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Abstract: Despite the steady advancements in nanofabrication made over the past decade that
had prompted a plethora of intriguing applications across various fields, achieving compatibility
between miniaturized photonic devices and electronic dimensions remains unachievable due
to the inherent diffraction limit of photonic devices. Herein, we present an approach based on
anisotropic scaling of the shapes of photonic crystals (PhCs) to overcome the diffraction limit and
achieve controlled diffraction limit along the ΓX direction. Thus, we demonstrate that scaling
the direction perpendicular to the wave’s propagation (y-direction) by 1/2 and 1/4 significantly
improves the diffraction limit by two and four orders of magnitude, respectively. This approach
opens up possibilities for high-frequency wave guiding in a cermet configuration, which was
previously unachievable. Furthermore, we illustrate the existence of a quasi-bound state in the
continuum (QBICs) in asymmetric dimer network-type photonic crystals (PhCs).

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Mastering the art of wave manipulation has been a centuries-long endeavor, starting with the
elderly Greeks to James Clack Maxwell, who sat forth the fundamental framework that underlies
our modern understanding of the activity of electromagnetic waves in a medium [1]. Over the last
two decades, the advancements made in theory and experiments have enabled the feasibility of
endowing artificial materials with wave-handling functionalities beyond the ultimate limitations
found in nature, thereby setting a revolutionary milestone in the discipline of optics [2,3]. The
emergence of quantum band theory of solids, which stipulates that electronic waves interact with
periodically arranged quantum barriers to form a forbidden energy bands, was the earliest spark
in the development of these structured materials [4,5]. Photonic crystals (PhCs) were proposed
and thoroughly investigated thereafter [6,7]. The notion of one-dimensional stop bands, however,
dates back to Lord Rayleigh’s demonstration in 1887 that an infinitesimal periodic modulation
of the material density within a structure generate a narrow directional band gap, resulting in
total reflection [8]. The meteoric rise of this concept was at the forefront of designing a slew of
applications wherein the device functionalities are derived from the periodicity of the comprising
units. Photonic waveguides, sensors, and graded-index lenses are some of the noteworthy
achievements of such synthetic materials [9–11]. Furthermore, miniaturizing dielectric photonic
components to attain dimensions comparable to microelectronics has been significantly impacted
by diffraction. This makes it extremely difficult to confine light into nanoscale regions smaller
than the wavelength, thus significantly decreasing their effectiveness [12,13].

According to the Helmholtz equation, the cavity length of the dielectric slab should be longer
than l0 [14,15], which makes subwavelength confinement of light infeasible in dielectric structures.
Moreover, based on the equation l0 = λ

2√εr
, where εr represents the relative permittivity of the
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material, it becomes evident that the length of the cavity is inversely proportional to the refractive
index. In this case, if one can use higher refractive index materials, the cavity length can be further
reduced. Ebbesen et al.’s pioneering work revealed for the first time in 1998 an extraordinary
transmission of light through a perforated metal plate. Their findings showed an unexpected
amplification of the transmitted wave beyond the diffraction limit through subwavelength apertures,
representing a significant advancement in the field of optics [16]. Recently, negative dielectric
permittivity has provided a new paradigm by exploiting subwavelength plasmonic resonance
that not only precludes the diffraction barrier but also enhances the electromagnetic energy
confinement at the nanoscale [17]. This salient feature has been used to resolve the information
carried out through the spatial frequency of evanescent waves, therefore enabling photonic
devices to be miniaturized beyond those conventionally available and attain sub-diffraction-
limited resolution [18,19]. However, despite all the efforts made by plasmonic materials to
bridge the gap between conventional PhCs and nanodevices, this approach still suffers from
significant loss dissipation [20]. Nanophotonics based on surface plasmon polaritons (SPPs) offer
an appropriate platform for achieving guided SPP modes beyond Abbe’s diffraction limit with
subwavelength localization of energy, capable of operating both above and below the diffraction
limit [13]. By the dawn of the twenty-first century, the emergence of the notion of left-handed
metamaterials brought forth tremendous potential in perfect lenses, cloaking invisibility, perfect
absorbers, and subwavelength resolution imaging [21–24]. Left-handed metamaterials make
single and double negativities accessible through the periodic arrangement of locally resonant
meta-atoms [25]. Nonetheless, the inherent complexity of the fabrication process, particularly
for 3D nano-architectures, and the fact that this approach is only effective around the resonance
frequency, remain some of the major hurdles facing these artificially engineered materials [26].

In this study, we report on a novel approach denoted as the anisotropic scaling effect (ASE) to
elevate the diffraction limit in the ΓX direction of dielectric PhCs. We analytically demonstrate the
potential modifications imposed by the ASE on the photonic behavior. This is achieved through a
modified formalism of the eigenvalue problem, which involves anisotropically scaling Maxwell’s
equations. Moreover, PhCs are divided into two major categories from a topological standpoint:
cermets that are made up of isolated high-density blocks embedded within a low-density host
matrix, and networks, which are a density inversion of the previous category in which the
patterns are connected to create a more compact structure [27]. In the subsequent sections, we
elucidate the potential to elevate the diffraction barrier in these two configurations through the
implementation of the ASE. This approach demonstrates an improvement in overcoming the
diffraction limit along the ΓX direction in both configurations. A finite element analysis (FEA)
is conducted to assess the impact of ASE on the photonic dispersion curves and transmission
spectra in both cermet and network configurations. Furthermore, PhCs composed of symmetric
and asymmetric dimer of network-type are designed and optimized. The asymmetric dimer PhCs
is found to exhibit quasi-bound states in the continuum (QBICs), with a high quality factor of
9.15 × 105 in its transmission response at the point of resonance.

2. Analytical modeling

To establish an analytical description of the scaling effect, we reiterate that anisotropically
engineering the unit cells, i.e., introducing a unidirectional scaling factor α onto the geometry,
equates to physically scaling the dielectric permittivity distribution along the scaling axis by
the same factor. Joannopoulos et al. employed a comparable method to investigate the impact
of isotopically scaling the Maxwell’s equations, revealing an omnidirectional elevation of the
diffraction limit. Nevertheless, when considering the process of nanofabrication, constructing
such a highly miniaturized structure using existing technologies poses a significant challenge
[28]. Here, we considered scaling the y-direction and leaving the other directions unaltered.
Since the dielectric permittivity is scaled by the same factor as the geometry, a proportionate
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anisotropic scaling effect is thus introduced. After performing a variable modification of r′ = rα,
with r′ =

√︁
x2 + y′2 + z2, the resulting dielectric permittivity and differential operator are written

as follows:
ε
′

r(r
′

) = εr(r.α) (1)

∇
′

=
∂

∂x
+

1
α

∂

∂y′ +
∂

∂z
(2)

By inserting the new differential operator and dielectric function into the Helmholtz equation,
a new eigenvalue problem for a nonmagnetic dielectric medium is described [29]:

1
ε
′

r(r
′
)
α∇

′

× [α∇
′

× E(r
′

, t)] =
ω2

c2 E(r
′

, t) (3a)

1
ε
′

r(r
′
)
∇

′

× [∇
′

× E(r
′

, t)] = (
ω

αc
)2E(r

′

, t) (3b)

where ε′r(r
′

), ω and c are the relative dielectric permittivity, the angular frequency and speed of
light in vacuum, respectively.

The optical wave propagates along the x-axis, which implies that it only experiences the
unaltered modulated medium. Furthermore, the equation indicates that the new frequency
ω

′

= ω
α is greater since the scaling factor is less than unity. Thus, theoretically confirming that

the frequency is scaled by α, resulting in the shifting of the diffraction limit towards higher
frequencies. The Floquet-Bloch theorem was then applied along the x and y-axes to investigate
the 2D PhC model. According to the latter theorem, the solution of a periodic potential can be
expressed as the product of a plane wave and a periodic function with the same periodicity as the
crystal [30].

Ψ(r
′

) = E(r
′

)u(r
′

) (4)

where u(r′) = u(r′ + a) is a periodic function with the same period as the crystal. Equation (4)
presents the mathematical formulation of the Floquet-Bloch theorem, which encounter challenges
associated with negative eigenvalues. To overcome this concern, one can employ the Fourier
basis and represent the periodic function in the form of a Fourier series, as illustrated by Eq. (5):

f (r
′

) =
∑︂
G

fG exp(iGr
′

) (5)

G symbolizes a set of reciprocal lattice vectors. However, our study specifically focuses on
transverse electric waves with an out-of-plane electric field component denoted by Ez. The choice
of transverse electric (TE) mode is determined by the symmetry of the unit cell, specifically
mirror and rotational symmetries. Transverse magnetic (TM) mode can only be supported when
there is rotational symmetry within the unit cell. This distinction arises from the fact that the
electric field (E) behaves as a vector, while the magnetic field (H) behaves as a pseudovector.
Consequently, the magnetic field maintains its direction during the mirror symmetry operation
[28].

3. Network configuration

For the sake of delineating the feasibility of utilizing the anisotropic scaling effect to produce
network-type PhCs with an adjustable diffraction limit frequency, we first consider a typical 2D
PhC with a spatial period a, and an air-gap rectangular defect with a preset filling factor of f, as
indicated in Table. 1. The unit cell is perfectly symmetrical along the x and y-axes, as depicted in
Fig. 1(a), the rectangular air-gap in this case has a width of 0.6 a and a height of 0.9 a. It will serve
as a reference for all subsequent numerical simulations conducted in this section. Concerning the
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network-type PhCs, we opted for silicon material as the high-optical density host matrix and air
as low-optical density inclusions to form the network pattern. Furthermore, silicon is produce
on a large-scale in the industry, and it is considered one of the most essential materials on the
frontiers of modern technology. Owing to its potential in on-chip photonic device manufacturing
for light confinement, silicon PhC technology has matured to the point where it outperform the
photovoltaic and electrical industries [31,32]. For all the reasons stated above, we have taken a
keen interest in building our structures with monocrystalline silicon. All materials used in this
work are assumed to be dispersive and loss free. The refractive index of silicon in the relevant
region is about nSi = 3.5, whereas that of air is assumed to be a constant value of nAir = 1.

Photonic band diagrams are constructed through solving the eigenfrequency problem using
the FEA to investigate the optical properties of such regularly spaced inclusions, and a harmonic
analysis is carried out to assess the transmission spectra. To do so, we build an array of Nx × Ny
unit cells with an electromagnetic wave propagating freely in the two regions on the left and
right sides of the array. We applied the TE polarized harmonic excitation source Ez at the left
side of the x-axis and a detector on the right side. A periodic condition was also applied in the
y-direction to assume that the crystal is infinite along the perpendicular direction of the wave’s
propagation.

Fig. 1. Illustrations of the PhC structures studied: (a) Conventional silicon PhC with
symmetric unit cell. (b) and (c) the halved (0.5 a) and quartered (0.25 a) PhCs, respectively.

Table 1. Structural characteristics of network-type PhCs in normal,
halved, quartered, symmetric, and asymmetric dimer configurations

a f scaling T1 T2 Nx Ny

1[µm] 0.54 1, 1/2, 1/4 100[nm] 30[nm] 7 1

The first Brillouin zone is recognized as the smallest region of the reciprocal lattice that includes
all reciprocal lattice points. When the reciprocal lattice exhibits significant symmetry, the study of
photonic crystals can be narrowed down to the irreducible Brillouin zone. This enables a focused
analysis of the photonic crystal’s fundamental properties and behavior, emphasizing the essential
core or basic building block within the irreducible Brillouin zone. In square lattice (conventional
PhCs), the irreducible Brillouin zone exhibits high symmetry points that are denoted as Γ, X,
and M, as elucidated in Fig. 2(d). Where, Fig. 2(e) represents the rectangular lattice, which
encompasses halved and quartered PhCs and contains high symmetry points designated as Γ, X,
S and Y in its first non irreducible Brillouin zone. However, within the scope of this study, we
emphasize that even though we analyzed the eigenmodes in the whole irreducible Brillouin zone,
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as shown Fig. 2, we are solely interested in the modes exhibited along the ΓX direction due to the
unidirectional nature of the ASE that we proposed.

Fig. 2. Transverse electric (TE) photonic band diagrams within the irreducible Brillouin
zone for three types of network PhCs: (a) conventional, (b) the halved, and (c) the quartered.
The diffraction curtain, presented by a light-blue color, is specifically highlighted along
the ΓX direction, with a wavenumber of kx ∈ [0, 1 × π/a]. The modes highlighted in red
depicts the band folding phenomenon of the first mode, wherein the extension occurs as the
scaling parameter α changes from 1 to 1/4. (d, e) Illustrations of the Brillouin zone for the
conventional PhCs (square lattice) and anisotropically scaled PhCs (rectangular lattice).

Bragg diffraction is a restriction that greatly affects the performance of engineered periodic
structures, effectively preventing their operation in the high-frequency range. Figure 2(a) serves
as an illustrative example, displaying the appearance of the diffraction curtain after the first
band folding in ΓX direction. Consequently, conventional photonic devices can only operate
at low frequencies, located below the diffraction barrier. Extending their operation range to
much higher frequencies remains a priority, and this attribute is accomplished only through the
development of subwavelength structures, which is a result of technological progress. Indeed,
several strategies have been developed to sidestep this barrier, harnessing both the available
materials in nature and the range of artificially manufactured ones. Surface plasmon-based
photonics, which combine photonic characteristics with electronics miniaturization [12], and
photonic nanojets with waists smaller than the diffraction limit, which allow light to pass through
without significant diffraction [33], have been reported. Figure 2(b) and Fig. 2(c) illustrate the
diffraction curtain (blue regions in ΓX direction) being elevated by a factor of two and four in the
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cases of the halved and quartered network-type PhCs, respectively. It is important to highlight
that the evaluation of the corresponding transmission spectra for these network-type photonic
crystals (PhCs) was exclusively conducted in the ΓX direction. This deliberate choice was made
due to the specific nature of our approach, which is tailored for this particular direction.

The corresponding transmission spectra of these network-type PhCs are depicted in Fig. 3.
These results are in good accordance with the dispersion diagrams in ΓX direction, where the blue
regions indicate the Bragg limit position for each of the introduced structures. The diffraction
limit in network-type PhCs occurs at 0.95 × 1014 Hz for the conventional structure, 1.9 × 1014

Hz for the halved structure, and 3.8 × 1014 Hz for the quartered structure. These diffraction
limit values are determined using the Bragg diffraction formula and confirmed via numerical
simulation. Thus, our approach based on architectural engineering to overcome the diffraction
constraint, although unidirectional, provides a powerful tool for elevating the diffraction limit.
Due to the reasons discussed above, the practical application of conventional photonic crystals
(PhCs) is typically limited to the first band folding regime, where the wavelength of light is
significantly greater than the spatial periodicity (λ>>2a). This is because Bragg diffraction
occurs when the wavelength of light becomes comparable to the spatial periodicity. In Fig. 4, we
present a scenario featuring a 1D layer of PhCs with dimensions of 5, 10, and 20 periods for the
conventional, halved, and quartered network-type PhCs, respectively. We specifically highlight
the influence of the direction perpendicular to the wave propagation by considering the 1D layer
of PhCs as a diffraction grating with a periodicity in the y-direction of a, 0.5a, and 0.25a. At
lower frequencies, particularly at 0.65 × 1014 Hz, all configurations effectively perform with
respect to TE polarized wave excitation, as depicted in Fig. 4(a-c). However, at the frequency
of 1.5 × 1014 Hz, the conventional 1D layer becomes diffraction limited, whereas the halved
and quartered 1D layers remain free from diffraction effects, as seen in Fig. 4(d-f). At a much
higher frequency of 2.9 × 1014 Hz, both the conventional and halved 1D layers are subjected to
diffraction, while the quartered 1D layer remains diffraction-free, as shown in Fig. 4(g-i).

Fig. 3. Transmissions of transverse electric (TE) polarized waves along the ΓX direction:
(a) network-type conventional PhC (top), (b) halved PhC (middle), and (c) quartered PhC
(bottom).

Figure 5(a) illustrates the design of an array of symmetric dimers. Each unit cell has a total
width of half a period, obtained by arranging two quartered PhCs in the y-direction. We construct
an array of asymmetric dimers by appropriately matching the spacing between the two air gaps
within the symmetric dimers, as seen in Fig. 5(b). The eigenvalue computations in ΓX direction
of symmetric and asymmetric dimers of network-type PhCs delineate that the symmetric case
retains the primary feature of the quartered network-type PhC scenario, except that the optical
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Fig. 4. (a-c) The distribution of the out-of-plane electric field (Ez) after interacting with
a single layer of photonic crystals arranged along the y-axis, for normal (a), halved (0.5a),
and quartered PhCs (0.25a), at a frequency of 0.65 × 1014 Hz. (d-e) The distribution of the
electric field Ez at a frequency of 1.5 × 1014 Hz for normal, halved, and quartered PhCs,
respectively. (g-i) The distribution of the electric field for normal, halved, and quartered
photonic crystals at a frequency of 2.9 × 1014 Hz, respectively.

Fig. 5. Representations of the dimer network-type PhCs studied: (a) Symmetric dimer, and
(b) Asymmetric dimer.

wave encounters a unit cell with a half period, which results in a band overlap after the third band
folding, as indicated in Fig. 6(a). The transmission spectrum remains unaltered, confirming the
hypothesis that band overlapping is unrelated to the diffraction phenomenon. The asymmetric
dimer case exhibits a sharp transmission response due to the asymmetry of inclusions within it,
which corresponds to a steady mode with a near-zero group velocity marked in blue, as can be
seen in Fig. 6(b). A more detailed analysis using harmonic study is employed to selectively excite
the localized mode and evaluate the corresponding quality factor by varying the asymmetrical
factor (S). The asymmetrical factor is defined as follows:

S = 1 −
T2
T1

(6)
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Fig. 6. Dispersion diagrams and corresponding transmission signatures of transverse
electric (TE) waves for symmetric (a) and asymmetric (b) dimer network-type photonic
crystals (PhCs) along the ΓX direction with a wavenumber of kx ∈ [0, 1 × π/a].

Fig. 7. (a) The shift of the Quasi bound states in the continuum (QBICs) position with
different degrees of the asymmetrical factor in asymmetrical dimer network-type PhCs. (b)
Analysis of the relationship between the quality factor and the level of asymmetrical factor
in asymmetrical dimer network-type PhCs.

Through this analysis, we demonstrate the presence of quasi-bound states in the continuum
(QBICs) that emerge with an increasing asymmetrical factor. Figure 7(a) demonstrates the shift
of these QBICs as a function of the asymmetrical factor. It is noteworthy that at lower values
of (S<0.2), only interference phenomena occur, while at approximately (S>0.2), the existence
of specific exotic states becomes apparent at the upper edge of the band gap. The concept of
bound states in the continuum (BICs), also referred to as dark states, characterizes a condition
in which there is no radiation coupling [34]. In this condition, the energy becomes highly
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concentrated in the near field and possesses an infinite lifetime, unable to be radiated into the far
field [35]. Moreover, QBICs exhibit the capability to concentrate and confine electromagnetic
waves within subwavelength dimensions [36,37]. Consequently, they enable the demonstration
of a supercavity mode with a significantly high quality factor (Q-factor) [38]. Figure 7(b) depicts
the evolution of the quality factor (QF) as a function of the asymmetrical factor (S). The QF
exhibits fluctuations due to the sensitivity of these QBICs to the asymmetrical factor. Notably, a
high QF is achieved when the asymmetrical factor reaches S = 0.73, indicating the presence of a
pronounced resonance in the system that meets the stringent sensing requirements.

4. Cermet configuration

In contrast to the network-type PhCs previously discussed, cermet-type PhCs have high-density
optical inclusions (silicon) in a matrix with low-density optical material (air). Table 2 outlines
the new geometrical parameters of the cermet configuration. Figure 8(a) depicts cermet-type
PhCs with the same spatial period as network-type PhCs [39]. The width and height of silicon
pillars are equal to 0.6 a, whereas Fig. 8(b) and Fig. 8(c) illustrate the halved and quartered
cermet configurations.

Figure 9 reveals the potential of the ASE to raise the diffraction curtain toward higher
frequencies while sustaining large bandgaps within each band folding. The locations of the
sharp decreases in transmission perfectly match the bandgaps for each trial, as shown in Fig. 10.
Therefore, the transmission spectra are consistent with the dispersion diagrams, indicating that
the Bragg limit in cermet-type PhCs jumps from 1.025 × 1014 Hz for the standard, to 2.05 × 1014

Hz for the halved, to 4.01 × 1014 Hz the for the quartered case. The dispersion diagrams of
the cermet-type PhCs reveal large band gaps, which have important implications for various
applications, such as energy harvesting and electromagnetic wave guiding [40,41]. Previous
research on cermet-type PhCs has employed energy localization in the flat mode. Our objective
was to investigate the feasibility of using ASE to create cermet-type PhCs capable of effectively
steering high-frequency electromagnetic waves, which were previously limited by the diffraction
constraint. To this end, we constructed a superlattice consisting of (N ′

x × N ′
y) unit cells of

conventional, halved, and quartered cermet-type PhCs with defects along the y-direction. The
defects utilized consist of a straight lines of silicon inclusions. Figure 11(a) and Fig. 11(b)

Table 2. Geometrical parameters of cermet-type PhCs configuration

a f ′ scaling N′
x N′

y

1[µm] 0.36 1, 1/2, 1/4 8 11

Fig. 8. Cermet-type configurations studied: Panel (a) represents the ordinary PhC, while
panels (b) and (c) exhibit the halved and quartered PhCs, respectively.
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Fig. 9. Transverse electric (TE) photonic dispersion spectra in the irreducible Brillouin
zone for the conventional (a), halved (b) and quartered (c) cermet-type configurations.
The diffraction curtain is highlighted only along the ΓX direction with a wavenumber of
kx ∈ [0, 1 × π/a]. (d, c) Illustrations of the Brillouin zone for the conventional PhCs (square
lattice) and anisotropically scaled the (rectangular lattice)

Fig. 10. The transmission signatures of transverse electric polarized waves (TE) in the
cermet-type configurations. (a) Depicts the ordinary PhC structure, while (b) and (c)
illustrate the halved and quartered PhC structures, respectively along the ΓX direction.
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Fig. 11. The distributions of the out-of-plane electric field component and their high
expressions are depicted for ordinary cermet-type PhC. Panels (a) and (c) correspond to the
first band folding at a frequency of 0.7 × 102 THz, while panels (b) and (d) illustrate the
diffraction zone at a frequency of 3 × 102 THz.

Fig. 12. The distributions and high expressions of the out-of-plane electric field component
for halved and quartered cermet-type PhCs. Maps (a) and (c) depict the halved PhC at
the second band folding frequency of 1.4 × 102 THz, while maps (b) and (d) illustrate the
quartered PhC at a frequency of 2.9 × 102 THz

illustrate the behavior of guided and diffracted waves through the superlattice assembly, while
Fig. 11(c) and Fig. 11(d) show the corresponding out-of-plane electric fields at two distinct
frequencies: 0.7 × 102 THz and 3 × 102 THz.

The out-of-plane electric field Ez is properly steered below the Bragg limit, while the plane
wave is disrupted above this critical frequency, which captures the inadequacy of typical PhCs in
conducting high-frequency photons. High-frequency guided waves are demonstrated employing
our new suggested technique that avoids the diffraction limit. Figure 12(a) and Fig. 12(b)
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demonstrate the capacity of the anisotropic effect to effectively guide optical waves in halved
and quartered cermet-type PhCs at much higher frequencies, specifically at 1.4 × 102 THz and
2.9 × 102 THz, respectively. This allows for overcoming the previously unavoidable diffraction
constraint. The behavior of the out-of-plane electric field Ez within the defect is provided for
both cases in Fig. 12(c) and Fig. 12(d), indicating that the guided waves remain unaltered due to
the introduction of the anisotropic geometry effect.

5. Conclusion

This work reports on the use of an anisotropic architectural approach as a reliable way to
circumvent the diffraction limit in two regular dielectric PhC configurations. This method has
numerous far-reaching consequences and provides a new avenue for manipulating electromagnetic
waves at high frequencies. It is also worth emphasizing that these findings can be expended
and applied to other disciplines, including phononics or elastodynamics, to attain tiny devices
operating at much higher frequencies, thereby pushing beyond the levels of miniaturization
currently available. Besides, both symmetric and asymmetric quartered dimer network-type
photonic crystals were explored. The symmetric case remained diffraction-omitted, while the
asymmetric case displayed a quasi-bound state in the continuum, resulting in a sharp peak in the
transmission spectrum with a highly QF of up to 9.15 × 105. This latter feature is congruent with
optical sensing requirements, making it a promising candidate for accurate sensing applications.
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