1 2 2 = 0, ⌘ n+ 1 2 3 = ⌘ n+ 1 2 v ( C0,2 ) + (✓ 1 4 )⌫ n+ 1 2 u (C 1,1 ), ⌘ n 4 = B h ⌘ n u (C 1,1 ) (2.79) Hence, kµe n+ 1 2 p k  2 p 2 (A + 2t n B) + C (2.80) ke n v k  p 2 (A + 2t n B) (2.81)
where

A = p 2  p T N sup k=0 h k⌘ k+ 1 2 1 k + 2µk⌘ 4 k k+ 1 2 + k⌘ k+ 1 2 3 k+ i + p 2k⌘ N 3 k + p 2k⌘ 0 3 k + q 3E 0 h (2.82) B = p 2 N sup k=0 ⇣ 2 k⌘ k+ 1 2 1 k + k ⌘ k+ 1 2 4 k + 2k ⌘ k+ 1 2 3 k ⌘ (2.83) C = 2 N sup k=0 k⌘ 4 k n+ 1 2 (2.84) RR n°9529
Hence there exists c > 0 such that kµe

n+ 1 2 p k  c t 2  C 0,3 + C 0,1 + C0,2 + ✓ 1 4 (C 1,1 + C 1,2 ) + C 0,2 + C 1,2 + C0,3 (2.85)  c t 2 h C 0,3 + C 1,2 + C0,3 i (2.86) ke n v k  c t 2 h C 0,3 + C 1,2 + C0,3 i (2.87)
The rest of the proof follows the end of the previous one.

3 Analysis of the parametrized implicit discretization based on Störmer-Verlet scheme

In this section, a parametrized implicit discretization, introduced in [START_REF] Chabassier ; Chabassier | Two implicit parametrized discretization strategies for the mixed formulation of linear wave equations[END_REF], based on the Crank-Nicolson scheme, is analyzed. The unknowns of the scheme are sought on interleaved time grids : v h is discretized on the regular time grid {t n = n t} 0nN while p h is discretized on the interleaved time grid {t n+ 1 2 = (n + 1 2 ) t} 0nN . Let us define the discrete operators and µ as

v n+ 1 2 h = v n+1 h v n h t , µv n+ 1 2 h = v n+1 h + v n h 2 , p n h = p n+ 1 2 h p n 1 2 h t , µp n h = p n+ 1 2 h + p n 1 2 h 2 (3.1)
A new useful property is the following one:

v n 1 2 ± 1 2 h = µv n 1 2 h ± t 2 v n 1 2 h (3.2)

Parametrized Störmer-Verlet (✓-SV) and energy identities

The numerical scheme that is considered to solve (1.3) is to seek two sequences {v n h } 0nN and {p

n+ 1 2 h } 0nN such that 8 > > > > > > < > > > > > > : v 0 h = v h (0) p 1 2 h = p h (0) + t 2 ⇥ f 0 h + B ⇤ h v h (0) ⇤ (I h + ✓ t 2 B ⇤ h B h ) p n h + B ⇤ h v n h = f n h , 1  n  N v n+ 1 2 h B h p n+ 1 2 h = g n+ 1 2 h , 0  n  N (3.3a) (3.3b) (3.3c) (3.3d)
The case ✓ = 0 corresponds to the usual Störmer-Verlet scheme. Its space/time convergence was showed in [Chabassier, 2023a]. The obtained results are here generalized to the ✓-SV scheme in the following propositions and theorems.

Proposition 3.1 ( Naïve energy identity). Any solution to (3.3) satisfies, for n 2 [1, N],

E n pv,h = (f n h , µp n h ) P + (µ g n h , v n h ) D with E n+ 1 2 pv,h = 1 2 ((I h + ✓ t 2 B ⇤ h B h )p n+ 1 2 h , p n+ 1 2 h ) P + 1 2 (v n+1 h , v n h ) D (3.4)
Proof. Take the scalar product of (3.3c) with µp n h and of µ(3.3d) with v

n+ 1 2 h Proposition 3.2. E n h = (f n h , µp n h ) P (B ⇤ h g n h , µp n h ) P with E n+ 1 2 h = 1 2 ((I h + ✓ t 2 B ⇤ h B h )p n+ 1 2 h , p n+ 1 2 h ) + 1 2 (v n+1 h g n+1 h , v n h g n h ) D (3.5)
Proof. This is obtained by subtracting and adding the term B ⇤ h g n h to the first line and taking the scalar product of µ (3.3d) with v

n+ 1 2 h g n+ 1 2 h
, and of (3.3c) with µp n h .

Inria

Proposition 3.3 (Reformulation of the energy).

E n+

1 2 h = 1 2 (p n+ 1 2 h , p n+ 1 2 h ) e I h + 1 2 (µx n+ 1 2 h , µx n+ 1 2 h ) D (3.6)
where the sequence x n h is defined as

x n h = v n h g n h (3.7)
and the modified mass matrix e I h is defined as

e I h = I h + (✓ 1 4 ) t 2 B ⇤ h B h (3.8)
Proof. This is obtained by applying formula (3.2) on the sequence {x n h } and using Eq. (3.3d) to replace the occurences of x

n+ 1 2 h . Proposition 3.4 ( Stability condition). If ✓ 1 4 , the discrete energy E n h is always positive. If ✓ < 1 4 , the discrete energy is positive if ⌘  1, where ⌘ = t 2 p 1 4✓ q ⇢(B ⇤ h B h ) (3.9)
Definition 3.1. In the sequel, we will write that the "stability condition holds" if the choices of spatial discretisation and time step ensure that the discrete energy E

n+ 1 2 h
is positive, which is specified in the previous proposition. This will be true either if ✓ 1/4, either if Eq. (3.9) holds. Remark 3.1. Note that the stability condition is exactly the same as the ✓-CN scheme, which is consistant with the fact that, up to the initial conditions, the two schemes can be seen as two algorithmic strategies to compute the same quantities (see [START_REF] Chabassier ; Chabassier | Two implicit parametrized discretization strategies for the mixed formulation of linear wave equations[END_REF]).

Stability analysis

The stability analysis of this parametrized implicit scheme is very similar to the one in [Chabassier, 2023a], so we only provide here the main results.

Proposition 3.5. Any {p

n+ 1 2 h } n 2 U h solution to (3.3) satisfies 8 > > > > < > > > > : k⇧ k µp n h k P  C 1/2 k 2 ✓q 2E n+ 1 2 h + q 2E n 1 2 h ◆ k⇧ p µp n h k P  C 1/2 p ✓q 2E n+ 1 2 h + q 2E n 1 2 h ◆ (3.10a) (3.10b)
where C k and C p are defined in Appendix A.

Proof. See the results of Appendix A and proof of Prop. 2.7 of [Chabassier, 2023a].

Proposition 3.6 (Majoration of the averaged unknowns).

kµv

n+ 1 2 h k D  q 2E n+ 1 2 h + µkg h k n+ 1 2 D kµp n h k P  ✓q 2E n+ 1 2 h + q 2E n 1 2 h ◆ (3.11) where = C 1/2 k 2 + C 1/2 p (3.12)
Proof. See the results of Appendix A and proof of Prop. 2.8 of [Chabassier, 2023a]. We get

kµx n+ 1 2 h k D  q 2E n+ 1 2 h , kµp n h k P  ✓q 2E n+ 1 2 h + q 2E n 1 2 h ◆ (3.13) So, kµv n+ 1 2 h k D  kµx n+ 1 2 h k D + kµg n+ 1 2 h k D  q 2E n+ 1 2 h + µkg h k n+ 1 2 D (3.14) RR n°9529
Proposition 3.7 (Stability of the energy). The energy satisfies

q E n+ 1 2 h  q E 1 2 h + p 2 t n X k=1 ⇥ kf k h k P + kB ⇤ h g k h k P ⇤ (3.15) where q E 1 2 h  1 + p 2 2 kp h (0)k P + 1 + p 2 2 t 2 kf 0 h k P + 1 + 2 p 2 2 kv h (0)k D + 1 p 2 kg 0 h k D (3.16)
Proof. See proof of Prop. 2.9 of [Chabassier, 2023a].

Space/time uniform convergence

Hypothesis 3.1. Let (v h , p h ) be the solution to (1.3). We suppose that there exist constants C k,`> 0 independent of h such that

kp h k C `(0,T ;H k (B))  C k,`, 8 (k, `) = {(0, 3), (1, 2)} (3.17) kv h k C `(0,T ;H k (B ⇤ )  Ck,`, 8(k, `) = {(0, 2)} (3.18)
where implicitly, H 0 (B) = P and H 0 (B ⇤ ) = D.

The following theorem extends Thm 3.1 of [Chabassier, 2023a] which was only valid for ✓ = 0. It generalizes the proof technique in order to encompass the resulting additional terms of the ✓-SV scheme analysis, but nicely reduces to the expected result in the case ✓ = 0.

Theorem 3.1. Suppose that the stability condition holds. Then there exists a constant C > 0 independent of h and ⌘, such that

kp n h µp n h k P  C t 2 ⇣ kp h k C 3 (0,T,P ) + p ✓kp h k C 2 (0,T,H 1 (B)) ⌘ (3.19) kv n+ 1 2 h µv n+ 1 2 h k D  C t 2 ⇣ kv h k C 2 (0,T ;D) + kp h k C 3 (0,T,P ) + p ✓kp h k C 2 (0,T,H 1 (B)) ⌘ (3.20)
Proof. The proof of this theorem follows the one of Thm 3.1 in [Chabassier, 2023a] but adds a manipulation based on the Abel discrete summation recalled in Lemma B.2. Let u h 2 U h be the field defined as

uh = p h (3.21)
with u h (0) chosen such that B h u h (0) = v h (0). We also define a discrete field {u n h } 0nN 1 as

u n+ 1 2 h = p n+ 1 2 h (3.22) with u 0 h chosen such that B h u 0 h = v 0 h .
Then, the semi discrete and discrete unknowns are solution to 8 > > < > > :

üh + B ⇤ h v h = f h v h B h u h = g h uh = p h (3.23a) (3.23b) (3.23c) 8 > > <
> > :

(I h + ✓ t 2 B ⇤ h B h ) 2 u n h + B ⇤ h v n h = f n h , 1  n  N v n h B h u n h = g n h , 0  n  N u n+ 1 2 h = p n+ 1 2 h , 0  n  N (3.24a) (3.24b) (3.24c)
Therefore, letting e u , e v and e p be defined as

e n+ 1 2 u = ūn+ 1 2 h u n+ 1 2 h , e n v = vn h v n h , e n+ 1 2 p = pn+ 1 2 h p n+ 1 2 h (3.25)
we get that

(I h + ✓ t 2 B ⇤ h B h ) 2 e n u + B ⇤ h e n v = (I h + ✓ t 2 B ⇤ h B h ) 2 ūn h + B ⇤ h vn h (I h + ✓ t 2 B ⇤ h B h ) 2 u n h B ⇤ h v n h = "n u + ✓ t 2 B ⇤ h B h 2 ūn h (3.26) e n v B h e n u = 0 (3.27) e n+ 1 2 u e n+ 1 2 p = ūn+ 1 2 h u n+ 1 2 h pn+ 1 2 h + p n+ 1 2 h = "n+ 1 2 u (3.28)
Inria where there exists t n 1  t 1 , t 2  t n+1 such that

"n u = 2 ūn h u (2) h (t n ) = t 2 12 u (4) h (t 1 ), "n+ 1 2 u = ūn+ 1 2 h uh (t n+ 1 2 ) = t 2 3 u (3) h (t 2 ) (3.29)
Let us introduce the field {e ) is solution to

( (I h + ✓ t 2 B ⇤ h B h ) e n p + B ⇤ h e n v = "n u + ✓ t 2 B ⇤ h B h 2 ūn h e n+ 1 2 v B h e n+ 1 2 p = 0 (3.31a) (3.31b)
Taking the scalar product of the first line of this system with µe n p and of µ operator applied to the second line with e n v yields E

n+ 1 2 e = (⌘ n 1 , µe n p ) + ✓(⌘ n 2 , B h µe n p ), E n+ 1 2 e = 1 2 ke n+ 1 2 p k 2 e I h + 1 2 kµe n+ 1 2 v k 2 D (3.32)
where

⌘ n 1 = "n u , ⌘ n 2 = t 2 B h 2 ūn h (3.33)
We apply the µ operator on (3.31b) to replace B h µe n p in the previous identity, and we sum from 1 to n to get

t n X k=1 E k+ 1 2 e = t n X k=1 (⌘ k 1 , µe k p ) + ✓ t n X k=1 (⌘ k 2 , µe k v ) (3.34) 
We can now apply the Abel discrete summation lemma (see Eq (46) from [START_REF] Chabassier | Construction and convergence analysis of conservative second order local time discretisation for linear wave equations[END_REF]) to get

E n+ 1 2 e E 1 2 e = t n X k=1 (⌘ k 1 , µe k p ) + ✓ " t n 1 X k=1 ( ⌘ k+ 1 2 2
, µe

k+ 1 2 v ) + (⌘ n 2 , µe n+ 1 2 v ) (⌘ 1 2 , µe 1 2 v ) # (3.35)
Using the results of Appendix A, we can show as was done in Prop. 3.6 that kµe

k+ 1 2 v k  q 2E k+ 1 2 e , kµe k p k  q 2E k+ 1 2 e + q 2E k 1 2 e (3.36)
Let us call

H N 1 = N sup k=0 k⌘ k 1 k  C t 2 C 0,3 , H N 2 = N sup k=0 k⌘ k 2 k  C t 2 C 1,1 , (H 0 2 ) N = n sup k=0 k ⌘ k+ 1 2 2 k  C t 2 C 1,2 (3.37) Hence E n+ 1 2 e  E 1 2 e + tH N 1 n X k=1 ✓q 2E k+ 1 2 e + q 2E k 1 2 e ◆ + ✓ " t(H 0 2 ) N n X k=1 q 2E k+ 1 2 e + H N 2 q 2E n+ 1 2 e + H 1 2 q 2E 1 2 e # (3.38)
We perform a Young's inequality on the two last terms and we get (note that

H 1 2  H N 2 ) 1 2 E n+ 1 2 e  3 2 E 1 2 e + 2✓ 2 (H N 2 ) 2 + t H N 1 n X k=1 q 2E k+ 1 2 e + n 1 X k=0 q 2E k+ 1 2 e ! + ✓ t(H 0 2 ) N n 1 X k=1 q 2E k+ 1 2 e (3.39) E n+ 1 2 e  3E 1 2 e + 4✓ 2 (H N 2 ) 2 + 2 p 2 t 2 H N 1 + ✓(H 0 2 ) N n X k=0 q E k+ 1 2 e (3.40) RR n°9529
This inequality has the form of the discrete Grönwall Lemma B.1 with

a = 3E 1 2 e + 4✓ 2 (H N 2 ) 2 , b = 2 p 2 t 2 H N 1 + ✓(H 0 2 ) N (3.41) Hence, q E n+ 1 2 e  A + 2T B (3.42) with A = p 2 ✓q 3E 1 2 e + 2✓H N 2 ◆ , B = 2 p 2 2 H N 1 + ✓(H 0 2 ) N (3.43)
and we get thus kµe

k+ 1 2 v k  p 2 (A + 2T B), kµe k p k  2 p 2 (A + 2T B) (3.44)
To finish, we must evaluate E

1 2

e by writing the energy at time t 1 2 in the naïve formulation:

E 1 2 e = 1 2 ((I h + ✓ t 2 B ⇤ h B h )e 1 2
p , e

1 2 p ) + 1 2 (e 0 v , e 1 v ) (3.45)
Since e 0 v = 0 only the first term remains, where

e 1 2 p = e 1 2 p + " 1 2 u = e 1 2 p = t 2 8 p (2) h (t 5 ) + t 2 3 u (3) h (t 2 ) (3.46) Hence q E 1 2 e  1 p 2 ke 1 2 p + " 1 2 u k P + p ✓ t p 2 kB h ⇣ e 1 2 p + " 1 2 u ⌘ k D  C t 2 C 0,2 + p ✓C t 2 C 1,2 (3.47) 
Then,

kµe n p k  kµe n p k + kµ "n u k  C q E 1 2 e + H N 1 + ✓(H N 2 + (H 0 2 ) N ) (3.48)
Finally,

kp n h µp n h k  kp n h µp n h k + kµe n p k (3.49)  C t 2 h C 02 + C 0,2 + p ✓C 1,2 + C 0,3 + ✓(C 1,1 + C 1,2 ) i (3.50)  C t 2 h C 0,3 + p ✓C 1,2 i (3.51) and kv n+ 1 2 h µv n+ 1 2 h k  kv n+ 1 2 h µv n+ 1 2 h k + kµe n+ 1 2 v k (3.52)  C t 2 h C0,2 + C 0,2 + p ✓C 1,2 + C 0,3 + ✓(C 1,1 + C 1,2 ) i (3.53)  C t 2 h C0,2 + C 0,3 + p ✓C 1,2 i (3.54)

Conclusion

In this work, we have obtained uniform space/time convergence of the ✓-SV and the ✓-CN schemes, which are parametrized implicit generalizations of the Störmer-Verlet and Crank-Nicolson schemes. The aim here was to obtain stability and convergence results that are uniform with the space/time convergence ratio, especially when ✓ < 1/4, in which case the schemes are conditionally stable. The obtained results generalize the ones known for the usual 0-SV and 1/4-CN. We note that our results for ✓-SV (Thm 3.1) and for ✓-CN (Thm 2.3) do not require the same regularity on the semi-discrete solution. More precisely, the requirements are stronger for the ✓-CN scheme. However, one intriguing fact is that in [START_REF] Chabassier ; Chabassier | Two implicit parametrized discretization strategies for the mixed formulation of linear wave equations[END_REF] the two schemes are shown to be equivalent (providing that the initial data are well chosen), in the sense that the time series of ✓-CN can be reconstructed from the time series of ✓-SV, and reciprocally. Therefore an open question remains to achieve uniform space time convergence results for both schemes and based on the same regularity assumptions.

Inria

A Spectral decomposition of B ⇤ h B h and projectors identities

Proposition A.1 (Spectral decomposition of B ⇤ h B h ). The operator B ⇤ h B h : U h ! U h is diagonalizable in R.
We call ( h,i , e h,i ) its eigenpairs which are chosen orthonormal in P .

Proof. In finite dimensional spaces, any symmetric real operator is diagonalizable in an orthonormal basis.

Following [START_REF] Chabassier | Space/time convergence analysis of a class of conservative schemes for linear wave equations[END_REF], we introduce the polynomial

P k (x) = 1 + (✓ 1 4 )x (A.1)
which is non-negative on the interval [0, 4/(1 4✓)] for 0  ✓ < 1/4 and on [0, +1[ for ✓ 1/4. Then e I h can be expressed as a polynomial of the operator t 2 B ⇤ h B h :

e I h = I h + t 2 (✓ 1 4 )B ⇤ h B h = P k ( t 2 B ⇤ h B h ) (A.2)
Proposition A.2 (Partitionning). The interval of non-negativity can be partitionned as J k [ J p with J k \ J p = ; such that there exist C k > 0 and C p > 0 such that for all x 2 J k , P k (x) C k and for all x 2 J p , x C p .

Proof. See [Chabassier and Imperiale, 2017, appendix] for the scheme called "TS".

Proposition A.3. Let us define the two projectors ⇧ k and ⇧ p such that for all

u h 2 U h ⇧ k u h = X t 2 h,i 2J k h,i 2Sp(K h ) (u h , e h,i ) P e h,i , ⇧ p u h = X t 2 h,i 2Jp h,i 2Sp(K h ) (u h , e h,i ) P e h,i (A.3) Then, for all u h 2 U h ( k⇧ k u h k 2 P  C 1 k ( e I h u h , u h ) P k⇧ p u h k 2 P  t 2 C 1 p (B h u h , B h u h ) D (A.4a) (A.4b)
Proof. See [START_REF] Chabassier | Space/time convergence analysis of a class of conservative schemes for linear wave equations[END_REF].

B Some technical results for the ✓-CN analysis

In the following of this appendix, we will prove some useful results on arbitrary sequences {a n h } n and {b n h } n which satisfy 8 < :

Ĩh a n+ 1 2 h + B ⇤ h µb n+ 1 2 h = ⌘ n+ 1 2 1 + B ⇤ h ⌘ n+ 1 2 3 b n+ 1 2 h B h µa n+ 1 2 h = ⌘ n+ 1 2 2 + ⌘ n+ 1 2 4 (B.1a) (B.1b)
and a sequence E n h defined by

E n h = 1 2 ka n h k 2 Ĩh + 1 2 kb n h k 2 (B.2)
where the sequences ⌘ 

n+ 1 2 1 , ⌘ n+ 1 2 2 , ⌘
kb n h k  p 2E n h , kµb n+ 1 2 h k  µ p 2E h n+ 1 2 , kµa n+ 1 2 h k  2 ✓ µ p 2E h n+ 1 2 + µk⌘ 4 k n+ 1 2 ◆ + tk⌘ n+ 1 2 2 k (B.3) Proof. The identities kb n h k  p 2E h n and kµb n+ 1 2 h k  µ p 2E h n+ 1 2 (B.4)
directly follow from the definition of E n h . The rest of the proof relies on the spectral decomposition technique developed in [START_REF] Chabassier | Space/time convergence analysis of a class of conservative schemes for linear wave equations[END_REF] and used in [START_REF] Chabassier | Construction and convergence analysis of conservative second order local time discretisation for linear wave equations[END_REF]. Using the relations in Prop. A.3,

k⇧ p µa n+ 1 2 h k  (A.4b) tC 1/2 p kB h µa n+ 1 2 h k (B.5)  (B.1a) tC 1/2 p k (b h ⌘ 4 ) n+ 1 2 ⌘ n+ 1 2 2 k (B.6)  (2.2a) 2C 1/2 p µkb h ⌘ 4 k n+ 1 2 + tC 1/2 p k⌘ n+ 1 2 2 k (B.7)  C 1/2 p h kb n+1 h k + kb n h k + k⌘ n+1 4 k + k⌘ n 4 k + tk⌘ n+ 1 2 2 k i (B.8)  C 1/2 p  q 2E n+1 h + p 2E n h + k⌘ n+1 4 k + k⌘ n 4 k + tk⌘ n+ 1 2 2 k (B.9) Morerover, k⇧ k a n h k  (A.4a) C 1/2 k ka n h k e I h  C 1/2 k p 2E n h ) k⇧ k µa n+ 1 2 h k  C 1/2 k µ p 2E h n+ 1 2 (B.10) Finally, kµa n+ 1 2 h k  k⇧ k µa n+ 1 2 h k + k⇧ p µa n+ 1 2 h k (B.11)
This shows the expected result with

= C 1/2 k /2 + C 1/2 p (B.12) and noticing that C 1/2 p  .
Lemma B.1. Let a > 0, b > 0, and E h be a sequence that satisfies

E n h  a + tb n X k=0 q E k h (B.13) Then, p E n h  p 2a + 2t n b (B.14) Inria
Proof. First, let us apply Young's inequality on the last term of the sum, to get that

1 2 E n h  a + 1 2 t 2 b 2 + tb n 1 X k=0 q E k h (B.15) Let F n = a + 1 2 t 2 b + tb n X k=0 q E k h (B.16) Notice that F 0 = a + 1 2 t 2 b 2 and that E n h  2F n 1 . Then, for all n 1, F n F n 1 = tb p E n h  tb p 2F n 1  p 2 tb ⇣ p F n + p F n 1 ⌘ (B.17)
Adding this telescopic sum from 0 to n 1 yields ) + (e RR n°9529

p F n 1  p F 0 + p 2b n 2 X k=0 t  r a + 1 2 t 2 b 2 + p 2bt n 1 (B.
n+ 1 2 5 , b n+ 1 2 h ) (B.23) Then, p E n h  A + 2t n B (B.24) where A = p 2  p T N sup k=0 h ke k+ 1 2 1 k + r k+ 1 2 h + ke k+ 1 2 3 k + ke k+ 1 2 4 k i + p 2ke N 5 k + p 2ke 0 5 k + q 3E 0 h (B.25) B = p 2 N sup k=0 ⇣ 2 ke k+ 1 2 1 k + ke k+ 1 2 2 k + 2k

  eWe now use the majoration hypothesis on a h and b h : Let {a n h } n and {b n h } n satisfying (B.1) and E n h defined as (B.2).Proof. Taking the scalar product of (B.1a) with µa

	Proof. Let us multiply (B.23) by t and sum from 0 to n:	Then
	t Let us use Lemma B.2 on the last term and use Cauchy-Schwarz inequality to get n X k=0 E n+ 1 2 h = t n X k=0 h (e k+ 1 2 1 , µa k+ 1 2 h ) + (e k+ 1 2 2 , µb k+ 1 2 h ) + (e k+ 1 2 3 , e k+ 1 2 4 p E n B h  A + 2t n kµa n+ 1 2 h k  2 p 2 (A + 2t n B) + C kb n h k  p 2 (A + 2t n B)	) + (e	k+ 1 2 5	, b k+ 1 2 h	)	i	(B.30) (B.40) (B.41) (B.42)
	E n+1 h where A = E n+1 h B = C =	E 0 h  t p 2  p T sup n X k=0 N k=0 h h E 0 h  t n X  ke k⌘ k+ 1 2 1 k+ 1 kkµa 2 1 k + 2µk⌘ 4 k k+ 1 k+ 1 2 h k + ke 2 + tk⌘ k+ 1 2 2 kkµb k+ 1 k+ 1 2 h + t k + ke n 1 k+ 1 2 3 2 2 k + k⌘ k+ 1 2 3 X k=0 k e kke k + k⌘ k+ 1 2 4 k+ 1 k i 2 2 k+ 1 2 5 kkb k+1 k i h k + ke n + p 2k⌘ N 3 k + 5 kkb n+1 p h k + ke 0 2k⌘ 0 3 k + 5 kkb 0 q h k (B.31) 3E 0 h ke k+ 1 2 1 k ✓ 2µ p 2E h k+ 1 2 + r k+ 1 2 h (B.43) p 2 N sup k=0 ⇣ 2 k⌘ k+ 1 2 1 k + k⌘ k+ 1 2 2 k + k ⌘ k+ 1 2 4 k + 2k ⌘ ⌘ k+ 1 2 3 (B.44) k N sup k=0 ⇣ 2µk⌘ 4 k n+ 1 2 + tk⌘ ⌘ n+ 1 2 2 (B.45) k ◆ + ke k+ 1 2 2 kµ p 2E h k+ 1 2 + ke k+ 1 2 3 kke k+ 1 2 4 k n+ 1 2 h and of (B.1b) with µb n+ 1 2 h , we get that
					k=0																								
													E n h = (⌘	n+ 1 2 1	+ B ⇤ h ⌘	+ t n+ 1 2 3 , µa n+ 1 n 1 X 2 h ) + (⌘ k e k+ 1 2 5 n+ 1 k q 2 2 + ⌘ 2E k+1 h n+ 1 + ke n 5 k q 2 4 , µb n+ 1 2 h )	2E n+1 h	+ ke 0 5 k q	2E 0 h	(B.32) (B.46)
	Since from (B.1b)																												k=0
	Using Young's inequality and grouping similar terms, we get B h µa
	E n+1 h	E 0 h  t	n X		1 2	2 ke	k+ 1 2 1	k 2 +		1 2	(r	k+ 1 2 h	) 2 +	⇣	2 ke	k+ 1 2 1	k + ke	k+ 1 2 2	k	⌘	µ	p	2E h	k+ 1 2 +	1 2	ke	k+ 1 2 3	k 2 +	1 2	ke	k+ 1 2 4	k 2
					k=0																								
																															+ t	n 1 X	k e	k+ 1 2 5	k	q 2E k+1 h	+ ke n 5 k 2 +	1 2	E n+1 h	+ ke 0 5 k 2 +	1 2	E 0 h	(B.33)
																																k=0
	Let			↵ =		2T 2	N sup k=0	h	2 ke	k+ 1 2 1	k 2 + (r	k+ 1 2 h	) 2 + ke	k+ 1 2 3	k 2 + ke	k+ 1 2 4	k 2	i	+ 2ke N 5 k 2 + 2ke 0 5 k 2 + 3E 0 h	(B.34)
	Then																													
	1 2	E n+1 h	 t	n X	⇣	2 ke	k+ 1 2 1	k + ke	k+ 1 2 2	k ⌘	q 2E k+1 h 2 +	q	2E k h	+ t	n 1 X	k e	k+ 1 2 5	k q	2E k+1 h	+	↵ 2	(B.35)
				k=0																												k=0
			 t	n X	✓	ke	k+ 1 2 1	k +	1 2	ke	k+ 1 2 2	k	◆ q 2E k h + t	n 1 X	✓	ke	k+ 1 2 1	k +	1 2	ke	k+ 1 2 2	k + k e	k+ 1 2 5	k ◆ q	2E k+1 h	+	↵ 2	(B.36)
				k=0																												k=0
	With																	=	p	2	N sup k=0	⇣	2 ke	k+ 1 2 5 k+ 1 2 1 k + ke k ⌘	k+ 1 2 2	k + 2k e	k+ 1 2 5	k	⌘	(B.26) (B.37)
	We get that and therefore,																													n+1 X	q
	where We can use Lemma B.1 to get that				kµa	n+ 1 2 h E n+1 k  2 p h  ↵ + t 2 (A + 2t n kb n h k  k=0 p 2 (A + 2t n B) B) + C E k h C = N sup r k+ 1 2 h q E n+1 h  p 2↵ + 2t n+1	(B.38) (B.27) (B.28) (B.29) (B.39)
																																k=0
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