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Environmental tolerance curves, representing absolute fitness against the environment, are an empirical assessment of the funda-

mental niche, and emerge from the phenotypic plasticity of underlying phenotypic traits. Dynamic plastic responses of these traits

can lead to acclimation effects, whereby recent past environments impact current fitness. Theory predicts that higher levels of

phenotypic plasticity should evolve in environments that fluctuate more predictably, but there have been few experimental tests

of these predictions. Specifically, we still lack experimental evidence for the evolution of acclimation effects in response to envi-

ronmental predictability. Here, we exposed 25 genetically diverse populations of the halotolerant microalgae Dunaliella salina to

different constant salinities, or to randomly fluctuating salinities, for over 200 generations. The fluctuating treatments differed in

their autocorrelation, which determines the similarity of subsequent values, and thus environmental predictability. We then mea-

sured acclimated tolerance surfaces, mapping population growth rate against past (acclimation) and current (assay) environments.

We found that experimental mean and variance in salinity caused the evolution of niche position (optimal salinity) and breadth,

with respect to not only current but also past (acclimation) salinity. We also detected weak but significant evidence for evolu-

tionary changes in response to environmental predictability, with higher predictability leading notably to lower optimal salinities

and stronger acclimation effect of past environment on current fitness. We further showed that these responses are related to

the evolution of plasticity for intracellular glycerol, the major osmoregulatory mechanism in this species. However, the direction of

plasticity evolution did not match simple theoretical predictions. Our results underline the need for a more explicit consideration of

the dynamics of environmental tolerance and its underlying plastic traits to reach a better understanding of ecology and evolution

in fluctuating environments.

KEY WORDS: Acclimation, environmental autocorrelation, environmental tolerance, experimental evolution, phenotypic

plasticity.
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The range of abiotic environments over which a species can sus-

tain positive population growth when starting at low density de-

fines its fundamental niche (Hutchinson 1957; Holt 2009). Slices

of this fundamental niche along specific abiotic axes, such as tem-

perature or salinity, can be measured using environmental tol-

erance curves, which relate absolute fitness (or performance as

a surrogate) to the environment (Angilletta 2009; Buckley and

Kingsolver 2021; Cifuentes et al. 2001; Lynch and Gabriel 1987).

As fitness and performance are highly integrated traits that de-

pend on many upstream biological processes, environmental tol-

erance curves must emerge from the phenotypic plasticity of traits

underlying adaptation to the environment, such that evolution of

plasticity and of environmental tolerance are tightly connected

(Chevin et al. 2010; Lande 2014).

Both theory and experiments have investigated the evolution

of plasticity and environmental tolerance in response to patterns

of environmental variation. Evolutionary theory has consistently

shown that higher phenotypic plasticity and broader tolerance

curves should evolve in environments that vary more predictably,

such that the environment that elicits the plastic response is

highly correlated with the environment where selection occurs

(De Jong 1999; Gavrilets and Scheiner 1993; King and Had-

field 2019; Lande 2009; Levins 1963; Moran 1992). For an

environment that undergoes stationary fluctuations, the expected

equilibrium plasticity should thus depend on the temporal auto-

correlation of the environment, which determines environmental

predictability (Gavrilets and Scheiner 1993; Lande 2009). But

what has been perhaps little appreciated is that these predictions

hold only for a specific model of “static” or “fixed” plasticity,

where the phenotype is determined once during developing, and

later exposed to selection. Fewer models have considered the

evolution of dynamic, labile traits that can change reversibly

over time (Beaman et al. 2016). Lande (2014) showed that for a

labile character that can change continuously and at constant rate

over lifetime, plasticity and tolerance breadth at evolutionary

equilibrium no longer depend on environmental predictability,

in the absence of cost of plasticity. However, with a cost of plas-

ticity (DeWitt et al. 1998; Van Tienderen 1991), the equilibrium

plasticity of a labile trait increases with temporal autocorrelation

of the environment (as for a fixed trait), but to a level that also

depends on the magnitude of environmental fluctuations. Using

another type of model, Gabriel et al. (2005) found that with

reversible plasticity, the equilibrium tolerance breadth is larger

when organisms have imperfect information about selection,

making it less predictable. These somewhat discordant pre-

dictions about the role of environmental predictability on the

evolution of plasticity and tolerance breadth probably arise from

the specificities of each model, highlighting that much is left

to understand about the evolution of dynamic (i.e., nonfixed)

plasticity and tolerance breadth (see also Fischer et al. 2014;

Ratikainen and Kokko 2019; for the interplay of plasticity with

age).

On the empirical side, evolution of plasticity and environ-

mental tolerance has been investigated in a number of experi-

mental evolution studies (Bennett and Lenski 1997; Berger et al.

2014; Huang and Agrawal 2016; Koch and Guillaume 2020; Re-

boud and Bell 1997; Scheiner 2002; Thuy et al. 2016), and in

the wild, where higher plasticity levels have been linked to more

variable environments (Schaum et al. 2013). Only few of these

studies have addressed the role of environmental predictability

(however, see Dey et al. 2016; Leung et al. 2020; Mitchell et al.

2009; Scheiner and Yampolsky 1998), and the dynamic aspects

of plasticity were often neglected. Leung et al. (2020) recently

demonstrated that morphological plasticity evolved in response to

environmental predictability, in lines of the microalga Dunaliella

salina that had experienced randomly fluctuating salinity with the

same stationary distribution, but different levels of temporal au-

tocorrelation. In addition, the direction and magnitude of evolu-

tion of plasticity was dynamical, changing over at least 10 days

(and about as many generations) after exposure to a new salin-

ity. Strong acclimation effects were also shown to exist in this

species, such that population growth at a given time strongly de-

pends on both current and past salinities, and their interaction

(Rescan et al. 2020), similar to what was shown for temperature

in other microorganisms (Fey et al. 2021; Kremer et al. 2018;

Leroi et al. 1994). In D. salina, intracellular glycerol serves as

an osmoprotectant that allows population growth even at salini-

ties close to saturation (Ben-Amotz and Avron 1973; Borowitzka

et al. 2004; Chen and Jiang 2009), and was shown to explain

part of the effects of salinity acclimation on growth (Rescan et al.

2020). This highlights that intracellular glycerol content is likely

a major plastic trait underlying the evolution of environmental

tolerance and acclimation effects in this species.

This raises the following questions: to what extent do pat-

terns of environmental fluctuations, especially their predictabil-

ity, influence evolution of the tolerance curve with respect not

only to the current, but also to previous environments, through

dynamic acclimation effects? And how do these responses at

the level of fitness relate to evolution of plasticity for well-

characterized mechanisms underlying environmental tolerance?

To answer these questions, we exposed lines of the halotolerant

microalga D. salina to randomly fluctuating salinity with vari-

able predictability (tuned by their temporal autocorrelation) for

about 200 generations. We then measured their tolerance curves

with respect to both current and previous salinity, as well as their

glycerol content, the main mechanism of osmoregulation in this

species. Our results highlight that important aspects of the evolu-

tion of plasticity and environmental tolerance in fluctuating en-

vironments may be missed if lagged effects of past environments

are not accounted for.
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Methods
EXPERIMENTAL EVOLUTION IN STOCHASTIC AND

CONSTANT SALINITIES

We exposed 25 populations of D. salina to constant or fluctuat-

ing salinities for 8–12 months (with about 1 doubling per day).

To maximize initial genetic standing variation, populations were

initiated by mixing 50% of strain CCAP19/15 and 50% of strain

CCAP19/18 from the Culture Collection of Algae and Protozoan,

but amplicon sequencing revealed that strain CCAP19/18 dis-

appeared from most populations (see Supporting Information in

Rescan et al. 2020). Populations were transferred twice a week

(every three to four generations in optimal conditions; see Ben-

Amotz et al. 2009; Rescan et al. 2020) by diluting 15% of the

culture into 800 μL of fresh medium using a liquid-handling

robot (Biomek NXP Span-8; Beckman Coulter), except for a 2-

week logistic break during which all fluctuating treatments were

maintained at 2.4 M, and the constant treatments at their re-

spective fixed salinities (Fig. S1A). At each transfer, the target

salinity was achieved by mixing the required volumes of hypo-

([NaCl] = 0 M) and hyper- ([NaCl] = 4.8 M) saline media, af-

ter accounting for dilution of the pretransfer salinity. Populations

in constant salinities were exposed to 0.8, 2.4, and 3.2 M NaCl,

with two replicates per salinity. The fluctuating treatments con-

sisted of four or five independent stochastic salinity time series,

for each of four temporal autocorrelation levels. Salinities were

sampled from a first-order autoregressive process (AR1) with sta-

tionary mean 2.4 M, variance 1, and autocorrelations ρ = –0.5, 0,

0.5, or 0.9 (where the time step for defining autocorrelation is the

transfer). Parameters were chosen based on a preliminary accli-

mated tolerance surface, to limit extinction risk during long-term

experiment and maximize the difference in population dynamics

between treatments. To keep a constant stationary variance of 1

regardless of autocorrelation, the noise term in the AR1 process

was drawn from a normal distribution with variance (1 − ρ2), as

commonly done in theoretical work that aims to distinguish the

influence of autocorrelation from that of the variance on adapta-

tion to stochastic environments (Charlesworth 1993; Chevin et al.

2017; Lande and Shannon 2006; see Rescan et al. 2020 for further

details on the transfers during the long-term experiment). Due

to the duration of the tolerance curve measurements, the assays

were performed over 4 months. To prevent potential biases, pop-

ulations from all treatments were equally distributed along days

of measurement (Fig. S1A).

ACCLIMATED TOLERANCE SURFACES

Data acquisition
All assays were performed in artificial saline water +2% Guil-

lard’s F/2 marine water enrichment solution (Sigma; G0154-

500ml) with controlled concentration of NaCl. Cultures (flasks

and plates) were placed in a growth chamber, with temperature

set at 24°C and light at 200 μmol·m–2·s–1 for 12:12 h LD cycles.

For each population, 500 μL of culture was sampled from the

long-term evolution experiment. Cultures were transferred into a

15-mL flask at [NaCl] = 2.4 M (average salinity for the fluctuat-

ing treatments) and grown for 10 days in similar light and temper-

ature conditions. This preacclimation step was implemented both

to reach population sizes large enough for the experiment, and to

erase potential nongenetic effects of the last salinity experienced

in the long-term evolutionary experiment (Rescan et al. 2020).

After this preacclimation step, each population was accli-

mated for 7 days in 50-mL flasks with 20 mL of saline medium

at nine concentrations S0 (NaCl: 0.1, 0.5, 1.1, 1.8, 2.4, 3, 3.7,

4.3, and 4.7 M), which constitute the past or acclimation envi-

ronment for the tolerance surfaces. Then after 7 days, each ac-

climation culture was cross-transferred into salinities S1, which

constitute the current or assay salinities for tolerance surfaces,

with the same nine values as S0 (except for transfers from 0.1 to

3.7, 4.3, and 4.7 M, and from 4.7 to 0.1, 0.5, and 1.1 M, that could

not be reached with the dilution level we used). Overall, this re-

sulted in 75 different cross-salinity transfers S0 × S1 per sam-

ple. For each population, three replicates of each of these cross-

salinity treatments were distributed across four deep-well plates

(volume Vtotal = 800 μL). Population density was first measured

in the acclimation flasks, and the initial volume used to inoculate

the assay Vculture was computed so as to reach an initial popu-

lation density N0 of 5 × 10–3 cells·mL−1. Appropriate volume

of a hyposaline (salinity Shypo = 0 M) and hypersaline (salinity

Shyper = 4.8 M) solutions were then added to adjust to the target

salinity S1:

Vculture = N0 × Vtotal/N−1,

Vhyper = (S1 × Vtotal − S0 × Vculture ) /Shyper,

Vhypo = Vtotal − Vculture − Vhyper.

All transfers were performed using a liquid-handling robot

(Biomek NXP Span-8; Beckman Coulter), insuring a high level

of repeatability. Plates were covered with plastic lids, sealed with

Parafilm, and placed for 3 days in a growth chamber with same

light and temperature conditions as in the evolutionary exper-

iment. To measure the initial population density following the

transfer, two extra replicates per acclimation flask were trans-

ferred into a salinity 0.36 M, known to not cause direct cell mor-

tality in the Dunaliella strains used here (Leung et al. 2020; Res-

can et al. 2020), and following the same protocol as for other

replicates. Initial density N0 was then measured directly after

transfer to these 2 × 9 wells. The standard error of initial popula-

tion sizes was acceptable (N0 = 3911 ± 283, coefficient of varia-

tion CV = 0.07), so for each acclimation salinity S0, we used the

mean from both measures as estimator of the initial population
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size to analyze growth during the assay. After 3 days, population

density in each assay (N1, 75 × 3 measures) was measured.

Populations sizes before (N0) and after growth (N1) were as-

sayed by flow cytometry (Guava EasyCyte®). Cells were counted

in a 20-μL sample of each well (2.5% of the total culture vol-

ume). Dunaliella cells were isolated from debris using forward

scatter (FSC), side scatter (SSC), and red (695/50 nm) and yel-

low (583/26 nm) fluorescence (excitation 532 nm). Flow cytom-

etry additionally allowed us to detect recently died (or dying)

Dunaliella cells, with similar shape, size, and yellow fluores-

cence as living cells, but a reduced level of red fluorescence

due to chlorophyll degradation. These cells coincide with cells

marked with the nucleic acid stain SytoxGreen, which only per-

meates dead cells. However, flow cytometry cannot detect rapidly

degraded cells, for instance those that undergo programmed cell

death, as documented for D. salina (Orellana et al. 2013; Le-

ung et al. 2022) and other phytoplankton (Bidle 2016), such that

an important fraction of deaths cells may escape detection. The

number of apparent death cells is nevertheless a proxy or total

deaths, so we estimated initial and final concentrations of dead

cells in the wells to infer an apparent death ratio.

Tolerance surface analysis
Initial population size in our assays (∼5 × 103 cells·mL−1) was

much below the carrying capacity of about 1 × 106 cells·mL−1

in D. salina (Rescan et al. 2020), limiting density-dependent ef-

fects. We therefore assumed exponential growth during the 3-day

assays, to compute a net per-capita growth rate per day. For each

population i and salinity transfer j (corresponding to an interac-

tion between acclimation salinity S0 and assay salinity S1), we

thus had

Ni, j,t = Ni, j,0 × exp
[
Ri, j × t

]
, (1)

where Ni, j,0 and Ni, j,t are the initial and final densities, respec-

tively, Ri, j is the exponential growth rate, and t = 3 days is the

length of the assay. Note that because of our experimental design,

Ni, j,0 is the same for all populations starting from the same accli-

mation salinity S0. Population sizes of Dunaliella measured by

flow cytometry followed a negative binomial distribution (Leung

et al. 2020).

In a second step, we partitioned the population growth rate

into an apparent growth rate r and an apparent mortality ratio

d. We have previously detected a drop in the number of living

cells 4 hours after a transfer from low to high salinity, implying

that mortality occurs before any doublings (fig. 3c in Leung et al.

2020). We therefore assumed that the measured number of dead

cells after 3 days was a fraction (di, j) of the initial living cells

Ni, j,0, and estimated an instantaneous mortality ratio di, j such that

Ni, j,t = Ni, j,0
(
1 − di, j

) × exp
[
ri, j × t

]
,

Di, j,t = Di, j,0 + di, jNi, j,0, (2)

where Di, j,0 and Di, j,t are the initial and final numbers of dead

cells, respectively, measured 1–2 hours (Di, j,0) after transfer to

0.36 M versus 3 days (Di, j,t ) after transfer to the new salinity.

Similar to overdispersion in the number of living cells leading

us to use a negative binomial rather than a Poisson distribution in

equation (1), the proportion of dead cells was also highly overdis-

persed. We thus used beta-binomial regressions to estimates ef-

fects on mortality, corresponding to binomial regressions (as in

a typical GLM), but where the probability d to die after trans-

fer is itself distributed according to a beta distribution. Apparent

death ratio and growth rates were estimated for each population

and each cross-salinity transfer using the R package glmmTMB

(Brooks et al. 2017).

Bivariate tolerance curves
We wished to fit acclimated tolerance surfaces, that is, bivariate

tolerance curves with a fitness component as a function of both

acclimation and assay salinities. For apparent growth rate ri, j for

population i and salinity transfer j, we used a bivariate second-

order polynomial parameterized as

ri, j = ri,max −
(

S j,1 − μi,1
)2

σ2
i,1

−
(

S j,0 − μi,0
)2

σ2
i,0

+ 2ki

(
S j,1 − μi,1

) (
S j,0 − μi,0

)

σ2
i,1

, (3)

where rmax is the maximal apparent growth rate across salinities,

μ1 the optimal assay salinity, and σ1 the salinity tolerance breadth

in the assay environment. Similarly, μ0 is the optimal salinity

during the acclimation phase (in terms of its effect on apparent

growth in the assay phase), and σ0 measures the tolerance breadth

with respect to the acclimation salinity. Under such parametriza-

tion, k measures the effect of acclimation salinity on the assay

salinity optimum, and thus quantifies the strength of acclimation.

Mortality occurred especially in transfers from low to high

salinity, that is, at an extremum of the bivariate salinity range, so

the mortality surface was monotonic. The logit is the natural link

function in a (beta) binomial regression, so we modeled the logit

mortality as a linear function of previous and current salinity:

logit
(
di, j (S0, S1)

) = log(di, j (S0,S1 ))
log(1−di, j (S0,S1 ))

= δi + δi,0S0, j + δi,1S1, j + δi,01S0, jS1, j .
(4)

Combining both estimations, the full tolerance surface for

growth rate, estimated over the 3 days of the fitness assay, was

then computed as Ri, j = ln( Ni, j,t

Ni, j,0
)/t , that is (from eq. 2),

Ri, j = ln
(
1 − di, j (S0, S1)

)

t
+ ri, j (S0, S1) . (5)
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To estimate simultaneously the binomial mortality and the

growth term, acclimated tolerances surfaces were fitted using the

R package TMB, where the likelihood function is written by the

user in C++, and maximized in R using Laplace approximation

(Kristensen et al. 2015).

Effects of experimental evolution treatments on
tolerance surfaces
To quantify the effects of patterns of salinity fluctuations on evo-

lution of environmental tolerance, we assumed that each param-

eter of the tolerance surface described by equations (3) and (4)

depends on the mean Si , variance σ2
i,S , temporal autocorrelation

ρi,S , and predictability ρ2
i,S of the salinity treatment experienced

by each population i during its evolution, that is,

θi = θint + θmeanSi + θvarσ
2
i,S + θρρi,S + θρ2ρ2

i,S, (6)

where subscript “int” stands for intercept, and θ is any parameter

of the tolerance surface: rmax , μ1 , 1/σ2
1 , μ0 , 1/σ2

0, 1/σ2
0 k,

δ, δ0, δ1, and δ01. Note that in the fluctuating treatments, salinity

time series are independent realizations of a stochastic process,

such that their realized moments (mean, variance, etc.) slightly

differ from their target values assuming a stationary process. We

thus used theses realized salinity moments (Fig. S1) to analyze

the consequences of environmental mean, variance, and autocor-

relation, on the evolution of acclimated tolerance curves.

In addition, we also analyzed effects of the environmental

treatments for each individual cross-salinity transfer S0 × S1,

to identify salinity transfers where evolutionary responses were

most salient. We thus modeled the apparent growth rate in each

salinity transfer as a function of the environmental parameters of

the evolution treatment:

ri, j = r j,int + r j,meanSi + r j,varσ
2
i,S + r j,ρρi,S + r j,ρ2ρ2

i,S, (7)

where ri, j is the growth rate of population i after transfer j from

salinity Sj,0 to Sj,1. Similar regressions were performed for total

growth R or for apparent death ratio d . We analyzed equation (7)

in a negative binomial regression for total and apparent growth

rate, and a beta binomial regression for mortality.

EVOLUTION OF GLYCEROL DYNAMICS

Beyond measuring tolerance curves, we tracked the dynam-

ics of glycerol, the major mechanism of osmotic regulation in

Dunaliella, following a transfer to fresh medium at various salin-

ities. We focused on a subset of eight out of the 19 populations

evolved in stochastic environments (two for each targeted auto-

correlation: −0.5, 0, 0.5, and 0.9).

Glycerol measures
Following the protocol used in the acclimated tolerance surface

analysis, populations were first transferred with dilution 1/5 from

the evolutionary experiment to 15 mL at salinity 2.4 M, and left

to grow for 10 days. They were then acclimated at low (0.5 M)

or high salinities (3.5 M) in 25 mL for 7 days. After acclima-

tion, each population from each acclimation salinity was split and

transferred to 20 mL fresh medium with final salinities 0.5, 2, and

3.5 M, and we measured glycerol concentration following this

transfer.

We measured total and extracellular (after cell filtration)

glycerol concentrations 1 hour, 8 hours, and 3 days after trans-

fer. For each of the 144 measures (8 populations × 6 salinity

transfers × 3 time points), 800 μL Free Glycerol Reagent (Sigma

Aldrich) was mixed with 200-μL culture (total glycerol concen-

tration) or 200 μL of culture where cells had been previously re-

moved (5 minutes, 2000 rpm on 0.2-μm filtration plates), to mea-

sure the extracellular glycerol concentration. We measured opti-

cal density at 540 nm after 5-minute incubation at 37°C. Glyc-

erol concentration was interpolated from a linear standard curve

(Appendix A). Dunaliella densities were estimated by flow cy-

tometry to yield measurements per unit cell, and we made two

independent replicates for each measure.

Glycerol dynamics analysis
For each population, salinity treatment, and time point, we ob-

tained estimates and standard errors from the two replicates of

cells count and total and extracellular glycerol concentrations.

Subtracting the extracellular from the total glycerol concentra-

tion gave the intracellular concentration. All estimated concentra-

tions were then divided by cell density, to obtain a scaled glycerol

amount G per cell (mol/cell). For each data point, estimates and

standard errors for these scaled metrics were computed from es-

timates and standard errors of glycerol and cell density by using

the delta method.

To quantify the evolutionary consequences of patterns of en-

vironmental fluctuations on the dynamics of glycerol following

salinity transfers, we regressed glycerol content per cell G against

parameters of salinity fluctuations, by applying equation (6) with

θ = G, in each compartment (intracellular, extracellular, or total),

salinity transfer S0 × S1, and time posttransfer (1 hour, 8 hours,

or 3 days). We finally performed an ANOVA to test which pa-

rameter (assay and acclimation salinities, timing of the measure,

salinity mean, variance, autocorrelation and predictability during

evolution, and their interactions) affected glycerol content, using

the following linear model (in R formulation):

glycerol (S0, S1, Time) ∼ (S0 × S1 × Time)

× (
ρ2

S + ρS + S̄ + σ2
S

)
.
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Figure 1. Acclimated tolerance surfaces. The rates of net growth r (A), apparent growth r (B), and apparent death d (C) as functions

of acclimation (S0, y-axis) and assay (S1, x-axis) salinities are represented for the five populations that evolved under unpredictable

fluctuations in salinity (white noise: mean S̄ = 2.4 M, variance σ2
S = 1, and autocorrelation ρS = 0). Colored dots give the growth and

apparent death ratios fitted independently for each population in each salinity transfer from S0 to S1. Background colors gives the mean

estimates of the five populations. Contour lines are isoclines of the growth and the death function estimated by equations (3) to (5). Dots

and error bars in panels (A) and (B) give the estimate and standard error for the salinity optimum. Dashed line displays current salinity

optimum as a function of acclimation salinity (slope 1/k, see eq. 3).

In particular, any significant interaction between our evo-

lutionary treatment (ρ2, ρ, S̄, or σ2) and assay or acclima-

tion salinity would evidence evolution of plasticity of glycerol

content in response to the given parameter of the fluctuating

treatment.

To propagate the error in estimates of glycerol concentra-

tions to the parameters of their dependency on fluctuation pat-

terns, we simulated 1000 datasets where glycerol concentrations

were sampled from normal distributions parameterized by the

estimates and standard errors based on true observations, and re-

gressed glycerol level against parameters of environmental fluc-

tuations in each dataset. We then used the R packages MICE (van

Buuren and Groothuis-Oudshoorn 2011) and MICEADDS (Rob-

itzsch and Grund 2022) to obtain the total uncertainty, correcting

for multiple imputation.

Results
We analyzed the evolution of acclimated salinity tolerance sur-

faces in 25 populations of the microalga D. salina that had been

exposed for about 200 generations to constant or stochastic salin-

ities, with different mean, variance, and autocorrelation. We mea-

sured their per capita population growth rates, and partitioned

apparent death from subsequent apparent growth, in 75 cross-

salinity treatments combining nine acclimation and nine assay

salinities.

SALINITY TOLERANCE SURFACES INVOLVE STRONG

ACCLIMATION EFFECTS

Dunaliella had a broad niche with respect to the assay salinity S1

(Fig. 1, x-axis), with a salinity optimum (μ1, Table 1) close to 0,
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Table 1. Parameters of the tolerance surface in response to the

acclimation and assay salinities (eqs. 3 and 4), for populations that

evolved under unpredictable fluctuating salinity (white noise).

Parameter Estimate Standard Error

rmax 1.153 0.038
k 0.666 0.068
μ0 2.565 0.131
μ1 −0.035 0.332
σ0 3.101 0.085
σ1 4.143 0.202
δ −3.994 0.158
δ0 −0.033 0.072
δ1 1.185 0.054
δ01 −0.444 0.029

and a tolerance breadth of about 4.2 M (σ1), allowing for positive

growth at all salinities. This pattern is characteristic of a halotol-

erant rather than halophile species, which can deal with salini-

ties close to saturation, but actually grows better at low salinities,

including nearly fresh water. The maximal growth rate of 1.15

(Fig. 1B) corresponds to 1.66 doublings per day.

A striking result, consistent with previous demographic ob-

servations in this species (Rescan et al. 2020), was that the ac-

climation salinity S0 (y-axis in Fig. 1) strongly impacted pop-

ulation growth during the assay. The acclimation niche (width

on the y-axis), capturing current tolerance to past environments,

was slightly narrower (3.1 M) than the assay niche, and cen-

tered around 2.56 M, which is close to the mean salinity of the

environmental treatments (2.4 M). In addition, the acclimation

salinity also influenced the response to the current assay salinity,

especially for acclimation salinities below S0 = 1.5 M (Fig. 1).

The effect of acclimation salinity on current salinity tolerance

(for apparent and total growth) is quantified in our model by the

parameter k, which measures the slope of changes in the current

salinity optimum with respect to the acclimation salinity (dashed

line in Fig. 1A.B). We found a positive value of k (0.67, Table 1),

consistent with the beneficial acclimation hypothesis (Bennett

and Lenski 2007; Leroi et al. 1994), whereby higher acclima-

tion salinity displaces the current optimum toward higher salin-

ity. Above S0 = 1.5 M, acclimation salinity had a much lower

impact on fitness response to current salinity (background color

in Fig. 1A).

Acclimation’s impact on total growth rate partly resulted

from its impact on cell death. In addition to lower apparent

growth rates (Fig. 1B), acclimation at low salinity (S0 ≤ 1.5 M)

led to a large increase in the apparent instantaneous mortality,

with up to 50% death at high salinities (Fig. 1C). Negative appar-

ent growth was estimated under some conditions, implying that

in addition to the deaths we could detect, other dead cells dis-

appeared before cytometric measures. This could be caused by

rapid degradation of cell structure, as occurs notably under pro-

grammed cell death, which is known to occur in D. salina as well

as other phytoplankton (Bidle 2016; Orellana et al. 2013). In ad-

dition to its beneficial effect on growth, acclimation at high salin-

ity essentially abolished mortality at high assay salinity (Fig. 1B

and negative interaction term on mortality δ01 , Table 1), con-

tributing to increasing the growth rate.

By plotting growth rate against past and current environ-

ment, the acclimated tolerance surface can be compared to the bi-

variate distribution of acclimation and assay salinities, the orien-

tation of which is controlled by temporal autocorrelation (back-

ground dots in Fig. 2B). If environmental patterns encountered

more frequently exert stronger net selection, we can hypothesize

that tolerance surfaces (and in particular acclimation k) should

evolve to be aligned with the bivariate distribution of past and

current salinities.

EVOLUTION OF ACCLIMATED TOLERANCE SURFACES

After about 200 generations of experimental evolution under con-

stant or fluctuating salinity, the shapes of acclimated tolerance

surfaces evolved in response to our environmental treatments.

The effects of environmental mean, variance, autocorrelation, and

predictability on each of the tolerance surface parameters are

summarized in Table 2.

Evolutionary niche shift in response to the mean salinity
The mean salinity experienced during evolution had a highly sig-

nificant effect on acclimated tolerance surfaces (P < 2 × 10–16,

likelihood-ratio test—hereafter LRT—between models with vs.

without effects of salinity mean). The mean environment jointly

affected all parameters, but without strong shift in any specific

parameter (Table 2). However, there was weak evidence that

higher mean salinity during evolution increased the optimum

with respect to current (μ0) and past (μ1) salinities (Table 2),

and increased the protective effect of higher acclimation salinity

on the apparent death ratio (Table 2, δ0). Such effects appeared

clearly when considering only the constant treatments, for which

the optimum salinity shifted toward higher values on both axes as

the evolution salinity increases (dots and error bars in Fig. 2B).

In addition the niche breadth, that is, the range of salinities lead-

ing to a positive growth rate (dashed isocline in Fig. 2B) and the

salinity range with high growth rates (>0.85, solid isoclines in

Fig. 2B) were both expanded toward higher assay salinities for

populations that evolved at 2.4 and 3.2 M as compared to 0.8 M.

When assessed in specific cross-salinity transfers (acclima-

tion S0 × assay S1), growth rates of populations that evolved

at higher salinities were significantly higher for transfers to ex-

tremely high salinities (4.3 and 4.7 M), and for transfer from

near-freshwater (0.1 M) to 1.8 M (Table S1). In contrast, none
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Figure 2. Experimental evolution of the acclimated tolerance surfaces. (A) Estimated acclimated tolerance surfaces for populations

that evolved under constant salinities (from light gray to black: 0.8, 2.4, and 3.2 M). (B) Estimated acclimated tolerance surfaces for

population that evolved in fluctuating salinities (thin colored lines) and prediction (thick colored line) for a population that evolved

under stationary mean 2.4 M, variance 1, and autocorrelations −0.22, 0.05, 0.53, and 0.78 (from blue to red), corresponding to the mean

realized autocorrelation experienced by the four or five populations under each fluctuating treatment (−0.5, 0, 0.5, and 0.9). The constant

treatmentwith salinity 2.4M (same as themean of fluctuating treatments) is also shown in gray. Thick colored lines represent two isoclines

of the fitness surface predicted by equations (3) to (5), for r = 0 (dashed) and r = 0.85 per day (solid lines). Dots and error bars represent

the estimates and standard errors for the salinity optimum, that is, the pair of acclimation and assay salinities maximizing fitness. Arrows

represent the strength of acclimation, with steeper slope 1/k indicating weaker acclimation effects, whereby the optimal assay salinity

is less dependent on the acclimation salinity.

of the salinity transfers from acclimation salinities S0 > 1.5 M

showed evolutionary difference in growth rates between constant

treatments. Hence, evolutionary changes in response to the mean

salinity mostly involved transfers from low to medium/high salin-

ity.

Environmental fluctuations led to increased tolerance
breadth
The magnitude of salinity fluctuations during evolution signif-

icantly impacted the shape of the acclimated tolerance surface

(LRT between the full model and a model without effect of vari-

ance in salinity: P-value < 2 × 10–16). In particular, popula-

tions that evolved in randomly fluctuating environments had a

significantly broader tolerance curve with respect to the current

salinity (lower 1/σ2
1; Table 2; Fig. 2B), and their optimum assay

salinity μ1 shifted toward lower values (Fig. 2B), whereas their

maximal growth rate rmax increased by about 20% (Fig. 2B).

We did not find any significant effect of environmental vari-

ance on the mortality surface. However, when analyzing re-

sponses more finely at the level of each salinity transfer, we found

that the death ratio significantly increased with increasing salinity

variance for transfers from 1.1 to 3, 3.7, and 4.3 M (Bonferroni

correction for multiple testing; see Table S2), even though the net

growth rate in fact increased with salinity variance for the latter

transfer.

Increased acclimation effects evolved in more
predictable environments
We found a significant impact of environmental autocorrelation

ρ and predictability ρ2 during evolution on the shape of the toler-

ance surface (P = 5.4 × 10–15/P = 6.5 × 10–8, LRT between the

full model and the model without autocorrelation/predictability).

Overall, very similar tolerance curves were found for treatments

0 and 0.5 (green and orange lines in Fig. 2B), which differed

from the group pairing treatments −0.5 and 0.9 (blue and red

lines). The acclimation slope (k, Table 2), which measures how

the optimum with respect to current salinity depends on the previ-

ous salinity, was higher in populations that evolved in more pre-

dictable environments, which also had higher tolerance breadth

(larger σ1). In addition, optimal salinities in the acclimation and

assay phases both shifted toward lower values with increased pre-

dictability.

GLYCEROL PLASTICITY EVOLVED IN RESPONSE TO

ENVIRONMENTAL PREDICTABILITY

We investigated how the level of glycerol, an osmoprotectant

known to be the main mechanism of salinity tolerance in D.

salina (Ginzburg 1988), evolved in response to our experimen-

tal evolution treatments. Intracellular glycerol concentration re-

sponded plastically to salinity, increasing in transfers from low

to high salinity, and decreasing for transfers from high to low
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Table 2. Impact of environmental moments of the salinity time series on evolution of the acclimated tolerance curve.

Intercept μS σ2
S ρS ρ2

S

rmax Estimate 0.949 0.043 0.193 –0.198 0.378
Standard Error 0.019 0.020 0.030 0.095 0.136
P-value 0.00 × 100 3.44 × 10–2 7.05 × 10–11 3.84 × 10–2 5.55 × 10–3

μ0 Estimate 2.865 0.129 –0.243 1.393 –2.749
Standard Error 0.063 0.061 0.086 0.286 0.449
P-value 0.00 × 100 3.38 × 10–2 4.76 × 10–3 1.09 × 10–6 9.53 × 10–10

μ1 Estimate 0.993 0.201 –0.933 3.747 –6.658
Standard Error 0.099 0.086 0.150 0.586 0.841
P-value 1.33 × 10–23 1.95 × 10–2 5.10 × 10–10 1.66 × 10–10 2.48 × 10–15

k Estimate 0.414 0.040 0.185 –0.831 1.573
Standard Error 0.030 0.026 0.043 0.132 0.192
P-value 2.59 × 10–44 1.17 × 10–1 1.46 × 10–5 3.45 × 10–10 2.43 × 10–16

1/σ2
0 Estimate 0.086 0.009 0.015 –0.004 0.012

Standard Error 0.005 0.005 0.007 0.016 0.024
P-value 1.54 × 10–68 8.29 × 10–2 1.95 × 10–2 8.23 × 10–1 6.15 × 10–1

1/σ2
1 Estimate 0.080 –0.002 –0.020 0.056 –0.094

Standard Error 0.004 0.003 0.003 0.007 0.010
P-value 5.43 × 10–99 5.83 × 10–1 2.28 × 10–10 7.27 × 10–16 3.13 × 10–21

δ Estimate –3.774 0.003 0.058 0.823 –1.349
Standard Error 0.135 0.128 0.169 0.452 0.687
P-value 3.43 × 10–173 9.79 × 10–1 7.29 × 10–1 6.87 × 10–2 4.95 × 10–2

δ0 Estimate –0.009 –0.143 0.002 –0.199 0.212
Standard Error 0.061 0.053 0.079 0.201 0.309
P-value 8.80 × 10–1 6.85 × 10–3 9.80 × 10–1 3.23 × 10–1 4.92 × 10–1

δ1 Estimate 0.946 0.045 0.110 –0.377 0.587
Standard Error 0.048 0.047 0.060 0.159 0.241
P-value 2.24 × 10–87 3.42 × 10–1 6.92 × 10–2 1.75 × 10–2 1.48 × 10–2

δ01 Estimate 0.946 0.045 0.110 –0.377 0.587
Standard Error 0.048 0.047 0.060 0.159 0.241
P-value 2.24 × 10–87 3.42 × 10–1 6.92 × 10–2 1.75 × 10–2 1.48 × 10–2

Note: Each row corresponds to one parameter of the bivariate function relating growth or mortality to current and previous salinity (eqs. 3 and 4). Each

column gives the estimate, standard error, and P-value from Wald test for the effect of each salinity moment (mean
−
Svariance σ2

S, autocorrelation ρS, and

predictability ρ2
S). Effects of the evolutionary treatment that are significant after Bonferroni correction for multiple (40) comparisons appear in bold.

salinities, consistent with previous findings in this species (Ben-

Amotz and Avron 1973). The dynamics of glycerol content was

asymmetric (as also shown in Rescan et al. 2020): glycerol con-

centration dropped faster after a transfer from 3.5 to 2 M (bot-

tom left in Fig. 3) than it increased after a transfer from 0.5

to 2 M (middle points and curve in top-left panel in Fig. 3),

because the former may involve rapid excretion (Zidan et al.

1987).

We detected evolution of plasticity of intracellular glyc-

erol content in response to our predictability treatments. A

significant interaction between assay salinity S1 (treated as a

categorical variable) and environmental predictability ρ2 (P-

value = 2.82 × 10–3, ANOVA on 1000 imputed dataset; Table

S4) demonstrated that lines that experienced different predictabil-

ities during experimental evolution responded differently to their

current salinity. Environmental predictability and autocorrelation

also affected the baseline glycerol content, regardless of plastic-

ity (P-value = 1.87 × 10–2 and 6.69 × 10–3 for ρ2 and ρ; Ta-

ble S4). These parameters of the evolutionary treatments (ρ, ρ2

and interaction ρ2:S1) jointly explained 25% of the phenotypic

variance that remained, after accounting for the effects of ac-

climation and assay salinities, and the timing of glycerol mea-

surement. The overall magnitude of plasticity, regardless of re-

action norm shape, can be quantified by the among-environment

component of phenotypic variance. Here, we found a negative

effect of ρ2 on the plastic variance in glycerol content among

salinities (−7 × 10–11, P-value = 4.1 × 10–2, multiple regres-

sion on the variance estimated for the 1000 imputed datasets),
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Figure 3. Evolution of plasticity in glycerol content. The reaction norms of intracellular (darker symbols, continuous lines) and total

(lighter symbols, dashed lines) glycerol concentration per Dunaliella cell against assay salinity are represented for different autocorre-

lations during experimental evolution (colors). Measurements made 1 hour, 8 hours, and 3 days after a salinity change are displayed in

different columns, whereas the rows correspond to different acclimation salinities. Stars indicate a significant joint effect of autocorre-

lation and predictability treated as continuous variables (∗P < 0.05 or ∗∗P < 0.01 after Bonferroni correction) on intracellular glycerol

content in the corresponding conditions (time and cross-salinity treatment).

indicating that lower plasticity levels evolved in populations ex-

posed to more predictable environments, mostly because of a

weaker response to the assay salinity (Fig. S5). This translates

the fact that populations from less predictable environments had

higher intracellular glycerol levels than other evolutionary treat-

ments at high salinities (2 and 3.5 M), but similarly low level at

0.5 M (green vs. other colors in Fig. 3; Table S3). This pattern is

most marked 8 hours posttransfer, when moving from 0.5 to 2 M,

and from 3.5 to 2 M or to 3.5 M (Table S3). Note that evolution

of plasticity was only weakly significant when assay salinity was

instead treated as a continuous variable (P-value = 3.97 × 10–2

for the interaction between S1 and ρ2, ANOVA on 1000 imputed

dataset), indicating that evolutionary changes in plasticity were

poorly captured by changes in the slope of a linear reaction norm.

Environmental predictability also affected the plasticity of

extracellular glycerol content, as evidence by a significant in-

teraction between acclimation salinity S0 and environmental

predictability and autocorrelation (P-value = 8.1 × 10–3 and

2.2 × 10–2, respectively, mi.anova on 1000 imputed dataset; Ta-

ble S5). The variance of intracellular glycerol across assay envi-

ronments (a measure of the overall magnitude of plasticity) de-

creased with increasing predictability of the evolutionary treat-

ment (−2.4 × 10–10, P-value = 7.9 × 10–3, multiple regression

on the variance estimated for the 1000 imputed datasets), imply-

ing that extracellular glycerol was also more plastic in popula-

tions that evolved in less predictable environments. In addition,

baseline extracellular glycerol level was impacted by the variance

of environmental fluctuations (Table S5; P-value = 2.0 × 10–3,

AVONA on 1000 imputed dataset), and significantly increased

with higher salinity variance during evolution, both 8 hours

(P = 1.43 × 10–5) and 3 days (P = 4.25 × 10–6) after a transfer

from 3.5 to 0.5 M. Since extracellular glycerol necessarily origi-

nates from Dunaliella in our experiment, this suggests that after

a salinity drop, more glycerol was not only produced, but also

excreted (as documented in this species; Zidan et al. 1987), in

populations having experienced larger fluctuations during exper-

imental evolution.

Discussion
We exposed lines of the halotolerant microalga D. salina to con-

stant and randomly fluctuating salinity for several months, to in-

vestigate how patterns of environmental fluctuations, especially

their predictability, influenced the evolution of its fundamental
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niche with respect to salinity. By measuring population growth

in 75 alternative combinations of acclimation × assay salinities,

we were able to estimate a bivariate tolerance surface with re-

spect to past and current environments. This allowed us to show

that the acclimation salinity during days prior to the assay had a

major impact on population growth in Dunaliella. In particular,

we found a strong decrease in growth, and increase in apparent

mortality, following a transfer from low to high salinities (Fig. 1).

EVOLUTION OF TOLERANCE SURFACES

Beyond these general characteristics of the acclimated tolerance

surface, we were able to analyze its evolution along its two

dimensions. First, we evidenced adaptation to the mean environ-

ment, with higher mean salinity during evolution leading to an

increase in the optimum, not only with respect to current, but

also to acclimation salinity. Second, populations that evolved un-

der fluctuating salinity had broader tolerance than those from

constant treatments. Third and more originally, we found that

the predictability of environmental fluctuations (as measured by

their squared autocorrelation) also had a number of evolutionary

impacts on the tolerance surface. In particular, more predictable

environments led to stronger influence of the acclimation envi-

ronment on the optimal assay environments (as measured by the

slope k), implying that current salinity tolerance was more condi-

tioned by past salinity. Higher environmental predictability also

led to lower optimal salinity (for acclimation and assay), and to

broader tolerance curves (with respect to the assay salinity). Note,

however, that caution is warranted when interpreting the breadth

parameter of the tolerance surface directly in terms of niche lim-

its. Indeed, salinity cannot be negative, whereas the maximum

salinity allowing positive growth depends not only on the breadth,

but also on the position and height of the tolerance surface. For

instance, the populations that evolve at ρ = 0 have the smallest

tolerance breadth, but their salinity niche is still larger because

they have a higher optimum while still being able to grow at the

minimum salinity (Fig. 2B).

THE ROLE OF GLYCEROL PLASTICITY

To gain more mechanistic insights on these evolutionary re-

sponses, we analyzed the dynamics of glycerol content, a compat-

ible solute used as osmoprotectant by D. salina (Chen and Jiang

2009). The asymmetric dynamics of glycerol content, with fast

decline under reduced salinity (notably via excretion) but slow

rise under increased salinity (Fig. 3), likely underlies asymme-

tries in the tolerance surface (Fig. 1), as previously highlighted in

Rescan et al. (2020). Regarding evolutionary differences among

treatments, the glycerol dynamics in Figure 3 helps shed light

on why salinity optima in the tolerance surface increased with

environmental predictability. After transfers to salinities above

0.5 M, populations that evolved in less predictable environments

had higher intracellular glycerol level. Intracellular glycerol con-

centration even increased without any salinity change (compare

1 vs. 8 hours in transfer from 3.5 to 3.5 M in Fig. 3), before de-

creasing back toward its initial value after 3 days. Unpredictable

environments were therefore associated with an ability to pro-

duce and maintain higher levels of intracellular glycerol at inter-

mediate to high salinities. This may explain the increase in (cur-

rent) salinity optimum in populations from unpredictable envi-

ronments. Beyond its osmoregulatory effect, higher glycerol level

may also provide an energetic source, as suggested by higher

growth rates at low salinities of populations coming from high

to medium salinity (and thus containing high levels of glycerol),

as compared to those that acclimated at low salinity.

The combination of low glycerol content at low salinity and

high glycerol content at medium/high salinity translated to evo-

lution of higher plasticity of intracellular glycerol in populations

that evolved in less predictable environments. Although this may

seem to contradict the narrower tolerance breadth of these pop-

ulations, it is actually consistent with their higher upper salinity

niche limit (Fig. 2B, upper right). We also found higher plasticity

of extracellular glycerol in response to past salinities in lines that

evolved in less predictable environments, and higher baseline ex-

tracellular glycerol content in populations that evolved in more

variable environments, suggesting higher glycerol excretion by

D. salina. This trait may play an important role in its natural en-

vironment, where this species co-occurs with heterotrophic bac-

teria (e.g., Halobacterium salinarum) and archaea (mainly Halo-

quadratum, and Halobacteriaceae such as Halorubrum), which

are able to remineralize organic carbon released by phytoplank-

ton, thus contributing to the so-called microbial-loop in the

aquatic carbon cycle (Baines and Pace 1991).

LIMITED CHANGE IN TOLERANCE SURFACES

Overall, the changes in tolerance surfaces that we detected

remained subtle, even after 200 generations of evolution.

Dunaliella salina conserved the broad salinity niche characteris-

tic of a halotolerant species, even after more than 200 generations

in approximately seawater salinity (for the constant low salinity

treatment), and evolution of optimum salinity did not lead to re-

duced growth at low salinity (no detected trade-off). The general

shape was also conserved across predictability treatments (Fig.

S2), rather than rotating to align with the pattern of environmen-

tal fluctuations (light dots in Fig. 2B), which suggests that salinity

tolerance surfaces are quite constrained in Dunaliella (Zhao et al.

2013). Nevertheless, our detailed measurement of tolerance sur-

faces across a broad combination of acclimation and assay salin-

ities still allowed us to detect evolutionary responses that would

probably have gone unnoticed using simpler approaches. Parti-

tioning of apparent death and growth rates confirmed that in phy-

toplankton, mortality becomes proportional to the abiotic stress
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when it exceeds the upper tolerance limit (as found with thermal

stress in a diatom; Baker and Geider 2021). On the other hand, we

were constrained to use a rather crude population growth model,

assuming exponential growth to estimate a net per capita growth

rate over 3 days. During this time lapse, populations might have

experienced more complex population dynamics, including lags

preceding exponential growth, or even decline followed by pop-

ulation rebound (Leung et al. 2020; Zeballos et al. unplubl.

ms.). Therefore, larger evolutionary responses of tolerance sur-

faces may have been revealed by a more detailed analysis of the

population dynamics to include these effects. This is especially

expected if some growth phases are more sensitive than others to

the environment, as shown previously for cell morphology (Le-

ung et al. 2020).

RELATION TO THEORETICAL PREDICTIONS

How do our results relate to theoretical predictions about evo-

lution of environmental tolerance, and the plasticity of under-

lying traits? The larger tolerance breadth that evolved in popu-

lation exposed to larger fluctuations is associated with a higher

maximal growth rate, contrary to expectations under a generalist-

specialist trade-off caused by a cost of plasticity (Chevin et al.

2010; Lynch and Gabriel 1987; Van Tienderen 1991), but con-

sistent with findings in other experimental systems (Karve et al.

2016; Kassen 2002; Scheiner 2002). The mechanisms involved in

salinity tolerance may not be very costly in our system, given that

niche breadth remains broad after evolution in constant salinities.

Here, the main trait involved in osmotic resistance is intracellu-

lar glycerol content, which adjusts continuously to the salinity

(Ben-Amotz and Avron 1973). Theoretical models predict that

the level of plasticity at evolutionary equilibrium should be pro-

portional to environmental autocorrelation, for a trait that is fixed

during development prior to selection (Gavrilets and Scheiner

1993; De Jong 1999; Lande 2009; Levins 1963; Moran 1992),

whereas for a labile trait, this is only true if there is a cost of plas-

ticity (Lande 2014). Our result that higher intracellular glycerol

plasticity evolved in populations exposed to unpredictable envi-

ronments does not conform to these predictions, and surprisingly

contrasts with previous results on the evolution morphological

plasticity in the same experiment (Leung et al. 2020). The pattern

we found here likely reflects that populations from unpredictable

environments consistently produced higher glycerol at medium

to high salinity, but not at low salinity (0.5 M). This response

may be adaptive, because the severe mortality induced by tran-

sitions from low to high salinity results in an asymmetric fitness

function. Theory has shown that such asymmetry can promote the

evolution of excessive phenotypes, such as overly costly immune

defenses, all the more as phenotypic variance is large (Urban et al.

2013). Here, the cost of delaying glycerol excretion at low salin-

ity is likely to be much lower than the benefit of retaining high

glycerol content in high salinities, such that it may be beneficial

to maintain hyper-optimal glycerol levels when cues about fu-

ture salinity are unreliable. More generally, the observation that

glycerol plasticity did evolve in response to environmental pre-

dictability, but in a direction opposite to most theoretical predic-

tions, suggests that these predictions may be challenged when the

simplifying assumptions they rely on (e.g., linear reaction norms,

symmetric fitness functions) are violated, and calls for novel the-

ory exploring these effects.

PREDICTABILITY VERSUS AUTOCORRELATION

Another puzzling result was that similar tolerance surfaces

evolved in negatively and highly positively autocorrelated envi-

ronments. This is all the more surprising as a strong acclima-

tion effect should be detrimental under negative autocorrelation.

Although surprising, this result is consistent with previous ob-

servations from the same experiment, where both the evolution

of morphological plasticity (Leung et al. 2020) and the direction

and strength of selection among competing strains (Rescan et al.

2021) depended not on the environmental autocorrelation, but

rather on its square (environmental predictability), such that neg-

ative and positive autocorrelations with similar magnitudes pro-

duced similar evolutionary outcomes. Possible explanations may

involve an effect of the salinity two transfers in the past, with cor-

relation ρ2 to the current salinity. In fast growing microbes such

as D. salina, daughter cells inherit large portions of their cyto-

plasm from their progenitors, such that with salinity changes ev-

ery three or four generations in average, salinity two transfers be-

fore may impact current intracellular content, fitness, and there-

fore selection. These somewhat unexpected results highlight how

confronting the outcome of experimental evolution with theoret-

ical predictions can yield interesting insights, and open possible

avenues for further theory. In particular, most theory on the evolu-

tion of plasticity does not address the dynamics of plastic changes

and tolerance curves (but see Gabriel et al. 2005; Lande 2014),

including asymmetries in rates of responses, and current conse-

quences of past changes. Incorporating these processes more ex-

plicitly may lead to substantial theoretical progress and stronger

connection with empirical results.
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Appendix A: Standard Glycerol Calibration

Glycerol concentrations extrapolation from optic density at

540 nm requires a standard calibration in conditions similar to

those of the experimental measures. We prepared 0, 1.5, and

15 mM glycerol solutions with salinities 0.5, 2, and 3 M. Ex-

act weights were measured to account for dilution errors induced

by glycerol high viscosity. Optical density at 540 nm (OD540)

was measured after adding 800 μL glycerol reagent solution to

200 μL of each of the standard glycerol solution. Three replicates

were measured for each salinity and standard glycerol concentra-

tion, and three additional replicates were taken for each condition

after glycerol solution filtration (2000 rpm, 5 minutes).

We regressed glycerol concentration against OD540 (Ta-

ble A1). As expected, the filtration procedure did not impact the

regression between glycerol concentration and OD540. However,

we found significant differences between salinities in both the in-

tercept and the slope of the regression. We therefore performed a

linear regression between glycerol concentration for each salinity

(Table A2; Fig. A1).

Table A1. Effect of filtration and salinities on glycerol measure

calibration.

Estimate Standard
Error

Pr(>|t|)

Intercept −0.059516 0.00868 1.49 × 10–8

Salinity[2] −0.049789 0.010675 2.69 × 10–5

Salinity[3.5] −0.006131 0.010595 0.566
Filtration 0.006062 0.008689 0.489
OD540 0.983862 0.00909 <2 × 10–16

OD540:Salinity[2] 0.400285 0.011062 <2 × 10–16

OD540:Salinity[3.5] 0.117126 0.010936 4.39 × 10–14

OD540:Filtration −0.003897 0.008926 0.664

Table A2. Regression between glycerol concentration andOD540

at the three salinities used in the experiment.

Salinity Intercept Slope

0.5 −0.056469 0.981893
2 −0.106270 1.382195
3.5 −0.062603 1.099026

Figure A1. Glycerol measure calibration
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