
HAL Id: hal-04285681
https://hal.science/hal-04285681

Submitted on 18 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Reinforcement Learning for Resource Constrained
Multiclass Scheduling in Wireless Networks

Apostolos Avranas, Philippe Ciblat, Marios Kountouris

To cite this version:
Apostolos Avranas, Philippe Ciblat, Marios Kountouris. Deep Reinforcement Learning for Resource
Constrained Multiclass Scheduling in Wireless Networks. IEEE Transactions on Machine Learning
in Communications and Networking, 2023, 1, pp.225-241. �10.1109/TMLCN.2023.3314705�. �hal-
04285681�

https://hal.science/hal-04285681
https://hal.archives-ouvertes.fr

1

Deep Reinforcement Learning for Resource
Constrained Multiclass Scheduling in Wireless

Networks
Apostolos Avranas, Philippe Ciblat, Senior Member, IEEE,

and Marios Kountouris, Fellow, IEEE.

Abstract—The problem of multiclass scheduling in a dynamic
wireless setting is considered here, where the available limited
bandwidth resources are allocated to handle random service
demand arrivals, belonging to different classes in terms of
payload data request, delay tolerance, and importance/priority.
In addition to heterogeneous traffic, another major challenge
stems from random service rates due to time-varying wire-
less communication channels. Existing scheduling and resource
allocation approaches, ranging from simple greedy heuristics
and constrained optimization to combinatorics, are tailored to
specific network or application configuration and are usually
suboptimal. On this account, we resort to deep reinforcement
learning (DRL) and propose a distributional Deep Deterministic
Policy Gradient (DDPG) algorithm combined with Deep Sets
to tackle the aforementioned problem. Furthermore, we present
a novel way to use a Dueling Network, which leads to further
performance improvement. Our proposed algorithm is tested on
both synthetic and real data, showing consistent gains against
baseline methods from combinatorics and optimization, and state-
of-the-art scheduling metrics. Our method can, for instance,
achieve with 13% less power and bandwidth resources the same
user satisfaction rate as a myopic algorithm using knapsack
optimization.

Index Terms—Deep reinforcement learning, deep sets, QoS
traffic scheduling, multiclass services, dynamic resource allocation.

I. INTRODUCTION

Scheduling and resource allocation are two relevant and
widely studied problems with a plethora of practical appli-
cations in various fields, ranging from computing systems
and production planning to project management and logistics.
Optimal resource allocation, together with the associated
scheduling task, is one of the main challenges and requirements
for the design of communication networks. How efficiently the
available resources, such as subbands, time slots, beams, and
transmit power, are managed and which users are scheduled
for service have a direct impact on the communication system
performance.

In this paper, we investigate the problem of scheduling
and resource allocation in wireless networks. A base station
(BS) sends data traffic to mobile users, which have different
application-dependent Quality of Service (QoS) requirements.

A. Avranas is with Amadeus SAS, F-06902 Sophia Antipolis, France.
Email: apostolos.avranas@amadeus.com. P. Ciblat is with LTCI, Telecom
Paris, Institut Polytechnique de Paris, F-91120 Palaiseau, France. Email:
philippe.ciblat@telecom-paris.fr. M. Kountouris is with the Communication
Systems department, EURECOM, F-06904 Sophia-Antipolis, France. Email:
marios.kountouris@eurecom.fr

We consider applications that require the delivery of large
amounts of data without any strict deadline, e.g., enhanced
mobile broadband (eMBB) service category, as well as time-
sensitive or mission-critical ones involving low payload packets
that have to be reliably received within a stringent latency con-
straint, i.e., Ultra-Reliable and Low Latency Communications
(URLLC) service category. The increased heterogeneity in
users’ traffic and the diverse service requirements substantially
complicate the provisioning of high fidelity, personalized
service with QoS guarantees. Our aim is to design a generic
architecture and efficient algorithms, which take as inputs the
specific constraints of the traffic/service class where each user
belongs to and as output the set of users to serve, as well as
the allocated resources and time slots, with the objective to
maximize the number of satisfied users.

The problem considered is hard to solve due to several
major technical challenges. First, with the exception of very
few special cases, there is no simple closed-form expression for
the problem and a fortiori for its analytical solution. Second,
optimization algorithms that solve the problem have to be
computationally efficient and implementable in large-scale
wireless networks. Applying optimal methods from combi-
natorial optimization, such as branch and bound algorithm [1],
results in solutions exhibiting prohibitively high computational
complexity and being hard or impossible to meaningfully scale
with the number of active users. Other existing approaches
relying heuristics, approximations, or relaxations, provide
suboptimal solutions, which seem to work satisfactorily in
specific scenarios but fail to perform close to optimal in
general cases and in the regime of large number of users.
Moreover, the proliferation of new use cases makes the problem
of efficient and scalable scheduling and resource allocation
more intricate. This will be exacerbated with the advent of the
emerging mobile systems (Beyond 5G/6G), which could involve
high-dimensional optimization domains, various application
scenarios, as well as heterogeneous, often conflicting, QoS
requirements. This motivates the quest for alternative methods.

In this work, we resort to Deep Reinforcement Learning
(DRL) for efficient and scalable scheduling and resource
allocation algorithmic solutions. DRL has recently attracted
considerable attention for it ability to provide very promising
results in complex problems obeying strict game rules (e.g.,
Atari, Chess, Go [2]–[4]) or physical laws (robotics and physics-
related tasks [5], [6]). In cloud service provision, DRL has
been used to schedule incoming tasks to servers according to

This article has been accepted for publication in IEEE Transactions on Machine Learning in Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMLCN.2023.3314705

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

their heterogeneous CPU and memory requirements [7]. DRL
approaches have recently shown interesting gains in wireless
communication systems [8]–[11], and has also been applied
to wireless scheduling and resource allocation problems [12]–
[19]. Nevertheless, none of previous works has studied the
problem we consider here, that of multiclass scheduling with
heterogeneous QoS constraints. Furthermore, in contrast to
most prior work and in order to harness the high level of
stochasticity, we consider distributional DRL [20]–[22] to
obtain richer representations of the environment, which in
turn yields better solutions. Our setup, which mainly focuses
on time-sensitive traffic, involves two important elements that
make our problem challenging and original: (i) strict latency
constraints: each user demands to be satisfied before a specific
deadline. This is a relevant scenario in 5G and beyond systems
(e.g., in URLLC scenarios and mission-critical services.); and
(ii) heterogeneity: each user has diverse QoS requirements, i.e.,
different strict latency constraints and data requirements. To
the best of our knowledge, such setup has not be addressed (in
particular considering deep learning techniques) in the sense
that the proposed algorithm is by design adapted to this strict
latency constraint and QoS heterogeneity.

The novelty of this paper is twofold. First, we revisit and
study the problem of multiclass scheduling with heterogeneous
QoS constraints and dynamic resource allocation in wireless
systems using DRL. Second, we propose a DRL architecture
for solving wireless networking problems with stochasticity,
which judiciously and non-trivially combines several advanced
DRL techniques proposed in the machine learning community.
In particular, we leverage (i) noisy networks technique [23]
for better explorations; (ii) dueling network architectures [24]
for improved stability of the trained models; and (iii) deep
sets [25] for simplifying and improving neural network models
when permutation invariance properties apply. We combine
these three ingredients with a deep deterministic policy gradient
method [26] to propose a highly efficient general architecture
and scheduling/resource allocation algorithm. In a setup similar
to ours and Nokia’s challenge [27], deep deterministic policy
gradient is used to allocate the bandwidth to incoming data
traffic in [28]. Nevertheless, unlike our work, [28] considers
only full channel state information (CSI), a single traffic class,
and only few users (typically less than 15). In [29] Graph
Neural Networks, a similar technique to Deep Sets, are used
to increase the number of users but they do not consider traffic
of users. Initial attempts to solve the problem of scheduling
traffic for users with heterogeneous performance requirements
can be found in [30], considering though only full CSI and a
limited number of users.

A. Contributions

The main contributions of this work can be summarized as
follows:

• We propose and develop a DRL scheme having two
important architectural components that facilitate a stable
training even in the case of high traffic from a very large
number of users. First, we leverage Deep Sets [26] as a
means to exploit the permutation equivariance property

of the problem and to drastically reduce the number
of necessary parameters. Second, we introduce a user
normalization trick capturing the resource-constrained at-
tribute of our problem, namely that the available bandwidth
resources are limited. We show that without those crucial
steps, the performance drops significantly.

• We further improve the system performance using distri-
butional DRL [22] and reward scaling as implemented in
[31]. Finally, we harvest additional gains by adapting the
idea of dueling networks [24] used in Deep Q-Networks
(DQN) to distributional RL by modifying the output to
represent the distribution of the return of the agent’s action.

• We demonstrate that our proposed DRL architecture can
easily be implemented with minor changes in both extreme
cases of channel knowledge, namely full CSI and no CSI.

• We compare the performance of our DRL solution with
strong baselines and state-of-the-art scheduling metrics,
namely the exponential rule [32]:
– In the full CSI case, the DRL scheduler reaches the

same performance but with 13% less power and band-
width requirements as compared to a optimal myopic
algorithm solving a reformulation of our problem
as a knapsack one. Furthermore, the proposed DRL
scheduler operates close to an upper bound, devised
as an oracle knowing all future traffic characteristics
and finding the optimal resource allocation policy via
Integer Linear Programming (ILP).

– In the no CSI case, our model-free DRL scheme
significantly outperforms a model-based baseline, which
employs the Frank-Wolfe (FW) algorithm [33] guar-
anteeing a local optimum solution and is favored by
knowing the statistics of the problem.

The paper is organized as follows: in Section II, we introduce
the system model including the channel and traffic model.
In Section III, we formulate the optimization problem and
Section IV is devoted to the main contribution of the paper,
that of the design a new DRL scheduler for heterogeneous
multiclass traffic. In Section V, baseline algorithms, for
performance comparison, are presented. In Section VI, we
provide experimental results with both synthetic and real data,
and Section VII concludes the paper.1

II. SYSTEM MODEL

A. Network and channel model
We consider the downlink of a communication system, in

which a BS serves multiple users by sending data over a
wireless random time-varying channel. Users are uniformly
distributed within two concentric rings of radii dmin and
dmax > dmin. Therefore, the distance of a user u from the BS
is a random variable with probability density function (PDF)
fd(du) = 2du

d2
max−d2

min
,du ∈ [dmin,dmax]. We assume that

mobility is not very high, so that BS-user distances remain
constant during the time interval users are active.

Orthogonal frequency bands are assigned to simultaneously
served users, hence there is no interference among them. Users

1Code is available at https://github.com/avranasa/DRL Scheduling
Communications.

This article has been accepted for publication in IEEE Transactions on Machine Learning in Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMLCN.2023.3314705

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

experience frequency flat fading, i.e., the channel gain of a user
remains constant during a time slot and throughout all assigned
frequency bands. Let a user u that has entered the system at time
t0. Its channel gain at time t is given by gu,t =

Cpl|hu,t|2
σ2
N

d
−npl
u ,

where npl denotes the pathloss exponent, Cpl is a constant
accounting for constant losses, and σ2

N is the noise power
spectrum density. The small-scale fading hu,t evolves over
time according to the following Gauss-Markov model

hu,t = ρhu,t−1 +N (1)

where hu,t0 ∼ CN (0, 1) (circular complex normal distribution
with zero mean and unit variance), and N ∼ CN (0, 1 −
ρ2), t > t0. The parameter ρ = J0(2πfdTs) ∈ [0, 1] [34]
determines the time correlation of the channel, with J0(·)
denoting the zeroth-order Bessel function of the first kind,
fd the maximum Doppler frequency (determined by the user
mobility), and Ts the time slot duration. If ρ = 0 (high
mobility), a user experiences an independent realization of
the fading distribution at each time slot (i.i.d. block fading). If
ρ = 1 (no mobility), channel attenuation is constant throughout
the user’s lifespan (no small-scale fading fading).

We consider the following two cases for the channel state
information (CSI): (i) full-CSI, in which hu,tc and the users’
locations (and so du) are perfectly known at the BS for time
tc, thus enabling accurate estimation of the exact resources
each user requires; (ii) no-CSI, in which the scheduler is
completely channel-agnostic, both in terms of instantaneous
fading realization and long-term channel statistics. In case
of unsuccessful and/or erroneous data reception, a simple
retransmission protocol (Type-I Hybrid Automatic Repeat
Request (HARQ)) is employed. A packet is discarded whenever
the user fails to correctly decode it (no buffering at the
receiver side) and the BS will attempt to send it again in
some subsequent slot.

Remark 1: For a non-trivial implementation of the Frank-
Wolfe (FW) algorithm, which serves as a baseline for compari-
son in the the no-CSI case, we need to consider some kind of
CSI. For that, we consider the case of statistical CSI, where
the scheduler knows the statistics of the users’ channels and
locations. Our proposed DRL algorithm will always operate
under full absence of CSI, but all statistics can effectively be
learned through the training phase.

B. Traffic model

We consider a generic yet tractable traffic model, in which
users with diverse data and latency requirements arrive and
depart from the system. There is a set of service classes C to
which a user entering the system belongs to with probability
pc. Each user in class c ∈ C is characterized by the tuple
(Dc, Lc, αc) as follows:

• Data size Dc: the number of information bits requested by
a user belonging to class c, which have been encompassed
into a packet of size Dc.

• Maximum Latency Lc: the maximum number of time
slots within which the user has to be satisfied, i.e., to
successfully receive its data packets of size Dc.

• Importance αc: an index allowing the scheduler to priori-
tize certain service classes, e.g., users with privileged con-
tracts (e.g., high-value Service-Level Agreement (SLA))
may demand better service and higher reliability.

We assume that a maximum number of users K can coexist per
time slot and that a new user may arrive only after the departure
of a user that exceeded the maximum time allowed to remain in
the system. That way, the scheduling decisions do not influence
the arrival process, although the packet arrival process may
be determined by the scheduler in many cases. For example,
if a user arrives at time t0 = 1, belonging to class c ∈ C
with Lc = 4, then even if it successfully receives its requested
packet of size Dc at t = 1, a new arrival may randomly be
generated only at time t = t0 + Lc = 5 and afterwards. The
rationale behind adopting this model is as follows. If a new
arrival is generated right after a previous user is satisfied (in
the example at time t = 2), then the traffic load is affected
by the scheduler performance. The faster the scheduler serves
the users, the more arrivals occurs. In contrast, in our model,
the arrival process and its statistics remain uninfluenced by the
scheduling decisions and the available resources. Therefore, at
every time slot, the set of users Ut (|Ut| ≤ K) contains all users
waiting to receive their requested data while remaining within
their latency constraint. Finally, to ensure random inter-arrival
times, we assert that the probability pnull = 1 −

∑
c∈C pc is

positive , i.e., pnull > 0, leaving a probability that no user
appears in a time slot.

C. Service Rate
The service rate is measured using Shannon rate expression

assuming capacity-achieving codes. The achievable service
rate of user u at time t is equal to wu,tRu,t, where Ru,t =
log2(1 + gu,tPu,t) = log2(1 + κu|hu,t|2) (bps/Hz), with Pu,t
denoting the transmit energy per symbol (channel use), wu,t
the assigned bandwidth (in Hz), and κu =

Cpl
σ2
N
d
−npl
u . Let a

user at distance du from the BS, belonging to class c ∈ C, is
served at time tu with resources (wu,t,Pu,t). The probability
of unsuccessful transmission is given by

P fail
u (wu,t,Pu,t; du) = P(wu,tRu,t < Du|du)

= P(|hu,t|2 < ζu,td
npl
u) = 1− e−ζu,td

npl
u (2)

where ζu,t=
σ2
N (2Du/wu,t − 1)

CplPu,t
. If du is not known to the

scheduler, we have

P fail
u (wu,t,Pu,t) = P(wu,tRu,t < Du)

=

∫ dmax

dmin

P fail
u (wu,t,Pu,t; d)fd(d)dd

= 1−
Γ(2

npl
, ζu,td

npl
min)−Γ(2

npl
, ζu,td

npl
max)

nplζ
2/npl
u,t (d2max − d2min)/2

(3)

where Γ(s, x) =
∫∞
x
ts−1 e−t dt is the upper incomplete

gamma function and Du = Du/Ts is the “normalized
data/packet size”. For exposition convenience, we overload
notation by allowing u in Du, Du, Lu, αu to denote either
a class u or a user u belonging to a class with those
characteristics.

This article has been accepted for publication in IEEE Transactions on Machine Learning in Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMLCN.2023.3314705

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

Figure 1: An instance of our system model at time step t.
There are three active users ui, i ∈ {1, 2, 3}. BS has available
bandwidth W , which is allocated to any subset of active users.
At time t, the allocated bandwidth to user ui is denoted by
wui,t. Each user has its own service rate Rui,t that depends
on its channel quality hui,t (fading coefficient) and distance
dui from the BS. User ui requests a packet of data size Dui

which depends on the class cui it belongs to. At time t, user
ui demands to be served before lui,t time slots pass and to
be satisfied at time t, bandwidth wu,t > Du/Ru,t needs to
be allocated to it. The objective of the BS’s scheduler is to
maximize the number of satisfied users throughout the time
horizon.

III. PROBLEM STATEMENT

We consider the problem of heterogeneous scheduling and
resource allocation, which involves a BS handling a set of
randomly arriving service requests belonging to different
classes with heterogeneous requirements. Each class defines
the requirements and the expected Quality of Service (QoS)
guarantees for its users. Observing this time-varying set of
heterogeneous requests, the objective of the scheduler at each
time slot is two-fold: (i) carefully select which subset of
user requests to satisfy, and (ii) allocate the finite resources
amongst the selected user requests. The performance metric
to maximize is the long-term importance-based weighted sum
of successfully satisfied requests. A request is considered to
be satisfied whenever the user has received the requested data
within the maximum tolerable latency specified by its service
class.

The scheduling problem at hand can be formulated as a
Markov Decision Process (MDP) [35] (S,A, R, P, γ), where
S is the state space of the environment and A is the action
space, i.e., the set of all feasible allocations in our case. After
action at ∈ A at state st ∈ S, a reward rt ∼ R(·|st, at) is
obtained and the next state follows the probability st+1 ∼
P (·|st, at). The discount factor is γ ∈ [0, 1). Under a fixed
policy π : S → A determining the action at each time step,
the return is defined as the random variable

Zπt =

∞∑
i=0

γirt+i (4)

which represents the discounted sum of rewards when a
trajectory of states is taken following π. Ideally, the aim is to

find the optimal policy π⋆ that maximizes the mean reward
Eπ[Z

π
t].

At each time step t, a set of users u ∈ Ut is waiting for
service, where each user therein belongs to a class cu ∈ C
described by (Dc, Lc, αc). A user u appearing at time t0 has a
“lifespan” t ∈ [t0, t0+Lcu−1] and at time t = t0+Lcu a new
user belonging to class c might arrive with probability pc. The
amount of resources given to user u at time t is wu,t. If at
any time t, wu,t > Du/Ru,t then user u is satisfied. Since
resources are limited (finite),

∑
u∈Ut wu,t ≤W, ∀t, no more

than W resources in total can be spent per time slot. Summing
up,

• State: st = {∀u ∈ Ut : cu,Ru,t, lu,t}
• Action: at = {∀u ∈ Ut : wu,t}
• Reward: rt =

∑
u∈Ut

αu1{wu,tRu,t > Du}

where lu,t ≤ Lu is the remaining number of time slots within
which user u (i.e. u ∈ Ut) expects to successfully receive
its packet and 1{·} denotes the indicator function. Note that
knowing the class cu to which user u belongs, implies knowing
the requirements (Du, Lu, αu). An inherent attribute of this
MDP is the permutation equivariance of an optimal policy,
meaning that if we permute the indexing of the users, then
permuting likewise the allocation of the resources retains the
performance of the policy. For that, in our DRL approach,
we only consider permutation equivariant policies, and as
a consequence we need a permutation invariant function to
evaluate and train the policy.

In this work, we focus on bandwidth allocation, assuming a
fixed amount of energy spent per channel use and no power
adaptation, i.e., Pu,t = P,∀u, t. Specifically, for total band-
width W , the scheduler aims at finding the (wu1,t, wu2,t, ...) ∈
R

|Ut|
≥0 with u1, u2, ... ∈ Ut and

∑
u∈Ut wu,t ≤W, ∀t, so as to

maximize the accumulated reward for every satisfied user over
a finite time horizon. The expected reward is described by the
following objective “gain-function”

G =
∑
t

∑
u∈Ut

αu1{wu,tRu,t > Du}. (5)

We stress out that a user u remains on the set Ut for a time
interval less or equal to the maximum acceptable latency Lu.
If not satisfied within that interval, then it does not contribute
positively to the objective G.

Note that Ru,t satisfies the Markov property since hu,t
follows a Markov model. Under full CSI, the agent (here
the BS) fully observes the state st, while in the no-CSI
case, hu,t is unknown resulting in a Partially Observable
MDP (POMDP) [36]. One way to transform a POMDP into
a MDP is by substituting the states with the “belief” of
the states [37]. Another way is to use the complete history
{o0, a0, o1, a1, · · · , at−1, ot−1}, with ot ⊂ st being the agent’s
observation. Notice that only the most recent part is relevant as
users that have already left the system do not affect the way the
channels of the current users evolve or the generation of future
users or in general the current and future system dynamics.
Therefore, we can safely consider the scheduling and allocation
history of only the current users. Specifically, if wu,t = (wu,t0 ,

This article has been accepted for publication in IEEE Transactions on Machine Learning in Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMLCN.2023.3314705

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

wu,t0+1, ..., wu,t) is the scheduling history of user u then the
input of the agent is {∀u ∈ Ut : Du, Lu, au, κu, lu,t,wu,t}.

IV. PROPOSED DEEP REINFORCEMENT LEARNING
ARCHITECTURE

In this section, we propose a novel DRL approach for
solving the aforementioned multiclass scheduling and resource
allocation problem. Our method is built upon the model-free
Deep Deterministic Policy Gradient algorithm [26], which uses
two neural networks. The first one is called policy network
and takes as input the state of the traffic and outputs an
action which in our case is the bandwidth allocation. The
second network evaluates how good are the actions of the
policy network and trains it accordingly. Despite the highly
challenging dynamics and stochasticity (wireless channel and
heterogeneous traffic) of the problem, we show that DRL
can provide performance gains although it is impossible to
accurately predict the number of users, their service demands,
and their channel/link characteristics even after few steps. Two
crucial components of our proposed network architecture are:
(i) DeepSets [25], which allows to handle a big number of users
without requiring to also increase the number of parameters
of the networks; and (ii) user normalization operation that
stabilizes the training by instilling in the architecture the notion
of limited resources that should be shared among many users.

A. Policy Network

Our objective is to build a scheduler that can handle a large
number of users K, even in the order of hundreds. Moreover,
we require that our method works in both full CSI and no
CSI cases with minor - if any - modifications. A widely used
approach is Deep Q-learning Network (DQN). However, it
is not feasible to employ DQN in our case since it needs a
Neural Network (NN) architecture with a number of outputs
equal to the number of possible actions and the action space
is extremely large (in statistical CSI it is even infinitely large).
For that, we resort to a Deep Deterministic Policy Gradient
method [26], which trains a policy πθ : S → A modeled as a
NN with parameters θ.

If at time t on state st the action at is taken followed by
the policy π, then the return using (4) is given by

Zπ(st, at) = rt + γZπt+1,with rt ∼ R(·|st, at). (6)

Note that if even at t the action at comes from policy π, then
Zπ(st, at = π(st)) = Zπt . Let the expected return be

Qπ(st, at) = E[Z
π(st, at)]. (7)

Then, the objective of the agent is to maximize

J(θ) = Est0∼pt0
[Qπθ (st0 , πθ(st0))], (8)

with pt0 being the probability of the initial state st0 at time
t0. The gradient can be written [38]

∇θJ(θ) = Est0∼pt0 ,s∼ρ
πθ
st0

[∇θπθ(s)∇aQπθ (s, a)|a=πθ(s)],
(9)

with ρπθst0 being the discounted state (improper) distribution
defined as ρπθst0 (s) =

∑∞
i=0 γ

i
P(st+i = s|st0 , πθ). In practice

ρπθst0 is approximated by the (proper) distribution ϱπθst0 (s) :=∑∞
i=0P(st+i = s|st0 , πθ). To compute the gradient, the

function Qπθ (s, a) is needed, which is approximated by another
NN Qψ(s, a), named value network, described in the next
subsection.

We now explain the architecture of the model πθ. At first,
the characteristics (or features as commonly termed in the
machine learning literature) Fi ∈ RNu , i ∈ {1, · · ·K} of each
user are processed individually by the same function ϕuser :
R
Nu → R

Hu modeled as a two layer fully connected neural
network. The computational complexity for evaluating ϕuser
for all K users is O(KNuHu +KH2

u) since we choose Hu

to be also the dimension of the hidden layer. Then, the outputs
of ϕuser that corresponds to the new features per user are
combined with the permutation equivariant layer called “Deep
Sets” [25].

1) Deep Sets: As discussed in Section III, we aim for a
policy that is a permutation equivariant function (i.e., permuting
the users should only result in permuting likewise the resource
allocation). In [25], necessary and sufficient conditions are
shown for permutation equivariance in neural networks; the
proposed layer called Deep Sets therein is adopted here. Deep
Sets are defined as a function fσ : RK×H → R

K×H′
:

fσ(x) = σ

(
xΛ +

1

K
11⊺xΓ

)
, Λ,Γ ∈ RH×H′

(10)

where 1 = [1, · · · , 1] ∈ RK , σ(·) is an element-wise nonlinear
function and the matrices Λ,Γ contain the trainable parameters.
This function receives for K users their feature vectors of
dimension H and transforms them into feature vectors of
dimension H ′. The equivariance holds because swapping the
i with the j row of the input matrix x (i.e., the features of
user i with ones of user j) results in swapping likewise the i
with the j row of the output matrix y = fσ(x). We stack two
of those, one frelu : RK×Hu → R

K×H′
u with σ(·) being the

relu(x) = max(0, x) and a second flinear : RK×H′
u → R

K×1

without any nonlinearity σ(·). In addition to preserving the
desirable permutation equivariance property, this structure also
brings a significant parameter reduction, because the number
of parameters of Deep Sets contained in Λ,Γ do not depend
on the number of users K. Therefore, any increase in K does
not necessitate additional parameters, which could lead to a
much bigger network, prone to overfitting. The computational
complexity for evaluating this deep set layer with an efficient
implementation is O(KHH ′). The ϕuser and the two deep
sets contain all the training parameters and require most of
the computations. Therefore, the complexity of the total policy
network is defined by these components and is O(KNuHu +
KH2

u + 2KHH ′).
2) Output: The activation function for the last layer of the

policy network is a smooth approximation of relu(x), namely
softplus(x) = log(1+ex) restricting the output y ∈ RK to be
positive. After that, depending on the existence of CSI, there
are two ways of performing the allocation. For full CSI, the
bandwidth required per user is accurately known. Therefore,
we only need a binary decision per user (to serve or not), which
will ruin though the differentiability of the policy, a mandatory
property for DDPG to work. For that, we interpret the output y

This article has been accepted for publication in IEEE Transactions on Machine Learning in Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMLCN.2023.3314705

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

0 2 4 6

Millions of Samples

0.2

0.4

0.6

0.8

1

S
a
ti
s
fa

c
ti
o
n
 P

ro
b
a
b
ili

ty

Distr.&Duel.&Reward Sc.
Linear instead of DeepSets
Without Normalization

Figure 2: We conducted five experiments (with different
seeds) for no CSI using the traffic model of Table Ia, a
maximum number of users K = 75, ρ = 0, and resources
(total bandwidth) W = 5 MHz. We depict here the average
probability a user to be satisfied over those five experiments
to carry an ablation study on the importance of the deep sets
and user normalization step.

as a continuous relaxation of the binary problem. Specifically,
y is the assignment to each user of a “value” per resources
which after being multiplied by the number of resources the
user requires, a user ranking is obtained. Then, the scheduler
satisfies as many of the most “valuable” (highest rank) users as
possible subject to available resources. Therefore, in full CSI,
y semantically denotes how advantageous the policy believes
is to allocate resource to each user. On the contrary, in the
no CSI case, the action is not binary but continuous since
the scheduler has to decide on the portion of the available
resources each user takes. To ensure that y has the valid form
of portions (i.e., positive and adding up to one) we just divide
by the sum, y → y

||y||1 (with || · ||1 being the ℓ1 norm)2. This
discrepancy in the output process is the only minor difference
in the considered model between full CSI and no CSI.

3) User normalization: Before the final nonlinearity of
softplus(x) = log(1 + ex), as seen in Figure 6, there is the
crucial “user normalization” step x→ x−E[x]

||x||2 ,x ∈ RK (with
|| · ||2 denoting the ℓ2 norm). Consider first the full CSI case.
Without that step, the value network would perceive that the
higher the “value” per resource assigned to a user, the more
probable is for that user to get resources (and thus to be satisfied
and receive reward). Unfortunately, this leads to a pointless
interminable increase of every user’s “value”. What matters
here is not the actual “value” of a user but how large this is
relative to the rest of the users. To bring the notion of limited
total resources, the “user normalization” subtracts from the
value of each user the mean of all the users value. Hence,
whenever the algorithm pushes the value of a single user to

2Instead of dividing by the ℓ1 norm, we also considered the softmax(y),
which seemed a good choice as it also provides positive outputs adding up
to one. However, this approach leads to poor performance because no matter
how much the number of users is increased, the policy insists on evaluating as
advantageous to serve only a very small number of users. This actually makes
sense since the softmax function is a smooth approximation of argmax, hence
focusing on finding the one most advantageous user to be served.

increase, the values of the rest decrease. In the no CSI case,
there is an additional benefit. Since in the following step there is
the operation y → y

||y||1 so as the output to signify portions (of
the total bandwidth), performing previously the normalization
step (dividing by ||x||2) helps keeping the denominator ||y||1
stable.

In Figure 2 we show the significance of choosing the right
architecture. It is clearly observed that if either all Deeps Sets
(in both policy and value network) are substituted by the most
common choice of linear blocks or the user normalization step
is removed, the performance degrade substantially.

4) Exploration: Since the action at has to satisfy specific
properties, such as positiveness and summing up to one for
the no CSI case, the common approach of adding noise on
the actions becomes rather cumbersome. An easy way out
is through noisy networks [23], which introduce noise to the
weights of a layer, resulting to change decisions for the policy
network. The original approach considers the variance of the
added noise to be learnable. Here, we instead keep it constant
as it provided better results. With probability Pexplore we add
noise to the parameters of ϕusers, resulting to alter output
features per user and therefore the policy outputs a different
allocation. Specifically, if θϕusers are the parameters of ϕusers,
then they are distorted as θϕusers(1 + σexploreϵ) with ϵ being
normally distributed with zero mean and unit standard deviation
and σexplore being a constant.

B. Value Network

As mentioned previously, Qπθ (s, a) is used for computing
the gradient of the objective function described in (8). Since
this is intractable to compute, a neural network, named value
network, is used to approximate it. We compare three ways of
employing the value network.

1) DDPG: At first, the common approach of DDPG is
considered, which uses the Bellman operator

T πQ(s, a) = Er∼R(s,a),s′∼P (s,a)[r + γQ(s′, π(s))] (11)

to minimize the temporal difference error, i.e., the difference
between before and after applying the Bellman operator. This
leads to the minimization of the loss

L2(ψ) = Est0∼pt0 ,s∼ρ
πθ
st0

[(Qψ(s, a)−T πθ′Qψ′(s, a))2] (12)

where (πθ′ , Qψ′) corresponds to two separate networks called
target policy and target value neural networks, respectively,
used for stabilizing the learning. At each iteration, they are
gradually updated as the weighted sum between the current
policy/value networks and the current target policy/value
network, i.e., θ′ ← (1 − mtarget)θ

′ + mtargetθ and ψ′ ←
(1−mtarget)ψ

′ +mtargetψ.
2) Distributional DDPG: Another way is to approximate the

distribution instead of only approximating the expected value of
the return, as in [39]. The following analogy is helpful here to
motivate its interest. Instead of having a scheduler and its users,
consider a teacher and its students. Even though the objective
of the teacher is to increase the average “knowledge” of its
students, using the distribution of the capacity/knowledge of
the students allows for instance to decide whether to distribute

This article has been accepted for publication in IEEE Transactions on Machine Learning in Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMLCN.2023.3314705

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

his/her attention uniformly among students or to focus mostly
on a fraction of them needing further support.

Algorithmically, it is impossible to represent the full space
of probability distribution with a finite number of parameters,
so the value neural network Zπθψ : S ×A → R

NQ is designed
to approximate the actual Zπθ with a discrete representation.
Among many variations [21], [40], we choose the representation
to be a uniform (discrete) probability distribution supported at
{(Zπθψ)i, i ∈ {1, · · · , NQ}} where (Zπθψ)i is the i-th element
of the output. More rigorously, the distribution that the value
neural network represents is 1

NQ

∑NQ
i=1 δ(Zπθψ)i

, where δx is a
Dirac delta function at x [22]. Minimizing the 1-Wasserstein
distance between this (approximated) distribution and the
actual one of Zπθ can be achieved by minimizing the quantile
regression loss

L1(ψ)=

NQ∑
i=1

E
st0∼pt0 ,s∼ρ

πθ
st0

,z∼T πθ′Z
π
θ′

ψ′ (s,a)
[fi(z−(Zπθψ)i))]

(13)
where T πZπ(s, a)D=R(s, a)+γZπ(s′, π(s)), s′∼P (s, a) is the
distributional Bellman operator, Zπθ′ψ′ is the target policy
network (defined as before) and fi(x)=x(2i−1

2NQ
−1{x<0}).

Notice that even though we approximate the distribution of
Zπθ (s, a), what is actually needed for improving the policy
is only its expected value, approximated as Qπθ (s, a) ≈
1
NQ

∑NQ
i=1(Z

πθ
ψ)i. Therefore it is natural to wonder if it indeed

helps using Zπθψ instead of directly approximating the needed
expected value (confirming the intuition in the teacher-student
analogy). In Figure 3 we provide numerical support for
distributional DDPG. Comparing Figures 3b and 3c, we show
the benefits of using distributional DDPG. The distributional
DDPG approach detects faster the existence of two different
service classes with heterogeneous requirements, thus gradually
improving the satisfaction rate for both of them. On the
other hand, trying only to learn the expected value leads to
a training where the performance for one class is improved
at the expense of the other. Nonetheless, when aggregating
the rewards coming from both classes, we observe in Figure
3a faster convergence of DDPG than the distributional DDPG
even though - when converged - the latter exhibits slightly
better performance. Introducing a trick (explained later in the
“dueling” paragraph), the distributional DDPG approach can
be enhanced and outperforms DDPG.

3) Distributional DDPG & Dueling: To facilitate
the approximation of the distribution Zπθ (st, at), we
propose to split it into two parts: one that estimates the
mean Zπθ,Mean

ψ and one that estimates the shape of
the distribution Zπθ,Shapeψ . For that, we use a dueling
architecture [24] (shown in Figure 6). Adapting equation (9)
of [24] for the distribution Zπθ (st, at), the output becomes
(Zπθψ)i=Zπθ,Mean

ψ +(Zπθ,Shapeψ)i− 1
NQ

∑NQ
i=1(Z

πθ,Shape
ψ)i,

∀i ∈ {1, · · · , Nq}; this effectively pushes Zπθ,Mean
ψ to

approximate Qπθ used for training the policy. To ensure the
decomposition of the distribution into shape and mean, we
add a loss term Lshape = (1

NQ

∑
i(Z

πθ,Shape
ψ)i)

2, centering

Zπθ,Shapeψ around zero. The total loss function is

L1+duel(ψ) = L1(ψ) + Lshape(ψ). (14)

To better understand the role and the performance of using
the dueling architecture to approximate the (return) distribution,
we have implemented a simple experiment, whose results are
shown in Figure 4. We set a random variable Z with known
cumulative distribution function (cdf) CDFreal from which
we draw samples. The objective is to test the distributional
and the combination of distributional plus dueling approach
on how fast using samples from Z they correctly estimate the
CDFreal. For the first approach (termed Distributional) we use
NQ parameters φ ∈ RNQ and aim to approximate the quantiles
of CDFreal through minimizing the quantile regression loss
(as in (13)): L1(φ)=

∑NQ
i=1Ez∼Z [fi(z−(φ)i)].

On the other hand, we use the dueling architecture (termed
Distributional & Dueling) with parameters φshape ∈ RNQ
and φmean ∈ R. We want with φduel := [φshape, φmean] to
approximate the quantiles of CDFreal by minimizing the loss
L1+duel(φduel) as defined in (14). In Figure 4, each column
corresponds to a different random variable Zi. Specifically:

• the first column corresponds to a normal distribution Z1 ∼
N (0, 1),

• the second one to a Gamma distribution Z2 ∼ Γ(1, 1),
and

• the last one Z3 to an equiprobable mixture of two normal
distributions N (0, 1) and N (4, 1).

Each row corresponds to a different number of samples used
to estimate CDFreal. We depict the estimated cdf when using
or not the dueling trick and compared them to the true one.
We use NQ = 50 and the optimization algorithm is Adam
with learning rate 0.01. We can see that using dueling leads to
faster estimation of the true cdf in all cases.

4) Scaling rewards: A closer look on the range of the
possible rewards reveals that they have a very large range
of possible values, starting from 0 (no user satisfied) to K
(maximum number of users satisfied assuming all classes have
equal importance αc = 1). Therefore both its mean and variance
may take big values. This is accentuated for the return, since
it is the (discounted) sum of many of those rewards. Therefore,
approximating the returns which take a large range of values is
demanding. Standard technique to facilitate the approximation
is “scaling” the rewards. The rewards are normalized in a way
that the returns take values on a more easy to approximate
range. Given a path that a fixed agent have taken, the returns
per time slot across that path are computed. Scaling the rewards
pushes the mean of those returns to zero and the variance to
one.

Specifically, the implementation of scaling the rewards
involves first estimating the discounted sum of rewards
zt ← γzt−1 + rt, then the running statistic of its mean
zmeant ← mscalez

mean
t−1 + (1 −mscale)zt and of its mean of

squares zsquarest ← mscalez
squares
t−1 + (1−mscale)z

2
t . Finally

the scaled reward equals to
rt − zmeant√

zsquarest − (zmeant)2
. The DRL

algorithm is fed with those rewards whose discounted sum
over time is the return that the policy network is trained to

This article has been accepted for publication in IEEE Transactions on Machine Learning in Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMLCN.2023.3314705

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

0 2 4 6

Millions of Samples

0.5

0.6

0.7

0.8

0.9

1

S
a

ti
s
fa

c
ti
o

n
 P

ro
b

a
b

ili
ty

Distr.&Duel.&Reward Scaling

Distributional DDPG &Dueling

DDPG

Distributional DDPG

(a)

0 2 4 6

Millions of Samples

0.2

0.4

0.6

0.8

1

S
a
ti
s
fa

c
ti
o
n
 P

ro
b
a
b
ili

ty

DDPG

Class 1

Class 2

(b)

0 2 4 6

Millions of Samples

0.2

0.4

0.6

0.8

1

S
a

ti
s
fa

c
ti
o

n
 P

ro
b

a
b

ili
ty

Distributional DDPG

Class 1

Class 2

(c)

Figure 3: Comparison between distributional and standard (non-distributional) DDPG RL. We conducted five experiments with
different seeds as in Figure 2 with the same traffic model. In the first figure, we depict the average over those five experiments;
in the other figures, we consider one specific experiment in an attempt to show the inherent ability of distributional DDPG in
dealing with heterogeneous traffic.

Figure 4: Estimation of a cumulative distribution function with and without the dueling trick.

predict. We fix mscale = 10−4. In Figure 3a it is shown that
reward normalization clearly provides additional boost in the
performance.

In Figure 5, we visualize what the value network tries to
approximate. In the first row, by considering only distributional
DDPG, from state s and action a the distribution of the returns
Zπθψ (s, a) is approximated. From a different state s′ and action
a′, there will be other possible random paths that the agent

with policy πθ may take and the value network will try to
approximate the distribution Zπθψ (s′, a′). The black dots depict
the average of the two distributions, which are in fact the
values that the value network of a simple DDPG would like
to approximate and the policy network to maximize. In the
second row, the use of reward scaling shifts the distributions
around zero and also shrink them. In the last row, the dueling
trick is added so the value network has two outputs. One

This article has been accepted for publication in IEEE Transactions on Machine Learning in Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMLCN.2023.3314705

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

Distributional

Distributional & Reward Scaling

0

Distributional & Reward Scaling & Dueling

Figure 5: Effect of adding the dueling architecture in the Value
Network and/or reward scaling to distributional DDPG RL.

branch of the dueling architecture approximates the value
Zπθ,Mean
ψ (s, a) = E[Zπθψ (s, a)], while the other the centered

distribution Zπθ,Shapeψ (s, a) = Zπθψ (s, a)−Zπθ,Mean
ψ (s, a).

5) Deep Sets: A final remark concerns the architecture,
which, as discussed before, should be designed so as to
preserve the permutation invariance. If we associate every
user’s characteristics with the resources given by the agent,
i.e., the action corresponding to it, then permuting the users
and accordingly the respective resource allocation should not
influence the assessment of the success of the agent. To build
such an architecture, we adopt the same architecture as in our
Policy Network, capitalizing on ideas from DeepSets [25].

The different steps of our algorithm are shown in Figure 6.

V. BASELINE ALGORITHMS

In this section, we present baseline scheduling algorithms,
which are built upon conventional optimization techniques but
are adapted to our specific problem. These algorithms are used
for performance comparison in order to show the gains of our
proposed DRL architecture.

A. Full CSI case

At time tc (tc ≥ t0), for user u0, which arrived at time t0,
both channel hu0,tc and location du0

are known. User u0 is not
satisfied at time t if and only if the allocated bandwidth wu0,t

is smaller than the threshold wthu0,t =
Du0

Ru0,t
. We first consider

algorithms working with immediate horizon (T = 1), where
only the current time tc is considered ignoring the effects on
future slots. In that case, it is possible that the scheduler prefers
serving two users that just arrived in the system rather than a
user with bad channel requiring more resources but being on
the verge of its latency constraint expiration. The optimization
problem can be easily rewritten as follows. The variables to
optimize are {xu,tc}u. The variable xu,tc is equal to 1 if user
u is served at time tc or 0 otherwise. The cost in terms of
bandwidth used is wthu,tcxu,tc , since full CSI is assumed and the
scheduler allocates exactly the minimum bandwidth required
to successfully send the data to user u. Then, the contribution

in the reward function is αuxu,tc . As a result, the optimization
problem can be written as

max
xu,tc

∑
u∈Utc

αuxu,tc

s.t.
∑
u∈Utc

wthu,tcxu,tc ≤W
xu,tc ∈ {0, 1}, ∀u ∈ Utc .

This problem boils down to a knapsack problem, which aims
to maximize the total value by choosing a proper subset from
a set of objects. Every object has its value but also its weight,
thus preventing one from picking all objects since the total
weight of the chosen subset should not exceed the knapsack
capacity level. It is a well known NP-complete problem
with numerous efficient algorithms solving it. This method
is a strong baseline as in every time slot it finds the optimal
allocation that maximizes the immediate rewards. In this work,
we use Google’s OR-TOOLS library for solving it.

A second baseline we compare with is the so-called expo-
nential rule [32], which corresponds to a generalization of
proportional fair scheduler taking into account the queue state
and the latency constraint of each user, and is also a state-of-
the-art mixed traffic packet scheduling scheme. At each time
slot t, users are ordered according to their index values and
we start serving the ones with the highest rank until resources
are finished. Let vu,t be the number of the time slots user
u remains unsatisfied and lu,t be the number of time slots
the user is eager to wait (therefore Lu = vu,t + lu,t). Denote

Ru,t =
1

vu,t + 1

t∑
τ=t−vu,t

Ru,τ the estimated mean past rate.

This value is known by the server at time t by keeping track
of the history of channel gains. Then the index Ju for user u
is given by

Ju = γu,tRu,te

au,tvu,t − atvt
1 +
√
atvt (15)

with atvt = 1
|Ut|

∑
u au,tvu,t, γu,t = au,t/Ru,t and au,t =

− log(δu)/lu,t with δu being the delay violation probability.

Lastly, we focus on algorithms that explicitly take into
account the effects of an action on the future of finite horizon
(T > 1). For sake of simplicity, we assume that for the time
interval t ∈ [tc, tc + T − 1] for all the current users and also
for the ones that will appear within that interval, the channel
realizations during this time interval are known beforehand
(i.e., when the algorithm is executed at time tc). Therefore,
this baseline becomes an oracle since it knows the future
channel realizations of users and can choose the best moment
to serve them. Evidently, this method provides an upper bound
on the performance. Specifically, if UTtc denotes the set of all
current users plus the ones that will arrive in the time interval
[tc, tc+T −1], then for every user u ∈ UTtc this baseline knows
wthu,t which corresponds to the required bandwidth in order to
satisfy u at time t ∈ [tc, tc+T −1]. The optimization problem

This article has been accepted for publication in IEEE Transactions on Machine Learning in Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMLCN.2023.3314705

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

Env
iro

nm
en

t

Characteristics
per user

relu relu

Processed
characteristics

per user

Policy Network

relu relu

Processed
Characteristics &
actions per user

Value Network
Characteristics &
actions per user

CSI?

No

Yes

Deep Sets User Normalization
&

Softplus

Deep Sets Dueling &
Distributional

Output
formation

Action

Crucial architecture choices

Reward
Scaling

Figure 6: The proposed RL network architecture

is then cast as

max
xu,t

∑
u∈UTtc

αu
∑tc+T−1
t=tc

xu,t

s.t.
∑
Ut
wthu,txu,t ≤W, ∀t ∈ [tc, tc+T−1]∑tc+T−1
t=tc

xu,t ≤ 1, ∀u ∈ UTtc
xu,t ∈ {0, 1}, ∀t ∈ [tc, tc+T−1] and ∀u ∈ UTtc .

This problem is an ILP and we use IBM CPLEX Optimization
software, which employs the Branch and Cut algorithm [1], to
solve it. Notice that the above problem cannot be mapped into
a knapsack one (as for T = 1), or even a multiple knapsack
problem because the weight of each user is time-varying due
to channel variability and non-constant user set.

B. Statistical CSI case

Under statistical CSI, the BS knows the statistics of the
system (channel, location, and traffic). In this section, we build
a baseline to compare with the proposed DRL scheduler in the
no-CSI case as mentioned in Remark 1.

Let us first focus on the case of a single user u0 arriving
at time t0. The current time is tc ∈ [t0, t0 + Lu0 − 1]. We
denote by wu0,t = (wu0,t0 , wu0,t0+1, ..., wu0,t) the assigned
bandwidth from time t0 (beginning of transmission for user
u0). Additionally, let Au0,t be a binary random variable, where
if Au0,t = 1, then u0 is still unsatisfied at the end of time slot
t (after receiving wu0,t resources) and Au0,t = 0 otherwise.
Given that at the beginning of time t, user u0 still remains
unsatisfied and that we know wu0,t is scheduled at time t, we
define Φ(wu0,t; du0

) to be the probability that wu0,t is not

sufficient to satisfy the user’s request for known location du0

and unknown channel realization hu0,t, i.e.,

Φ(wu0,t; du0
) ={

P(Au0,t = 1|wu0,t−1,du0
, Au0,t−1=1), t > t0

P(Au0,t = 1|du0
), t = tc = t0.

(16)

The average contribution of user u0 to the gain (5) on the time
interval [tc, t] is given by the following equation, derived by
applying the chain rule on conditional probability:

g[tc,t]u0
:= g(wu0,tc , ..., wu0,t; du0

) =
0, if tc > t0 and Au0,tc−1 = 0

αu0

(
1−

t∏
j=tc

Φ(wu0,j ; du0)
)
, else. (17)

We consider now the average contribution on the gain (5)
for subsequent users after user u0. The next user (if any)
appears at time t1 = t0 + Lu0 , the second next at time t2 =
t1 + Lu1

, and so on. In other words, we consider the users,
denoted u1, u2, . . ., which appear at time t1 = t0 + Lu0

, t2 =
t1 + Lu1

, . . ., respectively. Users belong to classes c1, c2, . . .,
with probabilities pc1 , pc2 , . . ., respectively. Since the locations
of those future users are unknown, we need to average (16)
and (17) over their possible locations in order to obtain their
contribution on the gain function (5). So for i ≥ 1 if wui,t =
(wui,ti , wui,ti+1, ..., wui,t), we have

g[ti,t]ui =g(wui,ti , ..., wui,t) = αui
(
1−

t∏
i=tc

Φ(wui,i)
)

(18)

where the contribution looking at time t with t < ti + Lui
starts at time ti for user ui and where

Φ(wui,t) =

{
P(Aui,t = 1|wui,t−1, Aui,t−1=1), t > ti
P(Aui,t = 1), t = ti.

(19)

This article has been accepted for publication in IEEE Transactions on Machine Learning in Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMLCN.2023.3314705

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

Closed-form expressions for Eqs. (16) and (19) are provided
in Appendix A.

For notational convenience, to include the case where no new
user is generated in a time slot, we introduce the “null” class of
users, which contains users serving as dummies. They appear
with probability pnull, are active for one slot (Lnull = 1)
and have zero contribution g

[ti,ti+1]
u = 0 with ti+1=ti+Lnull.

Hence, the average value of the gain function for the sequence
of users u0, u1, ... (so when there is one user at most per time
slot, i.e., K = 1) starting at the current time tc is

G(wu0,tc , ..., wu0,t1−1, wu1,t1 , ...) = g[tc,t1−1]
u0

(.; du0
)+∑

c1∈C∪null

(
pc1 · g[t1,t2−1]

u1
+

∑
c2∈C∪null

(
pc2 · g[t2,t3−1]

u2
+...

))
.

(20)

From (20), we observe a tree structure3 that when a user
vanishes, there is a summation over all possible classes the
new user may belong to. Therefore, a number of branches equal
to the number of possible classes (equal to |C|) are created
whenever a new future user is taken into account. To harness
this scalability issue, we prune the tree by considering only T
future time slots and work with finite horizon [tc, tc + T − 1].

The general case with multiple users served simultaneously
(K > 1) can easily be considered by just computing K “parallel
trees”. With a slight abuse of notation, we consider that the
first subscript of the variables w refers now to the index of
the tree (and implicitly to a specific user). As a consequence,
the variables for the scheduled bandwidth resources over an
horizon of length T can be put into the following matrix form

Wtc =


w1,tc w1,tc+1 · · · w1,tc+T−1

w2,tc w2,tc+1 · · · w2,tc+T−1

...
...

. . .
...

wK,tc wK,tc+1 · · · wK,tc+T−1

 (21)

and the average gain for these resources takes the following
form:

G(Wtc) =

K∑
k=1

G(wk,tc , wk,tc+1, · · · , wk,tc+T−1). (22)

Finally, we arrive at our optimization problem at current time
tc:

max
Wtc∈R

K×T
≥0

G(Wtc) (23)

s.t.
K∑
k=1

wk,t ≤W, ∀t ∈ {tc, . . . , tc+T−1}. (24)

It can easily be shown that the objective function G(·) is
non-concave with multiple local optima. The constraints given
by (24) describe a compact and convex domain set, which
allows to apply the Frank-Wolfe algorithm (FW) [33] that
guarantees reaching to a local optimum. FW algorithm is
a type of Successive Convex Approximation algorithm that
replaces the convex approximation by a linearization (i.e.,
first-order Taylor approximation) of the objective function.

3This can be exploited for computing it recursively.

The convergence of the FW method is sublinear; however,
the computation of the objective function (22) and its partial
derivatives grows exponentially with T , thus leading to slow
and cumbersome method in practice. In each time slot tc, we
use FW to get a local optimum solution W⋆

tc from which we
retrieve the first column [w⋆1,tc , · · · , w

⋆
K,tc

]⊺ corresponding to
the bandwidth allocation that will be applied at the current
time step tc.

VI. EXPERIMENTAL RESULTS

We consider the distance-dependent pathloss model 120.9 +
37.6 log10 d (in dB) [41], which corresponds to a constant loss
component Cpl = 10−12.09 and pathloss exponent npl = 3.76.
The noise spectral density is σ2

N = −149dBm/Hz. We consider
that the distance between the base station and users ranges
from 0.05 km to 1 km. The power per unit bandwidth is kept
equal to 1µW/Hz. In all experiments, for both synthetic and
real data, the timeslot is set to Ts =1 ms. For measuring the
reported satisfaction probabilities, the scheduler first interacts
with the user traffic for a large enough time horizon until the
estimated probabilities vary less than 0.1%.

For the proposed DRL scheduler, we update the target policy
and value networks with momentum mtarget = 0.005. We use
replay buffer of capacity 5000 samples. The batch size is
set to 64 and the learning rate is set to 0.001. The discount
factor is γ = 0.95. We use NQ = 50 quantiles to describe
the distribution. The ϕuser consists of two fully connected
layers each with 10 neurons. We have Pexplore = 0.2 and
σexplore = 0.3. The number of input and output dimensions
in both frelu and flinear is 10 (i.e., H = H ′ = 10). We
remark that the number of parameters is kept significantly
low (around 1800), mainly due to the use of Deep Set. It is
essential to keep the number of parameters low because the
high stochasticity of the environment makes the model prone
to overfitting. Moreover, keeping the number of parameters
low makes our solution fast and cost-effective (both in terms
of energy and hardware).

A. Synthetic Data

We consider two scenarios for the traffic as described in
Table I.

Table I: Classes description for two scenarios

(a) Users of equal importance

Data per user
(Kbytes)

Latency
(in time slots) Imp. Prob.

Class 1 8 2 1 0.3
Class 2 64 10 1 0.2

(b) Prioritized and normal users

Data per user
(Kbytes)

Latency
(in time slots) Imp. Prob.

Class 1 8 2 1 0.15
Class 1+ 8 2 2 0.05
Class 2 64 10 1 0.3

Class 2+ 64 10 2 0.05

The first scenario consists of two classes, one with users
requesting a small amount of data but within a stringent latency

This article has been accepted for publication in IEEE Transactions on Machine Learning in Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMLCN.2023.3314705

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12

constraint (of just two time slots) and one other class requesting
a large amount of data with less stringent latency constraint.
All classes have the same importance as seen from the Imp.
column. In the second scenario, classes do not have the same
importance. Note that the Prob. column describes the probability
pc with which a user of that class appears in the system at a
given time slot (they do not sum up to one signifying that it
is possible that no user appears during some time slots).

In Figure 7, we plot the satisfaction ratio per class priority
(i.e., all users having the same priority take part to the
computation of the same ratio and so depicted in the same
curve) versus the channel correlation (ρ in left column) and
versus the total bandwidth (W in right column) for both
scenarios and different CSI knowledge. Figures 7a,7c,7e are
plotted for W = 2 MHz, W = 5 MHz and W = 2 MHz,
respectively, whereas Figures 7b, 7d, 7f are all for ρ = 0.
Figures 7a, 7b, 7e, and 7f are done with K = 100 users.
Figures 7c and 7d are done with K = 60 users.

Recall that the FW algorithm reaches to a suboptimal point
and different initializations lead to different local optima. For
that, at each time slot, we repeat the FW algorithm Ninit times
with a different initialization at each time and we select the
best suboptimal point. This method could lead to considerable
performance improvement for Ninit increasing; however, due
to computational complexity, we stop at Ninit = 20. Moreover,
as the number of users K increases, so does the number of local
optima and that of solutions with poor performance making
it tougher for the FW to find a good optimal point without
significantly increasing Ninit. This is the main reason why
our DRL Scheduler substantially outperforms Frank-Wolfe
algorithm even at moderate values of users (K = 60). Note that
our DRL Scheduler continues exhibiting very good performance
even if K is further increased.

The proposed DRL scheduler outperforms the knapsack
algorithm. For instance, at a level of 95% of satisfaction
probability, we may save about 13% of bandwidth, which is
followed by a 13% power saving as the power per Hz is kept
constant (see Figure 7b). We also observe that our scheduler
is close to the optimal policy, since ILP which uses an oracle
constitutes an upper bound on the performance. In Figures 7e
and 7e, there is a priority class of users, which always enjoys a
higher satisfaction probability. Interestingly, the proposed DRL
scheduler serves slightly worse the priority class than what
the knapsack does. Nevertheless, since the priority counts for
the 0.1

0.55 ≈ 18% of the users and the rest 82% is much better
served using our Deep Scheduler, the latter exhibits overall
better performance than the knapsack.

B. Real Data

To assess the applicability of our algorithm in a realistic
setup, we perform experiments on real data using publicly
available traces based on real measurements over Long Term
Evolution (LTE) 4G networks in a Belgium city [42], [43]. Six
different types of transportation (foot, bicycle, bus, tram, train,
car) are used. The throughput and the GPS location of a mobile
device continuously demanding data are recorded every second.
Since this recording timescale of 1 s in the real dataset is much

larger than the small-scale fading timescale represented here
by the random variable h, the measurement that is provided
corresponds to Mi = Eh[W log2(1 + κ|h|2)] for every i-th
second. The value of κ, which mainly depends on the user
location, is assumed constant within 1s. As the measurements
bandwidth W is not reported in the dataset, we assume it to be
15MHz, resulting in a mean signal-to-noise ratio SNR ≈ 6dB
in an LTE compliant system. This allows us to retrieve κ from
measurement Mi. To compute the channel time variation h, the
user speed is required in (1) so as to obtain ρ. This is estimated
using the trajectory of GPS coordinates given from the traces.
A user entering the system belongs to a class according to
Table II, with its type of transportation chosen randomly; we
then sample Mi and her location from the traces accordingly.
Knowing in the previous and afterwards time slots the locations,
we can compute the average speed and so the ρ. Finally, so
far we assumed that the bandwidth can be split as small as
desired (continuum); however, in practice, the bandwidth is
split into Nbl resource blocks and each user is assigned an
integer multiple of those. In Table III, we consider different
possible values of Nbl and keep the size of each resource block
constant to 200kHz. Again we confirm the performance gains
from using a DRL based approach. For the exponential rule,
the value of δu is set to δu = δ = 10−2 [32]. Nevertheless,
since this value does not provide the best results for every Nbl
(resource blocks), we tune this parameter for each Nbl in order
to provide the highest possible performance.

Table II: Equal Classes description (Data rate per user in Kbps,
Latency in ms)

Data (Kbits) Latency (ms) Imp. Prob.
Class 1 1 5 1 0.2
Class 2 5 25 1 0.3

In Table III, we see that the proposed DRL algorithm
outperforms baseline algorithms with full CSI and using real
data, both in terms of data rate and satisfaction probability.
The gap from the upper bound is rather significant, but this is
expected as the upper bound is optimistic assuming that the
channel is known in advance.

Finally, we would like to remark that the gain of the proposed
DRL method is smaller in the case of real data. The main
reason is that in the real measurements used in our setup, the
channel remains quite constant over time, which translates to
ρ ≈ 1. For instance, in Fig. 7a, which refers to the synthetic
data experiments, we observe that the closer the value of ρ is
to 1 the smaller are the gains. Therefore, it is reasonable to
have lower gains in the real measurements experiments, as the
observed ρ is closer to 1. Intuitively, the smaller the ρ, the more
diversity the channels of the users presents. This allows the
scheduler to take more ’clever’ decisions. On the other hand, if
ρ = 1, it does not actually matter when the scheduler chooses
to serve an active user, as their channels remain identical (or
quasi identical) in future time slots, and hence the required
bandwidth the scheduler needs to spend to satisfy a user. In
an nutshell, our DRL scheduler provides higher gains when ρ
is small and also when the available bandwidth resources are
not too large. Since we keep the number of users constant in

This article has been accepted for publication in IEEE Transactions on Machine Learning in Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMLCN.2023.3314705

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13

i.i.d. 0.2 0.4 0.6 0.8 constant

Channel Dynamics

0.85

0.9

0.95

1

S
a
ti
s
fa

c
ti
o
n
 P

ro
b
a
b
ili

ty

full-CSI

(a) (b)

i.i.d. 0.2 0.4 0.6 0.8 constant

Channel Dynamics

0.75

0.8

0.85

0.9

0.95

1

S
a

ti
s
fa

c
ti
o

n
 P

ro
b

a
b

ili
ty

statistical/no-CSI

(c)

3.5 4 4.5 5 5.5

Bandwidth Resources (MHz)

0.75

0.8

0.85

0.9

0.95

1

S
a

ti
s
fa

c
ti
o

n
 P

ro
b

a
b

ili
ty

statistical/no-CSI

(d)

i.i.d 0.2 0.4 0.6 0.8 constant

Channel Dynamics

0.7

0.75

0.8

0.85

0.9

0.95

1

S
a
ti
s
fa

c
ti
o
n
 P

ro
b
a
b
ili

ty

full-CSI, with priority class

(e)

1 1.5 2 2.5 3

Bandwidth Resources (MHz)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

S
a
ti
s
fa

c
ti
o
n
 P

ro
b
a
b
ili

ty

full-CSI, with priority class

(f)

Figure 7: Satisfaction rate of the proposed DRL scheduler and the baseline algorithms versus ρ (left column) and W (right
column). The first and last rows correspond to the case of Table Ia and the row in the middle to Table Ib. Figures 7a, 7b, 7e
and 7f refer to the full CSI case while the other to the statistical CSI/no CSI case.

This article has been accepted for publication in IEEE Transactions on Machine Learning in Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMLCN.2023.3314705

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

14

Table III: Sum Data Rate (in Mbps) / Probability of Satisfaction

Nbl (W) 6 (3MHz) 15 (5MHz) 25 (10MHz) 50 (15MHz) 75 (20MHz)
Knapsack 6.4 / 48.6% 10.2 / 64.3% 15.2 / 84.3% 17.0 / 91.2% 17.6 / 93.4%
Exp. Rule 5.9 / 44.0% 8.8 / 57.3% 14.0 / 80.4% 17.2 / 92.7% 18.1 / 95.8%

Proposed DRL Scheduler 6.7 / 51.6% 10.6 / 67.6% 15.5 / 86.9% 17.2 / 93.0% 18.3 / 96.2%
ILP (Upper Bound) 9.0 / 62.9% 14.6 / 81.8% 18.6 / 98.5% 18.9 / 98.7% 19.0 / 98.9%

our setup, if the bandwidth resources are too large, then the
gains are expected to be low. The reason is that given abundant
resources, it is easy to devise a reasonable scheduler that
succeeds in satisfying all users. On the contrary, with limited
resources the scheduler needs to smartly allocate the resources
in order to maximize the satisfied users and this is when our
Deep Scheduler outperforms. Finally, as we previously noted,
if ρ ≈ 1, there is not enough fluctuations (diversity) in the
channel evolution from one slot to another, and hence not
enough margin for smart scheduling decisions to efficiently
use the available resources.

VII. CONCLUSION

The problem of scheduling and resource allocation of
a time-varying set of users with heterogeneous traffic and
QoS requirements was studied here. We leveraged deep
reinforcement learning and proposed a deep deterministic
policy gradient algorithm, which builds upon distributional
reinforcement learning and deep sets. Our experiments on both
synthetic and real data showed that the proposed scheduler can
achieve significant performance gains as compared to baseline
conventional combinatorial optimization methods and state-
of-the-art packet scheduling metrics in both full and no CSI
scenarios.

APPENDIX A
CLOSED-FORM EXPRESSIONS FOR (16) AND (19)

a) i.i.d. fading (ρ = 0): This is the simplest case since
there are no time dependencies on the fading, hence using (2)
and (3), (16) and (19) become

Φ(wu0,t; du0
) = P failu0

(wu0,t, P ; du0
) and (25)

Φ(wui,t) = P failui (wui,t, P), i ≥ 1. (26)

We recall that users ui for i ≥ 1 arrive after user u0, therefore
their locations are unknown and we need to average over them4.

b) Static channel (ρ = 1): The channel remains the
same for each retransmission. For user u0, the channel is time

4It might not be easy to find the derivative of (3), which is required for
first-order approximation in the Franck-Wolfe algorithm. This is done as
follows

dP fail
u

dw
=

∫ dmax

dmin

dP(|h|2 < ζu,td
npl)

dζu,t
fd(d)dd

dζu,t

dw

=
Γ(

2+npl
npl

, ζu,td
npl
min)−Γ(

2+npl
npl

, ζu,td
npl
max)

nplζ
(2+npl)/npl
u,t (d2max − d2min)/2

dζu,t

dw
.

invariant (gu0 = gu0,t ∀t ∈ [t0, t0 + Lu0 − 1]) but unknown.
Only the user location is known. At time t > t0, we have

Φ(wu0,t; du0
) = P(wu0,t log(1+gu0

P) < Du0
|

wu0,t′ log(1+gu0
P) < Du0

∀t′ ∈ [t0, t−1], du0
)

=
P(wu0,t′′ log(1 + gu0P) < Du0 ∀t′′ ∈ [t0, t] | du0)

P(wu0,t′ log(1 + gu0P) < Du0 ∀t′ ∈ [t0, t−1] | du0)
. (27)

Therefore, we obtain

Φ(wu0,t; du0) =


P failu0

(max{wu0,t}, P ; du0
)

P failu0 (max{wu0,t−1}, P ; du0
)
, if t > t0

P failu0
(wu0,t, P ; du0

), if t = t0.

(28)

For subsequent (future) users (ui with i ≥ 1), the expressions
remain the same with the only difference that the locations of
those users are also not known. Hence, in (28), we just need
to omit du similarly to the i.i.d. case.

c) General Markovian channel (ρ ∈ (0, 1)): This is
the most complicated case due to the correlation between
channel realizations. At time t, the distribution of hu,t given
the past (which is not known in practice) is Rician distributed.
Specifically, if user u is active at t − 1 and t, we have
P(|hu,t|=x

∣∣∣|hu,t−1|) = Rice(x; vR = ρ|hu0,t−1|, σ2
R =

1−ρ2
2), where vR and σ2

R is the distance and the spread
parameters respectively of the Rice distribution. Let us focus
on user u0 at time t = t0 + 1. According to [44, eq.(37)], we
have

Φ(wu0,t0+1; du0
) =∫ xu0,0

0

∫ xu0,1

0

P(|hu0,t0+1|=x |y)P(|hu0,t0 |=y)dxdy

= 1−
e−x

2
1Q1(

xu0,0
σR

,
ρxu0,1
σR

)−e−x
2
u0,0Q1(

ρxu0,0
σR

,
xu0,1
σR

)

2(1− e−x
2
u0,0)

(29)

with xui,j =
√
ζui,ti+jd

−
npl
2 , i ∈ {0, 1} and QM be the

Marcum Q-function.
For future users (ui, i ≥ 1), we have at time t = ti + 1 (we

remind that user ui starts its transmission at time ti):

Φ(wu,ti+1) =

∫ dmax

dmin

Φ(wui,ti+1; dui)fd(d)dd (30)

where Φ(wui,ti+1; dui) is given by (29) by replacing u0 with
ui. Equation (30) is intractable even considering only the
first two adjacent retransmissions. This is exacerbated when
one considers additional transmissions. Therefore, the baseline
algorithm is only designed for ρ = 0 or ρ = 1, even if it is
also tested in the general case ρ ∈ (0, 1). Specifically, for any
ρ, we apply the baseline algorithm designed for both ρ = 0
and ρ = 1 and keep the best result.

This article has been accepted for publication in IEEE Transactions on Machine Learning in Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMLCN.2023.3314705

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

15

REFERENCES

[1] J. E. Mitchell, “Branch-and-cut algorithms for combinatorial optimization
problems,” Handbook of applied optimization, vol. 1, pp. 65–77, 2002.

[2] V. t. Mnih, “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[3] D. t. Silver, “Mastering chess and shogi by self-play with a general
reinforcement learning algorithm,” preprint, arXiv:1712.01815, 2017.

[4] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[5] J. Kober, J. Bagnell, and J. Peters, “Reinforcement learning in robotics:
A survey,” The International Journal of Robotics Research, vol. 32, pp.
1238–1274, 2013.

[6] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
preprint, arXiv: 1509.02971, 2015.

[7] M. Cheng, J. Li, and S. Nazarian, “Drl-cloud: Deep reinforcement
learning-based resource provisioning and task scheduling for cloud service
providers,” in 23rd Asia and S. Pacific Design Automation Conference
(ASP-DAC), 2018, pp. 129–134.

[8] O. Naparstek and K. Cohen, “Deep multi-user reinforcement learning
for distributed dynamic spectrum access,” IEEE Trans. on Wireless
Communications, vol. 18, no. 1, pp. 310–323, 2018.

[9] Y. S. Nasir and D. Guo, “Multi-agent deep reinforcement learning for
dynamic power allocation in wireless networks,” IEEE Journal on Sel.
Areas in Commun. (JSAC), vol. 37, no. 10, pp. 2239–2250, 2019.

[10] F. Meng, P. Chen, L. Wu, and J. Cheng, “Power allocation in multi-user
cellular networks: Deep reinforcement learning approaches,” IEEE Trans.
on Wireless Communications, vol. 19, no. 10, pp. 6255–6267, 2020.

[11] B. Mao, F. Tang, Y. Kawamoto, and N. Kato, “AI models for green
communications towards 6g,” IEEE Communications Surveys & Tutorials,
vol. 24, no. 1, pp. 210–247, 2022.

[12] S. Chinchali, P. Hu, T. Chu, M. Sharma, M. Bansal, R. Misra, M. Pavone,
and S. Katti, “Cellular network traffic scheduling with deep reinforcement
learning.” in AAAI Conf. on Artificial Intelligence, 2018, pp. 766–774.

[13] N. Zhao, Y.-C. Liang, D. Niyato, Y. Pei, M. Wu, and Y. Jiang, “Deep
reinforcement learning for user association and resource allocation in het-
erogeneous cellular networks,” IEEE Trans. on Wireless Communications,
vol. 18, no. 11, pp. 5141–5152, 2019.

[14] J. V. Saraiva, J. Braga, Iran M., V. F. Monteiro, F. R. M. Lima, T. F.
Maciel, J. Freitas, Walter C., and F. R. P. Cavalcanti, “Deep Reinforcement
Learning for QoS-Constrained Resource Allocation in Multiservice
Networks,” arXiv, Mar. 2020.

[15] F. S. Mohammadi and A. Kwasinski, “Deep reinforcement learning
approach to QoE-driven resource allocation for spectrum underlay in
cognitive radio networks,” in IEEE Inter. Conf. on Commun. (ICC)
Workshops, Kansas City, MO, USA, May 2018.

[16] H. Yang, J. Zhao, K.-Y. Lam, S. Garg, Q. Wu, and Z. Xiong, “Deep
reinforcement learning based resource allocation for heterogeneous
networks,” in 17th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob), 2021, pp. 253–
258.

[17] W. Lee and R. Schober, “Deep learning-based resource allocation for
device-to-device communication,” CoRR, vol. abs/2011.12757, 2020.

[18] E.-M. Bansbach, V. Eliachevitch, and L. Schmalen, “Deep reinforcement
learning for wireless resource allocation using buffer state information,”
in 2021 IEEE Global Communications Conference (GLOBECOM), 2021,
pp. 1–6.

[19] V. H. L. Lopes, C. V. Nahum, R. M. Dreifuerst, P. Batista, A. Klautau,
K. V. Cardoso, and R. W. Heath, “Deep reinforcement learning-based
scheduling for multiband massive MIMO,” IEEE Access, vol. 10, pp.
125 509–125 525, 2022.

[20] S. C. Jaquette, “Markov decision processes with a new optimality
criterion: Discrete time,” The Annals of Statistics, vol. 1, no. 3, pp.
496–505, 1973.

[21] W. Dabney, G. Ostrovski, D. Silver, and R. Munos, “Implicit
quantile networks for distributional reinforcement learning,” preprint,
arXiv:1806.06923, 2018.

[22] W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos, “Distributional
reinforcement learning with quantile regression,” in Thirty-Second AAAI
Conference on Artificial Intelligence, New Orleans, USA, 2 2018.

[23] M. Fortunato, M. G. Azar, B. Piot, J. Menick, M. Hessel, I. Osband,
A. Graves, V. Mnih, R. Munos, D. Hassabis et al., “Noisy networks for
exploration,” in International Conference on Learning Representations,
2018.

[24] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Freitas, “Dueling network architectures for deep reinforcement
learning,” in International Conference on Machine Learning, ICML, New
York, USA, 6 2016.

[25] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov,
and A. J. Smola, “Deep sets,” in Advances in Neural Information
Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.
Curran Associates, Inc., 2017, pp. 3391–3401. [Online]. Available:
http://papers.nips.cc/paper/6931-deep-sets.pdf

[26] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
in International Conference on Learning Representations, ICLR, San
Juan, Puerto Rico, 5 2016.

[27] A. Valcarce, “Wireless suite,” https://github.com/nokia/wireless-suite,
2020.

[28] Z. Gu, C. She, W. Hardjawana, S. Lumb, D. McKechnie, T. Essery,
and B. Vucetic, “Knowledge-assisted deep reinforcement learning in 5G
scheduler design: From theoretical framework to implementation,” IEEE
Journal on Sel. Areas in Commun. (JSAC), vol. 39, no. 7, pp. 2014–2028,
2021.

[29] Y. Shen, Y. Shi, J. Zhang, and K. B. Letaief, “Graph neural networks for
scalable radio resource management: Architecture design and theoretical
analysis,” IEEE Journal on Sel. Areas in Commun. (JSAC), vol. 39, no. 1,
pp. 101–115, 2020.

[30] J. Li and X. Zhang, “Deep reinforcement learning-based joint scheduling
of eMBB and URLLC in 5G networks,” IEEE Wirel. Comm. Letters,
vol. 9, no. 9, pp. 1543–1546, 2020.

[31] L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph,
and A. Madry, “Implementation matters in deep RL: A case study on
PPO and TRPO,” in International conference on learning representations,
2019.

[32] S. Shakkottai and A. L. Stolyar, “Scheduling algorithms for a mixture
of real-time and non-real-time data in HDR,” in Teletraffic Science and
Engineering. Elsevier, 2001, vol. 4, pp. 793–804.

[33] M. Frank and P. Wolfe, “An algorithm for quadratic programming,”
Naval Research Logistics Quarterly, vol. 3, no. 1-2, pp. 95–110, 1956.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.
3800030109

[34] C. C. Tan and N. C. Beaulieu, “On first-order Markov modeling for
the Rayleigh fading channel,” IEEE Trans. on Communications, vol. 48,
no. 12, pp. 2032–2040, 2000.

[35] R. Bellman, “A Markovian decision process,” Journal of mathematics
and mechanics, pp. 679–684, 1957.

[36] K. J. Åström, “Optimal control of Markov processes with incomplete
state information,” Journal of Mathematical Analysis and Applications,
vol. 10, pp. 174–205, 1965. [Online]. Available: https://lup.lub.lu.se/
search/ws/files/5323668/8867085.pdf

[37] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial intelligence,
vol. 101, no. 1-2, pp. 99–134, 1998.

[38] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” Proceedings of the 31st
International Conference on Machine Learning, PMLR, vol. 32, no. 1,
pp. 387–395, 6 2014.

[39] G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Horgan,
A. Muldal, N. Heess, and T. Lillicrap, “Distributed distributional
deterministic policy gradients,” in Intern. Conf. on Learning Repres.
(ICLR), Vancouver, Canada, 2018.

[40] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspective
on reinforcement learning,” in International Conference on Machine
Learning, ICML, Syndey, Australia, 8 2017.

[41] (2018, 6) Technical Report: 3GPP TR 36.913 v15.0.0: Requirements for
further advancements for E-UTRA (LTE-Advanced). [Online]. Available:
https://www.3gpp.org/ftp/Specs/archive/36 series/36.913/

[42] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface,
T. Bostoen, and F. De Turck, “HTTP/2-Based Adaptive Streaming of
HEVC Video Over 4G/LTE Networks,” IEEE Comm. Letters, vol. 20,
no. 11, pp. 2177–2180, 2016.

[43] H. Mao, “Pensieve,” https://github.com/hongzimao/pensieve, 2017.
[44] A. H. Nuttall, “Some integrals involving the Q-function,” IEEE Trans.

on Inform. Theory, vol. 21, no. 1, pp. 95–96, 4 1975.

This article has been accepted for publication in IEEE Transactions on Machine Learning in Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMLCN.2023.3314705

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

http://papers.nips.cc/paper/6931-deep-sets.pdf
https://github.com/nokia/wireless-suite
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800030109
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800030109
https://lup.lub.lu.se/search/ws/files/5323668/8867085.pdf
https://lup.lub.lu.se/search/ws/files/5323668/8867085.pdf
https://www.3gpp.org/ftp/Specs/archive/36_series/36.913/
https://github.com/hongzimao/pensieve

16

Apostolos Avranas received the Diploma (Hons.)
in electrical and computer engineering from the
Aristotle University of Thessaloniki, Greece, in
2015.In 2020 he received his Ph.D. degree from
with Télécom ParisTech funded by Huawei Paris
Research Center. From 2020 to 2022 he held the
position of a postdoctoral researcher at EURECOM,
Sophia-Antipolis, France. Currently, he is working
with Amadeus, Sophia Antipolis, France as a Senior
Machine Learning Engineer.

Philippe Ciblat was born in Paris, France, in
1973. He received the Engineering degree from
Ecole Nationale Supérieure des Télécommunications
(ENST, now called Telecom Paris) and the M.Sc.
degree (DEA, in french) in automatic control and
signal processing from Université Paris-Saclay, Orsay,
France, both in 1996, and the Ph.D. degree from
Université Gustave Eiffel, Marne-la-Vallée, France,
in 2000. He eventually received the HDR degree from
Université Gustave Eiffel, Marne-la-Vallée, France,
in 2007. In 2001, he was a Postdoctoral Researcher

with the Université de Louvain, Belgium. At the end of 2001, he joined
Telecom Paris, as an Associate Professor. Since 2011, he has been (full)
Professor in the same institute. From 2009 to 2020, he was the head of
Digital Communications Team. He served as Associate Editor for the IEEE
Communications Letters from 2004 to 2007. From 2008 to 2012, he served
as Associate Editor and then Senior Area Editor for the IEEE Transactions on
Signal Processing. From 2014 to 2019, he was member of IEEE Technical
Committee ”Signal Processing for Communications and Networking”. From
2018 to 2021, he served as Associate Editor for the IEEE Transactions on
Signal and Information Processing over Networks. His research areas include
statistical signal processing, signal processing for digital communications,
resource allocation, distributed optimization, signal over graphs, and machine
learning.

Marios Kountouris (S’04–M’08–SM’15–F’23) re-
ceived the diploma degree in electrical and computer
engineering from the National Technical University
of Athens (NTUA), Greece in 2002 and the M.S. and
Ph.D. degrees in electrical engineering from Télécom
Paris, France in 2004 and 2008, respectively. He is
currently a Professor at the Communication Systems
department, EURECOM, Sophia-Antipolis, France.
Prior to his current appointment, he has held positions
at CentraleSupélec, France, the University of Texas at
Austin, USA, Huawei Paris Research Center, France,

and Yonsei University, South Korea. He is the recipient of a Consolidator
Grant of the European Research Council (ERC) in 2020 on goal-oriented
semantic communication. He has served as Editor for the IEEE Transactions
on Wireless Communications, the IEEE Transactions on Signal Processing, and
the IEEE Wireless Communication Letters. He has received several awards and
distinctions, including the 2022 Blondel Medal, the 2020 IEEE ComSoc Young
Author Best Paper Award, the 2016 IEEE ComSoc CTTC Early Achievement
Award, the 2013 IEEE ComSoc Outstanding Young Researcher Award for
the EMEA Region, the 2012 IEEE SPS Signal Processing Magazine Award,
the IEEE SPAWC 2013 Best Paper Award and the IEEE Globecom 2009
Communication Theory Best Paper Award. He is an IEEE Fellow, an AAIA
Fellow, and a chartered Professional Engineer of the Technical Chamber of
Greece.

This article has been accepted for publication in IEEE Transactions on Machine Learning in Communications and Networking. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMLCN.2023.3314705

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

	Introduction
	Contributions

	System Model
	Network and channel model
	Traffic model
	Service Rate

	Problem Statement
	Proposed Deep Reinforcement Learning Architecture
	Policy Network
	Deep Sets
	Output
	User normalization
	Exploration

	Value Network
	DDPG
	Distributional DDPG
	Distributional DDPG & Dueling
	Scaling rewards
	Deep Sets

	Baseline algorithms
	Full CSI case
	Statistical CSI case

	Experimental Results
	Synthetic Data
	Real Data

	Conclusion
	Appendix A: Closed-form expressions for (16) and (19)
	References
	Biographies
	Apostolos Avranas
	Philippe Ciblat
	Marios Kountouris

