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Our ability to predict natural phenomena can be limited by incomplete information. This issue is exemplified by “Laplace’s demon,”

an imaginary creature proposed in the 18th century, who knew everything about everything, and thus could predict the full na-

ture of the universe forward or backward in time. Quantum mechanics, among other things, has cast doubt on the possibility of

Laplace’s demon in the full sense, but the idea still serves as a useful metaphor for thinking about the extent to which prediction

is limited by incomplete information on deterministic processes versus random factors. Here, we use simple analytical models and

computer simulations to illustrate how data limits can be captured in a Bayesian framework, and how they influence our ability to

predict evolution. We show how uncertainty in measurements of natural selection, or low predictability of external environmental

factors affecting selection, can greatly reduce predictive power, often swamping the influence of intrinsic randomness caused by

genetic drift. Thus, more accurate knowledge concerning the causes and action of natural selection is key to improving prediction.

Fortunately, our analyses and simulations show quantitatively that reasonable improvements in data quantity and quality can

meaningfully increase predictability.
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Prediction is a critical component of the sciences, and a ma-

jor theme in evolutionary biology. For example, instances of

repeated, parallel evolution in response to similar environmen-

tal pressures can provide evidence of predictable evolution by

natural selection (e.g., Colosimo et al., 2005; Chevin et al.,

2010; Martin & Orgogozo, 2013; Soria-Carrasco et al., 2014;

Chaturvedi et al., 2018; Haenel et al., 2019; Rêgo et al., 2019;

Campbell-Staton et al., 2020; Ferris et al., 2021; Stuart et al.,

2022). In contrast, idiosyncratic outcomes can indicate con-

straints on the power of selection. At the core of this issue is the

extent to which evolution is driven by deterministic versus ran-

dom processes (Sober, 1984; Lenormand et al., 2009; Nosil et al.,

2020). Resolving this question concerning the predictability of

evolution is not only of great basic scientific interest but also

has practical implications for forecasting organismal responses

to natural and human-induced environmental change, the plan-

ning of plant and animal breeding programs, and the design of

medicines and strategies to combat the spread of disease. In

the end, all predictions are really probability distributions with

breadth (e.g., variance) reflecting our uncertainty about the un-

derlying processes. What we want to know here is how much

one can shrink those distributions through gaining a better under-

standing of natural selection.

Here, we focus on the ability to forecast evolutionary dy-

namics, that is trait values or allele frequencies, over time. There

are two main classes of explanation for limits in the ability of sci-

entists to predict evolution (Nosil et al., 2020). First, predictabil-

ity can be limited by random evolutionary processes, described



as the “random limits” hypothesis in Nosil et al. (2020). The

key mechanisms underlying the random limits hypothesis are

stochastic changes in allele frequency due to genetic drift and the

random nature of mutation (Wright, 1931; Sober, 1984). Second,

even evolution driven by natural selection–a deterministic fac-

tor conditional on the environment–could exhibit low predictabil-

ity, due to measurement error, and limited data and models that

in turn lead to poor understanding of selection and trait varia-

tion (the “data limits” hypothesis hereafter) (Reimchen, 1995;

Marques et al., 2018; Nosil et al., 2018, 2020). Under the data

limits hypothesis, the assumption is that with better data and bet-

ter analysis, evolution by natural selection can be better predicted.

Limits to our understanding of evolution by selection can occur

because environmental sources of selection, such as climatic con-

ditions or predator abundance, fluctuate in ways that are difficult

to predict (Grant & Grant, 2002; Lenormand et al., 2009; Nosil

et al., 2018; Chevin et al., 2022). And even if the environment

is constant or can be predicted, limited information about how

environmental factors affect resource and trait distributions, and

thus selection, can make evolution less predictable. We recently

treated these topics in a publication that helped lay a conceptual

foundation for studying the causes of variation in our ability to

predict evolution (Nosil et al., 2020). This previous study was

purely verbal and thus did not allow us to quantify the diverse

causes of variable predictability, or to begin to resolve their rela-

tive contributions and extent to which they could be ameliorated.

These are our main goals here.

The data limits hypothesis is exemplified by a thought ex-

periment proposed by 18th century mathematician Pierre-Simon

Laplace. This experiment, now called Laplace’s demon, posits

an imaginary creature with unlimited computational powers, who

knew everything about everything (i.e., the position and velocity

of all the particles in the universe), and thus could predict the full

nature of the universe forward or backward in time from the laws

of Newtonian physics. By analogy, we are interested in the extent

to which prediction of evolution can be improved by increased

knowledge stemming from data quantity and quality.

In contrast, random processes impose fundamental limits on

prediction, even for an all-knowing intellect like Laplace’s de-

mon, as true randomness persists even after accounting for all

causally relevant parameters affecting a process. Notably, the

only proposed source in the universe of absolute randomness in

this sense is the collapse of wave functions in quantum mechan-

ics (most clearly in spontaneous wave-function collapse theories

but also in a Bayesian context with branching in Everettian quan-

tum mechanics) (Wallace, 2012; Maudlin, 2019). Because these

quantum processes can directly impact mutation, mutation likely

includes a random component in this absolute sense. For exam-

ple, quantum transitions between keto and enol forms of guanine,

which bond with cytosine or thymine, respectively, can cause

mutations during replication (Kimsey et al., 2015, 2018; Carroll,

2020). Genetic drift, on the other hand, is random in a more lim-

ited sense (Sober, 1984). Variation in survival and fecundity that

gives rise to drift presumably has some deterministic causes that

could be known, but these causes are not the genotype or pheno-

type of the organism. Thus, change due to drift can be produc-

tively viewed as random with respect to genotype and phenotype,

and thus as random with respect to evolution by natural selection.

Finally, selection depends on the interactions of genes, phe-

notypes, and the environment, and the environment often varies

or fluctuates in space and time. There is a long and productive

history of modeling components of environmental variability as

random processes (e.g., Ohta, 1972; Gillespie, 1991; Lenormand

et al., 2009; Sæther & Engen, 2015; Chevin, 2019). Nonetheless,

most environmental variation is unlikely to be random in an abso-

lute sense, but rather reflects some combination of limited knowl-

edge (uncertainty), chaos, and complexity that can make aspects

of environmental change indistinguishable from random pro-

cesses (Sugihara et al., 1990). Indeed, even systems that are deter-

ministic may be fundamentally unpredictable in their dynamics.

Perhaps one of the best-known cases comes from physics, where

chaotic dynamics arise in three-body gravitating systems. These

systems can be so dependent on initial conditions that measure-

ment precision would need to be at or below the Planck length

(an extremely small scale at which quantum gravity becomes rel-

evant) to allow for reliable long-term predictions (Liao, 2013,

2014). It is unclear how often or to what extent environmental

variability falls into this category of fundamental unpredictabil-

ity. However, in at least some cases, some prediction about future

environments on some scales is possible, and such predictions

can likely be improved (if not perfected) with additional data and

better models or computational power. Our focus here is on this

aspect of environmental variability, which we place within the

data limits hypothesis (we return to the topic of environmental

variability and randomness in the Discussion).

Herein, we begin by considering constraints on predicting

evolution in analytical models that include drift and uncertainty

in the strength of selection. We then use simulations to go beyond

these analytical models and jointly consider multiple sources of

uncertainty–environmental variation, genetic drift, selection, and

genetic architecture–and how predictability varies over time. We

do so via two case studies that are motivated by empirical sys-

tems, but our results do not correspond one-to-one to any partic-

ular biological system (i.e., our approach is not a model-fitting

endeavor). Thus, the concepts invoked here are grounded in em-

pirical reality but apply to a wide range of environmental factors,

traits, and taxa (as we discuss below). We quantify predictabil-

ity based on the variability among different probable evolution-

ary trajectories. The rationale for this choice is that evolution is

more predictable when probable evolutionary trajectories (i.e.,



alternative, reasonable outcomes from replaying the tape of life)

are more similar. We specifically consider the precision (recip-

rocal of the variance) in allele frequencies or trait values as a

metric of predictability. In this context, higher precision denotes

higher predictability (this avoids comparisons to some assumed,

“actual” evolutionary trajectory, which is especially problematic

when incorporating genetic drift).

We emphasize Bayesian inference and prediction throughout

our quantitative treatment of predicting evolution. We do this be-

cause Bayesian methods provide a clear, probabilistic framework

for quantifying and updating uncertainty (Figure 1a). Prior proba-

bility distributions describe initial uncertainty about relevant de-

mographic or evolutionary parameters, such as the strength of

selection. These prior distributions are then updated repeatedly

by observations and experiments generating increasingly more

informative posterior probability distributions, that is reduced

uncertainty about model parameters. Posterior distributions are

the basis for probabilistic predictions of evolutionary trajecto-

ries. Importantly, with Bayesian methods it is often possible to

accurately estimate the effect of additional data on shrinking the

uncertainty in posteriors, and thus on increasing predictive power

for evolutionary trajectories. We take just such an approach with

both the analytical models and case studies here. This informa-

tion can guide decisions about which additional experiments or

studies might be most useful for increasing scientists’ ability to

accurately predict evolution.

Analytical Arguments and
Case-study Simulations
ANALYTICAL ARGUMENTS

We begin by showing quantitatively and concretely how random

genetic drift and uncertainty in selection combine to place limits

on our ability to predict evolution under simple conditions. We do

this in an explicitly Bayesian framework. First, consider a single

locus evolving for one generation by random drift and (uncertain)

selection. We can approximate the expected allele frequency

p in the subsequent generation t + 1 as pt+1 ≈ p + p(1 − p)s,

where s is the selection coefficient (defined from relative fit-

nesses as wAA = 1 + 2s, wAa = 1 + s and waa = 1, assuming

additivity) (Walsh & Lynch, 2018). Genetic drift and uncertainty

in selection (i.e., imperfect knowledge of the value of s) each

contribute additively to the variance around this expectation.

Specifically, the variances caused by drift and uncertainty in

selection are p(1−p)
2Ne and (p(1 − p))2var(s), respectively, with Ne

denoting the effective population size and var(s) the variance

of a Bayesian (prior or posterior) distribution for s. Uncertain

selection should impose a greater limit on predictability than

drift when var(s)p(1 − p) > 1
2Ne (Ohta, 1972; Chevin, 2019)

(this relationship was derived for the case where the variance in

(a)

(b)

(c)

Figure 1. Conceptual overview of Bayesian updating of uncer-

tainty and summary of predictability from simple analytical mod-

els. Panel (a) illustrates the effect of increasing the sample size of

an experiment on a Bayesian posterior distribution (the example

here assumes a binomial likelihood and conjugate beta prior distri-

bution). Colors denote posteriors based on different sample sizes.

Heat maps in panels (b) and (c) show the precision (reciprocal of

the variance) in the allele frequency (b) or mean trait value (c) fol-

lowing one generation of evolution by drift and selection. Darker

colors indicate higher precision (predictability). Results are shown

over a range of effective population sizes and experimental sam-

ple sizes with selection coefficients (b) or selection differentials (c)

of 0.1. The initial allele frequency in (b) is 0.5 and the trait heri-

tability in (c) is 0.5. Results with other levels of genetic variation

are shown in Figure S1.



s is caused by a randomly fluctuating environment, but applies

equally well to the case here of uncertainty in a fixed value of s).

Whereas Ne is an intrinsic property of the system, var(s)

depends on data and a statistical model. And importantly, the

magnitude of var(s) declines with more precise estimates of se-

lection. We can make this explicit with an example. Assume the

relative fitnesses of alternative homozygotes are estimated from

a release-recapture experiment with equal initial release frequen-

cies (we focus on an experiment without heterozygotes for math-

ematical simplicity). Let y denote the number of AA individuals

recaptured out of n recaptures. If we assume a binomial sam-

pling distribution (likelihood) with a conjugate beta prior on the

binomial parameter (denoted π to avoid confusion with p, the al-

lele frequency), the posterior distribution has a known form of

Pr(π|y, n) ∼ beta(α = a0 + y, β = b0 + n − y). Here, a0 and b0

denote prior sample sizes, which could reflect past experiments

or could be set to low values to denote prior ignorance; y and n

depend on the sample size of the current experiment. This im-

plies a variance for s of α(α+β−1)
(β−2)(β−1)2

1
4 (Johnson et al., 1995). We

illustrate the corresponding precisions in allele frequency (i.e.,

the predictability of allele frequency) over a range of values of

effective population sizes (random limits) and sample sizes (data

limits) in Figure 1b (also see Figure S1). Importantly, our results

show that drift and uncertain selection can place comparable lim-

its on the precision of predictions, and that increasing the exper-

imental sample size (reducing the data limits) has a more pro-

nounced effect when Ne is not too small.

Second, consider the evolution of a quantitative trait by

random drift and (uncertain) selection. The expected change in

the mean trait value in one generation is given by the breeder’s

equation, R = h2S where S is the selection differential and h2 is

the trait’s heritability (
σ2

g

σ2
z
). Again, drift and uncertainty in selec-

tion contribute variances around this expectation of σ2
g/(2Ne) and

(h2)2var(S), respectively (Lande, 1976). Here, σ2
g is the additive

genetic variance and var(S) comes from a Bayesian probability

distribution that depends on data and a model. We can again

make the latter explicit with an example. Assume knowledge of S

comes from regressing fitness (or a component of fitness) on stan-

dardized trait values (e.g., Lande & Arnold, 1983). If we model

the data with a normal sampling distribution (likelihood) and a

normal prior on the standardized selection differential (and for

simplicity assume that the residual variance is known), the poste-

rior distribution on S (here, the standardized selection differential

which is equivalent to the standardized regression coefficient or

selection gradient) is normal with var(S) = σ2

n0+n . Here, σ2 is the

residual trait variance, and n0 and n are prior and actual sample

sizes for the experiment. We show the corresponding precisions

for the predicted mean trait values with different effective pop-

ulation sizes (random limits) and sample sizes (data limits) in

Figure 1c (also see Figure S1). As for the single locus case,

effective population size and experimental sample size have

similar effects on our ability to predict evolution, and once again

only the latter is (partially) under the control of scientists.

Additional constraints on predictability occur when selec-

tion depends in an uncertain way on the environment or on an

uncertain future environment. For example, if the selection dif-

ferential S is a linear function of the environment x, such that

S = a + bx, then the total variance caused by fluctuating and

poorly predicted selection alone is var(h2S) = (h2)2[var(a) +
E (b)2var(x) + E (x)2var(b)], which may be quite large if envi-

ronmental fluctuations are substantial and poorly predicted (large

var(x)), or if there is uncertainty in selection (var(a)) or in how

it varies with the environment (var(b)) (a similar argument could

be made for selection on a single locus). Uncertainty in genetic

architecture further inflates this variance by making h2 a random

variable. Additional limits to prediction occur when considering

the genetic loci underlying a quantitative trait. In such cases, the

genetic effects on traits are often only ascribed probabilistically,

and causal variants are often not even known; instead we detect

genetic variants in linkage disequilibrium with putative causal

ones. Jointly considering these different sources of uncertainty

is beyond the reach of the simple analytical arguments laid out

in this paragraph. Instead, we now turn to simulation-based case

studies to begin to explore the relative, quantitative importance

of different sources of uncertainty on predicting evolution where

these complexities can be modeled explicitly and jointly under

realistic conditions. These simulations also allow us to examine

the decline in predictability over time, that is from a few to tens

of generations.

OVERVIEW AND MOTIVATION OF CASE STUDIES

The two case studies concern selection that varies in space and

time, but for distinct reasons that should make the first case more

predictable than the second. The case studies also introduce un-

certainty in the genetic basis of the trait under selection, again

with differences that should make the first case more predictable

than the second. The first involves predator behavior and the evo-

lution of anti-predator traits, motivated by long-term studies of

the evolution of cryptic coloration in stick insects (Nosil et al.,

2018). This scenario incorporates frequency-dependent selection,

which has been shown to increase the predictability of evolu-

tion under some conditions, even in an unpredictable environ-

ment (Chevin et al., 2022). The second involves climatic variation

and the evolution of trophic traits, motivated by long-term stud-

ies of beak size evolution in Darwin’s finches (Grant & Grant,

2002). We quantify uncertainty by computing the variance in evo-

lutionary outcomes among replicate simulations under each sce-

nario (e.g., with and without genetic drift, with and without un-

certainty in natural selection, variable sample sizes, and genetic

architectures). Thus, the results tackle another famous thought



experiment posed by Stephen J. Gould on the extent to which

repeatedly ‘replaying the tape of life’ would yield similar evo-

lutionary outcomes (Gould, 1990). Our simulations show how

data limits can strongly mediate the extent to which scientists can

predict evolution, and how modest increases in the size or scale

of experiments can meaningfully reduce these data limits, with

the goal of motivating progress towards making evolution a more

predictive science.

CASE STUDY 1: PREDATION AND

FREQUENCY-DEPENDENT SELECTION

Predation affects most organisms and is a common and general

source of natural selection (Reimchen, 1995; Meyer & Kassen,

2007; Svensson & Friberg, 2007). Predation can cause negative

frequency-dependent selection (NFDS) when predators focus on

more common prey types. In such cases, the fitness of a pheno-

type is expected to fluctuate because it depends on its frequency

in the population and involves feedbacks with predator choice.

This has been documented, for example, in cichlids, guppies,

stickleback, and stick insects (Hori, 1993; Olendorf et al., 2006;

Hughes et al., 2013; Bolnick & Stutz, 2017; Nosil et al., 2018).

Moreover, evolutionary dynamics and equilibrium outcomes in

predator–prey systems and under NFDS have received consider-

able theoretical attention (Abrams, 2000; Abrams et al., 2008;

Chevin et al., 2022). Such systems might represent cases where

evolution is easier to predict, especially when selection is primar-

ily a function of the current state (phenotype frequency) of a focal

population. Thus, we first consider predictability in the context of

predation and NFDS.

We used data concerning NFDS on color pattern in the stick

insect Timema cristinae to help guide our choice of parameters

for our illustrative model (Nosil et al., 2018). We emphasize

that our goal is not to fit a model for the T. cristinae system,

but rather to ensure that we use biologically relevant parameters

and data-based levels of uncertainty. Timema cristinae exhibits

striped and unstriped color-pattern morphs. Striped morphs are

more cryptic on one host plant (Adenostoma), and thus gener-

ally favored on this host by selection from visual predators such

as birds and lizards (Sandoval, 1994a, 1994b; Nosil, 2004; Nosil

& Crespi, 2006). However, experimental and observational data

show that striped individuals are less fit when they become very

common compared to when they are rarer, thus demonstrating

NFDS (Nosil et al., 2018).

We quantified the effects of limited knowledge of selection

and genetic drift on the ability to predict evolutionary trajectories

under NFDS (Figure 2a). We did this through three comparisons.

First, for uncertainty in selection, we are referring to what hap-

pens when one predicts the future course of evolutionary change

when one has exact knowledge of, for example, selection coeffi-

cients for traits under NFDS at different frequencies versus less

exact estimates, reflected in a Bayesian probability distribution

for these values. In the case of uncertainty in selection, we elimi-

nate the randomness due to drift by simulating an infinite popula-

tion size. Second, in the drift analysis, we consider having exact

information for all the relevant variables affecting selection, but

simulate finite-sized populations. Thus, the course of selection is

determined by our exact knowledge of how selection would work,

plus a degree of randomness introduced by genetic drift in a finite

population size. Finally, in drift plus uncertainty in selection sim-

ulations, the above uncertainty in selection is incorporated into

the runs along with finite population size, introducing the effects

of random drift.

The logic then is that by comparing the three types of sim-

ulations, the relative effects of drift versus uncertainty in selec-

tion can be resolved with respect to their effects on predicting

evolutionary change. This can further help identify cases where

one can, through increased sampling and rigor in experimental

design, decrease the variance in the Bayesian probability distri-

butions around these point estimates to see how much this effort,

which is at least empirically tractable to some degree, can im-

prove our ability to forecast evolution.

We assumed the existence of two morphs or phenotypes, de-

noted “A” (e.g., striped) and “B” (e.g., unstriped). We further

assumed that the A phenotype was advantageous when its pop-

ulation frequency was not too high (less than a critical value),

with relative fitness values of wA and wB for the A and B morphs,

and with wA > wB. However, when A was very common (above

a critical value) we assumed selection favored the B morph with

w∗
B > w∗

A (here w∗ denotes relative fitness when morph A is very

common). We based the magnitude of uncertainty in selection on

the sample sizes and results from a T. cristinae release-recapture

field experiment. In this experiment, 500 T. cristinae stick insects

were released in two treatments, one with an initial stripe fre-

quency of 20%, and one with an initial stripe frequency of 80%.

Survivors were then collected to estimate the strength of selection

for or against stripe under the two different treatments (see Nosil

et al., 2018). In both treatments, survival was measured on the

host plant Adenostoma. The initial stripe frequencies for the two

treatments were chosen based on our expectations that they would

be on different sides of the critical point where NFDS would al-

ternately favor the striped versus non-striped form.

For our current purposes, we obtained Bayesian estimates

of survival probabilities assuming a binomial likelihood for

recapture in each treatment and with uninformative beta priors

on the recapture probabilities (the beta priors set both shape pa-

rameters, i.e., prior sample sizes a0 and b0, to 0). This resulted in

closed-form posterior distributions for absolute fitness (survival

probabilities) of beta(52, 48) (mean = 0.52) and beta(62, 338)

(mean = 0.155) for the A (striped) and B (unstriped) morphs,

respectively (these values come from the experiment with stripe



(a)

(b)

Figure 2. Illustrative overview of the case studies and simulations for considering the predictability of evolution. In this figure, we

provide an overview of our procedure for simulating evolution in for case studies one (a) and two (b). In case study 1 (a), we conduct the

following three in silico simulation steps. (i) Survival probabilities for selection functions are sampled from the appropriate probability

distributions (e.g., Bayesian posterior distributions). Alternative, sampled NFDS functions are shown. (ii) Given the relevant parameter

values, evolution by selection or selection and drift is simulatedmultiple times (lines denote alternative possible evolutionary trajectories).

(iii) Based on these trajectories, we calculate the variance in morph frequencies in each generation. We convert these values to a metric

of predictability by computing the precision (1/variance) and summarizing this statistic across time steps. In case study 2 (b), we conduct

the following five in silico simulation steps. (i) A climate (annual rainfall) time series is first re-sampled with replacement (the red line

denotes the original time series and the gray lines show examples of re-sampled data). Given the climate time series, resource abundance

is determined by first sampling parameters for a linear regression that relates climate to resource. (ii) Second, regression parameters

for the linear model for the selection differential are sampled from the appropriate probability distributions (e.g., Bayesian posterior

distributions). Alternative, sampled linear functions for selection differentials are shown. (iii) Next, causal genetic loci for the selected

trait are sampled based on their probabilities of association, which are high for a small number of loci, but low for most. (iv) Given the

relevant parameter values, evolution by selection or selection and drift is simulated multiple times, and (v) based on these trajectories,

we calculate the variance in breeding values or allele frequencies in each generation, which we convert to precision as described above.

at an initial frequency of 20%) (Nosil et al., 2018). The means of

these distributions were used to calculate relative fitness values

in the case where selection was assumed known (1.0 and 0.3,

respectively). We knew less about fitness when the striped (A)

morph was above the critical point (in the original experiment the

80% stripe treatment resulted in nearly equal recapture rates for

both morphs). To approximate this, we halved the sample sizes,

then flipped the recapture rates and shifted the counts slightly

to construct probability distributions for this case: beta(31+10,

169-10) (mean = 0.186) and beta(26-2.5, 24+2.5) (mean = 0.49)

for striped (A) and unstriped (B). We further assumed the critical

value where selection switched between favoring A versus

favoring B was known to fall between 0.7 and 0.9 (frequency of

A) and took on any value within that range with equal probability

(i.e., we assumed a uniform probability distribution constrained

by the previous experiment). We used 0.85 for cases of known

selection. Thus, for each simulation of evolution, we either used

these point estimates (selection known) or sampled fitness values

from these four beta distributions (i.e., posterior distributions),

and a value for the critical point from U(0.7, 0.9)(selection

uncertain). As a comparison, an additional set of simulations

were conducted to assess predictability with weak, but uncertain

selection. For this, survival values were sampled from beta(50.5,

49.5) and beta(49.5, 50.5) for the favored and less fit morph,



Figure 3. Case study 1 with negative frequency-dependent selection (NFDS). Gray lines show 100 probable evolutionary trajectories

through time (in generations) under NFDS. Sources of variability in each panel are genetic drift (a), uncertainty (Unc.) in selection (b), and

genetic drift and uncertainty in selection (c). Panels (d) and (e) show the effect of uncertainty in selection and drift plus uncertainty in

selection given a hypothetical, larger experiment. In each case, an arbitrary trajectory is shown in black to make the dynamics more clear

and to emphasize the fact that one of the possible trajectories would be realized in a given biological system. Panel (f) summarizes the

predictability of evolution across each of the five conditions shown (labeled by their panel letter in this figure). Predictability is measured

by the precision (reciprocal of the variance) in trait (morph) frequencies (denoted p) across probable trajectories. Bars shown the median

(across generations) and vertical lines denote the 25th and 75th percentiles. Median precision for each condition is also reported in each

panel as a numerical inset. Results are shown for a heritability of 0.8. Similar results with heritability of 1.0 are shown in Figure S3.

respectively (here the expected relative fitness values are 1.0 and

0.98, respectively).

We considered trait heritabilities of 0.8 or 1 (consistent

with Comeault et al., 2016; Lindtke et al., 2017), and an initial

frequency for morph A of 50%. We incorporated genetic drift

by binomial sampling, such that pt+1 ∼ binomial(E [pt+1], 2Ne).

Here, pt+1 is the frequency of morph A in the next genera-

tion, E [pt + 1] is the expected frequency given the current

frequency (pt ), selection and the trait heritability, and Ne is

the effective population size, which we set to 110 diploid

individuals. This value comes from an empirical estimate of

the variance effective population size in a T. cristinae pop-

ulation (population code FHA, 43◦30.958’ N, 119◦48.050’

W), which is based on genome-wide allele frequency change

(Nosil et al., 2018). We conducted 100 simulations of evolution

incorporating uncertainty in selection, genetic drift, or both, and

measured the effect of each factor on predictability based on

the precision (median across 100 generations) in evolutionary

trajectories. In most cases, the model rapidly fell into a stable,

equilibrium oscillation, consistent with patterns of change as-

sociated with NFDS documented in nature (Figure 3 and Nosil

et al., 2018) (such stable oscillations are a specific outcome of

using a step function for NFDS; compare to Chevin et al., 2022).

These simulations were written in R and are available via GitHub

(https://github.com/zgompert/LaplaceDemonSims/).

Uncertainty in selection and genetic drift both caused vari-

ability in evolutionary trajectories affecting predictability (i.e.,

increased variability among probable, simulated evolutionary tra-

jectories) (Figure 3). Predictability was highest for the first few

generations, but then quickly declined and remained relatively

https://github.com/zgompert/LaplaceDemonSims/


constant from about five to 100 generations (i.e., for the remain-

der of the simulated time; Figure S2). We thus focus on the mean

predictability (precision) when comparing sources of uncertainty.

Importantly, uncertainty in selection did not lead to erro-

neous qualitative predictions, as a stable oscillation in stripe fre-

quency was always predicted (this is expected given the step

function assumed for NFDS, unlike in Chevin et al., 2022). How-

ever, limited knowledge of selection did cause considerable quan-

titative uncertainty in the evolutionary trajectory (i.e., in the pat-

tern and characteristics of the oscillations), and this was greater

than the uncertainty caused by genetic drift (Figure 3F). For ex-

ample, with h2 = 0.8, the median precision across generations

was two times higher with genetic drift and known selection (me-

dian precision = 277.7) than with no genetic drift and uncertainty

in selection (median precision = 128.4) (higher values indicate

higher precision in predicting evolution). Moreover, adding drift

to the latter case (i.e., both drift and uncertainty in selection) did

not markedly lower precision (median precision = 118.3). Simi-

lar results were observed for h2 = 1 (median precision = 192.2,

96.5, and 92.3, respectively). These results, with associated mea-

sures of variability and uncertainty, are depicted in detail in

Figures S3 and S4.

These effects of uncertainty in selection versus drift on pre-

dictability were not restricted to a scenario of strong selection.

For example, even with weak selection (1% difference in ex-

pected survival probabilities), drift had less of an effect on pre-

dictability than did uncertainty in selection (median precision

across generations of 36.2 versus 5.8) (Figure S4). This perhaps

counter-intuitive result arose because weak NFDS combined with

uncertainty in selection resulted in transient directional selection

(rather than strongly fluctuating) for or against either phenotype

being among the set of probable selection models. In such cases,

directional selection, even if transient, was consistent enough to

fix one or the other morph, resulting in a high variance (low pre-

cision) in evolutionary trajectories.

Whereas genetic drift is a property of the effective size of

any finite population, predictability can be increased by better

knowledge of selection. To examine the effects of such knowl-

edge, we conducted additional simulations assuming two or five

times larger sample sizes for the release-recapture experiment

(and consequent reduction in uncertainty in selection) and a de-

crease of the range of possible values where the transition oc-

curred from selection favoring morph A to B (at a frequency of

A of 0.8-0.9). With strong selection and h2 = 0.8, doubling the

sample size essentially doubled the predictability. Thus, with a

two times larger sample size the predictability with uncertainty

in selection (precision = 242.4) was almost as high as the level

observed for just drift (precision = 277.7; precision with both un-

certainty in selection and drift = 214.6), suggesting quite mean-

ingful increases in predictability would be possible with only a

reasonable increase in effort (Figure 3D–F). Similar results were

observed with h2 = 1 or with weak selection (Figures S3D–F and

S4D–F), but increasing the sample size fivefold had little addi-

tional effect on improving predictability (Figure S5).

CASE STUDY 2: CLIMATIC VARIABILITY AND

TROPHIC EVOLUTION

Temporal variation in climatic conditions can cause the direction

and magnitude of selection on a trait to vary in time. Climate

and weather can themselves be agents of selection or can indi-

rectly cause selection by affecting resource availability, preda-

tors, competitors, etc., which then act as agents of selection.

Temporally fluctuating selection caused by climatic variability

is likely to be general, as it has been documented in numer-

ous species (Reimchen & Nosil, 2004; Siepielski et al., 2009;

Bergland et al., 2014; Siepielski et al., 2017; Busoms et al., 2018;

de Villemereuil et al., 2020; Rudman et al., 2022). Perhaps the

best-known example comes from Darwin’s finches, where varia-

tion in rainfall on Daphne Major has been shown to affect the rel-

ative abundances of small versus large seeds, which in turn exerts

selection on beak size in Geospiza fortis (Boag & Grant, 1981;

Grant & Grant, 2014). Such cases are of particular interest for

predicting evolution because they include both uncertainty in cli-

matic conditions and uncertainty in selection. Selection has been

described as unpredictable in the case of G. fortis (Grant & Grant,

2002), not because we do not understand selection (i.e., selection

is known to be exerted by seed size distributions), but rather be-

cause we cannot predict climatic fluctuations or how these affect

the seed size distribution. Because of this dual complexity and

the potential generality of such conditions, we consider climatic

variability and trophic evolution as our second case study. Here,

we also consider the effects of uncertainty in the detailed genetic

basis of the selected trait. As for the case of NFDS, we used gen-

eral empirical knowledge (in this case from the finch system)

to parameterize our illustrative models, but without the aim of

fitting specific models to the finch system. Rather, we use this

scenario to understand the extent to which evolution can be pre-

dicted without directly measuring selection in all generations, but

instead relying on known (current generation) or projected (fu-

ture generations) environmental data. This is important to assess

because environmental data can be simpler to gather than mea-

surements of selection, so the prediction process could be simpli-

fied by first estimating the relationship between selection and the

environment (environmental sensitivity of selection) over a few

generations, and then combining this with environmental projec-

tions to predict evolutionary dynamics (Chevin et al., 2010).

We either assumed climatic conditions were known, or in-

corporated uncertainty in such conditions, as would occur when

trying to project future environments based on past time series

(Figure 2b). An observed annual rainfall time series on Daphne



Major, which included data from 1973 to 2012, was used for

cases where we assumed climate conditions were known (Grant

& Grant, 2014). Uncertainty in climatic conditions was modeled

by sampling from this time series with replacement (i.e., here we

do not adopt a Bayesian approach). Alternative, (simple) model-

based approaches to account for climate uncertainty failed to cap-

ture the salient features of the actual time series, especially the

extreme variability (i.e., the extreme values relative to, e.g., a nor-

mal or exponential distribution; results not shown).

We assumed that, conditional on climatic conditions, the

nature of selection was either known or uncertain. We consid-

ered two sources of uncertainty: the link between climatic con-

ditions and resource, and between resource and selection dif-

ferential (Figure 2b). For resource abundance, we first used the

data from Daphne Major to infer the relationship between rain-

fall and resource (the relative abundance of small seeds versus

large seeds) (Grant & Grant, 2014). To do this, we regressed

resource abundance on five year cumulative rainfall in a model

that included linear and quadratic effects (five-year rainfall per-

formed better, i.e., higher r2, than sums over fewer years). Point

estimates for these parameters were: intercept = 1.57 × 10−1,

rain linear = 6.5 × 10−4, and rain quadratic = −6.36 × 10−7

(r2 = 0.498, P = 0.011). These were used when selection was

assumed known. In cases where selection was not known, we in-

corporated uncertainty in this relationship by sampling regression

coefficients from Gaussian distributions centered on the point es-

timates, and with standard deviations equal to the standard errors

of the coefficients (SEs: intercept = 1.47 × 10−1, rain linear =
1.84 × 10−1, rain quadratic = 3.13 × 10−7). From a Bayesian

perspective, using the standard errors in this way is analogous

to placing flat priors on the regression coefficients and treating

the residual variance as known (Congdon, 2007). In terms of the

resource-selection link, with selection known we assumed the se-

lection differential S = a + bx, with a = 0.18, b = -0.81 and x

= resource abundance. These values assume resource abundance

has been centered (mean = 0) and are approximately equal to the

extremes of selection observed in G. fortis. When selection was

uncertain, values for a and b were sampled from normal distri-

butions with standard deviations of 0.1 and means of 0.18 and

-0.81, respectively. Thus, we treat these distributions as Bayesian

probability distributions for uncertain a and b; uncertainty is en-

coded by the non-zero standard deviations, which we set to 0.1

(we chose these values in the absence of pertinent information

but consider alternative values that reflect an increase in data

below).

We further assumed the trophic trait was moderately her-

itable (h2 ≈ 0.5), with approximately 27 causal variants with

a normal effect size distribution (inspired by genetic mapping

results from Chaves et al., 2016) (Figure 2b). More specifi-

cally, we created 1415 loci potentially affecting the trait. We

assigned Bayesian probabilities of effect/association to each lo-

cus sampling from uniform distributions: U(0.1,0.6) (15 loci),

U(0.05,0.1) (100 loci), U(0.01,0.05) (300 loci) and U(0.001,0.01)

(1000 loci). Thus, a small number of loci had high probabilities of

association and many had much lower probabilities of association

(the expectation is 27.2 associated loci). Phenotypic effects were

assigned to the loci by sampling from a standard normal distribu-

tion, and allele frequencies for each bi-allelic locus were drawn

from a beta distribution, beta(0.6,0.6) (this gives a U-shaped dis-

tribution of allele frequencies). Then, for each simulation of evo-

lution, the subset of causal variants was determined by sampling

loci according to their probabilities of association (analogous to

posterior inclusion probabilities from Bayesian polygenic mod-

els for genomic prediction, see, e.g., Zhou et al., 2013; Gompert,

2021). Sampled loci were assigned their respective effect sizes,

and other loci were assigned an effect size of 0.

We modeled the evolution of expected trait values (akin to

the genome-estimated breeding values) by calculating the ef-

fect of phenotypic selection on expected allele frequency change

across loci. The selection differential denoted the expected phe-

notypic change. We then approximated the selection on each al-

lele as si = wi − 1 ≈ bi
S
σ2

z
, where bi is the average excess of locus

i, σ2
z denotes the phenotypic variance and was set to 2 to give a

heritability of about 0.5 (the exact value varied based on the spe-

cific causal loci), and S
σ2

z
equals the selection gradient β (Kimura

& Crow, 1978; Walsh & Lynch, 2018; Gompert, 2021). This

approximation assumes the trait remains normally distributed,

effect sizes are small, and causal loci are unlinked. The ex-

pected change in allele frequency is then given by �pi = pisi

(Kimura & Crow, 1978). Genetic drift was incorporated by bi-

nomial sampling around this expectation. We used an effective

population size of 60 (Grant & Grant, 1992), ran 100 simula-

tions for each set of conditions, and ran each simulation for 35

generations. We tracked allele frequencies and expected trait val-

ues (genome-estimated breeding values). These simulations were

written in C++ with the Gnu Scientific Library (code available

via GitHub; https://github.com/zgompert/LaplaceDemonSims/)

(Galassi et al., 2003). Predictability was measured as the preci-

sion in expected trait values or allele frequencies.

Uncertainty in selection, climatic conditions, and genetic ar-

chitecture, as well as genetic drift, all acted to limit the pre-

dictability of the evolutionary time series for the expected value

of the trophic trait (i.e., the mean genome-estimated breeding

value) (Figure 4), and predictability (i.e., precision across repli-

cates) again declined over time (Figure S6). Of these factors, ge-

netic drift had the smallest effect, resulting in the highest pre-

dictability for models that included drift alone (median precision

383.6; Figure 4A). The other factors caused much larger reduc-

tions in predictability (other factors in combination or isolation

gave median precisions ranging between 4.2 and 25.4; Figure 4).

https://github.com/zgompert/LaplaceDemonSims/
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Figure 4. Case study 2 with climatic variation and breeding values. Gray lines show 100 probable evolutionary trajectories of the ex-

pected breeding value (BV) of a trophic trait under temporally-fluctuating selection. Sources of variability in each panel are genetic drift

(a), uncertainty (Unc.) in selection (b), uncertainty in climatic conditions and selection (sel.) (c), and genetic drift and uncertainty in climatic

conditions and selection (e). Panels (e-h) combine these effects with uncertainty in genetics (gen.) (i.e., in which a subset of 1415 genetic

loci affect the trophic trait). In each case, an arbitrary trajectory is shown in black to make the dynamics more clear and to emphasize

the fact that one of the possible trajectories would be realized in a given biological system. Panel (i) summarizes the predictability of

evolution across each of the eight conditions shown (labeled by their panel letter in this figure). Predictability is measured by the pre-

cision (reciprocal of the variance) in the mean (expected) BV across probable trajectories. Bars shown the median (across generations)

and vertical lines denote the 25th and 75th percentiles. Median precision for each condition is also reported in each panel as a numerical

inset.



Likewise, genetic drift often had only a modest effect on

predictions for the evolutionary trajectories of individual alleles

(Figure 5, S7). The magnitude of the relative effects of drift and

uncertainty in selection depended in part on the probability that

a locus was associated with (i.e., caused variation in) the trophic

trait. In cases where an association between a locus and the trait

was uncertain but likely (i.e., inclusion probability of ∼10–50%),

drift and uncertainty in selection had similar effects on precision

(i.e., predictability) (e.g., Figure 5A–H). The main factor caus-

ing variability in trajectories was instead uncertainty in genetic

architecture. In particular, distinct sets of trajectories were evi-

dent for simulations where the locus was versus was not assumed

to be associated with the trait (also compare Figures 5 and S5).

This effect was reduced with lower probabilities of association

(Figure S9). Indeed, the main exception to the pattern of drift

having less effect than uncertainty in selection occurred for loci

with very low probabilities of association (e.g., Figure 5M–P).

In such cases, drift was the bigger cause of poor predictability,

as almost all probable trajectories included no selection on these

loci (because they were not actually associated with the trait), and

thus uncertainty in selection was of minimal relevance for evolu-

tionary dynamics.

As with the first case study, we conducted additional sim-

ulations to determine the effect of increased information about

selection on our ability to predict evolution. Here, we focused

on the effect of increased information about the link between the

environment and selection. Specifically, we considered a three-

fold increase in the number of experiments used to determine the

relationship between resources and selection differentials, which

would decrease the standard deviations for the Bayesian proba-

bility distributions on the intercept (a) and slope (b) from 0.1 to

0.058. This increase in the number of experiments increased the

predictability for the expected value of the trophic trait with the

precision increasing from 25.4 to 188.2, again suggesting that a

feasible increase in effort can result in quite notable gains in pre-

dictability (Figure S8). Higher predictability remained (though to

a lesser extent) when uncertainty in selection was combined with

drift or uncertainty in weather, but was less evident when uncer-

tainty in genetic architecture was included.

SUMMARY CONSIDERATIONS AND MOVING

BEYOND THESE CASE STUDIES

We think several practical messages emerge from our analyti-

cal arguments and case studies. First, we can improve our abil-

ity to predict evolution by obtaining better estimates of selection

within an environment; our results suggest that sample sizes on

the order of the effective population size (or a bit bigger) repre-

sent a reasonable (and often feasible) goal. Here, we refer to the

variance effective population size, which is often much smaller

(e.g., ∼ 1
10 ) than the local census population size (e.g., Frankham,

1995; Gompert et al., 2021; Waples, 2022). Beyond that effort,

our results suggest that measuring selection in additional envi-

ronments will be more productive for improving predictions of

evolution. This of course adds considerable complexity and work,

but perhaps starting with relevant environmental extremes (e.g.,

wettest versus driest habitats, low versus high trait frequencies,

etc.) would allow one to at least place bounds on the extent to

which environmental variation is associated with variation in se-

lection in a given system.

Second, and unsurprisingly, predicting evolution at the ge-

netic level was easier for a highly heritable trait (stripe) than for

a less heritable polygenic trait (beak size). This is likely to hold

in general, and very large genetic mapping studies will likely be

necessary for precise predictions of allele frequency change for

polygenic traits. Often it will be more profitable and more reason-

able to make predictions at the level of expected breeding values

(polygenic scores), either using pedigrees and classic quantita-

tive genetic methods or genetic-marker based genomic predic-

tion methods. Importantly, we did not consider cases where the

trait value itself is affected by the environment (i.e., where there

is plasticity) (e.g., Crozier et al., 2011); in such cases, predict-

ing evolutionary change (albeit perhaps not phenotypic patterns)

will likely require larger genetic mapping or quantitative genetic

studies spanning multiple environments.

Lastly, the case studies we considered were based on em-

pirical work that combines long-term monitoring of populations

with selection experiments and genetic mapping or traditional

quantitative genetics. We think that such combined approaches

are critical for making and testing evolutionary predictions (e.g.,

Wade & Kalisz, 1990). Several other systems have similar fea-

tures, such as Soay sheep on St. Kilda island (Clutton-Brock &

Pemberton, 2004; Johnston et al., 2013; Ashraf et al., 2021), great

tits (Garant et al., 2004; Husby et al., 2011; Gienapp et al., 2019),

collared flycatchers (Merilä et al., 2001), threespine stickleback

fish (Reimchen, 1995; Reimchen & Nosil, 2002, 2004; Marques

et al., 2018), and Edith’s Checkerspot butterflies (Ehrlich et al.,

1975, 2004; Parmesan & Singer, 2022). We think that these

and other long-term studies (reviewed in, e.g., Clutton-Brock &

Sheldon, 2010) can provide further tests of the predictability of

evolution, and that our work here can generate hypotheses for

how to improve predictability in these systems.

Discussion
The analytical arguments and case studies we considered illus-

trate how data limitations and uncertainty in selection, including

that caused by low environmental predictability, can substantially

affect the predictability of phenotypic and genetic evolutionary
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Figure 5. Case study 2 with climatic variation and consideration of genetic architecture and individual loci. Gray lines show 100 probable

evolutionary trajectories of allele frequencies for loci potentially under temporally-fluctuating selection. Each row in this multi-panel

figure corresponds with one of the 1415 genetic loci. The probabilities of trait association (e.g., Bayesian posterior inclusions probabilities

or PIPs) are: 0.557 (panels a-d), 0.554 (panels e-h), 0.098 (panels i-l) and 0.007 (panels m-p). All results shown assume uncertainty in the trait

genetic architecture. Additional sources of variability in each panel are genetic drift (a, e, i, m), uncertainty (Unc.) in climatic conditions

(w.) and selection (b, f, j, n), and genetic drift and uncertainty in climatic conditions and selection (sel.) (c, g, k, 0). In each case, an arbitrary

trajectory is shown in black to make the dynamics more clear and to emphasize the fact that one of the possible trajectories would be

realized in a given biological system. Panels (d, h, l, p) summarize the predictability of evolution across each of the three conditions

shown for each locus (labeled by their panel letter in this figure). Predictability is measured by the precision (reciprocal of the variance) in

the allele frequency across probable trajectories. Bars show the median (across generations) and vertical lines denote the 25th and 75th

percentiles. Median precision for each condition is also reported in each panel as a numerical inset. Compare to Figure S7, which shows

the same loci with genetic architecture known.



change, much beyond the influence of random evolutionary pro-

cesses, in this case genetic drift. Moreover, our results are likely

conservative, as we only modeled a subset of possible uncertain-

ties in selection and considered modest population sizes, where

the potential for genetic drift is substantial. Despite this, un-

certainty in selection generally had much more pronounced ef-

fects on reducing predictability than did genetic drift, especially

in the two case studies. This is consistent with theoretical ex-

pectations that uncertainty in selection should dominate when

var(s)p(1 − p) > 1
2Ne (Ohta, 1972; Chevin, 2019).

These results suggest that progress towards predicting evolu-

tion can be made with empirical and analytical effort, because the

largest limit does not come from intrinsic properties of the popu-

lation. For example, our results show how larger sample sizes can

increase the predictability of evolution; in case study 1, doubling

the sample size made the Bayesian probability distribution for

selection more precise and thereby doubled our ability to predict

evolutionary dynamics (Figure 3). Similar gains in predictability

were observed in simulations with better knowledge of additional

factors affecting evolutionary dynamics, such as trait genetic ar-

chitectures, weather and climate, and the environmental causes

and ecological consequences of selection (Figure 4). The only

notable exception to this pattern comes from the analytical mod-

els, which show that increasing sample sizes has minimal effect

when the effective population size is very low (i.e., below 50)

(Figure 1). Consequently, while perfect prediction as envisioned

by Laplace’s demon is forever out of reach due to the action of

largely random processes of genetic drift and mutation, our re-

sults suggest that even modest improvements in data quantity and

quality can meaningfully increase predictability (i.e., we will not

get an omniscient demon, but at least we can have a serviceable,

low-level imp that throws loaded dice).

Still, improving the predictability of evolution is not with-

out its challenges. First, collecting sufficient data for meaningful

prediction is not a trivial task. For example, gathering adequate

time-series data may require multiple scientists’ entire careers,

and very large sample sizes can be required for genetic map-

ping of traits, especially in the presence of gene-gene or gene-

environment interactions (Wang et al., 2005; Wei et al., 2014).

With that said, evolution of quantitative traits can be successfully

predicted without knowing the effects of individual genes us-

ing the animal model and pedigrees or kinship matrixes inferred

from genetic marker data (e.g., Meuwissen et al., 2001; Char-

mantier et al., 2014; Walsh & Lynch, 2018; Bonnet et al., 2022).

Still, this methods require extensive data and even with detailed

(e.g., pedigree-based) observational work, it can often be difficult

to determine whether or to what extent changes in phenotypes

(or breeding values) reflect selection or only random drift (e.g.,

Hadfield et al., 2010; Pigeon et al., 2016).

Second, pleiotropy could confound predictions, especially

at the genetic level, if mutations affecting a favored trait have

additional effects on other traits and genetic effects or selec-

tion on these other traits has not been measured (e.g., Gromko,

1995; Saltz et al., 2017). Third, the precision of predictions can-

not likely be increased indefinitely by collecting more data (e.g.,

Figure 1). Many ecologically relevant environmental variables

(such as temperature) include sufficient noise (Halley, 1996;

Vasseur & Yodzis, 2004; Ruokolainen et al., 2009) that, from a

practical perspective, they can only be predicted in a probabilis-

tic sense. The envelope breadth of evolutionary predictions in re-

sponse to such environmental variables will be bounded below

by these practical limits. Improving underlying physical models

may increase environmental predictability to some extent, but it

cannot realistically be expected to fully explain environmental

variability.

Moreover, our ability to predict evolution can be further

compromised when systems exhibit extreme sensitivity to ini-

tial conditions, for example leading to chaotic dynamics (e.g.,

Costantino et al., 1997). Evolutionary theory has raised the pos-

sibility of chaos in evolutionary dynamics (Gavrilets & Hastings,

1995; Doebeli & Ispolatov, 2014), including in a changing en-

vironment (Rego-Costa et al., 2018; Chevin et al., 2022), but its

actual existence and prevalence remains to be investigated em-

pirically. Another situation where initial conditions are critical to

the outcome is when evolution occurs on rugged adaptive land-

scapes caused by strong epistatic interactions (Kauffmanet al. ,

1993; Nosil et al., 2020), such that randomly occurring mutations

or slight differences in standing genetic variation may lead pop-

ulations into different, irreversible evolutionary paths (e.g., Park

et al., 2022). Finally, organisms may perceive environmental fluc-

tuations as random, regardless of whether they really are, and this

may select for specific biological mechanisms such as bet hedg-

ing, making evolution difficult to predict even when the causes

of environmental variation can be deciphered (e.g., Crean &

Marshall, 2009; Simons, 2014).

Another critical consideration is that temporal scale is im-

portant for assessing our ability to predict evolution. As our sim-

ulations showed, the variance of predictions increases with time

when selection estimates are imprecise or the environment is only

partly predictable. The time scale of predictability is determined

by the patterns of environmental fluctuations, the sensitivity to

initial conditions (i.e., the Lyapunov exponent of chaotic dynam-

ics), and the genetic architecture of responses to selection. We

focused on short-term predictability of evolutionary dynamics,

where selection acted on standing genetic variation. We expect

evolution from standing variation to be more predictable than

evolution from new mutations (e.g., Colosimo et al., 2005; Blount

et al., 2008; Haenel et al., 2019; Rêgo et al., 2019) (but see,



e.g., Chan et al., 2010). This is because evolution from standing

variation removes a major source of randomness, that is mutation

(Barrett & Schluter, 2008; Lenormand et al., 2009). Moreover,

the evolutionary fate of new mutations, even those favored by se-

lection, is greatly impacted by genetic drift (Kimura, 1983). And

in general, rare and difficult to predict events contribute more to

evolution on longer time-scales (e.g., Gould, 1990; Blount et al.,

2018). Likewise, many-to-one mapping of form to function sug-

gests that multiple genotype or trait combinations can result in

functionally equivalent phenotypes, further limiting evolution’s

long-term predictability (e.g., Wainwright et al., 2005). Thus,

predictions in evolutionary biology may always have a limited

time horizon.

In conclusion, our analyses and simulations show that data

limits can profoundly curtail our ability to predict evolution. We

show that optimizing data collection towards increasing the pre-

cision of selection estimates or their dependence on the environ-

ment can meaningfully improve our ability to predict evolution, at

least on shorter time-scales, but we temper this by noting that this

is a non-trivial undertaking and that fundamental limits to pre-

dictability will remain. Perfect precision will be impossible or at

least impractical, but also often unnecessary. Chaos may increase

uncertainty, and to the best of our knowledge some processes are

either truly random (mutation) or at least random with respect to

genotype and phenotype (genetic drift), and others will be treated

as effectively random at least beyond their time window of pre-

dictability (environmental stochasticity). We cannot have the per-

fectly predictive model of causal determinism in evolution con-

jured by Laplace’s demon, but modest increases in data can still

lead to quantifiably more robust predictions. As such increases

could benefit basic and applied science, this is what we are

after.
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