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Abstract: Neuropathic pain affects about 7–8% of the population, and its management still poses
challenges with unmet needs. Over the past decades, researchers have explored the cholinergic
system (muscarinic and nicotinic acetylcholine receptors: mAChR and nAChR) and compounds
targeting these receptors as potential analgesics for neuropathic pain management. This scoping
review aims to provide an overview of studies on peripheral neuropathic pain (PNP) in rodent
models, exploring compounds targeting cholinergic neurotransmission. The inclusion criteria were
original articles on PNP in rodent models that explored the use of compounds directly targeting
cholinergic neurotransmission and reported results of nociceptive behavioral assays. The literature
search was performed in the PubMed and Web of Science databases (1 January 2000–22 April 2023).
The selection process yielded 82 publications, encompassing 62 compounds. The most studied
compounds were agonists of α4β2 nAChR and α7 nAChR, and antagonists of α9/α10 nAChR, along
with those increasing acetylcholine and targeting mAChRs. Studies mainly reported antinociceptive
effects in traumatic PNP models, and to a lesser extent, chemotherapy-induced neuropathy or diabetic
models. These preclinical studies underscore the considerable potential of cholinergic compounds in
the management of PNP, warranting the initiation of clinical trials.

Keywords: acetylcholine; muscarinic acetylcholine receptor; nicotinic acetylcholine receptor; peripheral
neuropathic pain; rodents

1. Introduction

The International Association for the Study of Pain (IASP) defines pain as “an unpleas-
ant sensory and emotional experience associated with, or resembling that associated with,
actual or potential tissue damage”. In particular, peripheral neuropathic pain (PNP) is
defined as “a direct consequence of a lesion or disease of the somatosensory nervous system
and may be felt in areas with no tissue damage”, and more precisely, in the peripheral
nervous system (PNS) [1]. These injuries of the peripheral somatosensory system result in
maladaptive responses that can cause pain that is either spontaneous or evoked by sensory
stimuli, as an increased response to a painful stimulus (hyperalgesia), or a painful response
to a normally nonpainful stimulus (allodynia) [2].

Many etiologies can explain PNP, among which traumatic causes (e.g., phantom
limb pain, postsurgical/traumatic neuropathy), toxic causes (e.g., chemotherapy-induced
peripheral neuropathy—CIPN), and metabolic causes (e.g., hyperglycemic conditions) are
found [3].

Approximately 7–8% of the general population worldwide experience PNP, with
prevalence rates ranging from 0.9% to 17.9% [4]. Guidelines for the first-line pharmaco-
logical management of PNP include gabapentin, gabapentin extended release/enacarbil,
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pregabalin, serotonin and norepinephrine reuptake inhibitors (duloxetine, venlafaxine),
and tricyclic antidepressants [5]. However, the efficacy of therapeutic strategies remains
limited, with several and underassessed safety concerns [6–8], and innovative strategies
are particularly needed [9].

The involvement of cholinergic neurotransmission in pain processes has been shown
in many studies and could become a new therapeutic target for the management of PNP
(for a review, see [10]).

Acetylcholine acts as one of the most prominent neurotransmitters in both the central
nervous system (CNS) and PNS, particularly at the ganglionic level of the autonomous
nervous system. After its release from cholinergic cells, acetylcholine is quickly metabolized
by acetylcholine esterase (AChE) into choline and acetate, and thereafter, biosynthesized to
acetylcholine by choline acetyltransferase (ChAT) at the neuronal level. Cholinergic neuro-
transmission involves two types of receptors: nicotinic acetylcholine receptors (nAChRs),
and muscarinic acetylcholine receptors (mAChRs) [11].

The nAChRs are ionotropic receptors consisting of five individual subunits that ar-
range in a homo- or heteromeric combination and belong to the superfamily of pentameric
ligand-gated ion channels (pLGICs), also known in vertebrates as the Cys-loop family.
The member subunits of the Cys-loop family contain a disulfide cysteine bridge in the
extracellular domain which closes a loop comprising 13 amino acids. Besides the nAChRs,
the Cys-loop family includes the serotonin type 3 receptors (5-HT3), gamma aminobutyric
acid type A receptors (GABAA) and glycine receptors [12]. A total of 19 different nAChR
subunits have been identified: α1–α10, β1–β4, γ, δ, and ε subunits [12]. Myriad nAChR
subtypes can be formed by different combinations of these subunits. For example, α4 and
β2 subunits assemble together and comprise the most abundant nAChR subtype, α4β2 [13].
nAChRs regulate the flow of mainly sodium, potassium and calcium ions across the cell
membrane [14].

The mAChRs are metabotropic receptors and are represented by five types of receptors,
including m1AChR, m2AChR, m3AChR, m4AChR, and m5AChR. mAChRs are separated
into two subtypes: excitatory (m1AChR, m3AChR, and m5AChR), and inhibitory (m2AChR
and m4AChR). m1AChR, m3AChR, and m5AChR couple to a Gq protein, activating the
phospholipase C pathway and increasing the intracellular calcium concentration. The
m2AChRs and m4AChRs receptors couple to a Gi/o protein, inhibiting the adenylate
cyclase pathway and resulting in a decrease in the amount of intracellular cyclic adenosine
monophosphate [11,15].

The implications of the acetylcholine neurotransmission in pain have been demon-
strated with a tonic cholinergic inhibition of spinal nociceptive transmission in rats [16],
and nerve injury-induced loss of this cholinergic tone underlies the analgesic effects of
cholinergic agonists in neuropathic pain [17,18]. Muscarinic signaling is vital in pain mod-
ulation, with direct activation of mAChRs reducing pain and mAChRs inhibition inducing
nociceptive hypersensitivity [19]. The antinociceptive effects of systemically administered
donepezil (AChE inhibitor) are linked to GABAergic signaling downstream of mAChRs,
suggesting that cholinergic neurons’ inhibitory action may be mediated through GABA
release [20]. Intrathecally administered AChE inhibitors, like neostigmine, reduce inflam-
matory hypersensitivity primarily through m2AChR activation in the spinal cord [21]. The
m2AChR and m4AChR receptors predominantly mediate antinociception, while m1AChR
and m3AChR have minimal involvement in this process [22].

At the spinal level, presynaptic cholinergic receptors play a significant role in modu-
lating nociceptive transmission, with reports of both excitation and inhibition. Neuronal
subpopulations in the dorsal root ganglia (DRG) express α7 nAChRs and respond to α7-
selective positive allosteric modulators with a calcium rise, but the functional significance
remains unclear [23]. mAChRs in the DRG and trigeminal ganglia modulate primary affer-
ent input onto spinal or medullary dorsal horn neurons, leading to inhibition of glutamate
release [24,25]. Activation of m2AChR and m4AchR inhibits excitatory synaptic inputs
from primary afferents into the spinal cord by targeting voltage-gated calcium channels
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in primary sensory neurons [26]. Additionally, the m5AchR subtype has a more complex
role, mediating positive effects on primary afferent terminals while potentially increasing
glutamate release from spinal interneurons [26].

Supraspinal centers, such as the serotonergic raphe nuclei and adrenergic centers in
the locus coeruleus and rostral ventromedial medulla (RVM), play a key role in endogenous
nociception control through descending modulation of spinal function. Nicotinic choliner-
gic signaling in brainstem nuclei stimulates descending inhibitory pathways and mediates
antinociceptive effects via interactions with α2 adrenergic, 5-HT1c/2, and 5-HT3 serotoner-
gic receptors, and m2AchR in the lumbar spinal cord [27]. Studies also show antinociceptive
effects from nAChR agonists in the RVM via activation of α4β2 nAChRs (and to a lesser
extent, via α7 nAChRs) [28]. Finally, ChAT-Cre mice have demonstrated direct descending
control of spinal sensory transmission by brainstem cholinergic neurons [29].

This scoping review aims to provide an overview of studies conducted in rodent PNP
models exploring pharmacological compounds that target cholinergic neurotransmission,
including the modulation of acetylcholine neurotransmission, nAChRs, and mAChRs.

2. Materials and Methods

We followed the Preferred Reporting Items for Systematic Review and Meta-Analysis
extension for Scoping Reviews (PRISMA-ScR) guidelines in the study process [30].

2.1. Eligibility Criteria

The inclusion criteria encompassed original articles on PNP in rodent models (in vivo)
that investigated the use of compounds directly targeting cholinergic neurotransmission
and reported results of nociceptive behavioral assays.

The exclusion criteria encompassed non-English manuscripts, specific types of
manuscripts (reviews, meta-analyses, case reports, books, and conference abstracts), pub-
lications lacking available abstracts, in vitro or ex vivo studies, and medicinal chemistry
reports. Additionally, publications indirectly exploring cholinergic neurotransmission
were excluded from the systematic review. For instance, studies using AChRs antago-
nists to investigate the involvement of AChRs in the analgesic effect of non-cholinergic
compounds were not included.

2.2. Information Sources and Search Strategy

We conducted literature retrieval in the following databases: PubMed (MEDLINE,
National Library of Medicine), and Web of Science (Clarivate Analytics PLC). No registers,
websites, organizations, reference lists, or other sources were used. The bibliographical
search was performed on 22 April 2023, and starting from 1 January 2000.

For PubMed, the sequence of keywords was “(acetylcholine) and ((neuropathy) or
(neuropathic pain)) and ((rat) or (mouse)) and ((muscarinic) or (nicotinic))”. For Web of
Science, the sequence of keywords was “acetylcholine (All Fields) AND (neuropathic pain)
or (neuropathy) (All Fields) AND (rat) or (mouse) (All Fields) AND (muscarinic) or (nicotinic)
(All Fields)”.

2.3. Study Selection, Data Collection Process and Data Items

All the references from PubMed and Web of Science were extracted and organized
using Zotero software (version 6.0.26, Roy Rosenzweig Center for History and New Media)
to create a Zotero bibliographic database. This database included the following details for
each publication: authors, title, journal, year, abstract, and DOI (Digital Object Identifier).
Subsequently, this Zotero bibliographic database was exported to Excel software (version
2021, Microsoft) for analysis.

Initial publication selection, based on title and abstract, was carried out by the authors
EM and DB. Following this initial screening, all the authors conducted a second round
of selection based on the full-text of the publications and in accordance with the inclu-
sion/exclusion criteria. In cases where discrepancies regarding the inclusion/exclusion
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criteria arose for a publication, a consensus among the authors was sought to determine
whether to include or exclude the publication.

The researchers extracted the following data from the included manuscripts: title,
author, year, DOI, type of PNP, rodent species, sex of animals, name of the compounds,
targeted AChRs, behavioral tests and main results.

3. Results
3.1. Study Selection and Characteristics

The process for selection and inclusion of publications is presented in Figure 1. A total of
82 publications were selected and analyzed, and these encompassed 62 cholinergic compounds.
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Figure 1. PRISMA flow chart of study selection.

Among the publications selected, 58 used animal models of traumatic PNP, 23 CIPN
models and 5 diabetic PNP models (Supplementary Materials, Table S1).

For traumatic PNP, nine different models were used as follows:

- Chronic constriction injury (CCI, n = 24);
- Partial sciatic nerve ligation (PSL, n = 18);
- Spinal nerve ligation (SNL, n = 13);
- Spared nerve injury (SNI, n = 2);
- Common peroneal nerve ligation (CPNL, n = 2);
- Cuff model (CM, n = 1);
- Sciatic nerve crush injury (SCNI, n = 1);
- Sciatic nerve transection (SNT, n = 1);
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- Tibial nerve transection (TNT, n = 1).

Among the CIPN models, the oxaliplatin model (n = 14) was the most used, but
other models such as paclitaxel (n = 6), vincristine (n = 4), and bortezomib (n = 1) were
also described. Finally, two models of diabetic PNP were used: streptozotocin-induced
peripheral neuropathy (SZT, n = 4), and the high-fat diet (HFD, n = 1).

3.2. Pharmacological Compounds Increasing the Acetylcholine Neurotransmission

To modulate acetylcholine neurotransmission, seven pharmacological compounds
with different mechanisms of actions have been tested, including AChE inhibitors, in-
hibitors of acetylcholine exocytosis, and acetylcholine precursors (Table 1). All these
compounds act to increase the quantity of acetylcholine in the synaptic cleft.

AChE inhibitors were the most commonly investigated compounds, such as am-
benonium chloride, donepezil, huperzine-A, neostigmine, and physostigmine. All these
compounds have been tested in the three animal models of PNP. Most of the compounds in-
duced antinociceptive effects, both on mechanical and thermal hypersensitivity [20,31–37].
A low dose of neostigmine (intrathecal injection, 0.3 ng) did not produce significant antinoci-
ceptive effects [38].

Botulinum neurotoxin type A has been used to inhibit the exocytosis of acetylcholine
and has shown a persistent antinociceptive effect on mechanical hypersensitivity [39,40].

Finally, citicoline, a precursor of choline, exhibited antinociceptive properties on me-
chanical hypersensitivity after intracerebroventricular injection or nerve application [41–43].

3.3. Pharmacological Compounds Targeting Nicotinic Acetylcholine Receptors
3.3.1. Unspecific Targeting of Nicotinic Acetylcholine Receptors

Four compounds unspecifically targeting nAChRs were identified: epibatidine, nico-
tine, S(−)-nornicotine, and R(+)-nornicotine (Table 2).

Nicotine was the most studied compound at various doses and routes (1–30 nmol
i.t., 0.1–2 mg/kg s.c., and 0.3–1.75 mg/kg i.p.), mainly in traumatic PNP models, with
one study on a CIPN model (paclitaxel). In several publications, nicotine demonstrated
analgesic properties on mechanical and thermal hypersensitivity. It showed a decrease in
mechanical allodynia in a time- and dose-dependent manner [18,44–49]. However, chronic
administration of nicotine (24 mg/kg/day, osmotic pump) induced a dose-dependent and
stable mechanical hypersensitivity [50]. Similarly, repeated administrations of nicotine
induced a decrease in its analgesic effects (heat hypersensitivity) [51]. Other studies have
also reported a reduction in mechanical and thermal hypersensitivity [52,53]. Two enan-
tiomers, S(−)-nornicotine and R(+)-nornicotine, dose-dependently reversed mechanical
hypersensitivity [54].

Finally, epibatidine has also been found to dose-dependently reverse mechanical
allodynia in traumatic PNP [18,48,55].

3.3.2. Specific Targeting of α4β2 Nicotinic Acetylcholine Receptors

Ten compounds specifically targeting of α4β2 nAChRs have been identified. Nine of
them were agonists ([123/125I]5IA, A-366833, A-85380, NS9283, ABT-418, ABT-594, Bee
venom, C-9515, RJR-2403, and TC-2559 [46,55–66]), and one a partial agonist (Sazetidine
A [56]) (Table 3). These compounds were primarily tested in traumatic PNP models.

All the tested compounds produced antinociceptive effects, and mostly on mechanical
hypersensitivity. However, NS9283 and A-85380 (administered at low pmol dose intrathe-
cally) did not show any effects on mechanical or thermal hypersensitivity in traumatic
PNP [48,67].

3.3.3. Specific Targeting of α7 Nicotinic Acetylcholine Receptors

Seventeen compounds targeting α7 nAChRs were identified. Among them, ten were
α7 nAChR agonists, two were α7 nAChR silent agonists, three were positives allosteric
modulators (PAM) of α7 nAChRs, one was an α3β4 and α7 nAChRs antagonist, and one



Pharmaceuticals 2023, 16, 1363 6 of 23

was an α7 nAChRs + m4AChRs agonist (Table 4). These compounds were mostly tested in
traumatic PNP models.

Among the α7 nAChR agonists, all the tested compounds ((R)-ICH3, choline, co-
bratoxin, DM489, GAT107, PAM-4, PHA-543613, PNU-28298, PNU-282987, and TC-7020)
exhibited antinociceptive effects on mechanical and thermal hypersensitivity [46,68–76].
While GAT107 was effective on mechanical hypersensitivity, no effect was reported on
thermal hypersensitivity [72].

The two α7 nAChR silent agonists, NS6740 and R-47, demonstrated antinociceptive
effects on mechanical hypersensitivity [77,78].

Regarding the three PAM of α7 nAChRs, only PAM-2 and PNU-120596 had analgesic
effects [69,73,79], but NS1738 had no effect on mechanical and thermal hypersensitivity [69].

The α3β4 and α7 nAChRs antagonist, α-conopeptides Eu1.6 [80], and the α7 nAChRs
+ m4AChRs agonist, DXL-A-24 [81], both decreased mechanical hypersensitivity.

3.3.4. Specific Targeting of α9/α10 Nicotinic Acetylcholine Receptors

We identified seventeen α9/α10 nAChR antagonists (Table 5). These compounds have
been tested in traumatic and CIPN PNP models, but not in diabetic models.

Most of the studies explored α-conotoxins and derivatives as potent antagonists
of α9/α10 nAChR, including α-conotoxin AuIB, α-conotoxin MII, α-conotoxin Mr1.1
[S4Dap], α-conotoxin RgIA, α-conotoxin RgIA4, α-conotoxin RgIA-5474, [2,8]-alkyne Vc1.1
3, GeXIVA[1,2], GeXIVA[1,4], α-conotoxin Vc1.1, Vc1.1[N9R], and [P6O]Vc.1.1. Doses
ranged from 0.036 to 60 µg (i.m. route), from 0.128 to 80 µg/kg (s.c. route), and from 0.02
to 2 nmol (i.t. route).

Nearly all the α9/α10 nAChR antagonists, including (±)-18-MC, (+)-catharanthine,
α-conotoxins AuIB, α-conotoxins MII, α-conotoxins Mr1.1 [S4Dap], α-Conotoxin RgIA,
α-conotoxins RgIA4, α-Conotoxin RgIA-5474, [2,8]-alkyne Vc1.1 3, α-conotoxins Vc1.1,
Vc1.1[N9R], GeXIVA[1,2], GeXIVA[1,4], ZZ-204G, and ZZ1-61c, presented antinociceptive
effects on mechanical and thermal hypersensitivity [80,82–104]. [P6O]Vc.1.1 had no effect
on mechanical hypersensitivity [85], while α-conotoxins RgIA4 (assessed in paclitaxel-
related CIPN model) [98], GeXIVA[1,2] (assessed in oxaliplatin-related CIPN model) [102],
and ZZ-204G (assessed with the tail flick test in naïve animals) [89], had no effects on
thermal hypersensitivity.

3.4. Pharmacological Compounds Targeting Muscarinic Acetylcholine Receptors

Eight compounds targeting mAChRs have been identified, including one mAChR
non-selective agonist (oxotremorine), one mAChR antagonist (scopolamine), one agonist of
m2/m4AChRs and antagonist of m1/m3/m5AChRs (PTAC), one m4/α7AChRs agonist
(DXL-A-24), one m1/m4AChRs agonist (McNA-343), one m1AChR agonist (PPBI), and
two m1AChR antagonists (pirenzepine and VU0255035) (Table 6). These compounds were
mostly tested in traumatic PNP models.

All these compounds induced antinociceptive effects in PNP models and mostly on
mechanical hypersensitivity [38,81,105–110]. Only McNA-343 (m1/m4AChRs agonist) did
not alleviate thermal hypersensitivity [38]. Scopolamine (mAChRs antagonist) injected in
the anterior cingulate cortex decreased the autotomy behavior of animals (sciatic nerve
section) [107].

Surprisingly, both agonist (PPBI) and antagonists (pirenzepine and VU0255035) of
m1AChRs demonstrated antinociceptive effects in PNP models [109,110].
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Table 1. Description of studies assessing pharmacological compounds modulating the acetylcholine neurotransmission.

Compounds Targets Doses, Routes Models Species (Sex) Behavioral Assays Effects Ref.

Ambenonium
chloride

AChE
inhibitors

0.05 mg/kg, i.p. Traumatic Mouse (♂) Von Frey hairs
Conditioned place preference

↘M
0 spontaneous pain [34]

Donepezil

0.3–1 mg/kg, i.p. Traumatic Rat (♂) Paw pressure ↘M [20]

0.3–1.0 mg/kg, i.p. Traumatic Rat (♂) Paw pressure Dose-dependent↘M
(0.6 and 1 mg/kg) [31]

5–10 mg/kg, p.o. CIPN +
traumatic Rat (♂) Electronic Von Frey

Paw immersion 10 ◦C and 46 ◦C ↘M + T [32]

5 mg/kg, p.o. CIPN Rat (♂) Electronic Von Frey
Tail immersion 10 ◦C ↘M + T [33]

Huperzine-A 0.1–0.15 mg/kg, i.p. Traumatic Mouse (♂) Von Frey hairs
Conditioned place preference

↘M
0 spontaneous pain [34]

Neostigmine

2 mg, i.t. Traumatic Rat (♂) Von Frey hairs ↘M [36]

0.3–3 ng, i.t. Traumatic Mouse (♂) Plantar test
Von Frey hairs

Dose-dependant↘M + T
(3 ng) [38]

0.1–0.5 µg, i.t. Diabetic Rat (♂) Von Frey hairs Dose-dependent↘M
(0.5 µg) [37]

Physostigmine 15 nmol, i.t. Traumatic Mouse (♂) Von Frey hairs ↘M [35]

BoNT/A Acetylcholine
exocytosis
inhibitors

15 pg, i.p. Traumatic Mouse (♂) Electronic Von Frey ↘M [39]

BoNT/A Dysport®

BoNT/A Botox® 20 U/kg, s.p. CIPN Rat (♂) Paw pressure ↘M [40]

Citicoline Acetylcholine
precursor

0.4–0.8 mL (100 µmol/L),
p.n. Traumatic Rat (♂) Von Frey hairs ↘M [41]

0.5–2 µmol, i.c.v. Traumatic Rat (♂) Paw pressure Dose- and time-dependent↘M
(1 and 2 µmol) [42]

0.5–2 µmol, i.c.v. CIPN Rat (♂) Paw pressure Dose- and time-dependent↘M
(1 and 2 µmol) [43]

BoNT/A: botulinum neurotoxin type A; AChE: acetylcholine esterase; p.o.: per os; i.p.: intraperitoneal; i.t.: intratechal; p.n.: perinervous; s.p.: subplantar; i.c.v.: intracerebroventricular;
↘: decrease; 0: no effect; M: mechanical sensitivity; T: thermal sensitivity; ♀: female; ♂: male.

Table 2. Description of studies assessing pharmacological compounds targeting nicotinic acetylcholine receptors.

Compounds Targets Doses, Routes Models Species (Sex) Behavioral Assays Effects Ref.

Epibatidine nAChRs
agonists 0.03–0.3 nmol, i.t. Traumatic Mouse (♂) Electronic Von Frey

Plantar test
Dose-dependent↘M

(all doses effective) [18]
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Table 2. Cont.

Compounds Targets Doses, Routes Models Species (Sex) Behavioral Assays Effects Ref.

Epibatidine

nAChRs
agonists

0.3–10.0 µg/kg, s.c. Traumatic Rat (♂) Paw pressure Dose-dependent↘M
(all doses effective) [55]

0.036–0.36 pmol, i.t. Traumatic Rat (♂) Paw pressure Dose-dependent↘M [48]

Nicotine

0.1–1.5 mg/kg, s.c. Traumatic Mouse (♂) Von Frey hairs Dose- and time-dependent↘M
(1 and 1.5 mg/kg) [45]

0.1–10 nmol, i.t. Traumatic Rat (♂) Electronic Von Frey Dose- and time-dependent↘M
(1 nmol) [46]

3–30 nmol, i.t. Traumatic Mouse (♂) Electronic Von Frey
Plantar test

Dose-dependent↘M
(10 and 30 nmol) [18]

2.2–6.5 nmol, i.t. Traumatic Rat (♂) Paw pressure Dose-dependent↘M [48]

0.25–1.75 mg/kg, i.p. Traumatic Mouse (♂+ ♀) Von Frey hairs Dose-dependent↘M [49]

0.25–25 µg, i.c.v. Traumatic Mouse (♂+ ♀) Von Frey hairs Dose-dependent↘M [49]

0.25–17.5 µg, i.t. Traumatic Mouse (♂+ ♀) Von Frey hairs Dose-dependent↘M [49]

25–100 µg, i.pl. Traumatic Mouse (♂+ ♀) Von Frey hairs Dose-dependent↘M [49]

4 or 10 mg/kg/day, s.c. Traumatic Rat (♂) Paw pressure ↗M [50]

20 nmol/day/4 days, p.n.
1–20 nmol, p.n. Traumatic Mouse (♂) Von Frey hairs

Plantar test

↘M (preventive effect)
Dose-dependent↘M + T

(5 and 20 nmol)
[47]

2 mg/kg, s.c. Traumatic Mouse (♂) Von Frey hair ↘ T [51]

1 mg/kg, i.v. Traumatic Mouse (♂)
Von Frey hairs

Plantar test
Tail-flick

↘M + T [52]

20 nmol, p.n. Traumatic Mouse (♂) Von Frey hair
Plantar test ↘M + T [53]

0.3–0.9 mg/kg, i.p.
24 mg/kg/day, s.c. CIPN Mouse (♂) Von Frey hairs

Dose-dependent↘M
(0.6 and 0.9 mg/kg)
↘M (preventive effect)

[44]

S(-)-nornicotine 5–20 mg/kg, i.p. Traumatic Rat (♂) Paw pressure Dose-dependent↘M
(20 mg/kg) [54]

R(+)-nornicotine 10–15 mg/kg, i.p. Traumatic Rat (♂) Paw pressure Dose-dependent↘M
(15 mg/kg) [54]

i.p.: intraperitoneal; i.t.: intratechal; s.c.: subcutaneous; i.c.v.: intracerebroventricular; i.pl.: intraplantar; p.n.: perinervous;↘: decrease;↗: increase; M: mechanical sensitivity; T: thermal

sensitivity; ♀: female; ♂: male.
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Table 3. Description of studies assessing pharmacological compounds targeting α4β2 nicotinic acetylcholine receptors.

Compounds Targets Doses, Routes Models Species
(Sex)

Behavioral
Assays Effects Ref.

[123/125I]5IA

α4β2
nAChR
agonists

1–100 nmol, i.c.v. Traumatic Rat (♂) Von Frey hairs Dose-dependent↘M
(50 and 100 nmol) [57]

1–10 nmol, i.c.v. Traumatic Rat (♂) Von Frey hairs Dose-dependent↘M
(3 and 10 nmol) [63]

A-366833
1.9–19 µmol/kg, i.p. Traumatic Rat (♂) Von Frey hairs Dose-dependent↘M

(all doses effective) [64]

1–6 mg/kg, i.p. Traumatic +
Diabetic +CIPN Rat (♂) Paw pressure ↘M [65]

A-85380
0.125–1 µmol/kg, i.p. Traumatic Rat (♂) Von Frey hairs Dose-dependent↘M

(0.75 and 1 µmol/kg [66]

<pmol, i.t. Traumatic Rat (♂) Paw pressure 0 M [48]

NS9283 35 mmol/kg, i.p. Traumatic Rat (♂) Von Frey hair 0 M [67]

ABT-418 1–20 nmol, p.n. Traumatic Mouse (♂) Von Frey hairs
Plantar test ↘M + T [53]

ABT-594
3–100 µg/kg, s.c. Traumatic Rat (♂) Von Frey hairs Dose-dependent↘M

(10–100 µg/kg) [55]

0.01–0.3 µmol/kg, i.p. CIPN Rat (♂) Von Frey hairs Dose-dependent↘M
(0.1–0.3 µmol/kg) [59]

Bee venom 0.25 mg/kg, s.c. CIPN Rat (♂) Tail immersion test ↘ T [61]

C-9515 0.001–0.01 mg/kg, i.p. Traumatic Rat (♂) Von Frey hairs Dose-dependent↘M
(0.003 and 0.01 mg/kg) [58]

RJR-2403 1–100 nmol, i.t. Traumatic Rat (♂) Electronic Von Frey ↘M [46]

TC-2559

2.28–22.8 µmol/kg, s.c.
20 nmol, p.n. Traumatic Mouse (♂) Von Frey hairs

Dose-dependent↘M
(22.8 µmol/kg)

↘M
[56]

1–20 nmol, p.n. Traumatic Mouse (♂) Von Frey hairs
Plantar test ↘M + T [53]

0.3–3 mg/kg, i.p. Traumatic Rat (♂) Von Frey hairs Dose-dependent↘M
(1 and 3 mg/kg) [62]

20 nmol, p.n.
10 mg/kg, s.c. Diabetic Mouse (♂) Von Frey hair ↘M [60]
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Table 3. Cont.

Compounds Targets Doses, Routes Models Species
(Sex)

Behavioral
Assays Effects Ref.

Sazetidine A
α4β2

nAChR
partial agonist

0.2–20 nmol, p.n. Traumatic Mouse (♂) Von Frey hairs Dose-dependent↘M
(20 nmol) [56]

i.p.: intraperitoneal; i.t.: intratechal; s.c.: subcutaneous; i.c.v.: intracerebroventricular; p.n.: perinervous; s.c.: subcutaneous;↘: decrease; 0: no effect; M: mechanical hypersensitivity; T:
thermal hypersensitivity; ♀: female; ♂: male.

Table 4. Description of studies assessing pharmacological compounds targeting α7 nicotinic acetylcholine receptor.

Compounds Targets Doses, Routes Models Species
(Sex)

Behavioral
Assays Effects Ref.

(R)-ICH3

α7
nAChR
agonist

30 mg/kg, p.o. CIPN Rat (♂)
Paw pressure
Von Frey hairs

Cold plate (4 ◦C)
↘M + T [70]

Choline 100 nmol, i.t. Traumatic Rat (♂) Electronic Von Frey ↘M [46]

Cobratoxin 0.56–4.5 µg/kg, i.t. Traumatic Rat (♂) Paw pressure
Tail-flick

Dose-dependent↘M + T
(1.12 and 4.5 µg/kg) [68]

DM489
3–10 mg/kg, p.o. Diabetic Mouse (♂) Cold plate 4 ◦C ↘ T [73]

10–30 mg/kg, p.o. CIPN Mouse (♂) Cold plate 4 ◦C ↘ T [73]

GAT107 1–10 mg/kg, i.p. Traumatic Mouse (♂) Von Frey hair
Plantar test

Dose- and time-dependent↘M
(3 and 10 mg/kg)

↘ T
[72]

PAM-4 1–2 mg/kg, i.p. Traumatic Mouse (♂) Von Frey hairs Dose- and time-dependent↘M
(2 mg/kg) [74]

PHA-543613
12 µg, i.t. Traumatic Rat (♂) Electronic von frey

Plantar test ↘M + T [71]

1–6 mg/kg, s.c. Traumatic Mouse (♂) Von Frey hairs Dose-dependent↘M
(6 mg/kg) [69]

PNU-28298 1–30 mg kg, p.o. Traumatic Rat (♂) Paw pressure Dose-dependent↘M [75]

PNU-282987
30 mg/kg, p.o. CIPN Rat (♂) Paw pressure ↘M [70]

1 µg/kg, i.t. Traumatic Rat (♂) Paw pressure
Tail-flick ↘M + T [68]

TC-7020 1–10 mg/kg/day, s.c. Traumatic Rat (♂) Von Frey hairs ↘M [76]
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Table 4. Cont.

Compounds Targets Doses, Routes Models Species
(Sex)

Behavioral
Assays Effects Ref.

NS6740 α7
nAChR

silent agonist

1–9 mg/kg, i.p. Traumatic Mouse (♂) Von Frey hairs Dose-dependent↘M
(9 mg/kg) [77]

R-47 0–10 mg/kg, p.o. CIPN Mouse (♂) Von Frey hairs Dose- and time-dependent↘M
(5 and 10 mg/kg) [78]

PAM-2

α7
nAChR

PAM

3 mg/kg, p.o. Diabetic + CIPN Mouse (♂) Cold plate 4 ◦C ↘ T [73]

2–8 mg/kg, i.p. Traumatic Mouse (♂) Von Frey hairs Dose-dependent↘M
(6 and 8 mg/kg) [79]

NS1738 30 mg/kg, i.p. Traumatic Mouse (♂) Von Frey hairs
Plantar test 0 M + T [69]

PNU-120596 1–8 mg/kg, i.p. Traumatic Mouse (♂) Von Frey hairs
Plantar test ↘M + T [69]

α-conopeptides Eu1.6
α3β4/α7
nAChR

antagonist
0.5–24.9 µg/kg, i.m. Traumatic Rat (♂) Paw pressure ↘M [80]

DXL-A-24
α7 nAChR/

m4AChR
agonist

0.25–1 mg/kg, p.o.
daily Traumatic Rat (♂) Von Frey hairs

Hot plate 50 ◦C
Dose- and time-dependent↘M + T

(0.5 and 1 mg/kg) [81]

PAM: positive allosteric modulator; p.o.: per os; i.p.: intraperitoneal; i.m.: intramuscular; i.t.: intratechal; s.c.: subcutaneous;↘: decrease; 0: no effect; M: mechanical sensitivity; T:
thermal sensitivity; ♀: female; ♂: male.

Table 5. Description of studies assessing pharmacological compounds targeting α9/α10 nicotinic acetylcholine receptors.

Compounds Targets Doses, Routes Models Species
(Sex)

Behavioral
Assays Effects Ref.

(±)-18-MC

α9/α10
nAChR

antagonist

72 mg/kg, p.o. CIPN Mouse (♂) Cold plate 4 ◦C ↘ T [90]

(+)-catharanthine 36–72 mg/kg, p.o. CIPN Mouse (♂) Cold plate 4 ◦C ↘ T [90]

α-conotoxin AuIB
0.02–2 nmol, i.t. Traumatic Rat (♂) Von Frey hairs Dose-dependent↘M

(2 nmol) [82]

0.36–36 µg, i.m. Traumatic Rat (♂) Von Frey hairs ↘M [83]

α-conotoxin MII
0.02–2 nmol, i.t. Traumatic Rat (♂) Von Frey hairs Dose-dependent↘M

(2 nmol) [82]

0.36–36 µg, i.m. Traumatic Rat (♂) Von Frey hairs ↘M [83]

α-conotoxin Mr1.1
[S4Dap] 0.5–25 µg/kg, nr Traumatic Rat (♂) Electronic Von Frey Dose-dependent↘M

(25 µg/kg) [91]



Pharmaceuticals 2023, 16, 1363 12 of 23

Table 5. Cont.

Compounds Targets Doses, Routes Models Species
(Sex)

Behavioral
Assays Effects Ref.

α-conotoxin RgIA

α9/α10
nAChR

antagonist

2–10 nmol, i.m. Traumatic Rat (♂) Paw pressure
Electronic Von Frey ↘M [84]

α-conotoxin RgIA4

0.02–0.2 nmol, i.m. Traumatic Rat (♂) Paw pressure Dose-dependent↘M
(0.2 nmol) [92]

100 mg/kg, i.m. CIPN Mouse (♂)
Hot plate 47 ◦C

Electronic Von Frey
Acetone test

↘ T + M [93]

2–10 nmol, i.m. CIPN Rat (♂) Cold plate 4 ◦C ↘ T [94]

0.128–80 µg/kg, s.c. CIPN Mouse + Rat (♂) Paw pressure
Cold plate 4 ◦C

Dose-dependent↘M + T
(all doses effective) [95]

40 µg/kg, s.c. CIPN Mouse (nr) Cold plate
(decrease of 10 ◦C/min) ↘ T [96]

40 µg/kg, s.c. CIPN Mouse (nr) Cold plate
(decrease of 10 ◦C/min) ↘ T [97]

16–80 µg/kg, s.c. CIPN Rat (♂)
Von Frey hairs
Cold plate 5 ◦C

Plantar test

Time-dependent↘M
0 T [98]

α-conotoxin RgIA-5474 4–40 µg/kg, s.c. CIPN Mouse (nr) Cold plate
(decrease of 10 ◦C/min) ↘ T [99]

α-conotoxin Vc1.1

0.02–2 nmol, i.t. Traumatic Rat (♂) Von Frey hairs Dose-dependent↘M
(2 nmol) [82]

0.36–36 µg, i.m. Traumatic Rat (♂) Von Frey hairs Dose-dependent↘M
(all doses effective) [83]

0.36–3.6 µg, i.m. Traumatic Rat (♂) Paw pressure Dose-dependent↘M
(3.6 µg) [101]

0.036–0.36 µg, i.m. Traumatic Rat (♂) Paw pressure Dose-dependent↘M [92]
60 µg, i.m. Traumatic Rat (♂) Von Frey hairs ↘M [85]

27.2–54.2 µg/kg, i.m. Traumatic Rat (♂) Paw pressure ↘M [80]

[2,8]-alkyne Vc1.1 3 0.03–0.1 mg/kg, i.m. Traumatic Rat (♂) Von Frey hairs Dose-dependent↘M
(0.1 mg/kg) [100]

Vc1.1[N9R] 0.3–15 nmol/kg, i.m. Traumatic Rat (♂) Paw pressure ↘M [86]

[P6O]Vc.1.1 60 µg, i.m. Traumatic Rat (♂) Von Frey hairs 0 M [85]
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Table 5. Cont.

Compounds Targets Doses, Routes Models Species
(Sex)

Behavioral
Assays Effects Ref.

GeXIVA[1,2]

α9/α10
nAChR

antagonist

0.5–2 nmol, i.m. Traumatic Rat (♂) Electronic Von Frey Dose-dependent↘M
(All doses effective) [104]

0.3–1.2 nmol, i.m. Traumatic Rat (♂) Electronic Von Frey
Von Frey hairs ↘M [87]

32–128 nmol/kg, i.m. CIPN Rat (♂) Von Frey hairs
+ acetone test + tail-flick

Dose-dependent↘
(128 nmol/kg)

0 T
[102]

0.45 mg/kg, i.m. CIPN Rat (♂) Von Frey hairs
Tail-flick ↘M + T [103]

GeXIVA[1,4] 0.5–2 nmol, i.m. Traumatic Rat (♂) Electronic Von Frey Dose-dependent↘M
(1 and 2 nmol) [104]

Oligoarginine R8 20 mg/kg, i.m. CIPN Mouse (♂)
Hot plate 47 ◦C

Electronic Von Frey
Acetone test

↘M + T [93]

ZZ-204G 3.6–3600 µg/kg, i.p. Traumatic Rat (♂) Paw pressure
Tail-flick

Dose-dependent↘M
(360 and 3600 µg/kg)

0 T
[89]

ZZ1-61c 100 µg/kg/day, i.p. CIPN Rat (♂) Paw pressure ↘M [88]

p.o.: per os; i.p.: intraperitoneal; i.m.: intramuscular; i.t.: intratechal; s.c.: subcutaneous; nr: not reported; ↘: decrease; 0: no effect; M: mechanical hypersensitivity; T: thermal
hypersensitivity; ♀: female; ♂: male.

Table 6. Description of studies assessing pharmacological compounds targeting muscarinic acetylcholine receptors.

Compounds Targets Doses, Routes Models Species
(Sex)

Behavioral
Assays Effects Ref.

Oxotremorine mAChRs
non-selective agonist 5–10 µg, i.t. Traumatic Rat (♂)

Von Frey hairs
Ethyl chloride spray

Plantar test
↘M + T [105]

PTAC

m2-4 AChRs
agonist
m1-3-5
AChRs

antagonist

0.05–0.1 mg/kg, i.p. Traumatic Mouse (♂) Von Frey hairs ↘M [106]
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Table 6. Cont.

Compounds Targets Doses, Routes Models Species
(Sex)

Behavioral
Assays Effects Ref.

Scopolamine mAChRs
antagonist 0.4 µg/µL, ACC Traumatic Rat (♂) Daily autotomy scores ↘ autotomy [107]

DXL-A-24
m4AChR

+ α7 nAChR
agonist

0.25–1 mg/kg, p.o. Traumatic Rat (♂) Von Frey hairs Dose-dependent↘M
(0.5 and 1 mg/kg) [81]

McNA-343 m1/m4AChRs
agonist

18.9–1890 pmol, ACC Traumatic Rat (♂) Electronic Von Frey Dose-dependent↘M
(189 and 1890 pmol) [108]

3–10 µg, i.t. Traumatic Mouse (♂)
Plantar test

Von Frey hairs
Paw pressure

↘M
0 T [38]

PPBI m1AChR
agonist 0.2–100 mmol/kg, p.o. Traumatic

+ CIPN
Mouse +
Rat (♂)

Tail immersion 13 ◦C
Acetone test
Plantar test

Dose-dependent
↘M + T [109]

Pirenzepine
m1AChR

antagonist

10 mg/kg/d, s.c. Diabetic
+ CIPN

Mouse +
Rat (♂+ ♀) Von Frey hairs ↘M [110]

VU0255035 10 mg/kg, i.p. Diabetic Mouse +
Rat (♂+ ♀) Von Frey hairs ↘M [110]

i.p.: intraperitoneal; i.t.: intratechal; s.c.: subcutaneous; p.o.: per os; ACC: anterior cingulate cortex injection;↘: decrease; 0: no effect; M: mechanical sensitivity; T: thermal sensitivity; ♀:
female; ♂: male.
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4. Discussion

This review aimed to assess the state of the art regarding compounds targeting acetyl-
choline neurotransmission for the management of PNP in rodent models.

Among the 82 selected publications, 62 cholinergic compounds were assessed in
rodent models of PNP. Almost all the compounds had antinociceptive effects in the PNP
models, demonstrating the interest in targeting acetylcholine neurotransmission for pain
management. Most of the studies assessed the compounds using traumatic models of PNP,
and to a lesser extent, in CIPN or diabetic models. Two third of the studies were conducted
with rats, and one third with mice. Most of the studies utilized male animals, and only
two studies employed both male and female animals. However, sex differences exist in the
context of PNP, particularly concerning the sexually dimorphic nature of neuroimmune
pathophysiology [111], which highlights the importance of including subjects of both sexes
in preclinical pain research [112].

In two-thirds of the assays, compounds were administered via systemic routes, with
the i.p. route accounting for 23.2%, the i.m. route for 18.8%, the s.c. route for 13.6%,
and the p.o. route for 11.6%. The remaining third of the assays employed local routes of
administration, with the most representative ones being the i.t. route for 18.8%, p.n. for
5.4%, and the i.c.v. route for 4.5%. In spite of the interesting use of local administrations for
defining precise mechanisms of action, systemic routes should be encouraged to improve
the translationality of the results and drugability of the compounds. The assessment of the
analgesic effects of compounds was primarily conducted using tests exploring mechanical
hypersensitivity, which accounted for approximately 75% of the tests. Thermal hypersensi-
tivity was less explored, comprising approximately 25% of the tests. Interestingly, in some
cases, the same compound demonstrated effectiveness on mechanical hypersensitivity
but not on thermal hypersensitivity (e.g., the α7 nAChR agonist GAT107 [72]; the α9/α10
nAChR antagonists α-conotoxin RgIA4 [98], GeXIVA[1,2] [82], and ZZ-204G [89]; and the
m1/m4AChRs agonist McNA-343 [38]). Therefore, the exploration of the analgesic activity
of these compounds should be encouraged on both modalities (mechanical and thermal) to
better define their effects.

The present review highlights that research has primarily focused on nAChRs com-
pared with mAChRs (Figure 2). Among the nAChRs, the α4β2 nAChR and α7 nAChR
agonists, and α9/α10 nAChR antagonists were the main compounds explored. The first
approach was driven by a global activation of nAChRs, thanks to nicotine [44–53]. Epibati-
dine, a toxic alkaloid isolated and identified from Epipedobates tricolor skin (for a review
see [113]), was also used in a similar approach [18,48,55], and even though this compound
is recognized today as an α4β2 nAChR agonist, it is also able to target α7 nAChR and α3β4
nAChR [113]. A more specific targeting of nAChRs has been tested with specific agonists
of α4β2 nAChR and α7 nAChR, and antagonists of α9/α10 nAChR. The latter were mainly
focused on α-conotoxins and derivatives originating from venomous marine cone snails
(Conus species) [114].

α4β2 nAChR stands out as the most prevalent heteromeric subtype within the brain.
Typically labeled as α4β2* nAChR, the asterisk acknowledges the potential involvement of
additional subunits. When presented in isolation, the α4 and β2 subunits coalesce to form
two distinctive functional isoforms: the low-sensitivity (α4)3(β2)2 and high-sensitivity
(α4)2(β2)3 nAChRs. Notably, the lower acetylcholine sensitivity of (α4)3(β2)2 nAChR
constitutes the majority within the cortex [115]. This α4β2* nAChR variant assumes a
crucial role in nicotine dependence and represents a pharmacological target for smoking
cessation aids like varenicline [115].

In contrast, the homopentameric α7 nAChR lacks the synaptic functional adaptations
observed in muscle-type and ganglionic nAChRs. The absence of non-alpha subunits
influences the agonist binding site, shifting high-affinity agonist binding toward desen-
sitized states and enhancing sensitivity to the widely available acetylcholine precursor,
choline [116]. Unique cellular and subcellular distribution patterns for α7 nAChR indi-
cate its distinct roles. These distinctive patterns encompass widespread expression in
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non-neuronal cells, including those within the immune system. Notably, α7 nAChR plays
a distinctive role in regulating the cholinergic anti-inflammatory pathway. An intrigu-
ing attribute of open α7 nAChR is its heightened calcium permeability [116]. Although
this characteristic could potentially lead to excitotoxicity akin to NMDA-type glutamate
receptors, the normally low open probability of the α7 nAChR receptor channel offsets
this risk [114]. It is noteworthy that modifications in intracellular calcium concentra-
tion following α7 nAChR stimulation predominantly arise from the release of calcium
stored intracellularly rather than calcium influx through α7 nAChR channels, implying a
metabotropic-like effect [116].
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α9/α10 nAChR represents a more recently studied subtype. Its primary functions have
been elucidated in inner ear mechanosensory hair cells. Considered a non-neuronal nAChR,
the α9/α10 subtype demonstrates negligible expression of α9 and very low expression of
α10 subunits in murine DRG [12,117]. However, in human DRG, around 25% of sensory
neurons have been found to express α9 and α10 mRNA [117]. Notably, the α9/α10 nAChR
holds potential as an intriguing target for inner ear disorders from a pharmacotherapeutic
perspective [12]. Beyond auditory disorders, blocking α9/α10 nAChRs has displayed
analgesic effects linked to the modulation of immune cells and inflammatory processes [13].

Excluding α9/α10 nAChR, nAChRs are distributed across neurons in peripheral noci-
ceptive nerve fibers, DRG, the dorsal horn of the spinal cord, the RVM in the brainstem,
and the periaqueductal gray, all of which play pivotal roles in pain perception and pro-
cessing [118]. Moreover, α4β2 nAChRs have been identified within astrocytes in the spinal
cord and regions of the brain associated with pain processing [119]. α7 nAChRs display
expression in immune and non-immune cells responsible for cytokine production, exercis-
ing control over immune cell functions, suppressing the production of pro-inflammatory
cytokines, and mitigating inflammatory processes [116].

Finally, the targeting of mAChRs was clearly less explored, with few compounds and a
widespread targeting of both agonists and antagonists for specific and unspecific mAChRs
(Figure 2). No specific mAChRs emerged as clear pharmacological targets. Moreover,
the definition of the compounds’ activities can be obscure. For example, both agonists
and antagonists of the same m1AChRs induced antinociceptive effects [109,110], which
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raises doubt about the selectivity of these compounds. This targeting of mAChRs for pain
management remains clearly underexplored, and more research is need.

Another interesting point is that compounds modulating the acetylcholine neuro-
transmission (e.g., AChE inhibitors, acetylcholine exocytosis inhibitors, and acetylcholine
precursors), which ultimately increase the quantity of acetylcholine in the synaptic cleft,
demonstrated analgesic effects (Figure 2) [20,31–37,39–43]. This unspecific strategy stands
in stark contrast to the targeting of specific AChRs for pain modulation described in this
review. By increasing the quantity of acetylcholine, these compounds promote global
activation of nAChRs and mAChRs, which can be opposite to the sought effect in the case
of α9/α10 nAChRs, where an inhibition of the latter is needed for an analgesic effect [120].

Studies on nicotine have explored the desensitization of its activity after chronic expo-
sure, showing a decrease in its antinociceptive effects and even nociceptive sensitization,
mediated by a desensitization of α4β2 nAChRs [50]. This desensitization was related to an
increase in the phosphorylation of cAMP response element-binding protein (pCREB) in the
spinal cord, which is highly correlated with the degree of mechanical hypersensitivity [50].
It is well demonstrated that tobacco smoking has acute antinociceptive effects [121] and
chronic pronociceptive ones [122]. Tobacco smoking is a risk factor for chronic pain [122].
This desensitization of nAChRs has also been reported for α7 nAChR and α3β4 nAChR,
driving the research from agonists of specific nAChRs to positive allosteric modulators
of these nAChRs. Positive allosteric modulators can increase the binding affinity and/or
efficacy of an orthosteric agonist (endogenous or exogenous) [123].

To our knowledge, besides BoNT/A, which is mainly authorized for various spasticity
disorders, no cholinergic compound is currently authorized for the clinical management of
PNP. The use of cholinergic compounds in patients experiencing pain could raise safety
concerns regarding the cholinergic mechanism of action. We can extrapolate adverse effects
of these compounds from those of AChE inhibitors used in Alzheimer’s disease treatment
and medications used for smoking cessation (nicotine replacement therapy and vareni-
cline). The most frequently reported adverse events of AChE inhibitors are gastrointestinal
issues, including nausea, vomiting, diarrhea, and anorexia [124]. In the case of nico-
tine replacement therapy, the most commonly reported adverse events include headache,
dizziness/light-headedness, nausea/vomiting, gastrointestinal symptoms, sleep/dream
problems, and cardiovascular effects (palpitations, chest pain) [125]. With varenicline, the
most frequently reported adverse events are nausea, insomnia, abnormal dreams, and
headache [126].

Limitations of This Review

The aim of this review was to present an overview of the current studies focused on
compounds that modulate cholinergic neurotransmission in the management of PNP in
rodent models. This aim was not to report effective compounds on PNP. However, we
believe that there is still a publication bias related to the fact that many negative results
have not been published [127], and consequently, several studies focused on compounds
that modulate cholinergic neurotransmission would be underreported.

5. Conclusions

The objective of this scoping review was to identify the primary targets and com-
pounds studied in animal models of PNP. Besides mAChRs, nAChRs remain the most
extensively investigated targets, with specific compounds such as α4β2 nAChR and α7
nAChR agonists, as well as α9/α10 nAChR antagonists. Notably, for the latter group, a
majority of studies have focused on conotoxins and derivatives, representing innovative
compounds. In contrast, when it comes to mAChRs, no distinct cholinergic target can be
definitively defined based on this review.

The next steps involve a clear delineation of the antinociceptive mechanisms of action,
including a more precise identification of the targeted AChRs and the cellular pathways
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involved, which, for many of these cholinergic targets, appear to encompass both neuronal
and non-neuronal elements, including the immune system.

Overall, these preclinical studies underscore the considerable potential of cholinergic
compounds in the management of PNP, warranting the initiation of clinical trials.
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