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LOCAL AND GLOBAL VISIBILITY AND GROMOV HYPERBOLICITY OF
DOMAINS WITH RESPECT TO THE KOBAYASHI DISTANCE

FILIPPO BRACCI†, HERVÉ GAUSSIER††, NIKOLAI NIKOLOV†††, AND PASCAL J. THOMAS

ABSTRACT. We introduce the notion of locally visible and locally Gromov hyperbolic domains
in Cd . We prove that a bounded domain in Cd is locally visible and locally Gromov hyperbolic
if and only if it is (globally) visible and Gromov hyperbolic with respect to the Kobayashi dis-
tance. This allows to detect, from local information near the boundary, those domains which are
Gromov hyperbolic and for which biholomorphisms extend continuously up to the boundary.
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1. INTRODUCTION

In dimension one (see, e.g., [5, Ch. 4]), Carathéodory’s prime end theory gives a precise char-
acterization of continuous extension of Riemann mappings between simply connected domains.
Carathéodory theory is based on the construction of a compactification with an abstract bound-
ary (whose points are the so-called prime ends) for which every Riemann map extends naturally
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as a homeomorphism up to the abstract boundary. Then the problem of continuous extension
is reduced to the problem of understanding for which simply connected domain the identity
map extends as a homeomorphism from the abstract Carathéodory boundary to the Euclidean
boundary.

Carathéodory’s theory extends to higher dimension for quasi-conformal maps, but, in general,
biholomorphisms are not quasi-conformal. Therefore, in order to study continuous extension
of biholomorphisms, one needs a different compactification of domains for which biholomor-
phisms extend naturally up to the abstract boundary. Several abstract compactifications have
been defined by different authors (see, e.g. [12]) for general metric spaces. In several complex
variables, since biholomorphisms are isometries for the Kobayashi metric, it is natural to con-
sider abstract compactifications with respect to such a metric and study their properties. Every
proper Gromov hyperbolic space (see the definition here under) has an abstract boundary, the
Gromov boundary, and a topology, the Gromov topology, which makes the space together with
that boundary into a compact space. Since isometries naturally extend to the Gromov bound-
ary, the fundamental questions now are characterizing Gromov hyperbolic domains in Cd and
studying the relations between their Euclidean boundary and their Gromov boundary.

In [1], it has been proved that C2-smooth bounded strongly pseudoconvex domains are Gro-
mov hyperbolic and that the identity map naturally extends as a homeomorphism from the
Gromov boundary to the Euclidean boundary (thus obtaining homemorphic extension up to the
closure of biholomorphisms between strongly pseudoconvex domains). The techniques in [1]
has been further developed in [13], obtaining a different proof of Fefferman’s extension theorem
[16].

In [7, 8, 9] this point of view has been used to prove extension of biholomorphisms between
Gromov hyperbolic convex domains, proving, for instance, that every convex map from the
ball whose image is convex extends as a homeomorphism up to the boundary regardless of the
regularity of the image. In [23, 24] it has been proved that a smooth bounded convex domain
is Gromov hyperbolic if and only if it is of D’Angelo finite type, while in [17] it is proved that
bounded smooth pseudoconvex domains in C2 of D’Angelo finite type are Gromov hyperbolic.
In [10], Gromov hyperbolicity of convex domains is shown to be equivalent to the existence
of a complete Kähler metric with holomorphic bisectional curvature negatively pinched close
to the boundary, suggesting the idea that Gromov hyperbolicity should be read only from local
properties near the boundary.

One of the features of Gromov’s compactification is visibility with respect to the Gromov
boundary. Roughly speaking, visibility with respect to a boundary means that geodesic lines
which converge to different points in that boundary bend inside the space. However, visibility
with respect to the Euclidan boundary has been exhibited for domains which are not Gromov
hyperbolic in [3, 2, 11, 20], and turns out to be a key notion for continuous extension of biholo-
morphisms and Denjoy-Wolff type theorems. In [14], this notion has been extended to embed-
ded submanifolds of Cd . Note also that a domain may be Gromov hyperbolic and embedded
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into Cd in such a way that it does not enjoy visibility with respect to its Euclidan boundary; see
the Remark at the end of Section 4.

The aim of this paper is to contribute to the previous line of ideas by showing that Gromov
hyperbolicity and visibility with respect to the Euclidean boundary of a bounded domain can be
detected just by local properties of the boundary. To be more concrete, we need some definitions.

For a domain Ω⊂ Cd , we denote by kΩ the infinitesimal Kobayashi pseudometric of Ω and
by KΩ the Kobayashi pseudodistance of Ω.

Let Ω ⊂⊂ Cd be a complete hyperbolic domain, meaning that (Ω,KΩ) is a complete metric
space. It follows from the Hopf-Rinow theorem that (Ω,KΩ) is geodesic and thus, every couple
of points in Ω can be joined by a geodesic for KΩ. If p,q∈Ω, we denote by [p,q]Ω any geodesic
joining p and q.

The metric space (Ω,KΩ) is Gromov hyperbolic if every geodesic triangle is δ -thin for some
δ > 0.

Any proper geodesic metric space (X ,d) which is Gromov hyperbolic can be embedded in
a compact space XG := X ∪ ∂GX with a topology that we call the Gromov topology whose
restriction to X coincides with the natural topology of X (see, e.g., [12]).

We now turn to the precise definition of visibility.
Let Ω ⊂ Cd be a bounded domain. Let p,q ∈ ∂Ω, p 6= q. We say that the couple (p,q)

satisfies the visibility condition with respect to KΩ if there exist a neighborhood Vp of p and a
neighborhood Vq of q and a compact subset K of Ω such that Vp∩Vq = /0 and [x,y]Ω∩K 6= /0 for
every x ∈Vp∩Ω, y ∈Vq∩Ω.

We say that Ω is visible if every couple of points p,q ∈ ∂Ω, p 6= q, satisfies the visibility
condition with respect to KΩ.

Definition 1.1. Let Ω⊂ Cd be a bounded domain and p ∈ ∂Ω. We say that

• Ω is locally Gromov hyperbolic at p if there exists an open neighborhood Up of p
such that Ω∩Up is connected, (Ω∩Up,KΩ∩Up) is complete hyperbolic and Gromov
hyperbolic,
• Ω is locally visible at p if there exists an open neighborhood Vp of p such that Ω∩Vp is

connected, (Ω∩Vp,KΩ∩Vp) is complete hyperbolic and there is an open neighborhood
V ′p⊆Vp such that every couple of points q1,q2 ∈ ∂Ω∩V ′p satisfies the visibility condition
with respect to KΩ∩Vp .

If Ω is locally Gromov hyperbolic (respectively locally visible) at every p ∈ ∂Ω we say that Ω

is locally Gromov hyperbolic (resp., locally visible).

The main result of this paper is the following:

Theorem 1.2. Let Ω⊂⊂ Cd . Then the following are equivalent:

(1) Ω is visible and (Ω,KΩ) is Gromov hyperbolic,
(2) Ω is locally visible and locally Gromov hyperbolic.
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Moreover, if (1) or (2)—and hence both—holds, the identity map idΩ : Ω→Ω extends continu-
ously as a surjective continuous map Ω

G→Ω.

We point out that, in the previous theorem, given p ∈ ∂Ω, the open neighborhood Up of p
such that (Up∩Ω,KUp∩Ω) is Gromov hyperbolic might be different from the open neighborhood
Vp of p such that every couple of points of ∂Ω∩V ′p satisfies the visibility condition with respect
to KVp∩Ω. However, it turns out, see Lemma 2.4, that also Up∩Ω is locally visible at p.

We also point out (see Proposition 2.9) that, if Ω is complete hyperbolic, Gromov hyperbolic
and visible, then the visibility condition holds for any open neighborhood U of any boundary
point, provided U ∩Ω is connected and complete hyperbolic.

Definition 1.3. If (Ω,KΩ) is Gromov hyperbolic and the identity map idΩ : Ω→ Ω extends as
a homeomorphism from the Gromov closure Ω

G to the Euclidean closure Ω, we say that Ω is a
Gromov model domain.

With this definition at hand, our initial discussion can be summarized (cf. [11]) as follows:

Remark 1.4. Let Ω1,Ω2 ⊂ Cd be bounded domains and let F : Ω1→Ω2 be a biholomorphism.
Assume Ω1 is a Gromov model domain (since F is an isometry for the Kobayashi distance, it
follows that (Ω2,KΩ2) is Gromov hyperbolic as well). Then,

(1) Ω2 is a Gromov model domain if and only if F extends as a homeomorphism from Ω1
to Ω2.

(2) the identity map idΩ2 : Ω2→ Ω2 extends continuously as a surjective continuous map
Ω2

G→Ω2 if and only if F extends as a continuous surjective map from Ω1 to Ω2.

If D ⊂⊂ Cd is a domain, following [11], we say that a geodesic line γ : (−∞,+∞)→ D is a
geodesic loop in D if γ has the same cluster set Γ in D at +∞ and −∞. In such a case we say
that Γ is the vertex of the geodesic loop γ .

Rephrasing [11, Thm. 3.3] we have that a complete hyperbolic, Gromov hyperbolic, visible
bounded domain is a Gromov model domain if and only if it has no geodesic loops. For the
sake of completeness, in Lemma 3.1, we give a direct proof that any Gromov model domain is
visible and has no geodesic loops.

Here we can “localize” such a result.

Definition 1.5. Let Ω ⊂ Cd be a bounded domain and p ∈ ∂Ω. We say that Ω has no local
geodesic loops at p if there exists an open neighborhood Wp of p such that Ω∩Wp is connected,
(Ω∩Wp,KΩ∩Wp) is complete hyperbolic and there is no geodesic loops for KΩ∩Wp whose vertex
contains p.

If Ω has no local geodesic loops at every p ∈ ∂Ω we say that Ω has no local geodesic loops.

Theorem 1.6. Let Ω ⊂⊂ Cd . Then Ω is a Gromov model domain if and only if it is locally
Gromov hyperbolic, locally visible and has no local geodesic loops.

There is no complete characterization of Gromov model domains, however, it is known that
the following are Gromov model domains:
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(1) bounded smooth strongly pseudoconvex domains (see [1]),
(2) bounded smooth convex domains of finite D’Angelo type (see [23]),
(3) Gromov hyperbolic (with respect to the Kobayashi distance) bounded or unbounded

convex domains (see [9]),
(4) bounded smooth pseudoconvex domains of finite D’Angelo type in C2 (see [17]),
(5) bounded Gromov hyperbolic (with respect to the Kobayashi distance) C-convex do-

mains with Lipschitz boundary (see Proposition 4.4),
(6) any domain biholomorphic to a Gromov model domain such that the biholomorphism

extends as a homeomorphism up to the boundary.
Theorem 1.6 allows us to “localize” the previous list as follows:

Corollary 1.7. Let Ω⊂⊂ Cd be a domain. Suppose that for every p ∈ ∂Ω there exists an open
neighborhood Up of p such that Up∩Ω is a Gromov model domain. Then (Ω,KΩ) is a Gromov
model domain.

In particular, if Ω⊂⊂ Cd is a domain such that there exists an open covering {U j} of ∂Ω so
that Ω∩U j is biholomorphic to any domain of the previous list of Gromov model domains and
the biholomorphism extends as a homeomorphism up to the closure, then (Ω,KΩ) is complete
hyperbolic, Gromov hyperbolic, visible and Ω

G is naturally homeomorphic to Ω.
The proofs of Theorem 1.2, Theorem 1.6 and Corollary 1.7 will be given in Section 3.
Finally, in Section 4, we consider C-convex domains with Lipschitz boundary and prove

item (5) of the previous list.

Acknowledgments. This work originated from conversations among the authors during the IN-
dAM Workshop “Gromov hyperbolicity and negative curvature in complex analysis” held at
Palazzone Cortona, Italy 6-10 September 2021.

The authors warmly thank the two anonymous referees for many useful comments which
improved the original manuscript.

2. PRELIMINARY RESULTS

Let (X ,d) be a metric space. If γ : [0,1]→ X is an absolutely continuous curve and 0 ≤ s <
t ≤ 1, we denote by ld(γ; [s, t]) the length of the restriction of γ to [s, t].

For an absolutely continuous curve γ : [0,1]→ X , we denote by ld(γ; [s, t]) the length of
the curve γ on [s, t], which is defined as the total variation sup∑

k
i=1 d(γ(ti−1),γ(ti)), where the

supremum is taken over all partitions s = t0 < t1 < .. . < tk = t. If X is a manifold and the
distance d is defined by a inner Finsler metric F on the tangent bundle T X (as it happens for
the Kobayashi distance), then ld(γ; [s, t]) =

∫ t
s F(γ(τ);γ ′(τ))dτ and d(γ(s),γ(t)) ≤ ld(γ; [s, t])

for all 0≤ s < t ≤ 1 (see, e.g., [19]).
Let A > 1 and B > 0. An absolutely continuous curve γ : [0,1]→ X is called a (A,B)-quasi-

geodesic if for every 0≤ s < t ≤ 1, we have :
1
A

d(γ(s),γ(t))−B≤ ld(γ; [s, t])≤ Ad(γ(s),γ(t))+B.
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Let (X ,d) be a geodesic metric space. For x,y ∈ X , we denote by [x,y]X a geodesic segment
joining x and y. A geodesic triangle T is the union of 3 geodesic segments (called sides) T =
[x,y]X ∪ [y,z]X ∪ [z,x]X joining 3 points x, y,z ∈ X .

A geodesic metric space (X ,d) is Gromov hyperbolic if there exists δ > 0 such that every
geodesic triangle T is δ -thin, that is, every point on a side of T has distance from the union of
the other two sides less than or equal to δ .

A geodesic metric space (X ,d) is called geodesically stable if for every A > 1 and B > 0
there exists M > 0 with the following property : If γ : [0,1]→ X is a (A,B)-quasi-geodesic,
there exists a geodesic segment [γ(0),γ(1)]X such that γ([0,1])⊂N d

M ([γ(0),γ(1)]X), where if
K ⊂Ω, we let

N d
M (K) := {x ∈ X : d(x,K)< M}.

We have (see, for instance, [4], Section 3 p.295) :

Theorem 2.1 (Geodesic stability). Let (X ,d) be a geodesic metric space. Then the following
conditions are equivalent:

(a) (X ,d) is Gromov hyperbolic,
(b) (X ,d) is geodesically stable.

Remark 2.2. If (X ,d) is Gromov hyperbolic then for every A,A′ ≥ 1 and B,B′ ≥ 0 there exists
M =M(A,A′,B,B′)> 0 such that, if γ : [0,1]→X is a (A,B)-quasi-geodesic and η : [0,1]→X is
a (A′,B′)-quasi-geodesic with γ(0) = η(0) and γ(1) = η(1) we have γ([0,1])⊂N d

M (η([0,1])).

We first start with the following lemmas. As remarked before, if Ω ⊂ Cd is a domain and
γ : [0,1]→Ω is an absolutely continuous curve, then lKΩ

(γ; [0,1]) denotes its integrated length
with respect to the Kobayashi metric, which coincides with the total variation of the curve with
respect to the Kobayashi distance, that is,

lKΩ
(γ; [0,1]) =

∫ 1

0
kΩ(γ(t);γ

′(t))dt.

Lemma 2.3. Let Ω ⊂⊂ Cd . Then, for every neighborhood U of p ∈ ∂Ω and for every neigh-
borhood V of p, V ⊂⊂ U, there exists A > 0, such that every absolutely continuous curve
γ : [0,1]→Ω∩V satisfies :

lKΩ∩U (γ; [0,1])≤ AlKΩ
(γ; [0,1]).

In particular, if [x,y]Ω ⊂V , then [x,y]Ω is a (A,0)-quasi-geodesic segment for KΩ∩U .

Lemma 2.3 is a direct consequence of the following Localization Lemma proved by H. Roy-
den, (see also Lemma 2.1 in [18]) :
Localization Lemma. Let Ω⊂⊂ Cd and let U be an open set such that U ∩Ω 6= /0. Then

kΩ(z;v)≤ kU∩Ω(z;v)≤ coth(KΩ(z,Ω\U))kΩ(z;v),

for any z ∈U and v ∈ Cd , where KΩ(z,Ω\U) := infw∈Ω\U KΩ(z,w).
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Proof of Lemma 2.3. Since V ⊂⊂U , it follows that there exists C > 0 such that KΩ(z,Ω\U)≥
C for all z∈V ∩Ω—hence there exists A > 0 such that coth(KΩ(z,Ω\U))≤ A for all z∈V ∩Ω.

Thus, taking into account that γ([0,1])⊂V , by the Localization Lemma, we have:

lKΩ∩U (γ; [0,1]) =
∫ 1

0
kΩ∩U(γ(t);γ

′(t))dt

≤
∫ 1

0
coth(KΩ(γ(t),Ω\U))kΩ(γ(t);γ

′(t))dt

≤ A
∫ 1

0
kΩ(γ(t);γ

′(t))dt = AlKΩ
(γ; [0,1]),

and we are done. �

Lemma 2.4. Let Ω be a domain and p ∈ ∂Ω. Assume U is an open neighborhood of p such
that U ∩Ω is a complete hyperbolic domain and (U ∩Ω,KU∩Ω) is Gromov hyperbolic. If Ω is
locally visible at p then there exists an open connected neighborhood V ⊂⊂U of p such that
every couple of points q1,q2 ∈V ∩∂Ω, q1 6= q2, satisfies the visibility condition with respect to
KU∩Ω.

Proof. Let W ′ ⊆W be open neighborhoods of p such that Ω∩W is complete hyperbolic and
every couple q1,q2 ∈ ∂Ω∩W ′, q1 6= q2, satisfies the visibility condition with respect to KΩ∩W .

Let V be an open, connected neighborhood of p such that V ⊂⊂U ∩W ′. We are going to
show that every couple of points q1,q2 ∈V ∩∂Ω, q1 6= q2, satisfies the visibility condition with
respect to KU∩Ω.

To this aim, choose an open set V ′ such that V ⊂⊂V ′⊂⊂U∩W . By the Localization Lemma,
there exist C1,C2 > 0 such that for any z ∈V ′, v ∈ Cn,

kΩ(z;v)≤ kΩ∩U(z;v)≤C1kΩ(z;v)

kΩ(z;v)≤ kΩ∩W (z;v)≤C2kΩ(z;v),

therefore, there is C > 1 such that

(2.1) C−1kΩ∩W (z;v)≤ kΩ∩U(z;v)≤CkΩ∩W (z;v).

Let q1 6= q2 ∈V ∩∂Ω, and take sequences {q j
k} ⊂V ∩Ω, such that limk→∞ q j

k = q j, j = 1,2.
By the visibility hypothesis on W ∩Ω, the geodesics [q1

k ,q
2
k ]Ω∩W intersect a fixed compact set

K for all k. Choose ok ∈ [q1
k ,q

2
k ]Ω∩W ∩K.

Claim A. If yk ∈ ∂V ∩ [q1
k ,q

2
k ]Ω∩W , then {yk} is relatively compact in W ∩Ω.

Indeed, if this were not the case, we can assume, up to extracting subsequences, that yk ∈
[q1

k ,ok]Ω∩W and that limk→∞ yk = y0 ∈ ∂V ∩ ∂Ω. Since y0 6= q1 by construction, the visibility
hypothesis implies that there exists xk ∈ [q1

k ,yk]Ω∩W such that {xk} is relatively compact in
Ω∩W . Hence, there exists T > 0 such that for every k,

T > KΩ∩W (xk,ok) = KΩ∩W (xk,yk)+KΩ∩W (yk,ok),
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but the right hand side tend to ∞ since KΩ∩W is complete, a contradiction and Claim A follows.

Now, if [q1
k ,q

2
k ]Ω∩W 6⊂V , let q3

k ∈ [q
1
k ,q

2
k ]Ω∩W ∩∂V be such that for all z ∈ [q1

k ,q
3
k ]Ω∩W \{q3

k},
it holds z ∈ V and let q4

k ∈ [q1
k ,q

2
k ]Ω∩W ∩ ∂V be such that for all z ∈ [q4

k ,q
2
k ]Ω∩W \{q4

k} it holds
z ∈V .

Since by Claim A, {q3
k} and {q4

k} are relatively compact in W ∩Ω and, by construction, they
belong to ∂V , we can join q3

k and q4
k with a smooth curve γk such that {γk} is relatively compact

in V ′∩Ω. In particular, for every k the length of γk is bounded by a constant independent of k,
with respect to any of the metrics kΩ, kΩ∩W , and kΩ∩U .

Therefore, the curve Γk := [q1
k ,q

3
k ]Ω∩W ∪γk∪ [q4

k ,q
2
k ]Ω∩W is a (1,B′)-quasi-geodesic for KΩ∩W ,

for some B′ > 0, and is contained in V ′. By (2.1), there exists A≥ 1 such that for all k, Γk is an
(A,B)-quasi-geodesic for KΩ∩U . Note that, by construction, Γk intersects a fixed compact set K
in Ω∩V ′.

By the Geodesic Stability Theorem applied to Ω∩U , any KΩ∩U -geodesic ηk between q1
k and

q2
k must lie within an M-neighborhood of this (A,B)-quasi-geodesic, for some M > 0 depending

only on A and B. Therefore ηk intersects for every k an M-neighborhood of K with respect to
KΩ∩U . Since KΩ∩U is complete, such a set is also compact in Ω∩U , and we are done. �

Lemma 2.5. Let Ω⊂⊂Cd be a complete hyperbolic domain and let p∈ ∂Ω. Let Up be an open
neighborhood of p such that (Up∩Ω,KUp∩Ω) is complete hyperbolic and Gromov hyperbolic.
Assume there exists V ⊂⊂ Up an open neighborhood of p such that every couple of points
q1,q2 ∈ ∂Ω∩V , q1 6= q2, satisfies the visibility condition with respect to KUp∩Ω. Then for every
W ⊂⊂V there exists C > 0 such that for all x ∈Ω∩W and y ∈Ω\V ,

sup
z∈[x,y]Ω

dEucl(z,∂Ω)≥C,

where dEucl denotes the Euclidean distance.

Proof. Arguing by contradiction, we assume that there exist a sequence {xν} ⊂ Ω∩W and
{yν} ⊂Ω\V such that

(2.2) lim
ν→∞

sup
z∈[xν ,yν ]Ω

dEucl(z,∂Ω) = 0.

Let y′ν ∈ [xν ,yν ]Ω be such that y′ν ∈ V \W and [xν ,y′ν ]Ω ⊂ V . Let A > 0 be the constant
associated to V,Up and given by Lemma 2.3. Then, [xν ,y′ν ]Ω is a (A,0)-quasi-geodesic segment
for KΩ∩Up , for every ν . Since (Ω∩Up,KΩ∩Up) is Gromov hyperbolic, by Remark 2.2 there
exists M > 0 such that for every ν

(2.3) [xν ,y′ν ]Ω∩Up ⊂N
KΩ∩Up

M
(
[xν ,y′ν ]Ω

)
.

Bearing in mind that Ω∩Up satisfies the visibility condition on ∂Ω∩V , there exists a compact
set K of Up∩Ω such that for every ν we can find zν ∈ [xν ,y′ν ]Ω∩Up with zν ∈ K.
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By (2.3), for every ν , there exists z′ν ∈ [xν ,y′ν ]Ω such that KΩ∩Up(z
′
ν ,zν) ≤M. Since Ω∩Up

is complete hyperbolic and {zν} ⊂ K, it follows that {z′ν} is relatively compact in Ω∩Up—and
hence in Ω, contradicting (2.2). �

Lemma 2.6. Let Ω⊂⊂Cd be a complete hyperbolic domain and let p∈ ∂Ω. Let Up be an open
neighborhood of p such that (Up∩Ω,KUp∩Ω) is complete hyperbolic and Gromov hyperbolic.
Let V ⊂⊂Up be an open neighborhood of p such that every couple of points p,q ∈ ∂Ω∩V ,
p 6= q, has the visibility condition with respect to KUp∩Ω. Let A > 0 be the constant given by
Lemma 2.3 associated to Up,V . Assume pν ,qν ∈Ω∩V are such that limν→∞ pν = limν→∞ qν =
p. If [pν ,qν ]Ω 6⊂V for every ν , then there exist C > 0 and p′ν ,q

′
ν ∈ [pν ,qν ]Ω∩V such that, for

every ν ,

(1) [pν , p′ν ]Ω ⊂V and [qν ,q′ν ]Ω ⊂V ,
(2) dEucl(p′ν ,∂Ω)>C and dEucl(q′ν ,∂Ω)>C,
(3) ∪ν [p′ν ,q

′
ν ]Ω∩Up is relatively compact in Ω∩Up.

(4) ∪ν [p′ν ,q
′
ν ]Ω is relatively compact in Ω.

Moreover, there exists B > 0 such that the curve [pν , p′ν ]Ω∪ [p′ν ,q′ν ]Ω∩Up ∪ [qν ,q′ν ]Ω is a (A,B)-
quasi-geodesic for KΩ∩Up .

Proof. Let W ⊂⊂ V be an open neighborhood of p such that {pν},{qν} ⊂W . Let a′ν ,b
′
ν ∈

[pν ,qν ]Ω\W be such that [pν ,a′ν ]Ω ⊂ V and [qν ,b′ν ]Ω ⊂ V . By Lemma 2.5 there exist p′ν ∈
[pν ,a′ν ]Ω and q′ν ∈ [qν ,b′ν ]Ω such that (2) holds for some C > 0 independent of ν .

Statements (3) and (4) follow at once taking into account that, since (Ω,KΩ) is complete
and {p′ν ,q

′
ν} ⊂⊂Ω∩Up, then ∪ν [p′ν ,q

′
ν ]Ω and ∪ν [p′ν ,q

′
ν ]Ω∩Up are relatively compact in Ω and

Ω∩Up respectively.
Finally, since [pν ,qν ]Ω is a geodesic for KΩ and

[pν ,qν ]Ω = [pν , p′ν ]Ω∪ [p′ν ,q′ν ]Ω∪ [qν ,q′ν ]Ω,

it follows by (3) and (4) that there exists B > 0 such that

lΩ∩Up([p
′
ν ,q
′
ν ]Ω∩Up) = KΩ∩Up(p′ν ,q

′
ν)≤ B≤ AKΩ(p′ν ,q

′
ν)+B = AlΩ([p′ν ,q

′
ν ]Ω)+B,

and such that for every ξ ∈ [pν , p′ν ]Ω and ζ ∈ [p′ν ,q
′
ν ]Ω∩Up ,

|KΩ∩Up(ξ , p′ν)−KΩ∩Up(ξ ,ζ )| ≤ KΩ∩Up(p′ν ,ζ )≤ KΩ∩Up(p′ν ,q
′
ν)≤

B
A+1

.

Using Lemma 2.3 for [pν , p′ν ]Ω and [qν ,q′ν ]Ω and the previous inequalities, it is easy to show
that [pν , p′ν ]Ω ∪ [p′ν ,q′ν ]Ω∩Up ∪ [qν ,q′ν ]Ω is a (A,B)-quasi-geodesics for KΩ∩Up . Indeed, if ξ ∈
[pν , p′ν ]Ω and ζ ∈ [p′ν ,q′ν ]Ω∩Up , let us denote by lΩ∩Up([ξ ,ζ ]) the length of the curve [ξ , p′ν ]Ω∪
[p′ν ,ζ ]Ω∩Up with respect to KΩ∩Up , and similarly denote by lΩ([ξ ,ζ ]) its length with respect to
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KΩ. Hence,
lΩ∩Up([ξ ,ζ ]) = lΩ∩Up([ξ , p′ν ]Ω)+ lΩ∩Up([p

′
ν ,ζ ]Ω∩Up)

≤ AKΩ∩Up(ξ , p′ν)+KΩ∩Up(p′ν ,ζ )≤ AKΩ∩Up(ξ ,ζ )+(A+1)
B

A+1
= AKΩ∩Up(ξ ,ζ )+B.

If ξ ∈ [pν , p′ν ]Ω and ζ ∈ [qν ,q′ν ]Ω, we have

lΩ∩Up([ξ ,ζ ]) = lΩ∩Up([ξ , p′ν ]Ω)+ lΩ∩Up([p
′
ν ,q
′
ν ]Ω∩Up)+ lΩ∩Up([q

′
ν ,ζ ]Ω)

≤ AlΩ([ξ , p′ν ]Ω)+AlΩ([p′ν ,q
′
ν ]Ω)+B+AlΩ([q′ν ,ζ ]Ω)

= AKΩ(ξ ,ζ )+B≤ AKΩ∩Up(ξ ,ζ )+B,

and we are done. �

Lemma 2.7. Let Ω⊂⊂ Cd be a domain. If Ω is locally visible then (Ω,KΩ) is complete hyper-
bolic.

Proof. We need to show that if {zk} ⊂ Ω is a sequence such that KΩ(z0,zk) ≤ C for all k and
for some C > 0 then {zk} is relatively compact in Ω. Suppose this is not the case and assume
that {zk} converges to p ∈ ∂Ω. Let V be an open neighborhood of p such that (Ω∩V,KΩ∩V )
is complete hyperbolic and let V ′ ⊆V be an open neighborhood of p such that every couple of
distinct points of ∂Ω∩V ′ satisfies the visibility condition with respect to KΩ∩V . Let W ⊂⊂ V ′

be an open neighborhood of p.
We can assume that {zk} ⊂W . Fix ε > 0. Let γk : [0,1]→ Ω be a smooth curve such that

γk(0) = z0, γk(1) = zk and

lKΩ
(γk; [0,1])≤ KΩ(z0,zk)+ ε ≤C+ ε.

If γk([0,1])⊂W , then by Lemma 2.3 there exists A > 0 such that

KΩ∩V (z0,zk)≤ lKΩ∩V (γk; [0,1])≤ AlKΩ
(γk; [0,1])≤ A(C+ ε),

and, since KΩ∩V is complete, we have a contradiction.
Therefore, we can find 0 < t0

k < t1
k < 1 such that γk(t) ∈W for all t ∈ [0, t0

k )∪ (t
1
k ,1] and

γk(t0
k ),γk(t1

k ) ∈ ∂W ∩Ω for all k.
If {γk(t0

k )} ∪ {γk(t1
k )} is relatively compact in Ω (and hence by construction in V ∩Ω), it

follows that KΩ∩V (γk(t0
k ),γk(t1

k )) ≤ T for some fixed T > 0 and for all k. Thus, arguing as
before, we have

KΩ∩V (z0,zk)≤ KΩ∩V (z0,γk(t0
k ))+KΩ∩V (γk(t0

k ),γk(t1
k ))+KΩ∩V (γk(t1

k ),zk)

≤ lKΩ∩V (γk; [0, t0
k ])+ lKΩ∩V (γk; [t1

k ,1])+T

≤ AlKΩ
(γk; [0, t0

k ])+AlKΩ
(γk; [t1

k ,1])+T

≤ AlKΩ
(γk; [0,1])+T ≤ A(C+ ε)+T,

again, a contradiction.
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Hence, {γk(t0
k )} ∪ {γk(t1

k )} is not relatively compact in Ω, and we can assume first that
{γk(t0

k )} converges to some q ∈ ∂Ω∩∂W . In particular, q 6= p. Thus, as before,

KΩ∩V (z0,γk(t0
k ))≤ lKΩ∩V (γk; [0, t0

k ])≤ AlKΩ
(γk; [0,1])≤ A(C+ ε),

again a contradiction.
Finally, we are left to consider the case {γk(t1

k )} converges to some q ∈ ∂Ω∩ ∂W . Arguing
as before, we see that

KΩ∩V (zk,γk(t1
k ))≤ A(C+ ε).

Now, by visibility condition, for every k there exists xk ∈ [zk,γk(t1
k )]Ω∩V such that {xk} is rela-

tively compact in V ∩Ω, but since

KΩ∩V (zk,xk)+KΩ∩V (xk,γk(t1
k )) = KΩ∩V (zk,γk(t1

k ))≤ A(C+ ε),

we have again a contradiction. �

We have

Corollary 2.8. Let Ω ⊂⊂ Cd be a domain which is locally Gromov hyperbolic and locally
visible. Then (Ω,KΩ) is complete hyperbolic and Ω is visible.

Proof. By Lemma 2.7, (Ω,KΩ) is complete hyperbolic.
In order to prove that Ω is visible, let p,q ∈ ∂Ω, p 6= q. Let Up be an open neighborhood of p

such that Up∩Ω is a complete hyperbolic domain and (Up∩Ω,KUp∩Ω) is Gromov hyperbolic.
By Lemma 2.5 there exists an open neighborhood V ⊂⊂ Up of p such that every couple of
points q1,q2 ∈V ∩∂Ω, q1 6= q2, satisfies the visibility condition with respect to KUp∩Ω.

Since q 6= p, we can choose V in such a way that q 6∈V . Let W ⊂⊂V be an open neighborhood
of p, let C > 0 be the constant given by Lemma 2.5 and let K := {ζ ∈Ω : dEucl(ζ ,∂Ω)≥C/2}.
Let Q be an open neighborhood of q such that Q∩V = /0. Hence, by Lemma 2.5, if x ∈ Ω∩W
and y ∈Ω∩Q then [x,y]Ω∩K 6= /0, and therefore p,q satisfies the visibility condition. �

As we stated in the introduction, whenever a domain is Gromov hyperbolic and visible, the
visibility condition holds locally:

Proposition 2.9. Let Ω⊂⊂Cd be a bounded domain. Suppose that (Ω,KΩ) is complete hyper-
bolic and Gromov hyperbolic and that Ω is visible. Let p ∈ ∂Ω and let W be an open neighbor-
hood of p such that Ω∩W is connected and complete hyperbolic1. Then every couple of distinct
points in ∂Ω∩W satisfies the visibility condition with respect to KΩ∩W .

Proof. We argue by contradiction. Suppose q1 6= q2 ∈W ∩∂Ω and there are sequences q1
k→ q1,

q2
k→ q2 such that for any compactum K ⊂Ω∩W , the KΩ∩W -geodesic [q1

k ,q
2
k ]Ω∩W avoids K for

k large enough.
Let V be a neighborhood of q1 such that V ⊂⊂W , and q2 /∈ V . We may assume that q1

k ∈ V
and q2

k 6∈ V for all k. There exists q′k ∈ ∂V ∩ [q1
k ,q

2
k ]Ω∩W such that [q1

k ,q
′
k]Ω∩W \ {q′k} ⊂ V . By

1This last property holds if, for example, W is complete hyperbolic.
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our assumption, passing to a subsequence, we may assume that q′k→ q′ ∈ ∂V ∩∂ (Ω∩W ). But
∂V ∩∂W = /0, so in fact q′ ∈ ∂V ∩∂Ω.

By Lemma 2.3, [q1
k ,q
′
k]Ω∩W is an (A,0)-quasi-geodesic for KΩ. By the Geodesic Stability

Theorem, [q1
k ,q
′
k]Ω ⊂ NM([q1

k ,q
′
k]Ω∩W ) for some M > 0, independent of k. By the visibility

condition for (Ω,KΩ), there is a compactum L ⊂ Ω such that L∩ [q1
k ,q
′
k]Ω 6= /0. Since Ω is

complete hyperbolic, NM(L) is relatively compact in Ω, and L′ := NM(L)∩V is a compactum
in W ∩Ω. But L′∩ [q1

k ,q
′
k]Ω∩W 6= /0 for all k, which contradicts our assumption. �

3. PROOF OF THE MAIN RESULTS

In this section we give the proofs of Theorem 1.2, Theorem 1.6 and Corollary 1.7.

3.1. Proof of Theorem 1.2.

Proof of Theorem 1.2. Since (1) implies (2) is trivial, we prove that (2) implies (1).
By Corollary 2.8, Ω is complete hyperbolic and visible. Thus we have to show that (Ω,KΩ)

is Gromov hyperbolic.
By Lemma 2.4, every p ∈ ∂Ω has open neighborhoods U ′p ⊆Up such that (Ω∩Up,KΩ∩Up)

is complete hyperbolic and Gromov hyperbolic and every couple of distinct points in ∂Ω∩U ′p
satisfies the visibility condition with respect to KΩ∩Up .

We assume, to get a contradiction, that for every integer ν ≥ 1, there exist xν , yν , zν ∈Ω and
aν ∈ [xν ,yν ]Ω such that for every ν

(3.1) KΩ(aν , [xν ,zν ]Ω∪ [yν ,zν ]Ω)≥ ν .

Up to extracting a subsequence, we may assume that there exist points x∞, y∞, z∞ and a∞ ∈Ω

such that

lim
ν→∞

xν = x∞, lim
ν→∞

yν = y∞, lim
ν→∞

zν = z∞, lim
ν→∞

aν = a∞.

We will consider different cases, depending on the respective locations of the points x∞, y∞, z∞, a∞.
Either x∞ or y∞ (or both) belongs to ∂Ω. Indeed, if x∞ ∈Ω and y∞ ∈Ω, then there is a compact

subset K of Ω such that [xν ,yν ]Ω ⊂K for every ν ≥ 1. It follows that supν≥1 KΩ(aν ,{xν ,yν})<
∞. This contradicts (3.1). We may then assume that x∞ ∈ ∂Ω.
Case I. a∞ ∈Ω, y∞ ∈Ω. Then, by the same argument as above, we have: supν≥1 KΩ(aν ,yν)<∞.
This contradicts (3.1).

Case II. x∞ 6= y∞,a∞ 6= x∞,a∞ 6= y∞.
Subcase II.1. y∞ ∈ Ω. From Case I, we know that a∞ ∈ ∂Ω. According to Lemma 2.5, there
exists C > 0 and, for every ν ≥ 1 there is a′ν ∈ [xν ,aν ]Ω such that

inf
ν>>1

dEucl(a′ν ,∂Ω)≥C.
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In particular there is a compact subset K′ of Ω such that for every ν ≥ 1, aν ∈ K′, yν ∈ K′. It
follows

sup
ν≥1

KΩ(aν ,yν)≤ sup
ν≥1

KΩ(a′ν ,yν)< ∞,

which contradicts (3.1).
Subcase II.2. y∞ ∈ ∂Ω. We may assume that z∞ 6= x∞ (otherwise, if z∞ = x∞ 6= y∞ we repeat
the argument switching x∞ with y∞). It follows from Lemma 2.5 that there exists C > 0 and, for
every ν ≥ 1, there exists z′ν ∈ [xν ,zν ]Ω such that

inf
ν≥1

dEucl(z′ν ,∂Ω)≥C.

Notice that if a∞ ∈Ω then supν≥1 KΩ(aν ,z′ν)< ∞, which contradicts (3.1). Hence, we neces-
sarily have a∞ ∈ ∂Ω.

It also follows from Lemma 2.5 that there exists C′ > 0 such that for every ν ≥ 1, there
exist x′ν ∈ [xν ,aν ]Ω and y′ν ∈ [aν ,yν ]Ω satisfying dEucl(x′ν ,∂Ω) ≥ C′, dEucl(y′ν ,∂Ω) ≥ C′. In
particular, there exists c > 0 such that supν≥1 KΩ(x′ν ,y

′
ν)≤ c. Hence,

c≥ KΩ(x′ν ,y
′
ν) = KΩ(x′ν ,aν)+KΩ(aν ,y′ν),

and since a∞ ∈ ∂Ω and Ω is complete, we obtain a contradiction.

From now on, let Vy∞
⊂⊂U ′y∞

, be an open neighborhood of y∞.

Case III. x∞ 6= y∞, a∞ = y∞ ∈ ∂Ω.
We consider two subcases.

Subcase III.1. z∞ 6= y∞. Fix an open neighborhood W ⊂⊂ Vy∞
of y∞. Up to starting from an

index ν0 > 1, we can assume that aν ,yν ∈W for all ν ≥ 1. We first notice that for every ν ≥ 1,
there exists pν ∈ [yν ,zν ]Ω∩ (Vy∞

\W ), such that [yν , pν ]Ω ⊂Ω∩Vy∞
. According to Lemma 2.5

there exists C > 0 such that for every ν ≥ 1 there exists z′ν ∈ [yν , pν ]Ω with dEucl(z′ν ,∂Ω)≥C.
Since y∞ = a∞ 6= x∞, by the same token as before, there also exists, for every ν ≥ 1, a point

a′ν ∈ [yν ,xν ]Ω such that [a′ν ,yν ]Ω ⊂Ω∩Vy∞
and dEucl(a′ν ,∂Ω)≥C.

We claim that aν ∈ [a′ν ,yν ]Ω. Assume this is not the case. Since a∞ = y∞ and x∞ 6= y∞, by the
same token as above applied to [xν ,aν ]Ω, we can find a′′ν ∈ [xν ,aν ]Ω such that [a′′ν ,aν ]Ω⊂Ω∩Vy∞

and dEucl(a′′ν ,∂Ω) ≥ C. Hence, aν ∈ [a′′ν ,a
′
ν ]Ω. But then, since {a′ν} and {a′′ν} are relatively

compact in Ω—say they are contained in the compact subset K of Ω—it follows that there
exists C′ > 0 such that for all ν ≥ 1,

C′ > KΩ(a′′ν ,a
′
ν) = KΩ(a′′ν ,aν)+KΩ(aν ,a′ν)≥ 2KΩ(aν ,K).

Since KΩ is complete and limν→∞ KΩ(aν ,K) = ∞, we have a contradiction and the claim fol-
lows.

Now, from Lemma 2.3, there exists A > 0 such that for every ν ≥ 1 :
• [yν ,z′ν ]Ω is a (A,0)-quasi-geodesic for KΩ∩Uy∞

,
• [a′ν ,yν ]Ω is a (A,0)-quasi-geodesic for KΩ∩Uy∞

.
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In particular, the curve [yν ,z′ν ]Ω∪ [z′ν ,a′ν ]Ω∩Uy∞
∪ [a′ν ,yν ]Ω is a (A,0)-quasi-geodesic triangle

for KΩ∩Uy∞
.

By assumption, (Ω∩Uy∞
,KΩ∩Uy∞

) is Gromov hyperbolic, and by the previous claim aν ∈
[a′ν ,yν ]. Hence, it follows from Remark 2.2 that there exists M > 0 such that for every ν ≥ 1 :

KΩ(aν , [yν ,z′ν ]Ω∪ [z′ν ,a′ν ]Ω∩Uy∞
)≤ KΩ∩Uy∞

(aν , [yν ,z′ν ]Ω∪ [z′ν ,a′ν ]Ω∩Uy∞
)≤M.

Since limν→∞ KΩ(aν , [yν ,z′ν ]Ω) = +∞, we obtain, for every ν >> 1 :

KΩ(aν , [z′ν ,a
′
ν ]Ω∩Uy∞

)≤M.

However, since dEucl(a′ν ,∂Ω) ≥C and dEucl(z′ν ,∂Ω) ≥C, there exists a compact subset K′ of
Ω∩Uy∞

such that [z′ν ,a
′
ν ]Ω∩Uy∞

⊂K′, for every ν ≥ 1. Since limν→∞ aν = a∞ ∈ ∂Ω and (Ω,KΩ)
is complete, this is a contradiction.
Subcase III.2. z∞ = y∞.

By Lemma 2.5, there exists, for every ν ≥ 1, a point z′ν ∈ [xν ,zν ]Ω such that [zν ,z′ν ]Ω ⊂ Vy∞

and dEucl(z′ν ,∂Ω)≥C. Equivalently, there exists a point a′ν ∈ [aν ,xν ]Ω such that [yν ,a′ν ]Ω⊂Vy∞

and dEucl(a′ν ,∂Ω)≥C. Moreover, as before, aν ∈ [yν ,a′ν ]Ω. Then as in Subcase III.1, we have :
- [yν ,a′ν ]Ω is a-(A,0) quasi-geodesic for KΩ∩Uy∞

,
- [zν ,z′ν ]Ω is a (A,0)-quasi-geodesic for KΩ∩Uy∞

.

•We assume first that for every ν >> 1, [yν ,zν ]⊂Vy∞
.

Consider, for every ν ≥ 1, the curve Cν := [yν ,a′ν ]Ω∪ [a′ν ,z′ν ]Ω∩Uy∞
∪ [z′ν ,yν ]Ω∩Uy∞

.
Since limν→∞ aν = a∞ and the set ∪ν≥1[a′ν ,z

′
ν ]Ω∩Uy∞

is relatively compact in Ω, we have
limν→∞ KΩ∩Uy∞

(aν , [a′ν ,z
′
ν ]Ω∩Uy∞

) = +∞.
Since (Ω∩Uy∞

,KΩ∩Uy∞
) is Gromov hyperbolic, it follows from the Geodesic stability The-

orem that there exists M > 0 such that for every ν ≥ 1, there exists a point z′′ν ∈ [z′ν ,yν ]Ω∩Uy∞

such that KΩ∩Uy∞
(aν ,z′′ν)≤M.

Consider now the curve C ′ν := [yν ,zν ]Ω∪ [zν ,z′ν ]Ω∪ [z′ν ,yν ]Ω∩Uy∞
. Increasing M if necessary,

we have, for every ν ≥ 1:

KΩ∩Uy∞
(z′′ν , [yν ,zν ]Ω∪ [zν ,z′ν ]Ω)≤M.

By the triangle inequality this implies

sup
ν≥1

KΩ∩Uy∞
(aν , [yν ,zν ]Ω∪ [zν ,z′ν ]Ω)≤ 2M,

contradicting (3.1).

•We assume now, by extracting a subsequence, that for every ν ≥ 1, [yν ,zν ] 6⊂Vy∞
.

Extracting again a subsequence if necessary, it follows from Lemma 2.6 that there is, for
every ν ≥ 1, a point y′ν ∈ [yν ,zν ]Ω such that [yν ,y′ν ]Ω ⊂Vy∞

and dEucl(y′ν ,∂Ω)≥C.
In particular, by Lemma 2.3, the curve

Cν := [yν ,a′ν ]Ω∪ [a′ν ,y′ν ]Ω∩Uy∞
∪ [y′ν ,yν ]Ω
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is a (A,0)-quasi-geodesic triangle for KΩ∩Uy∞
.

Since (Ω∩Uy∞
,KΩ∩Uy∞

) is Gromov hyperbolic, then changing M if necessary, Condition (3.1)
implies that for all ν ≥ 1

KΩ(aν , [a′ν ,y
′
ν ]Ω∩Uy∞

)≤ KΩ∩Uy∞
(aν , [a′ν ,y

′
ν ]Ω∩Uy∞

)≤M.

This contradicts the fact that the set ∪ν≥1[a′ν ,y
′
ν ]Ω∩Uy∞

is relatively compact in Ω and
limν→∞ aν = a∞ ∈ ∂Ω.

Case IV. x∞ = y∞ = z∞.
• Assume that for sufficiently large ν , [xν ,yν ]Ω, [yν ,zν ]Ω and [xν ,zν ]Ω are contained in Vy∞

. It
follows then from Lemma 2.3 that they are (A,0)-quasi-geodesic segments for KΩ∩Ux∞

. Hence,
since (Ω∩Ux∞

,KΩ∩Ux∞
) is Gromov hyperbolic, it follows from the geodesic stability Theorem

that there exists M > 0 such that

sup
ν>>1

KΩ(aν , [xν ,zν ]Ω∪ [yν ,zν ]Ω)≤ sup
ν>>1

KΩ∩Uy∞
(aν , [xν ,zν ]Ω∪ [yν ,zν ]Ω)≤M.

This contradicts (3.1).
• Assume, up to extracting a subsequence, that for every ν ≥ 1, [xν ,yν ]Ω 6⊂Vy∞

. It follows from
Lemma 2.6 that there exist B > 0 and points x′ν ,x

′′
ν ∈ [xν ,yν ]Ω such that

Cν := [xν ,x′ν ]Ω∪ [x′ν ,x′′ν ]Ω∩Up ∪ [x
′′
ν ,yν ]Ω

is a (A,B)-quasi-geodesic for KΩ∩Up and there exists M > 0 such that

[xν ,yν ]Ω ⊂N KΩ

M (Cν) .

In particular, KΩ(aν ,Cν)≤M and Condition (3.1) is equivalent to the existence, for every ν ≥ 1,
of a point a′ν ∈ Cν such that

(3.2) lim
ν→∞

KΩ(a′ν , [yν ,zν ]Ω∪ [zν ,xν ]Ω) = +∞.

- If [xν ,zν ]Ω and [yν ,zν ]Ω are contained in Vy∞
, then we get a contradiction since they are

both (A,0)-quasi-geodesic segments for KΩ∩Uy∞
and (Ω∩Uy∞

,KΩ∩Uy∞
) is Gromov hyperbolic,

so that Remark 2.2 implies

sup
ν>>1

KΩ∩Uy∞
(a′ν , [xν ,zν ]Ω∪ [yν ,zν ]Ω)<+∞.

- If either [xν ,zν ]Ω or [yν ,zν ]Ω is not contained in Vy∞
, we may replace it by a (A,B)-quasi-

geodesic segment for KΩ∩Uy∞
, using again Lemma 2.6. We construct in that manner a (A,B)-

quasi-geodesic triangle for KΩ∩Uy∞
with the three edges being Cν , a quasi-geodesic C ′ν joining

yν to zν and a quasi-geodesic C ′′ν joining zν to xν , such that

[yν ,zν ]Ω ⊂N KΩ

M
(
C ′ν
)

and
[xν ,zν ]Ω ⊂N KΩ

M
(
C ′′ν
)
.
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Hence, since (Ω∩Uy∞
,KΩ∩Uy∞

) is Gromov hyperbolic, there exists N > 0 such that

KΩ(a′ν ,C
′
ν ∪C ′′ν )≤ KΩ∩Uy∞

(a′ν ,C
′
ν ∪C ′′ν )≤ N,

contradicting Condition (3.2).
• Assume, up to extraction, that for every ν ≥ 1, [xν ,yν ]Ω ⊂ Vy∞

and that either [xν ,zν ]Ω or
[yν ,zν ]Ω is not contained in Vy∞

. We reproduce the same argument as in the previous case,
considering directly aν instead of a′ν . We obtain the same contradiction.

Case V. x∞ = y∞, z∞ 6= x∞.
Shrinking Vy∞

if necessary, we can assume that z∞ 6∈Vy∞
. We can also assume as in Case IV,

replacing aν with a′ν if necessary, that [xν ,yν ]Ω ⊂Vy∞
, for every ν ≥ 1. By Lemma 2.3, [xν ,yν ]Ω

is a (A,0)-quasi-geodesic segment for KΩ∩Uy∞
.

For every ν ≥ 1, let x′ν ∈ [xν ,zν ]Ω (resp. y′ν ∈ [yν ,zν ]Ω) be such that [xν ,x′ν ]Ω ⊂ Vy∞
(resp.

[yν ,y′ν ]Ω ⊂Vy∞
) and dEucl(x′ν ,∂Ω)≥C (resp. dEucl(y′ν ,∂Ω)≥C). Let

Cν := [xν ,x′ν ]Ω∪ [x′ν ,yν ]Ω∩Uy∞
∪ [yν ,xν ]Ω.

By Lemma 2.3, the curve Cν is a (A,0)-quasi-geodesic triangle for KΩ∩Uy∞
.

By Remark 2.2,
sup
ν≥1

KΩ(aν , [x′ν ,yν ]Ω∩Uy∞
∪ [xν ,x′ν ]Ω)

≤ sup
ν≥1

KΩ∩Uy∞
(aν , [x′ν ,yν ]Ω∩Uy∞

∪ [xν ,x′ν ]Ω)<+∞.

From Condition (3.1), we obtain

sup
ν≥1

KΩ(aν , [x′ν ,yν ]Ω∩Uy∞
)<+∞.

Let bν ∈ [x′ν ,yν ]Ω∩Uy∞
be such that supν≥1 KΩ(aν ,bν)<+∞. Since the curve

C ′ν := [yν ,y′ν ]Ω∪ [y′ν ,x′ν ]Ω∩Uy∞
∪ [x′ν ,yν ]Ω∩Uy∞

is a (A,0)-quasi-geodesic triangle for KΩ∩Uy∞
, we obtain as above

sup
ν≥1

KΩ(bν , [yν ,y′ν ]Ω∪ [y′ν ,x′ν ]Ω∩Uy∞
)<+∞.

From Condition (3.1) we obtain

sup
ν≥1

KΩ(bν , [y′ν ,x
′
ν ]Ω∩Uy∞

)<+∞.

The set ∪ν≥1[y′ν ,x
′
ν ]Ω∩Uy∞

being relatively compact, we have

sup
ν≥1, p∈[y′ν ,x′ν ]Ω∩Uy∞

(
KΩ(x′ν , p)

)
<+∞.

This implies
sup
ν≥1

KΩ(aν ,x′ν)<+∞,
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which is a contradiction. �

3.2. Proofs of Theorem 1.6 and Corollary 1.7. The Gromov compactification of a Gromov
hyperbolic space has no “geodesic loops” and is “visible” (in the sense of this paper, but con-
sidering the Gromov boundary instead of the Euclidean one)—this can be extrapolated from the
proof of [15, Prop. 2.1]—but, for completeness, here we prove directly the following lemma in
our setting.

Lemma 3.1. Let D⊂⊂Cd be a Gromov model domain. Then D is visible and D has no geodesic
loops.

Proof. Denote by I : D→ DG the inverse of the homeomorphism induced by the identity map
of D.

Assume D has a geodesic loop γ : R→ D, that is, for every s, t ∈ R, KD(γ(s),γ(t)) = |t− s|
and the cluster set of γ(t) at t =+∞ equals the cluster set of γ(t) at t =−∞.

Consider the two geodesic rays γ+ : [0,+∞) → D, γ+(t) := γ(t) and γ− : [0,+∞) → D,
γ−(t) := γ(−t). Hence, in the Gromov topology, limt→+∞ γ+(t) = [γ+] and limt→+∞ γ−(t) =
[γ−]. Since I is a homeomorphism, and γ is a geodesic loop, there exist p ∈ ∂D such that
[γ+] = [γ−] = I (p).

By definition of Gromov topology, this implies that there exists a constant C > 0 such that
KD(γ

+(t),γ−(t))≤C for all t ∈ [0,+∞). Hence, for all t ≥ 0,

2t = KD(γ
−(t),γ+(t))≤C,

a contradiction.
Next, let p,q ∈ ∂D, p 6= q. We need to show that p,q satisfy the visibility condition with

respect to KD.
We claim that there exist a compact set K ⊂⊂ D, an open neighborhood Vp of p and an

an open neighborhood Vq of q, such that for every x ∈ D∩Vp and every y ∈ D∩Vq we have
[x,y]D∩K 6= /0—hence p,q satisfy the visibility condition.

We argue by contradiction and assume the claim is false. Then there exist a sequence {zn} ⊂
D converging to p and a sequence {wn} ⊂D converging to q such that for every compact subset
K ⊂ D, we have [zn,wn]D∩K = /0 for every n sufficiently large.

Since KD is complete, up to extracting subsequences, we can assume that {Tn := KD(z0,zn)}
and {Rn := KD(z0,wn)} are strictly increasing.

For all n, let γn : [0,Tn]→ D be a geodesic such that γn(0) = z0, γn(Tn) = zn and let ηn :
[0,Rn]→D be a geodesic such that ηn(0)= z0, ηn(Rn)=wn. Since {γn} (and {ηn}) are equicon-
tinuous and equibounded on compacta, up to subsequences, we can assume that {γn} converges
uniformly on compacta to a geodesic ray γ : [0,+∞)→ D and {ηn} converges uniformly on
compacta to a geodesic ray η : [0,+∞)→ D. Taking into account that I is a homeomorphism,
it follows that {zn} converges in the Gromov topology of D to I (p) = [γ]∈ ∂GD and {wn} con-
verges in the Gromov topology of D to I (q) = [η ]∈ ∂GD, where ∂GD is the Gromov boundary
of D and [γ], [η ] are the points in ∂GD represented by γ and η .
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Let δ > 0 be the Gromov constant of D for which every geodesic triangle in D is δ -thin. Since
p 6= q, hence [γ] 6= [η ], it follows from the definition of Gromov topology that there exists s0 > 0
such that KD(γ(t),η(s0)) ≥ 2δ for all t ≥ 0. Taking into account that {γn} and {ηn} converge
uniformly on compacta to γ and η respectively, there exists N ∈N such that Tn > s0+δ , Rn > s0
for all n≥ N, and

KD(γn(t),ηn(s0))> δ , t ∈ [0,s0 +δ ], n≥ N.

Note that, for Tn ≥ t > s0 +δ ,

KD(γn(t),ηn(s0))≥ KD(γn(t),γn(0))−KD(ηn(s0),ηn(0)) = t− s0 > δ .

Therefore,
KD(γn(t),ηn(s0))> δ n≥ N, t ∈ [0,Tn].

Since geodesic triangles are δ -thin, it follows that for every n ≥ N there exists a point ξn ∈
[zn,wn]D such that KD(ηn(s0),ξn) ≤ δ . Since {ηn(s0)} converges to η(s0), this implies that
[zn,wn]D intersects a compact set K ⊂⊂ D for every n > N, a contradiction. �

Proof of Theorem 1.6. According to [11, Theorem 3.3] (see also Lemma 3.1) if Ω is a Gromov
model domain then Ω is Gromov hyperbolic, visible and has no geodesic loops. Conversely, by
Theorem 1.2, we have only to show that Ω has no geodesic loops.

Let Up be the open neighborhood of p such that Up ∩Ω is connected, (Up ∩Ω,KUp∩Ω) is
complete hyperbolic and Gromov hyperbolic. Arguing as in the proof of Lemma 2.4, using the
hypothesis that Ω has no local geodesic loops at p, we see that also Up∩Ω has no geodesic
loops at p.

Now, arguing by contradiction, assume γ : (−∞,+∞)→ Ω is a geodesic loop in Ω. Since
Ω has the visibility property, by [11, Lemma 3.1], there exists a point p ∈ ∂Ω so that
limt→±∞ γ(t) = p.

According to Lemma 2.6, it follows that Up∩Ω has a quasi-geodesic loop with vertex p. By
Remark 2.2, it follows that Up∩Ω has a geodesic loop with vertex p, contradiction. �

Proof of Corollary 1.7. Since Up ∩ Ω is a Gromov model domain for every p, then, by
Lemma 3.1, Up∩Ω is visible and Up∩Ω has no geodesic loops. Hence Ω is a locally Gromov
hyperbolic, locally visible, bounded domain and has no local geodesic loops, hence it is a
Gromov model domain by Theorem 1.6. �

4. BOUNDED GROMOV HYPERBOLIC C-CONVEX DOMAINS WITH LIPSCHITZ BOUNDARY

In this section we prove (see Proposition 4.4) that if Ω is a bounded C-convex domain with
Lipschitz boundary and (Ω,KΩ) is Gromov hyperbolic then Ω is a Gromov model domain. The
proof uses an extension to Lipschitz boundary of a result proven by Zimmer in the C1-smooth
case [24, Theorem 1.4], which allows to construct suitable quasi-geodesics and prove visibility.
Then, an argument similar to the one in [9] allows to show that there are no geodesic loops.

In order to prove the result, we need some preliminary.
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Let Ω ⊂ Cd be a bounded Gromov hyperbolic C-convex domain with Lipschitz boundary.
We can cover ∂Ω by a finite collection of open sets U j such that for each j there is a set of
affine coordinates, obtained by choosing a base point in ∂Ω and an orthonormal basis, in which

U j = {(z1,z2, . . . ,zd) : |Rez1|< r j,(Imz1)
2 + |z2|2 + · · ·+ |zd|2 < R2

j},

for some R j,r j > 0, and Ω∩U j = {z∈U j : Rez1 < Fj(Imz1,z2, . . . ,zd)}, where Fj is a Lipschitz
function. Let Vj be the vector (1,0, . . . ,0) in the coordinates corresponding to U j.

Lemma 4.1. There exist A > 1,B ≥ 0, a subcovering by U ′j ⊂⊂U j and ε j ∈ (0,r j) so that for
any p ∈U ′j∩∂Ω, t 7→ p− ε je−tVj, t ≥ 0, is a (A,B)-quasi-geodesic.

Proof. The Lipschitz condition on the boundary of ∂Ω implies that if z ∈U ′j, z close enough
to ∂Ω, and z = p− ε je−tVj =: γ(t) with p ∈ U ′j ∩ ∂Ω, then there exists C > 0 such that the
Euclidean ball B(γ(t),Cε je−t)⊂Ω. From this we deduce that there are constants a,b > 0 such
that

KΩ(γ(t),γ(t +a))≤ KB(γ(t),Cε je−t)(γ(t),γ(t +a))≤ b,

for any t. Thus, there exist A > 1,B≥ 0 so that for any t, t ′,

KΩ(γ(t),γ(t ′))≤ A|t− t ′|+B.

On the other hand, since Ω is a C-convex domain, by [24, Lemma 3.3], for t ≥ t ′,

KΩ(γ(t),γ(t ′))≥
1
4

log
‖γ(t)− p‖
‖γ(t ′)− p‖

=
1
4
|t− t ′|,

so we have the reverse inequality. The claim is proven. �

Proposition 4.2. If Ω ⊂ Cd is a bounded Gromov hyperbolic C-convex domain with Lipschitz
boundary, then ∂Ω cannot contain a non-trivial affine complex disc.

Proof. We follow the arguments of the proof of [24, Theorem 1.4].
Let ϕ : C −→ Cd be a complex affine map so that ∆ := ϕ(C)∩ ∂Ω has non-empty relative

interior in ϕ(C).
Take p a point of the relative boundary of ∆ in ∂Ω. Let U ′0 be an open neighborhood of p

with coordinate system given by Lemma 4.1. Let ∆0 := ∆∩U ′0. For every q ∈ ∆0 we define

qt := q− ε0e−tV0, t ≥ 0.

Consider any two points p′, p′′ ∈ ∆0. Because of Lemma 4.1, the curves given by p′t , p′′t , t ≥ 0,
are quasi-geodesics. We can choose ∆1 ⊂⊂ ∆0 a connected, simply connected relative open
set so that p′, p′′ ∈ ∆1. Then p′t , p′′t ∈ ∆1− ε0e−tV0 ⊂ Ω for every t ≥ 0, and letting ϕt(ζ ) :=
ϕ(ζ )− ε0e−tV0, we see that the preimages of p′t , p′′t under ϕt are contained in ϕ−1(∆1), a fixed
relatively compact subset of ϕ−1(∆0). It follows that

sup
t≥0

KΩ(p′t , p′′t )≤C
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for some C > 0 depending on ∆1. Hence, by [24, Proposition 4.3], there exists M > 0 (related
to the constant involved in the definition of Gromov hyperbolicity of Ω) such that

(4.1) sup
t≥0

KΩ(p′t , p′′t )≤M+KΩ(p′0, p′′0).

Let K ⊂Ω be the compact subset defined by

K :=
{

z ∈U ′0 : Rez1−F0(Imz1,z2, . . . ,zd)≤−ε0

}
.

Let
N := max

x,y∈K
KΩ(x,y).

Hence, it follows by (4.1) that for every σ ,τ ∈ ∆0,

sup
t≥0

KΩ(σt ,τt)≤M+N.

Now, let q ∈ ∆0. Therefore, if {pn} ⊂ ∆0 is a sequence converging to p, and taking into account
that limn→+∞ pn

t = pt for every t ≥ 0, we have

sup
t≥0

KΩ(qt , pt)≤M+N.

By [24, Proposition 3.5] it follows then that p,q are contained in the relative interior of an affine
disc in ∂Ω: a contradiction to the definition of p. �

Note that Proposition 4.2 recovers the convex case since any convex domain has Lipschitz
boundary.

The previous proof shows in fact that if D is a bounded Gromov hyperbolic C-convex domain
and L is a complex line such that the relative interior ∆L of L∩∂D in L is nonempty, then ∂D is
not Lipschitz near any boundary point of a connected component of ∆L. Such domains exist, as
shown by the next example:

Example 4.3. The example in [24, Prop. 1.9] is a C-convex domain Ω which is Gromov hyper-
bolic, contains many complex affine discs in its boundary, which is Lipschitz (or more regular)
except at the relative boundaries of the connected components of L∩∂Ω when L is a complex
line.

Let
C2 :=

{
(w0,w) ∈ C×Cd : Imw0 > ‖w‖

}
,

where ‖ · ‖ stands for the Euclidean norm in Cd . The domain C2 is unbounded, convex and
Gromov hyperbolic.

Let f (w0,w) :=
(

1
i+w0

, w
i+w0

)
. Note that f is a biholomorphism which preserves complex

lines, so Ω := f (C2) remains Gromov hyperbolic and C-convex.
Then let

Ω :=
{
(z0,z) ∈ C×Cd : ρ(z0,z) := Imz0 + |z0|2 + |z0|‖z‖< 0

}
.
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Note that Ω can also be seen as a (bounded) Hartogs domain over the disc D(− i
2 ,

1
2) of center

− i
2 and radius 1

2 , in the z0-plane, given by

‖z‖< Φ(z0) :=
Im(−z0)−|z0|2

|z0|
.

The cluster set of Φ at 0 is [0,1], so ∂Ω∩{z0 = 0}= {0}×Bd . In fact, {0}×Bd is the union of
all the open analytic discs contained in the boundary, since the complex Hessian of ρ is positive
definite at all the other points (when it is defined).

Near any point (p0, p) ∈ ∂Ω with |p0|‖p‖ 6= 0, and at (0,0), ρ is differentiable and
∇ρ(p0, p) 6= 0, so ∂Ω is smooth (actually C ∞).

Near points (p0,0) ∈ ∂Ω with p0 6= 0, Φ is smooth with non-vanishing derivative, so the
boundary is Lipschitz, and not C 1.

For any R ∈ (0,1), we have {reiθ}×D(0,R) ⊂ Ω if and only if r < cos(θ + π

2 )−R. This
defines a region PR bounded by a Lipschitz graph near 0 (tangent to a cone of aperture 2arccosR
centered on the negative imaginary axis). So at any boundary point (0, p) with ‖p‖= R∈ (0,1),
∂Ω is Lipschitz and not C 1. Note also that PR is contained in a disc of radius 1−R around 0.

Finally, for (0, p) with ‖p‖ = 1, let us consider points of the form zt := (0, p) + t(V0,V ),
where t > 0 and (V0,V ) ∈ C×Cd . If the boundary was Lipschitz near this (0, p), there should
be a whole open cone of vectors (V0,V ) such that ρ(zt) < 0 for 0 < t < ε , with ε depending
on the vector. However, limt→0+ t−1ρ(zt) = ImV0 + |V0|, so we must have V0 ∈ iR−, which is a
condition with empty interior.

A pair of boundary points {p,q} is not visible if and only if p,q ∈ {0}×Bd (and so the
conclusion of Proposition 4.4 does not hold in this example by [11, Theorem 3.3]).

Indeed, if p belongs to ∂Ω\{z0 = 0}, then we can choose W a neighborhood of p such that
(Ω∩W )∩{z0 = 0}= /0, so that Ω∩W is Gromov hyperbolic and has Lipschitz boundary, so it
has the visibility property by the next Proposition 4.4. Then it is easy to show that no geodesics
from p to q can escape from all compacta of Ω. The same argument holds when q /∈ {z0 = 0}.

If p,q ∈ {0}×Bd , we can approach them by sequences {pν},{qν} that approach {z0 = 0}
much faster than they approach ∂Ω \ ({0}×Bd), and construct curves inside analytic discs
parallel to {z0 = 0} which give a shorter Kobayashi length than any curve passing through a
compactum inside Ω.

Now we are ready to state and prove the main result of this section:

Proposition 4.4. If Ω ⊂ Cd is a bounded Gromov hyperbolic C-convex domain with Lipschitz
boundary, then Ω is a Gromov model domain.

Proof. Note that (Ω,KΩ) is complete hyperbolic (see e.g. [21, Proposition 3]).
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First we show that Ω is visible. Using coordinates as in Lemma 4.1, we define a compact set
L⊂Ω by

L :=

(
Ω\

⋃
j

U j

)
∪
⋃

j

{
z ∈U ′j : Rez1−Fj(Imz1,z2, . . . ,zd)≤−ε j

}
,

and a (one-sided) neighborhood V of ∂Ω in Ω by V := Ω\L. For any z ∈ V , we can choose a
point

z′ = (Fj(Imz1,z2, . . . ,zd)− ε j + iImz1,z2, . . . ,zd) ∈ L,
when z ∈U ′j (if z belongs to several open sets U ′j, just pick one, the choice does not need to be
continuous).

Assume by contradiction that Ω is not visible. Then we can find two sequences {pn},{qn} ⊂
Ω, converging, respectively, to p∈ ∂Ω and q∈ ∂Ω, p 6= q such that [pn,qn]Ω eventually escapes
any compact subset of Ω.

Up to subsequences, we can find a sequence {rn} such that rn ∈ [pn,qn]Ω for all n, and {rn}
converges to a point r ∈ ∂Ω\{p,q}.

For every a,b ∈ Cd , denote by [a,b] the real Euclidean line segment from a to b. By
Lemma 4.1, the Geodesic stability theorem and [24, Observation 4.4], there exists δ ′ > 0 such
that for any n > n0, the (A,B)-quasi-geodesic rectangle Ln = [pn,qn]Ω ∪ [qn,q′n]∪ [q′n, p′n]Ω ∪
[p′n, pn] is δ ′-thin (namely, each side is contained in the δ ′-tubular neighborhood of the union
of the other sides).

Since KΩ is complete, ∪n[q′n, p′n]Ω is relatively compact in Ω and KΩ(rn,Ln \ [pn,qn]Ω)≤ δ ′,
there exists a compactly divergent sequence {sn} ⊂ [qn,q′n]∪ [p′n, pn] such that for all n,

KΩ(rn,sn)≤ δ
′.

Therefore, by construction, {sn} accumulates to either p or q (or both). Say, limn→∞ sn = p.
But then, [6, Lemma A.2] (or [24, Proposition 3.5], which uses C-convexity but no addi-

tional smoothness), implies that ∂Ω contains affine discs through r and p, contradicting Propo-
sition 4.2. Therefore Ω is visible.

Finally, we show that Ω has no geodesic loops, so that Ω is a Gromov model domain by [11,
Thm. 3.3].

By contradiction, let γ : (−∞,+∞) → Ω be a geodesic loop. Since Ω is visible, by [11,
Lemma 3.1], every geodesic ray lands at a boundary point, hence, there exists p ∈ ∂Ω such
that limt→±∞ γ(t) = p.

Let γ+ : [0,+∞) → Ω be defined by γ+(t) := γ(t) and γ− : [0,+∞) → Ω be defined by
γ−(t) := γ(−t).

We are going to show that there exists C > 0 such that for all T ≥ 0,

(4.2) KΩ(γ
+(T ),γ−(T ))≤C.

Assuming this for the moment, we see that for all T ≥ 0,

2T = KΩ(γ
+(T ),γ−(T ))≤C,
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and thus a contradiction.
The argument to prove (4.2) is similar to the one in the proof of [9, Lemma 6.5], replacing the

quasi-geodesics defined by real segments for the convex case, with the quasi-geodesics defined
in Lemma 4.1. For the sake of clarity, we sketch it here.

Let U j be a neighborhood of p defined as before U ′j be as in Lemma 4.1 so that p ∈U ′j.
For t sufficiently large, since γ+(t) converges to p, we can define q+(t) ∈ ∂Ω∩U ′j in such

a way that there exists s ≥ 0 so that γ+(t) = q(t)+− ε je−sVj. Similarly define q−(t). Also,
define Q±t : [0,+∞)→ Ω∩U j as Q±t (r) = q±(t)− ε je−rVj. By Lemma 4.1, Q±t are (A,B)-
quasi-geodesics for t sufficiently large so that q±(t) ∈U ′j∩Ω.

Now, fix T > 0 sufficiently large so that for t ≥ T , Q±t are (A,B)-quasi-geodesics (here,
with some abuse of notation we use Q±t for denoting also the image of the curve Q±t ). Since
Q+

t (0) ∈ L (L the compact subset of Ω defined as above), the curve Q+
t ∪ [Q+

t (0),γ(0)]Ω is a
(A,B′)-quasi-geodesic for some B′ ≥ B. Hence, by the Geodesic Stability Theorem, there exists
some R > 0 such that for every t > T there exists zt ∈ Q+

t such that

KΩ(zt ,γ
+(T ))≤ R.

Note that {zt} is relatively compact in Ω. Since q±(t)→ p as t→+∞, and Q±t are real segments
parallel to Vj, it follows that for every t > T there exists wt ∈ Q−t such that

KΩ(zt ,wt)≤ R.

Again by the Geodesic Stability Theorem, we can find s≥ 0 such that

KΩ(γ
−(s),wt)≤ R.

Then, KΩ(γ
+(T ),γ−(s))≤ 3R. Therefore,

KΩ(γ
+(T ),γ−(T ))≤ KΩ(γ

+(T ),γ−(s))+KΩ(γ
−(s),γ−(T ))

= KΩ(γ
+(T ),γ−(s))+ |T − s|

= KΩ(γ
+(T ),γ−(s))+ |KΩ(γ

+(T ),γ(0))−KΩ(γ
−(s),γ(0))|

≤ 2KΩ(γ
+(T ),γ−(s))≤ 3R.

Thus, (4.2) follows, and we are done. �
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CNRS, UPS, F-31062 TOULOUSE CEDEX 9, FRANCE

E-mail address: pascal.thomas@math.univ-toulouse.fr


