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Abstract
Determining an accurate picture of ocean currents is an important societal challenge for oceanographers, aiding our
understanding of the vital role currents play in regulating Earth’s climate, and in the dispersal of marine species and
pollutants, including microplastics. The geodetic approach, which combines satellite observations of sea level and
Earth’s gravity, offers the only means to estimate the dominant geostrophic component of these currents globally.
Unfortunately, however, geodetically-determined geostrophic currents suffer from high levels of contamination in
the form of geodetic noise. Conventional approaches use isotropic spatial filters to improve the signal to noise
ratio, though this results in high levels of attenuation. Hence, the use of deep learning to improve the geodetic
determination of the ocean currents is investigated. Supervised machine learning typically requires clean targets
from which to learn. However, such targets do not exist in this case. Therefore, a training dataset is generated by
substituting clean targets with naturally smooth climate model data and generative machine learning networks are
employed to replicate geodetic noise, providing noisy input and clean target pairs. Prior knowledge of the geodetic
noise is exploited to develop a more realistic training dataset. A convolutional denoising autoencoder (CDAE) is
then trained on these pairs. The trained CDAE model is then applied to unseen real geodetic ocean currents. It is
demonstrated that our method outperforms conventional isotropic filtering in a case study of four key regions: the
Gulf Stream, the Kuroshio Current, the Agulhas Current and the Brazil-Malvinas Confluence Zone.

Impact Statement
Although ocean currents play a crucial role in regulating Earth’s climate and in the dispersal of marine species
and pollutants, such as microplastics, they are difficult to measure accurately. Satellite observations offer the
only means by which ocean currents can be estimated across the entire global ocean. However, these estimates
are severely contaminated by noise. Removal of this noise by conventional filtering methods leads to blurred
currents. Therefore, this work presents a novel deep learning method that successfully removes noise, while
greatly reducing the current attenuation, allowing more accurate estimates of current speed and position to
be determined. The method may have more general applicability to other geophysical observations where
filtering is required to remove noise.

1. Introduction
Ocean currents play an important role in Earth’s climate system, transporting vast quantities of heat
from the tropics to higher latitudes, thereby helping to maintain Earth’s heat balance (Talley , 2013). In
© The Authors(s) 2020. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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Figure 1. Surface geostrophic current velocity map computed from the high-resolution CMCC-CM2-
HR4 climate model (Scoccimarro et al. , 2019) prepared for Coupled Model Intercomparison Project
Phase 6 (CMIP6).

so doing, ocean currents can significantly impact global climate patterns and local weather conditions
(Broecker , 1998; Sutton and Hodson , 2005; Zhang and Delworth , 2006). Rates and patterns of ocean
heat (Winton et al. , 2013; Bronselaer and Zanna , 2020) and carbon dioxide (Le Quéré et al. , 2009;
Sallée , 2012) storage are strongly influenced by the ocean circulation; for example changes in circu-
lation of the North Atlantic brought on by anthropogenic warming play a critical role in regulating the
overall climatic response (Winton et al. , 2013; Marshall et al. , 2015). Ocean current transports are also
of critical importance to marine life, carrying essential nutrients and food to marine ecosystems while
distributing larvae and reproductive cells (Merino and Monreal-Gómez , 2009). Ocean currents also act
as a global dispersal mechanism for pollutants such as mircoplastics (van Duinen , 2022; Ypma et al. ,
2022), and those arising from power generation, industry and other human activities (Buesseler et al. ,
2011; Goni et al. , 2015; Doglioli et al. , 2004). Finally, ocean currents affect shipping and fishing indus-
tries, with consequences for safe and efficient navigation (Singh et al. , 2018). For these reasons, all
of which have profound implications for society, accurate measurements of the global ocean’s surface
currents are vitally important.

While ocean currents may be measured by deploying in-situ current meters, either moored or free-
floating, their sampling is rather too sparse in time and space to obtain a consistently accurate estimate
of the ocean’s circulation over the entire global ocean (Zhou et al. , 2000; Poulain et al. , 2012). We can,
however, exploit the fact that the ocean is largely in geostrophic balance to calculate the ocean’s surface
circulation from observations of its time-mean dynamic topography (MDT). The surface geostrophic
current velocities shown in Figure 1 are computed from the MDT generated by a high-resolution cli-
mate model, where the MDT is simply the time-averaged sea surface height fields generated by the
model. The actual ocean’s MDT describes the deviation of the time-mean sea surface (MSS) from the
marine geoid, defined as the shape the oceans would take if affected by gravity and rotation alone (cor-
responding to zero sea surface height in the model.) The MDT, therefore, represents the influence of
momentum, heat and freshwater (buoyancy) fluxes between the ocean and the atmosphere.
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Observationally, the MDT can be determined geodetically by subtracting a geoid height surface from
an altimetric MSS:

𝜂(𝜃, 𝜙) = 𝐻 (𝜃, 𝜙) − 𝑁 (𝜃, 𝜙), (1)

where 𝜂, 𝐻 and 𝑁 represent the MDT, the MSS and the geoid height (resp.), with 𝜃 and 𝜙 representing
latitude and longitude (resp.). As described in Bingham et al. (2008), the simplicity of eq. 1 belies many
challenges that arise in practice because of the fundamentally different nature of the geoid and the MSS
and the approaches by which they are determined. As a result, observed MDTs contain unphysical
noise patterns that appear as striations and orange skin like features (Figure 2), the origin of which is
discussed below.

Assuming geostrophic balance, the ocean’s steady-state circulation is proportional to the direction
and magnitude of the MDT gradients (Knudsen et al. , 2011). Thus, the zonal and meridional surface
geostrophic currents, u and v (resp.), are calculated by:

𝑢 = − 𝛾

𝑓 𝑅

𝜕𝜂

𝜕𝜃
, 𝑣 =

𝛾

𝑓 𝑅𝑐𝑜𝑠𝜃

𝜕𝜂

𝜕𝜙
, (2)

where 𝜃 is latitude and 𝜙 is longitude; 𝛾 denotes the normal gravity; 𝑅 denotes the Earth’s mean radius;
and finally 𝑓 = 2𝜔𝑒𝑠𝑖𝑛𝜃 is the Coriolis parameter, in which 𝜔𝑒 denotes the Earth’s angular velocity.
Because the surface geostrophic currents are calculated as the gradient of the MDT (eq. 2), the noise in
the latter surface is amplified when the currents are calculated, thus obscuring the signal we seek (Figure
3). Noise is present over the entirety of the ocean’s global surface. However, due to steep gradients in
the gravity field adjacent to some coastlines, such as along the west coast of South America, around
the Caribbean and in the Indonesian through-flow region, noise here is particularly severe; a problem
exacerbated towards the equator where the 1/ 𝑓 factor in the geostrophic equations approaches zero.
This poses a particular challenge to conventional filters.

The fundamental issue with determining the MDT and associated currents geodetically is that the
MSS can be obtained at a much higher spatial resolution than the geoid. The MSS is defined naturally
on a high resolution (up to 1 arc minute) geographical grid, while the Earth’s gravity field is expressed
naturally as a truncated set of spherical harmonics up to a max degree and order (d/o) 𝐿max, from
which a gridded geoid height surface can be calculated with a spatial resolution of ∼20000/𝐿 km,
where 𝐿 ≤ 𝐿max. The geoid fails to capture higher resolution features of Earth’s gravity field that are
present in the MSS. Therefore, unless steps are taken to address the problem (see below), when the
geoid is subtracted from the MSS, the MDT will contain geodetic features unrelated to the ocean’s
circulation. When computing the geoid, we may truncate the spherical harmonic expansion at some d/o
𝐿 ≤ 𝐿max. The missing geoid signal for d/o > 𝐿 is known as the geoid omission error. Since much of
this omission error, or missing geodetic signal, is present in the higher resolution MSS, it remains in
the MDT. Truncation of the spherical harmonic series introduces an additional error in the geoid, and
therefore in the MDT, in the form of Gibbs fringes, which radiate away from regions of strong gradient
in the gravity field (Bingham et al. , 2008). This can be thought of as a non-local, artifactual geoid
omission error.

Geoid omission error can be reduced by computing the geoid to 𝐿max. However, apart from the
missing signal, the spherical harmonic coefficients that are used to calculate the geoid include errors
that grow exponentially with increasing d/o (reflecting the challenge of measuring Earth’s gravity at
ever finer spatial scales). The error in the geoid, and therefore the MDT, due to the error in the terms
included in the spherical harmonic expansion to d/o 𝐿 ≤ 𝐿max is referred to as the geoid commission
error. Depending on the error characteristics of the geoid used, at some d/o 𝐿 < 𝐿max, the reduction in
geoid omission error may be outweighed by the growth in geoid commission error. Finally, MSS error
will also make a small contribution to the total error budget of the MDT.

Regardless of the origin, the issue of MDT noise is exacerbated by the fact that the amplitude of the
MDT is of order 1 m, while the amplitude of the geoid and MSS is of the order 100 m. Thus, it only
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Figure 2. DTU18-EIGEN-6C4 MDT, expanded up to degree/order 280.

takes a small (1%) error in either of the constituent surfaces to produce an error in the MDT of the same
magnitude as the MDT itself.

While methods have been developed to reduce the impact of geoid omission error (Bingham et al.
, 2008), it is still necessary to filter the MDT to remove residual omission error and commission error
(Figure 3). This can be achieved by applying a simple linear filter (e.g. Gaussian (Bingham et al. ,
2008), Hamming (Jayne , 2006)) directly to the MDT before calculating current velocities. However, in
addition to removing noise, such filters attenuate steep MDT gradients, leading to blurred and decreased
geostrophic current velocities.

More complex filters have been designed to minimise attenuation by accounting for strong gradi-
ents. For example, Bingham (2010) employed a nonlinear anisotropic diffusive filtering approach and
Sánchez-Reales et al. (2016) presented an edge-enhancing diffusion approach. Despite improving on
traditional approaches, such filters come with their own problems. In particular, they depend on arbi-
trary functions and parameters controlling their sensitivity to gradients. This can lead to over-sharpening
of steep gradients that exaggerate oceanographic features or directional bias that causes strong currents
to have a staircase-like effect in the associated surface geostrophic current maps. Hence, there remains
a need to develop a more sophisticated filtering method that can remove noise effectively while min-
imising attenuation of steeper gradients, thereby maximising the amount of oceanographic information
obtained from the geodetic MDT.

In this study, we implement a supervised machine learning approach to directly filter the geodetic
surface geostrophic current maps, allowing us to guide the network to learn a denoising transformation
that accurately removes geodetic noise while preserving oceanographic features. This approach requires
training pairs, each consisting of a noisy (corrupted) input and a clean target, to train the denoiser.
Since we cannot obtain a geodetic current field free from noise without filtering, and filtering has
undesirable consequences (the problem we are trying to address), the training pairs must be found
elsewhere. Therefore, we construct training pairs for supervised learning by adding synthesised noise
to a naturally smooth target current field possessing similar characteristics to that of our desired output
i.e. produced by numerical models. Using these pairs, we then train a Convolutional Denoising Auto-
Encoder (CDAE) to remove the noise from the current field. The autoencoder network has proven to be
effective in the region of image denoising (Vincent et al. , 2010; Xie et al. , 2012; Lore et al. , 2017),
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Figure 3. Surface geostrophic current velocity map computed from the DTU18-EIGEN-6C4 MDT
expanded up to degree/order 280, via equation 2, in which 𝑓 = 2𝜔𝑒𝑠𝑖𝑛𝜃; however, for 𝜃 < 15◦ from the
equator, we fix 𝑓 = 2𝜔𝑒𝑠𝑖𝑛(15) to avoid the singularity within this region.

outperforming conventional denoising methods due to the ability of neural networks to learn non-linear
patterns. It should, therefore, be able to distinguish between actual currents and the contaminating
noise. Finally, we apply the trained CDAE to remove the noise from currents obtained from a geodetic
MDT. This work will focus on four key regions containing major currents: the Gulf Stream in the
North Atlantic; the Kuroshio Current in the North Pacific; the Agulhas Current in the Indian Ocean;
and the Brazil and Malvinas Currents in the South Atlantic, hereafter referred to as the Brazil-Malvinas
Confluence Zone (BMCZ). These four regions have been chosen as they each play an important role in
the global ocean’s circulation, but vary in terms of complexity and current strength, and thus the signal
to noise ratio. They therefore represent a strong test of the method’s versatility and general applicability.

This paper is organised as follows: in Section 2 we describe our approach to generating synthetic
noise and training pairs. Here we introduce the data used in this study. Section 3, describes the architec-
ture and training set-up of the denoising network. Section 4 presents the denoising results of the trained
CDAE network applied to real-world geodetic geostrophic currents and its performance is compared
against conventional filtering. Finally, Section 5 provides a concluding discussion.

2. Generating Training Pairs
In this paper we implement a blind image denoising method using deep learning, for which we require
training pairs. In the case of image denoising, training pairs refers to the pairings of noisy and corre-
sponding clean example images, from which the CDAE can learn a denoising transformation. In our
case, the true noise-free field (or ground-truth as it is referred to in the machine learning literature) does
not exist. A commonly used strategy in computer vision to overcome a lack of training pairs, is to apply
synthesised noise to a dataset of analogous, but naturally smooth targets (Chen et al. , 2018). By learn-
ing the mapping between synthesised noisy inputs and noise-free targets, the model is able to learn a
denoising transformation by which similar types of noise can be removed from new images. Therefore,
the model is able to generalise towards new data.
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Table 1. Climate model data used in this study; native horizontal resolution expressed as latitude ×
longitude (is approximate); number of vertical levels; total number of MDTs generated by each model
across all ensembles; and key reference.

Climate Model Ocean Model Horizontal Vert. No. Reference

CMCC-CM2-HR4 NEMO 3.6 0.25◦ × 0.25◦ L50 30 Scoccimarro et al. (2019)
CNRM-CM6-1-HR NEMO 3.6 0.25◦ × 0.25◦ L75 32 Voldoire et al. (2019)
GFDL-CM4 OM 4.0 (MOM6-based) 0.25◦ × 0.25◦ L75 64 Held et al. (2019)
GFDL-ESM4 OM 4.0 (MOM6-based) 0.5◦ × 0.5◦ L75 64 Dunne et al. (2020)
HadGEM3-GC31-MM NEMO-HadGEM3-GO6.0 0.25◦ × 0.25◦ L75 128 Ridley et al. (2019)
MPI-ESM1.2-HR MPIOM 0.4◦ × 0.4◦ L40 32 Gutjahr et al. (2019)
MPI-ESM-MR MPIOM 0.4◦ × 0.4◦ L40 92 Giorgetta et al. (2012)
MIROC4h COCO 3.4 0.28◦ × 0.19◦ L47 33 Sakamoto et al. (2012)

2.1. Clean Target Data
In order to generate training pairs for a case where a noise-free field does not exist, we first require a
dataset of analogous, naturally noise-free images possessing characteristics similar to those we wish to
denoise to which we can add synthetic noise. For this purpose, we compute surface geostrophic current
velocity maps from a set of ocean model MDTs, as in Figure 1, to be used as noise-free training targets.
Ocean model data is a suitable choice as it contains the types of oceanographic features we wish to
preserve during noise-removal while being free from the noise that contaminates geodetic MDTs.

The ocean components of several global climate models from the Coupled Model Intercomparison
Project (CMIP)1 provide the target data for this study. Utilising the CMIP data provides a large dataset
of naturally smooth MDTs, containing the same types of oceanographic features we wish to retrieve
from the geodetic data through denoising. We use the historical simulations from a set of CMIP5 and
CMIP6 models (Table 1) spanning the period 1850-2006. As lower resolution models may not suf-
ficiently resolve key oceanographic features which are needed for training, such as the Gulf Stream,
only models whose ocean component has a horizontal resolution ≤1/2◦ are chosen (corresponding to
approximately 𝐿=360). All products are computed as 5-year means of SSH and are interpolated to a
common 1/4◦ grid, resulting in 473 global maps in total. The surface geostrophic currents are then
calculated according to Equation 2.

2.2. Generating Synthesised Noise Using Generative Networks
The second component required for generating training pairs where suitable noise-free images do not
exist is a synthesised noise model with which to artificially contaminate the naturally smooth images
discussed in the previous section (2.1). A straightforward approach is to assume a Gaussian noise model
(e.g. Zhang et al. , 2017a,b). However, a Gaussian noise model is unlikely to provide a good represen-
tation of the type of noise present in the natural images, which generally exhibits non-homogeneous
complex patterns. This is important as it has been shown that training denoising models using more
realistic synthesised noise allows the learned denoising transformation to generalise better towards real
data (Chen et al. , 2018). This is particularly the case for geostrophic currents produced from geode-
tic MDTs (Figure 3) which suffer from non-linear structural noise. Thus, there is a clear motivation to
develop a realistic noise model which achieves a good approximation of real geodetic noise.

Since noise can be considered to be an image, we employ a deep generative convolutional network to
create a realistic noise model which creates images emulating the type of noise present in the geodetic
current maps, i.e. the type of noise we wish to remove. (To the best knowledge of the authors, this is the
first time deep learning has been used to replicate the geodetic noise present in geodetically-determined

1https://esgf-node.llnl.gov/

https://esgf-node.llnl.gov/
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geostrophic surface currents.) Generative networks aim to learn the ‘true’ underlying statistical distribu-
tion of a given dataset in order to generate new synthetic data that could plausibly have been drawn from
said dataset. Such networks use unsupervised learning, and thus do not require a dataset of labeled tar-
gets. However, performance evaluation is less straightforward than that of supervised learning methods,
usually being indirect or qualitative. Therefore, we investigate the efficacy of multiple deep generative
networks for the task of synthesised noise generation, and perform a comparative analysis to select the
desired noise model (Section 2.5).

The noise generating networks employed in this investigation include a Deep Convolutional Gener-
ative Adversarial Network (DCGAN) (Goodfellow et al. , 2014; Radford et al. , 2015), a Variational
Autoencoder (VAE) (Kingma and Welling , 2013) and a Wasserstein Autoencoder (WAE) (Tolstikhin
et al. , 2017). GANs are derived from a game theory scenario where two sub-models compete against,
and thus learn from, one another (Goodfellow et al. , 2014). In the ideal equilibrium scenario the dis-
criminator learns to identify real samples from generated ones and the generator will learn to produce
images which can fool the discriminator. GANs tend to learn a variety of non-linear patterns well and
thus have been shown to reproduce highly realistic images. However, the method of training, i.e. reach-
ing an equilibrium rather than an optimum, can be unstable (El-Kaddoury et al. , 2019). VAEs extend
the autoencoder (Vincent et al. , 2010) to enable generation of new data by introducing regularity to
the distribution over the latent space from which new data samples can be drawn (Cai L et al. , 2019).
This regularisation can prevent the generation of samples that clearly lie outside the target distribution.
However, the smooth assumption of the latent space may also restrict the VAE network from suffi-
ciently learning the distribution of some target datasets. The WAE, a modified VAE whose encoded
distribution is forced to form a continuous mixture matching the prior distribution, rather than match-
ing a single sample, is included in this investigation as it has been shown to produce better quality
images compared to the standard VAE in some cases (Tolstikhin et al. , 2017).

2.3. Using Geodetic Data to Train Generative Networks
In order to reliably generate a realistic estimate of the noise distribution, the noise generating networks
must be provided with a set of training samples that represent the noise patterns well. For this, we
utilise unfiltered geodetic geostrophic velocities, i.e. the data we wish to denoise, so that the networks
can learn as close a representation to the real noise as possible.

The surface geostrophic velocities used for synthesised noise generation are computed from a set of
geodetic MDTs, calculated by the spectral approach (Bingham et al. , 2008) via Equation 1. The global
gravity models used to generate the set of geodetic MDTs used in this study are listed in Table 2, all
of which are available at the International Centre for Global Earth Models (ICGEM) web portal (Ince
et al. , 2019). Said geoids are derived from a combination of satellite gravity field missions: GOCE
(Drinkwater et al. , 2003), GRACE (Tapley et al. , 2004), surface data and altimetry data. Each geoid is
expanded up to a common d/o 𝐿=280 before MDT calculation, to ensure noise patterns (which change
with varying 𝐿) remain consistent across the training dataset. We utilise a recent global high resolu-
tion MSS product published by the Danish National Space Institute (DTU), termed the DTU18 MSS
(Andersen et al. , 2018), for each MDT calculation. The DTU18 MSS is calculated from 20 years of
altimetry data, over the period 1993-2012, with a spatial resolution of 1 arc minute. The spectrally trun-
cated MSS, which is transformed from the gridded product to a set of spherical harmonic coefficients,
is expanded up to the same degree/order 𝐿 as the geoid. This ensures that both local and non-local
omission errors in the geoid are closely matched in the MSS and are thus minimised.

A potential issue with using unfiltered geodetic current fields to train the noise generating networks
is that these fields contain both the noise we later wish to remove and the current that we wish to
preserve. Thus, the networks may learn a distribution that mixes both the noise and some current signal.
This would result in creating synthetic noise patterns that also contain oceanographic features. To avoid
this, the global maps are split into small regions where large-scale oceanographic structures are not
prominent. These smaller regions (hereafter referred to as tiles) must be large enough to capture a
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Table 2. The gravity field models used for synthesised noise generation; year published; maximum spher-
ical harmonic degree (later expanded up to the same degree/order of 280 across models); data source;
and key reference. The data column summarises the datasets used in the development of each model,
where A is for altimetry, S is for satellite and is G for ground data (e.g. terrestrial, shipborne and air-
borne measurements). The model in bold text is used to generate the DTU18_EIGEN-6C4 MDT which
is filtered in final analysis of Section 4.2.

Gravity Field Model Name Year Degree Data Reference

GO_CONS_GCF_2_DIR_R5 2014 300 S(Goce, Grace, Lageos) Bruinsma et al. (2013)
GO_COND_GCF_2_TIM_R5 2014 280 S(Goce) Brockmann et al. (2014)
EIGEN-6C4 2014 2190 A, G, S(Goce, Grace, Lageos) Föerste et al. (2014)
GECO 2015 2190 EGM2008, S(Goce) Gilardoni et al. (2016)
GGM05C 2015 360 A, G, S(Goce, Grace) Ries et al. (2016)
SGG-UGM-1 2018 2159 EGM2008, S(Goce) Wei et al. (2018)

significant portion of the geodetic noise patterns, but small enough to prevent capturing significant
long-range oceanographic features. This ensures that, after randomising the order of the tiles, the long-
range oceanographic features are obfuscated, making the generative network more likely to learn the
consistent distribution of the geodetic noise. Through visual investigation it was found that a tile size
of 32 × 32 pixels (8◦ × 8◦) was the largest suitable size for training across all generative networks,
and hence is used for all following experiments in this section; at larger sizes, higher frequency noise
patterns were not reproduced and generative networks learned to focus on the more basic filamentary
structures of the currents, which is undesirable. Furthermore, in this study tiles at high latitudes (above
64◦N and below 64◦S) are discarded to avoid the distortion which becomes increasingly severe on a
standard equidistant cylindrical projection towards the poles. This provides a consistent noise pattern
distribution. Therefore, care has to be taken when applying the denoising network at latitudes above or
below this cutoff, as the denoising network has not been exposed to such projection distortions.

2.4. Generative Network Architecture and Training Details
VAE - The VAE’s encoder has five 3x3 convolutional blocks, with 32, 64, 128, 256 and 512 output
channels. Similarly, the decoder has five 3x3 deconvolutional blocks, with 512, 256, 128, 64 and 32
output channels, which upsample the encoded features. Each convolutional and deconvolutional layer
is followed by a Leaky rectified linear unit (ReLU). The final layer uses the tanh activation function.
We use the loss adaption presented by (Higgins et al. , 2017), whereby the Kullback-Leibler (KL)
divergence loss is scaled using a parameter 𝛽. In our case, we found that 𝛽=0.01 provided stable results.

WAE - For the WAE, the encoder-deocder set-up is the same as for the VAE. However, the Wasser-
stein distance replaces the reconstruction error used in VAEs, and, rather than KL divergence, the
maximum mean discrepancy (MMD) is used as the regularisation penalty (Gretton et al. , 2012). Fol-
lowing the best training configuration from the original WAE paper (Tolstikhin et al. , 2017), the
MMD-based penalty is computed with the inverse multi-quadratics kernel (IMQ).

DCGAN - The generator of the DCGAN consists of two 3x3 convolutional blocks, with 128 and 64
output channels, each followed by a ReLU activation function. The hyperbolic tangent function (tanh)
is used as the activation function for the final output layer of the generator. The discriminator consists of
four 3x3 convolutional blocks, with 16, 32, 64 and 128 output channels, followed by a fully connected
layer which uses the Sigmoid activation function to generate a binary prediction. Binary Cross Entropy
(BCE) is used for the adversarial loss function.

Training Process - All generative networks are trained over 300 epochs (an epoch involves training
the network over the whole training dataset exactly once) using the Adam optimiser (Kingma and Ba ,
2014) on a dataset of 11,058 tiles from a set of six geodetic geostrophic current maps, with each global
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Table 3. Details of the generative network training data constructed from a set of Gravity field models
(Table 2) and the DTU18 MSS.

No. Tiles Tiles per Map Resolution Tile Size Overlap Latitude Range

11,058 1,843 1/4◦ 8◦2 / 32 px.2 4◦ / 16 px. 64◦N to 64◦S

map split into 1,843 tiles overlapping by 16 pixels (4◦). We use a batch size of 512, and set the learning
rate to 0.005. The properties of the generative network training dataset are summarised in Table 3.

2.5. Synthesised Noise Generation Results
In this section, we present the synthesised noise generation results from the three generative networks
discussed in Section 2.2. Subsequently, we provide a qualitative discussion, we perform a comparative
Fourier analysis on the noise model produced by each trained generative network, and we compute a
similarity metric between the spectral distributions of real and synthetic tiles to provide a quantitative
estimate of the noise quality, from which the most suitable synthesised noise model is determined.

We present the real geodetic noise tiles in Figure 4a, which provide a baseline for comparison of
noise properties such as patterns, structure, colour intensity and variability. The DCGAN tiles exhibit
the most realistic looking noise (Figure 4b) with a suitable variation in both frequency and amplitude,
matching similar properties in the real geodetic noise. It can be seen that the WAE network produces
slightly less realistic samples in comparison to the DCGAN. However, the network does exhibit small
scale circular structures which resemble those present in the real geodetic noise (Figure 4c). The WAE
tiles have a consistent distribution across all tiles. Due to this, there is less variation in both intensity
and structure, which we would expect from real geodetic noise. Furthermore, the structures generated
by the WAE exhibit grid-like structures along the cartesian axes. In contrast, the DCGAN noise has
more realistic variation. The VAE generates significantly less realistic outputs, producing blurry shapes
with some filamentary features (Figure 4d) and fails to capture any fine grain detail. These filamentary
structures more closely resemble general oceanographic features such as currents over the small circular
patterns of the geodetic noise. This is likely due to the inherent nature of VAEs, which tend to prioritise
general shape rather than finer structural features (Zhao et al. , 2017), and the lack of constraint on the
learned latent space representation.

We compute the Fast Fourier Transform (FFT) from a batch of 50 randomly chosen tiles from the
training dataset of real geodetic data and from each synthesised noise model. Figure 5 shows the shifted
log magnitude of the FFT spectrum for each batch, in which lower frequencies are represented at the
centre, and Figure 6 shows the corresponding difference in magnitude spectra between the training
data and each synthesised noise model. The residual difference of the VAE differs by the greatest
margin, managing to reproduce a similar distribution at low frequencies, but failing quite severely at
the mid range. In contrast, residual differences computed for the DCGAN and WAE exhibit relatively
low residual differences across the full spectrum (Figure 6). However, the DCGAN is superior to the
WAE across mid and high frequencies.

To provide a similarity index between the real and the synthetic data we compute the KL divergence
(Hershey and Olsen , 2007), which measures the dissimilarity between two probability distributions,
on the radial profile of the FFT magnitude spectra. The KL divergence scores for the VAE, WAE and
DCGAN are 0.1422, 0.0350 and 0.0047 (resp.). The best (lowest) score is achieved by the DCGAN,
reinforcing the conclusions drawn from the qualitative analyses of the noise patterns and of their Fourier
transforms, and thus, providing confidence that the DCGAN generated noise which best represents the
real geodetic noise.

We can conclude, therefore, that the DCGAN generates the highest quality distribution according
to the above analysis, reproducing similar magnitudes in the full frequency range, and is thus the most
suitable choice for a realistic synthesised noise model. Furthermore, the efficacy of using this approach
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(a) Real geodetic noise (b) DCGAN

(d) VAE(c) WAE

Figure 4. Generated noise tiles from real geodetic data and synthesised data from generative networks.

to generate synthetic noise is indirectly evaluated in Section 4 by assessing the ability of a denoiser,
trained on said noise, to remove real noise.

2.6. Quilting
An implication of the proposed synthesised noise generation method is that the generative networks
are trained on and thus output tiles smaller in scale than significant current features (32 × 32 pixels or
8◦ × 8◦). In contrast to the generative networks, we wish to train a denoising network on larger regions,
regions large enough to retain entire current structures, allowing the denoising network to account for,
and thus preserve them during noise removal. We, therefore, combine smaller synthesised noise tiles to
smoothly cover larger regions of the naturally noise-free training data.

A naive approach to this, shown in Figure 7a, is to randomly join tiles together. However, this results
in harsh structural disagreements along tile boundaries and large variations in local intensities between
neighbouring tiles, thus giving an unrealistic sampling of the noise distribution. To mitigate against
these problems, we use an image quilting (Efros and Freeman , 2001) technique to stitch a random
sampling of tiles together. For each stitching, a random subset of tiles is considered. The tile with the
best neighbouring agreement (Figure 7b) along the boundaries is selected for stitching. Finally, the
minimal cost path is computed using the Dijkstra graph algorithm (Dijkstra , 1959) to find the optimal
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Figure 5. The 2D FFT magnitude spectra computed across a batch of 50 tiles.
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Figure 6. The difference between real geodetic noise and synthesised noise in terms of FFT magnitude
spectra.
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Figure 7. Noise tiles generated by the DCGAN, joined using different patching methods.

seam boundary between the two tiles (Figure 7c). We are, thus, able to generate a large dataset of ‘noise
quilts’ of any size built from smaller synthesised noise tiles which can then be superposed onto naturally
smooth numerical model target data (discussed in the following section). We generate noise quilts to
match the size of training samples: 128 × 128 pixels (32◦ × 32◦), of which approximately 100,000 are
generated. The method of applying noise quilts to clean targets will be detailed in Section 2.8 and the
choice of region size will be justified in Section 3.2.



12 Laura Gibbs et al.

2.7. Integrating Prior Knowledge on Noise Strength
Through visual analysis we observe that the geodetic noise patterns in the geostrophic currents occur
on two scales. Small spatial scale noise appears as a consistent pattern distribution covering the full
ocean field including over currents and other oceanographic features. Due to the small tile size of the
training dataset, the noise generating networks in Section 2.5 are trained to focus on this small-scale
noise distribution. However, it is observed that the noise also exhibits a deterministic pattern on a larger
spatial scale, in which large patches of strong noise occur consistently across different geodetic products
i.e. products produced using different geoid models. It is determined that such patches appear in areas
associated with steep gradients in the geoid, and thus, occur along coastlines, around islands and along
large seamounts. We exploit this knowledge of the deterministic large-scale noise patterns in order to
make the training data more representative of the real-world geodetic data, with the aim of improving
the modelling of the denoising filter.

The large-scale noise patterns are emulated in the training data using a noise strength map 𝑝 which is
produced by severely smoothing a geodetic MDT with a Gaussian filter. This process of filtering essen-
tially smooths out the small-scale noise distribution and all gradients associated with oceanographic
features. The remaining features are large smoothed patches which correlate with regions where noise
is strong in the geodetic currents due to steep gradients in the geoid. Hence, this smoothed noise strength
map 𝑝 outlines the location and severity of the large scale deterministic noise pattern. It is then utilised
to adjust the strength of the synthesised noise pattern learnt in Section 2.5, such that noise quilts are
multiplied by 𝑝 before they are applied to the target.

2.8. Method of Applying Noise Model to Clean Targets
Noise quilts are applied to naturally smooth target data through addition in the first instance:

𝑦 = 𝑥 + (𝑞 · 𝑝 · 𝑘), (3)

where 𝑦 is the noisy sample; 𝑥 is the target; 𝑞 is the noise quilt; 𝑝 is the noise strength map produced
from the prior geodetic geostrophic currents (discussed in Section 2.7); and 𝑘 ∈ [0.5, 2.5] is a stochastic
strength parameter, introduced to prevent over-fitting and improve generalisation towards real-world
data.

The resulting noisy sample is then re-scaled to better match the real noisy geodetic currents:

𝑦′ = 𝑦 · (𝑦
∗ + 𝑥∗)
2𝑦∗

, (4)

where 𝑦′ is the re-scaled noisy sample; 𝑦∗ and 𝑥∗ represent the maximum values of the initial noisy
sample (as in equation 3) and the target respectively. Therefore, the new maximum value of the re-
scaled 𝑦′ is set as the midpoint between maximum values 𝑦∗ and 𝑥∗. Figure 8 shows the proposed noise
application from Equation 4 for a cross-section of a random training sample. This strategy prevents
exaggerated features in the noisy sample caused by adding the noise quilt in Equation 3, which would be
undesirable as the denoising network would generally learn to dampen strong features during training
in order to match the target, thus having a negative impact on performance to real data. We found
empirically that higher velocity values were able to be retrieved when the denoising network was trained
using this method of noise application in comparison to a simple additive approach.

The proposed noise application, which integrates prior knowledge of the large-scale noise patterns
and performs intensity scaling for a random training sample over the Gulf Stream region, is demon-
strated in Figure 9. The resulting effect exhibits realistic noise behaviour when compared against the
real noisy data, particularly around the Greater Antilles.
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Figure 8. The noise application method demonstrated for a cross section of a random training sample.
The left plot shows cross-sections of the target (orange) against the target with added DCGAN noise
(blue); the right plot shows cross-sections of the resulting noisy training sample whereby the sample has
been re-scaled (blue) to more closely match the real currents, shown against both the target (orange)
and a real sample of surface geostrophic currents computed from the DTU18_EIGEN-6C4 geodetic
MDT (grey).

Figure 9. A demonstration of the noise application showing a) a target training sample from the
HadGEM3-GC31-MM climate model; b) a random noise quilt; c) the associated noise strength map
generated from the smoothed prior MDT; d) the resulting synthetic sample in which the noise quilt
has been applied to the target according to Equation 4 (with 𝑘=1.5); and (e) a real sample of surface
geostrophic currents computed from the DTU18_EIGEN-6C4 geodetic MDT.

3. Denoising with Convolutional Autoencoders
3.1. The Denoising Network Architecture
The denoising autoencoder network involves an encoder-decoder composition, whereby the encoder is
passed a corrupted (noisy) input from which it learns a compressed representation stored as a latent
vector (Schmidhuber , 2015). The decoder then attempts to reconstruct the clean target as accurately as
possible from the latent vector. Therefore, the network is guided to learn a denoising transformation,
and thus learns to remove the type of noise present in the corrupted input. We incorporate convolutional
layers into the autoencoder network, as they are known to improve performance for image denoising
tasks, owing to a more powerful feature learning ability on spatial data (Zhang , 2018).

In this study, we use a denoising network consisting of four encoder and decoder blocks (Figure
10). Each encoder block consists of two 3x3 convolutional layers, each followed by a ReLU activation
function and a 2x2 max pooling operation which downsizes each feature map by 2. At each max pooling
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Figure 10. The denoising autoencoder network architecture.

layer, the number of feature channels is doubled. The feature dimensionalities for each convolutional
block are detailed in Figure 10. The decoder is built inversely to the encoder, containing an up-sampling
layer which doubles the feature maps and halves the number of feature channels each time. This is
followed by two 3x3 convolutional layers, each followed by ReLU functions. Furthermore, we use batch
normalization which has been found to boost denoising performance and speed of training (Zhang et
al. , 2017a). Skip connections are utilised to preserve the fine spatial information that is lost during the
down-sampling and up-sampling operations (Ronneberger et al. , 2015). These skip connections enable
the passing of feature maps from earlier layers in the encoder to later layers in the decoder along the
contracting path, and are joined via concatenation. Finally, a fully connected 1x1 convolutional layer is
used and a 2D image is outputted.

3.2. Training Process
The CDAE network is trained on the constructed training dataset, discussed in Section 2, in which a
synthesised noise model is applied to a naturally smooth dataset (via Equations 3 and 4) to construct
noisy input and clean target pairs. Training images are chosen to be 128×128 pixels (32◦×32◦ for a 1/4◦

map). We found that our denoising network performed best with inputs of this size, which may be due
to such region size containing sufficient oceanographic information while limiting the distortion due to
the equidistant cylindrical projection onto the 2D grid. Furthermore, regions above (below) a latitude
of 64◦N (64◦S) are discarded prior to training to avoid the most extreme projection distortion which
occurs at the poles. Generated from a set of 8 climate models (Table 1), the CDAE training dataset
consists of 217,580 (128×128) regions which overlap every 32 pixels (8◦). The dataset’s properties are
summarised in Table 4. During training, each time a synthetic region is loaded, a random noise quilt is
selected and applied to the sample to create a clean and noisy training pair. Note that, since the number
of quilts is less than the number of training regions, the same quilt may be used multiple times over an
epoch. However, the combinations of synthetic samples and noise quilts are unique across each epoch.
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Table 4. Details of the denoising network training data constructed from the eight climate models’ data
(Table 1), where resolution and latitude are referred to as ‘Res.’ and ‘Lat.’ (resp.)

No. Maps Regions/Map Total Regions Res. Region Size Overlap Lat. Range

473 460 217,580 1/4◦ 32◦2 / 128 px.2 8◦ / 32 px. 64◦N to 64◦S

The CDAE network training process involves calculating the pixel-wise mean squared error (MSE)
between output and target at each epoch,

LMSE (𝑥, 𝑥′) =
1

𝑊𝐻

𝑊∑︁
𝑖

𝐻∑︁
𝑗

(𝑥𝑖, 𝑗 − 𝑥′𝑖, 𝑗 )2, (5)

where 𝑥 is the target; 𝑥′ is the network output; 𝑊 and 𝐻 represent width and height of the images
(resp.); and 𝑖, 𝑗 denote a pixel’s row and column number. The computed error is then used to improve
the network’s next prediction through back propagation using gradient descent. As the training images
include regions over both ocean and land, land values are ignored during loss calculation to avoid
irrelevant pixels negatively influencing back propagation. We use the Adam (Kingma and Ba , 2014)
optimisation algorithm and a learning rate of 0.001 with no decay schedule.

Data augmentation is implemented to avoid over-fitting, i.e. when a network learns the specific
characteristics of a training dataset too well. Data augmentation increases the variation seen by the
network which involves synthesising new data by introducing modifications of each training sample
into the training dataset. This was achieved by randomly applying a set of geometric transformations to
each training pair, including horizontal and vertical flips, and rotations by a multiple of 90◦.

As discussed in Section 2.7, we observe that large-scale noise patterns occur in regions associated
with steep geoid gradients. We, therefore, provide the denoising network with the associated geoid
gradients of the loaded input region during training. This is done by passing the geoid gradients as a
2D image of the same size as the input through an extra channel via concatenation, both at training
and testing time. This allows the network to learn the relationship between the noise strength and the
steepness of geoid gradients. This has the effect of stimulating the network’s attention on these more
sensitive regions, following a similar idea as in Derakhshani et al. (2019).

3.3. Ablation Study on Proposed Components
We perform an ablation study of the different processes in creating the input data. We evaluate the
respective contributions of the proposed processes in creating a quality dataset, both in turn and in
combination. The first modification uses the noise strength map to introduce large scale noise variations
to the synthetic noise quilts, detailed in Sections 2.7 and 2.8. The second modification involves passing
the geoid gradients of the considered regions via an extra channel to the denoising network, detailed
in Section 3.2. It is important to note that without the application of the noise strength map to the
synthetic noise which emulates large-scale noise in the synthetic training data, the geoid gradients will
not have any correlation with synthetic noise regions and the network would not implicitly be guided
to learn the relationship between large-scale noise patches and steep geoid gradients. Thus, this second
process cannot be evaluated in isolation and must always be combined with the first. The third process
is random data augmentations, detailed in Section 3.2.

We train each configuration over 80 epochs, with batch size 512 and use 5-fold cross validation
to determine the best epoch to be applied to the independent testing data. The process for this is as
follows: five variations of the dataset are created where, for each version, a different fifth of the dataset
is not used for training but instead used for validation. Then the network is trained from scratch over
each five dataset variations and performance is measured on the unseen validation portion for every
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Table 5. Ablation study of the different processes in creating the final training dataset for the denoising
network: using the noise strength map; passing geoid gradients as an extra channel and applying data
augmentations. Results presented are an average over the five folds from the best respective epoch of each
model (obtained from the validation results) on the ablation test dataset.

Strength Map Geoid Gradients Data Augmentation PSNR SSIM

1 27.950 0.579
2 ✓ 44.781 0.690
3 ✓ ✓ 46.651 0.691
4 ✓ 34.358 0.638
5 ✓ ✓ 47.248 0.691
6 ✓ ✓ ✓ 47.671 0.828

training epoch. The trained model from the epoch with the highest validation score is saved, obtaining
five different ‘best performing’ models.

To make the ablation study unbiased to a particular data processing method, we require an indepen-
dent testing dataset to validate results across all trained models. Therefore, to quantitatively assess how
well noise is removed and oceanographic features are preserved, we create an ablation testing dataset
of noisy input and target pairs. We obtain residual geodetic noise by removing the Gaussian filtered
product from the noisy geodetic currents. We then apply this residual geodetic noise onto a subset of
the climate model data, kept aside during training. The residual product is useful in this case as it con-
tains realistic noise behaviour such as large scale patches of strong noise which are known to occur.
Measuring the effect of each modification towards removing this type of noise provides an indepen-
dent way to estimate generalisability i.e. performance to unseen data. On the ablation test dataset, peak
signal-to-noise ratio (PSNR) and structural similarity index (SSIM) scores are then calculated between
the denoised outputs and the clean targets and averaged across the five folds (Wang et al. , 2004), shown
in Table 5.

The best result, with a PSNR of 47.671 and a SSIM of 0.828 (row 6), is achieved by the run that
incorporates the noise strength map, passes the geoid gradients via an extra channel and applies data
augmentations. The most effective modification is the use of the noise strength map, where any run
using the strength map yields the biggest relative increase for PSNR (rows 2 and 5). This reinforces the
notion that the more realistic the training data, the better a model can generalise to unseen data. Table
5 also shows that passing geoid gradients consistently improves denoising performance (rows 3 and 6),
and shows the biggest increase for SSIM when combined with data augmentation (row 7). We use the
best performing training data configuration (row 6) for all remaining experiments in this paper.

4. Results
In this section, using the best performing configuration from Section 3.3, we train the CDAE network
over 80 epochs, with a batch size of 512. We use 70% of the synthetic dataset for training, 20% for
validation, and set aside 10% as unseen testing data. To facilitate this split, both synthetic clean regions
and noise quilts are split to ensure that there is no crossover across datasets. First, we present the training
and validation curves and secondly, we demonstrate the ability of the trained CDAE network to denoise
unseen synthetic testing data. Thirdly, we assess the performance of the trained CDAE network when
applied to real-world geodetic geostrophic currents. Here, a qualitative analysis of the denoised outputs
is performed; results are then compared against the conventionally smoothed currents. We assess the
performance of the network against the currents derived from the CNES-CLS18 MDT (Mulet et al. ,
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Figure 11. The training and validation curves from the CDAE network trained in Section 4.

2021) using the root mean squared difference (RMSD), mean absolute difference (MAD) and a purpose-
designed quantitative evaluation metric, which aims to quantify the two main components of denoising
performance: the preservation of strong current velocities and the level of noise removal.

4.1. Denoising Results on Synthetic Data
The training and validation curves show that the network learns quickly (Figure 11), where epoch 15
is found to score the lowest MSE. The validation curve then indicates gradual over-fitting as the train-
ing loss decreases while the validation loss increases. However, the validation loss remains relatively
low across all epochs. Thus, we choose epoch 15 as the number of training epochs for our final net-
work. The trained CDAE is applied to a set of synthetic testing samples, shown in Figure 12, across
four major current systems that each play an important role in the global ocean circulation, but which
vary in terms of complexity and signal (current strength) to noise ratio: the Gulf Stream (GS), the
Kuroshio Current (KC), the Agulhas Current (AC) and the Brazil-Malvinas Confluence Zone (BMCZ).
We present these outputs across multiple epochs, including the previously determined best validation
epoch. It is observed that the CDAE filtering method is effective at removing the DCGAN generated
synthesised noise. The positioning and shape of major current features across all regions in the filtered
outputs closely match those in the target. It is evident that the CDAE network learns to accurately esti-
mate the magnitude of the current velocities. This can be seen in the GS region for epochs greater than
1 (Figure 12: row 1), where the network accurately resolves the strong Gulf stream, the Loop Current
(26◦N, 86◦W), as well as successfully disentangling noise from the relatively weak Caribbean current
(18◦N, 83◦W), despite being of similar magnitude to the noise itself. Similarly, in the AC region (Figure
12: row 3), particularly at epoch 15, the network successfully removes noise without attenuating the
powerful AC or the majority of the more intricate currents to the south. Although visual differences
are subtle for epochs greater than 1, epoch 15 consistently retrieves the highest velocities at the core
of each main current, thereby better matching the target. This reinforces the results computed on the
validation dataset (Figure 11).

4.2. Application to Real-world Data
In this section, the trained CDAE network is applied to real-world geostrophic currents, computed from
the DTU18_EIGEN-6C4 geodetic MDT. As for the synthetic case, it can be seen that the denoising
method is effective by epoch 15 (Figure 13). In comparison to the unfiltered product, geodetic noise has
been largely eliminated, while the major currents, and even weaker, finer-scale currents, are preserved or
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Figure 12. A set of synthetic samples from the test dataset containing surface geostrophic current veloc-
ities (ms−1) from the CMCC-CM2-HR4 climate model with DCGAN produced noise quilts applied,
denoised using the CDAE method across a range of CDAE training epochs showing the following
regions: Gulf Stream (row 1), Kuroshio Current (row 2), Agulhas Current (row 3) and BMCZ (row 4).

revealed with little attenuation. For the GS region (Figure 13: row 1), both the GS and the Loop Current
in the Gulf of Mexico are well resolved, with the network at epoch 15 estimating higher velocities off
the coast of the Yucatan peninsula and a clearer structure in the Gulf of Mexico, in comparison to other
epochs. By epoch 15 in the KC region (Figure 13: row 2), the current structure is clear, although there
is a small patch of very weak noise in the bottom left of the region; the only instance of this across the
four regions. For the AC region (Figure 13: row 3), the network preserves the strength of the AC, while
revealing finer details such as the meanders of the retroflection and the intricate current structures to the
south, also seen in the synthetic data (although with some differences in details). Furthermore, for the
BMCZ region (Figure 13: row 4), the confluence zone is more clearly resolved after the network has
trained for 15 epochs. In particular, the zonal currents along the Sub-Antarctic front of the Antarctic
Circumpolar Current are stronger and more detailed (48◦S-58◦S). Across all regions, there is little
difference in the current estimates between epochs 15 and 20, indicating that the model has converged
and stabilised by epoch 15. Finally, it is worth noting that the success of the CDAE in removing noise
without attenuating the underlying currents, indirectly demonstrates the efficacy of using the DCGAN
synthesised noise to create a training dataset.

4.3. Comparison Against Gaussian Filtering
We compare the CDAE denoising method against a traditional isotropic filter, in which the surface
geostrophic currents are computed from the Gaussian filtered geodetic MDT. This experiment is
performed on the DTU18-EIGEN-6C4 MDT. The Gaussian filtered outputs (Figure 14) suffer from
significant attenuation of high velocities as the filter radius increases. This is demonstrated clearly via
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Figure 13. Surface geostrophic current velocities, (ms−1) computed from the DTU18-EIGEN-6C4
MDT, denoised using the CDAE method across a range of epochs showing the following regions: Gulf
Stream (row 1), Kuroshio Current (row 2), Agulhas Current (row 3) and BMCZ (row 4).

the GS (Figure 14: row 1) and the KC (Figure 14: row 2) regions, which see a decrease of ∼0.3 ms−1

in maximum velocity values as the filter radius increases from 50 km to 70 km. While such important
oceanographic features are lost, a significant level of noise remains in the open ocean of these regions.
Conversely, the CDAE method yields high velocities while effectively removing the noise.

In addition to a loss of high velocities, the Gaussian smoother also suffers from imprecise positions
of each current and finer-scale details are diminished across all regions. Areas near steep gradients
appear to absorb this signal as the degree of smoothing increases. Moreover, not only is real signal
absorbed by nearby areas, but the contaminative noise appears to be spread out rather than removed.
This issue is illustrated well in the AC region (Figure 14: row 3), in which the relatively low and fine-
scale velocities South of latitude 46◦S are completely lost at filter radius 70 km. In contrast, the CDAE
network retrieves significant detail at the same latitudes. In order to reach a reasonable level of noise
removal using a traditional Gaussian smoother, the currents become severely attenuated, and thus there
is an undesirable compromise in which important features are diminished or lost.

A significant benefit of the CDAE method over conventional smoothing is the ability to adaptively
remove noise across a region. This is best illustrated via the GS region (Figure 14: row 1), specifically
around the Greater Antilles (20◦N, 76◦W), in which noise is significantly reduced by the CDAE net-
work, while high velocities and precise current positions are retrieved for the GS itself. In contrast, for
the Gaussian filter, noise remains an issue in this area at both 50 km and 70 km filter radius despite
significant smoothing.
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Figure 14. Surface geostrophic current velocities (ms−1) computed from the DTU18-EIGEN-6C4 MDT
filtered using a Gaussian filter across a set of filter radii compared against the CDAE outputs at 15
epochs showing the following regions: Gulf Stream (row 1), Kuroshio Current (row 2), Agulhas Current
(row 3) and BMCZ (row 4).

4.4. Quantitative Analysis
We compute the RMSD and MAD scores (Table 6) to quantitatively compare our method against the
geostrophic currents derived from the Gaussian filtered MDT for filter radii 50 km and 70 km, using
the CNES-CLS18 MDT as a reference. These metrics measure the closeness (lower is better) of the
denoised outputs versus a reference metric, where RMSD is more sensitive to outliers than MAD. For
the GS and KC regions, the CDAE scores significantly lower for both metrics. These two regions have
similar characteristics in that they contain a very strong and fast current, with less medium current
activity in the surrounding area, when compared against the other regions. This possibly demonstrates
that a strength of the CDAE method is its ability to resolve strong velocities more accurately than
traditional filters. For the BMCZ region, the RMSD of the CDAE output is approximately half those
of the Gaussian filtered, while the MAD scores are roughly the same. A similar effect is observed on
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Table 6. The root mean squared difference (RMSD) and mean absolute difference (MAD) between
denoised DTU18-EIGEN-6C4 currents from Gaussian filtering (at filter radii 50 km and 70 km) and the
CDAE method (at epoch 15) against the reference surface CNES-CLS18. Scores are shown over different
geographical regions: the Gulf Stream (GS), the Kuroshio Current (KC), the Agulhas Current (AC) and
the BMCZ. The final column shows the average of each row.

GS KC AC BMCZ Avg.

GF (50km) 0.2422 0.2763 0.1033 0.2142 0.2090
Root mean squared difference (ms−1) GF (70km) 0.2418 0.2756 0.1059 0.2141 0.2093

CDAE 0.0925 0.0937 0.0945 0.1048 0.0964

GF (50km) 0.0906 0.0929 0.0418 0.0643 0.0853
Mean absolute difference (ms−1) GF (70km) 0.0798 0.0771 0.0368 0.0622 0.0806

CDAE 0.0491 0.0497 0.0589 0.0638 0.0551

the AC region, though more exaggerated, where results show a higher MAD on the CDAE output than
for the Gaussian filtered. This pattern indicates that the Gaussian filtered outputs contain a subset of
predicted pixels with high error, which are exaggerated in the RMSD but smoothed over in the MAD.
It is likely that the source of this high error is due to the Gaussian filter’s attenuation of the currents.
When averaged over all regions, the CDAE gives lower RMSD and MAD scores than the Gaussian
filter, by approximately 54% and 34% (resp.) Furthermore, to validate the heuristic of selecting the
best epoch using the validation curve in Section 2.5, we repeated the RMSD and MAD computations
across all epochs for both the CNES-CLS18 and the CNES-CLS22 (Schaeffer et al. , 2023) MDTs.
Results showed that epoch 16 provided the lowest overall RMSD and MAD for both references, which
agrees well with and reinforces the results found on the validation dataset (Section 2.5), where epoch
15 scored the best.

We design a quantitative evaluation metric which focuses on the main components of filtering per-
formance: the preservation of current signal and the level of noise removal. First, an approximate mask
outlining the position of each main current is obtained automatically from an MDT. The average veloc-
ity is then computed over this mask for each region which we denote as the ‘signal-preservation’
average. In order to reduce bias towards either filtering method, the recent CNES-CLS18 MDT is
used to produce this mask. In practice, geostrophic currents computed from the CNES-CLS18 MDT
are thresholded above 0.5 ms−1 to reveal the overall shape of the important currents. Secondly, a cor-
responding area (5◦ × 5◦ box) of low oceanographic activity near to the main current is manually
identified for each region over which the average velocity is calculated. In practice, these regions are
selected near main currents and in areas with consistently low velocities across all MDTs, i.e. areas in
which it can be assumed that the majority of the signal is due to geodetic noise. We denote this value
as the ‘noise-removal’ average. Finally, the signal-preservation average is divided by the noise-removal
average to obtain a ratio value for each region. Thus, the resulting ratio values indicate preservation
of oceanographic signal versus level of noise removed, in which a higher value indicates better filter-
ing performance. Signal-preservation, noise-removal and subsequent ratio values are shown in Table 7
across four geographical regions containing the main currents.

We note that the Gaussian filtered outputs follow an expected trend where signal-preservation and
noise-removal are both higher for the 50 km filter radius, indicating lower attenuation but at the cost of
more noise, which gives confidence in the technique used to compute this denoising metric. Further-
more, despite the fact that the Gaussian filtered currents at radius 50 km achieve a higher ratio than at
70 km, from visual inspection it can be seen that this product still contains significant noise (Figure
14); this further demonstrates the undesirable trade-off when using a Gaussian filter. Results show that
both Gaussian filtering and the CDAE method provide similar signal-preservation values to the CNES-
CLS18. However, only the CDAE method matches the noise-removal values of CNES-CLS18 in order
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Table 7. The signal-preservation, noise-removal and ratio values (signal-preservation divided by noise-
removal) on the denoised DTU18-EIGEN-6C4 currents using a Gaussian filter (GF) at filter radii 50
km and 70 km and the CDAE method at epoch 15, and finally the CNES-CLS18 reference surface over
different geographical regions: the Gulf Stream (GS), the Kuroshio Current (KC), the Agulhas Current
(AC) and the Brazil-Malvinas Confluence Zone (BMCZ). The final column shows the average of each row.

GS KC AC BMCZ Avg.

Signal-preservation (ms−1)
GF (50km) 0.591 0.633 0.487 0.318 0.512
GF (70km) 0.485 0.582 0.427 0.272 0.442
CDAE 0.602 0.548 0.592 0.418 0.540
CLS18 0.735 0.621 0.517 0.332 0.551

Noise-removal (ms−1)
GF (50km) 0.138 0.166 0.080 0.117 0.125
GF (70km) 0.129 0.154 0.080 0.113 0.119
CDAE 0.021 0.015 0.026 0.024 0.021
CLS18 0.019 0.016 0.023 0.025 0.022

Ratio
GF (50km) 4.283 3.934 6.088 2.718 4.283
GF (70km) 3.760 3.779 5.338 2.407 3.821
CDAE 29.074 37.078 23.170 17.141 26.616
CLS18 38.684 38.813 22.478 13.280 28.314

of magnitude. Overall, ratio values achieved by the CDAE are much higher (better) than those of the
Gaussian filtered at both filter radii, and are comparable in magnitude to those of the CNES-CLS18
(Table 7).

5. Concluding Discussion
In this paper, we have presented a deep learning pipeline to remove the noise present in the geostrophic
currents computed from a geodetic MDT. A generative network is trained to closely estimate the noise
distribution of noisy geodetic data, and then to construct a novel training dataset of contaminated geode-
tic currents with corresponding noisy-free examples. In order to better represent the real geodetic data
in the training data, several techniques have been adopted to prevent overly exaggerated features and
to preserve global noise strength patterns. An ablation study on the different data processing methods
proposed demonstrated that the use of prior knowledge benefits the network. This strategy of dataset
creation is directly applicable to other blind image-denoising problems in the climate sciences in which
the clean ground-truth does not exist but model data is available. Finally, a CDAE network is trained
on the constructed training dataset and results are presented on real-world data.

Traditional isotropic spatial filtering causes attenuation along steep gradients in the MDT associ-
ated with currents of high interest during the noise removal process. It is shown qualitatively that the
CDAE method significantly improves upon conventional Gaussian filtering in terms of reducing atten-
uation. Important oceanographic features are consistently preserved by the CDAE network and much
higher velocities are retrieved while levels of noise are kept consistently low across all tested geo-
graphical regions. Quantitative analysis, using RMSD and MAD, confirmed these findings, showing
that strong velocities are more accurately resolved using the CDAE method than Gaussian filtering and
overall that the CDAE’s denoised currents more closely matched a reference MDT constructed from
various data sources. A further quantitative evaluation method was designed to assess the level of atten-
uation of important features in conjunction with the level of noise removal in the case of blind-image
denoising, which demonstrated the significant improvement achieved by the CDAE method compared
to traditional Gaussian filtering.
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An important benefit of the deep learning approach is the ability to exploit prior knowledge of the
geodetic noise patterns. In turn, this allows the CDAE network to adaptively remove noise within a
given region, such that the severe noise which occurs near the coast and around islands (coinciding
with steep gradients in the geoid) is significantly reduced without bleeding into nearby areas. A further
benefit of the CDAE denoising method is that it can be trained to remove different types of noise
depending on the training dataset given. This allows our method to be adapted to different types of
problems. This could involve refining the method to denoise the geostrophic currents associated with
the satellite-only geoid which contains significantly more noise than the high-resolution geoid used in
this study (produced using a combination of data sources including both satellite and ground data.) A
current limitation of the proposed method is that the trained network denoises relatively local regions
of the global MDT. This could be addressed in future work, where the method could be adapted to
denoise larger regions or even the full global map.

Looking to the future, improvements in gravity field determination from geodetic missions such as
ESA/NASA’s approved MAGIC (Mass-Change and Geosciences International Constellation) mission
should reduce the level of noise in geodetic MDT and associated ocean current estimates (Massotti et al.
, 2021). However, they are unlikely to eliminate it completely as there will still be a mismatch in scales
between the geoid and the MSS. Therefore, filtering methods, such as the one developed in this paper,
will still be necessary for the foreseeable future. Similarly, it will still be necessary to optimally filter
geodetic currents to provide the best possible longer-wavelength complement to finer-scale currents
measured directly by new missions such as ESA’s Harmony mission (López-Dekker et al. , 2021).
Indeed, deep learning methods offer an opportunity to optimally combine current observations from a
range of sources taking into account the error characteristics of each source.
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