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ABSTRACT  
Mental workload (MWL) is a concept used as a reference for assessing the mental cost of activities. 
Nowadays, challenges related to user experience are determining the expected MWL value for a 25 
given activity and real-time adaptation of task complexity level to achieve or maintain desired MWL. 
As a consequence, it is important to have at least one task that can reliably predict the MWL level 
associated with a given complexity level. We used several cognitive tasks to meet this need, including 
the N-Back task, commonly used reference test in the MWL literature, and the Corsi test. Tasks were 
adapted to generate different MWL classes measured via NASA-TLX and Workload Profile 30 
questionnaires. Our first objective was to identify which tasks had the most distinct MWL classes 
based on combined statistical methods. Our results indicated that the Corsi test satisfied our first 
objective, obtaining three distinct MWL classes associated with three complexity levels offering 
therefore a reliable model (about 80% accuracy) to predicted MWL classes. 
Regarding our second objective to achieve or maintain the desired MWL, it entailed the use of an 35 
algorithm to adapt the MWL class based on an accurate prediction model. This model needed to be 
based on objective and real time indicator of MWL. For this purpose, we identified different 
performance criteria for each task. The classification models obtained indicated that only the Corsi 
test would be a good candidate for this aim (more than 50% accuracy compared to a chance level at 
33%) but performances were not sufficient to consider identifying and adapting the MWL class online 40 
with sufficient accuracy during a task. Thus, performance indicators require to be complemented by 
other types of measures like physiological ones.  
Finally, we could highlight the limitations of the N-back task in favor of the Corsi test which turned 
out to be the best candidate to model and predict the MWL among several cognitive tasks.  
 45 
Introduction 
Conceptual framework of mental workload  
Mental workload (MWL) was first introduced by Bornemann (1942) aiming at optimizing human-
machine systems. Since then, several definitions of MWL have been proposed. Nevertheless, all 
definitions concur to consider MWL as a multidimensional concept (Hancock et al. 2021).  50 
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According to stress/strain model (Karasek, 1979; Sperandio, 1988; Schlegel, 1993; Raufaste et al., 
2004) MWL includes two components: stress (task demands) and strain (consequences of stress on 
the individual). The relevance of this approach that emphasizes task demands remains evident in the 
current international standard on MWL (ISO 1075-1:2017), which also adopts the stress/strain 
model. 55 
 
Furthermore, MWL is a relative concept considering it depends upon the task’s demands in relation 
to the amount of resources the operator is willing or able to allocate and process (Meijman and 
O’Hanlon, 1984; De Waard, 1996). Able to allocate given that mental resources have a limited 
capacity. The Multiple Resource Theory (MRT) proposed by Wickens (1984, 1987, 2008) suggests 60 
that there exist multiple pools of attentional resources that reach a threshold when demands exceed 
the resource pool. Consequently, working memory, for instance, can only process a limited amount 
of information at any given time as argued by Information Theory (Shannon and Weaver, 1949).  
This principle is also behind the Cognitive Load Theory (CLT; Sweller, 1988) which focuses on how 
intrinsic (IL - associated with the learning task itself), extraneous (EL- non-essential load mostly 65 
related to task instructions) and germane (GL - imposed by the learner’s deliberate use of cognitive 
strategies for learning) loads impact the working memory of a learner (Sweller, 1988; Van 
Merriënboer and Sweller, 2010; Leppink et al., 2014; Young and Sewell, 2015; Orru and Longo, 
2019; Young et al., 2021). Sweller (2010) re-conceptualized the CLT by introducing the concept of 
element interactivity. Elements refer to the learning content that can be processed either 70 
independently in working memory (like a word list to memorize) or simultaneously (like elements in 
a mathematical equation). This determines the interactivity level between the elements. Additionally, 
GL is the extra effort required for learning (schema construction). However, for GL to be effective, 
sufficient working memory must be available. If not, the EL can be reduced (such as by grouping 
words by meaning). In contrast, IL remains constant for a specific level of expertise. Therefore, GL 75 
is related to IL, which depends on the degree of interactivity of the task item, and to EL, which should 
not be high to make space for GL.  
MWL and cognitive load are related concepts since they show common theoretical frameworks (such 
as Memory model of Atkinson and Shiffrin, 1968; Information Theory, Shannon and Weaver, 1949) 
that are reflected through common measurement types such as performances and questionnaires. 80 
Moreover, some explanative dimensions looked into through questionnaires appear common between 
the MWL and cognitive load models (Naismith et al., 2015). Thus, they show similar challenges 
when measured. Consequently, our discussion could also concern cognitive load. Yet, CLT has been 
developed with the aim to bring explanatory model to a specific study domain, the learning one. In 
our research, we aim to decontextualize from any situation in order to adapt to multiple contexts. The 85 
MWL, which is derived from several conceptual models that are not necessarily attached to an 
application domain, becomes therefore more appropriate. For this reason, this research is not on CLT, 
but on MWL assessment and prediction. 
 
In conclusion, the conceptual framework of MWL can be considered as follows (Figure 1): an 90 
individual is influenced by internal (endogenous) and external (exogenous) factors, when she/he 
performs an activity. The inputs of this activity are then processed according to these factors, which 
can have an impact on performance. Indeed, some authors (Hart and Staveland, 1988; Spérandio, 
1989; De Waard, 1996; Young et al., 2015) built a link between task demands, MWL and 
performance. In turn, performance influences Human's perception on what she/he is expected to do, 95 
using strategies, effort, and expending resources in order to accomplish the task objectives (Hart and 
Staveland, 1988). Moreover, Human's perception has an impact on subjective experience and 
physiological consequences (Wickens et al., 2015; Young et al., 2015). And finally, we can observe 
a loop with internal factors like subjective experience which can increase or decrease the motivation 
of the individual. 100 
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Figure 1: Conceptual framework of the mental workload's factors 
 

If an individual is faced with a situation that increases demands, she/he activates additional mental 105 
resources, which will result in higher levels of MWL (Dimitrakopoulos et al., 2017). She/he shifts 
from a given MWL level to a higher level. Several authors (De Waard, 1996; Young et al., 2015; 
Martin et al., 2019) proposed three MWL levels. First, the mental underload, which according to 
Young et al. (2015), is an excessive stimulation leading to underload as resources are either allocated 
elsewhere or reduced by underuse. Then, an intermediate MWL which is considered as a “comfort 110 
zone” where performance is optimal (Dehais et al., 2020). Finally, the mental overload occurring 
when the operator faces more stimuli than she/he is able to handle while preserving her/his own 
performance standards (Young et al., 2015).  
 
Finally, based on the definition proposed by Longo et al. (2022), which has emerged from hundreds 115 
of definitions, we considered mental workload as “the degree of activation of a finite pool of 
resources, limited in capacity, while cognitively processing a primary task over time, mediated by 
external dynamic environmental and situational factors, as well as affected by definite internal 
characteristics of a human operator, for coping with static task demands, by devoted effort and 
attention.” Therefore, for the continuation of this paper, we will base ourselves on this MWL 120 
definition.  
 
Application areas of mental workload  
Due to its features, MWL is an indicator of the mental cost related to an activity. Consequently, it is 
often measured during the activity and/or after the activity. Nowadays, MWL is mostly considered 125 
through operational situations such as automotive contexts (Milleville-Pennel and Charron, 2015; 
Foy and Chapman, 2018; Figalová et al., 2022) or aeronautic contexts like air traffic control (Averty 
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et al., 2004; Mélan and Cascino, 2014; Li et al., 2022). Thus, MWL is usually measured as a 
consequence of the activity without any a priori certainty of the MWL value in which the person is 
when performing the task. However, in some clinical or research contexts, it seems useful to be able 130 
to predict the MWL level before the activity. For example, in rehabilitation, technologies like Brain 
Computer Interface (BCI) allow to follow the cerebral activity during the achievement of cognitive 
tasks (Curran and Strokes, 2003; Carelli et al., 2017). In this case, the complexity level of the activity 
needs to be adapted to ensure the MWL is suitable for effective medical care. Thus, it is necessary to 
start with a known task in order to induce a certain MWL level, then, to monitor the MWL level 135 
during the activity to adjust the characteristics of the task and keep the desired MWL level (Figure 
2a). 
 

 
Figure 2: New possible use of the MWL concept in emerging applications such as medical 140 

remediation or Virtual Reality: (a) Online adjustment of task complexity to maintain optimized 
MWL or (b) assessment of the impact of a certain MWL level on different variables (such as stress 

or presence). 
 
In the research context, it seems also useful to maintain a certain MWL during an activity to measure 145 
its impact on different variables (such as stress or presence in Virtual Reality; Figure 2b). To achieve 
this, we need to identify MWL evolution, applying relatively close transitions between MWL levels. 
Thus, we aim to identify "sliding" levels of MWL. Moreover, MWL should be in the intermediate 
range as required for many contexts (like in Figure 2). Rehabilitation in a clinical domain is a 
concrete example since we do not try to underload or overload patients. On the contrary, we aim at 150 
intermediate levels of MWL so that patients can be engaged with positive feelings in the rehabilitation 
process. Nevertheless, such applications are not yet available since no task is identified to obtain 
distinct and closed MWL level intervals with certainty. Then, making these level classes of MWL 
become directly predictable from the complexity level could be a challenge while taking into account 
the availability of the real time indicator. Thus, the aim of this paper is to propose several candidate 155 
cognitive tasks with distinct MWL levels that are in the intermediate zone. To identify the task(s) that 
best achieve distinct MWL levels, we propose to take advantage of the richness and complementary 
of different statistical methods.  
 
Requirements for these mental workload applications 160 
Several conditions are necessary. At first, we must propose at least one task with different complexity 
levels taking account that task difficulty is considered separately from task complexity. Indeed, task 
difficulty is a perceptual phenomenon while task complexity is considered as an intrinsic property to 
the task (Longo et al., 2022). Thus, we will consider task complexity in order to set up cognitive tasks 
(CTs).  165 
  
Secondly, the task should be context-free, that is, it should not depend on a specific operational 
situation (like car driving), but it should reflect the solicitation of the different cognitive functions in 
a more generic way in order to be transferable and adaptable to various contexts. Indeed, several 
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authors (Berka et al., 2007; Radüntz, 2017; Guan et al., 2021) recommend studying MWL through 170 
CTs since real-life situations can be decomposed into several cognitive functions. Currently, several 
studies are mainly based on the N-back task (NBT) followed by the Sternberg task used to impact 
MWL during CTs. But these are two CTs whose material is a set of letters of the Latin alphabet to be 
remembered, thus soliciting only one type of cognitive function, the verbal working memory. 
However, we aim to have several CTs soliciting several distinct cognitive functions. Furthermore, 175 
NBT and Sternberg are socially and culturally marked since illiterates and people using other 
alphabets (such as Cyrillic or Chinese characters) are excluded. Therefore, our goal is to have several 
CTs, which are independent from any context and possibly used by the greatest number of people.  
  
Moreover, an important question for our purpose deals with the measure of the MWL. Different 180 
methods for assessing MWL exist and can be divided into three main categories (Miller, 2001; Galy 
et al., 2012; Muñoz-de-Escalona and Cañas, 2018): subjective, performance, and 
psychophysiological measures. The most relevant are the subjective ones as is it the most valid and 
sensitive indicator (Hart and Staveland, 1988). Three multidimensional questionnaires are recognized 
for measuring the MWL. These are the NASA Task Load Index (NASA-TLX; Hart and Staveland, 185 
1988), the Subjective Workload Assessment Technique (SWAT; Reid and Nygren, 1988) and the 
Workload Profile (WP; Tsang and Velazquez, 1996). According to Rubio et al. (2004) and Paxion 
(2014), WP and NASA-TLX questionnaires are complementary as they compensate for the 
limitations of each other. Indeed, these questionnaires are based on different methodological or 
theoretical approaches. The WP is founded on the Multiple Resource Theory (MRT) of Wickens 190 
(1984, 1987, 2008) cited above (Cf. Conceptual framework of mental workload part). Regarding 
NASA-TLX, it is not rooted in a theoretical model, but on a methodological one. Following some 
twenty scientific studies, Hart and Staveland (1988) identified six factors used to determine the 
subjective MWL. Thus, one questionnaire (WP) is concerned with the saturation of the multiple pools 
of attentional resources, while the other (NASA-TLX) is concerned with external (the first three 195 
items) and internal (the last three items) factors impacting MWL. All these elements are found in the 
definition of Longo et al. (2022) previously quoted. 
 
However, some authors point out subjective measures which can lead to biases since individuals may 
no longer remember the intrinsic details of the activity after performing it or respond in a way that 200 
satisfies assumed expectations (Spérandio, 1988; Cain, 2007). Nevertheless, subjective measures of 
MWL have a high diagnosticity criterion (ability to distinguish the source of the load) that is critical 
for this multidimensional concept (Wierwille and Eggemeier, 1993). Furthermore, subjective 
measures fulfill the validity criterion (ability of the measure to assess what must be evaluated). 
However, subjective data have an important limitation for our purpose due to their lack of availability 205 
in real time. Consequently, we also need accessible measurements during the activity taking into 
account the performance (such as reaction time or errors).  
 
MWL assessment methods based on performance analyses (primary performance or secondary 
performance during dual-task paradigm) assume that the performance obtained in the execution of 210 
one or more tasks will deteriorate if the demands expand (Cuvelier, 2012; Mandrick, 2013). 
Moreover, several MWL models and definitions establish a link between task demands, MWL and 
performance (Cf. MWL definitions part). Nevertheless, performance measures might sometimes be 
limited to describe MWL given that operators may vary their effort to maintain a constant 
performance level (Reid and Nygren, 1988; Cain, 2007; Raufaste et al., 2014). Also, performance 215 
can be affected by other factors unrelated to workload such as stress or fatigue (Wickens et al., 2015). 
Hence, a problem occurs linked to the validity criterion. Performance measures, although less valid, 
might nevertheless be relevant, since of their multiplicity of possible variations (such as completion 
time, errors, correct answers), thus making the occurrence of a high reliability criterion possible 
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(capacity to detect modulations of MWL). In addition, among the MWL measurement criteria, 220 
performance satisfies the equipment criterion (the evaluation measure requires minimal equipment).  
 
The last category of MWL measurement is the psychophysiological measures. This term refers to the 
physiological response to psychological events. These measures are a natural type of workload index 
since work demands physiological activity (Young et al., 2015). The main advantages of this type of 225 
measure are their objectivity and their possibility to be gathered in real time (Cain, 2007). For 
physiological measures, EEG is one of the most effective measures of MWL (Zhang et al., 2018). 
For instance, the study of Raufi and Longo (2022) had demonstrated that EEG band ratios, 
specifically the alpha-to-theta and theta-to alpha ratios could be treated as MWL indexes for the 
discrimination of self-reported MWL. However, for all psychophysiological measures, Kramer 230 
(1991) mentions the required equipment and technical expertise as disadvantages. Also, the possible 
occurrence of a noisy signal from physiological measurements (a weak signal-to-noise ratio) can lead 
to undesirable effects. Furthermore, physiological measures may involve different mental concepts 
such as stress (Katmah et al., 2021) or mental fatigue (Tran et al., 2020), physiological data may thus 
be difficult to interpret and have a validity problem.  235 
 
Therefore, obtaining a good indication of MWL in real time will require having tasks with enough 
performance indicators. This will ensure a more reliable predictive model of MWL considering the 
richness and diversity of the performance dimensions. Thus, it could maximize the chances of having 
greater sensitivity, that is, ability of the measure to discriminate changes in MWL. As a result, 240 
determining whether we can really deal without psychophysiological data whose benefit/constraint 
ratio is negative will become possible.  
Finally, the MWL measure via questionnaires leads to large variations among people (inter-
individual). We can also observe this variation with a given person from one trial to another one, 
despite a same effective feeling (intra-individual). Thus, a good indicator of this variable must be 245 
able to predict, not only one value of MWL (the most likely for example), but a class of values 
susceptible to be observed in each condition. Our task must consequently be able to propose 
complexity levels inducing different class of MWL in the intermediate zone of MWL while being 
sufficiently distinct to allow wide but not superposed classes of MWL values. 
Thus, through this study, our aim is to answer the two following questions: 250 
1- Can we identify subjective mental workload classes corresponding to the complexity levels?  
2- Can we predict these mental workload classes based on complexity levels and/or performance? 
  
Material and methods 
Participants 255 
Fifty-three healthy French-speaking participants, residing in France and meeting the inclusion criteria 
(fluent in French, right-handed, having normal or corrected-to-normal vision and normal or corrected-
to-normal hearing), took part in this online experiment (28 women, 24 men, and 1 non-binary person 
corresponding to an "identification with gender identities outside of male or female categories " 
(Poirier, 2019)). With an average age of 28.64 years (SD = 6.89 years), the voluntary participants 260 
were told the real purpose of the experience. 96.23% of them (51 people) had at least a bachelor level 
+ 2 years including 43.4% with a master degree. The rest of the participants had the bachelor level. 
Moreover, 66.26% (33 people) worked for Onepoint company, 9.43% came from the University of 
Nantes and the others were acquaintances of the experimenters.  
  265 
Tasks and procedure  
To have many participants in a given time and in pandemic restrictions time, we opted for an online 
study. Therefore, instructions for the test were designed for an optimal remote experiment (such as 
the need to sit in a quiet room or to put the phone on mute).  
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 270 
Cognitive tasks 
All the tasks were created using Unity3D software (Version 2019.4.30f1). 
Participants undertook five cognitive digitized tasks on their own personal computers. We had 
selected beforehand popular cognitive tasks whose structure made it possible to induce several 
dimensions. The tasks were (Figure 3): N-back task (NBT), Corsi block-tapping test, Wisconsin Card 275 
Sorting test (WCST), Go/No-Go (GNG) test and a Dual task (DT). All participants were exposed to 
tasks in random order. NBT is renowned to have complexity levels inducing MWL levels in 
intermediate zone of MWL corresponding to low MWL, medium MWL and high MWL for 
respectively 0-back, 1-back, and 2-back levels (Arvaneh et al., 2015; Dimitrakopoulos et al., 2017; 
Ries et al., 2018). Thus, NBT served as a benchmark to calibrate the complexity levels of the other 280 
tasks during pre-tests where we could evaluate several levels with at least five participants. 
Performance measures were the indicators for selecting the three complexity levels. However, with 
these measures, we could not obtain comparable indicators as they were different from task to task 
and not easily transferable (Sirevaag et al., 1993; Raufaste et al. 2004). We therefore defined a 
common performance indicator for all tasks, corresponding to the percentage of Expected responses. 285 
For example, if the participant responded properly to all her/his questions, the Expected responses 
were 100%. Thus, during pre-tests with several complexity levels, we had selected three of them 
according to their Expected responses. 
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 290 
Figure 3: Experimental design of the study where participants were randomly assigned tasks. 

 
N-back task 
N-back task (NBT) is a verbal memory span test which involves the refreshment capacity of working 
memory proposed by Kirchner (1958). Indeed, NBT requires participants to react when a stimulus 295 
(like a letter) is the same as the stimulus presented before it (if it occurs, it is a target). In our study, 
the letters were presented centrally for 500 ms each, followed by a 1500 ms interstimulus interval. 
Participants were invited to respond by indicating whether the letter was a target (pressing the left 
directional key) or a non-target (pressing the right directional key). Three complexity levels (0-back; 
1-back; 2-back) were proposed with 20 trials (including 6 to 8 target letters) for each level. Regarding 300 
0-back level, the target was the letter "X". Concerning the 1-back and 2-back levels, the target was 
the letter presented immediately or two letters before the current one. Finally, performance measures 
had six dimensions: No answers, False alarms (pressing on the target key when a non-target letter 
was displayed), Omissions (not pressing on the target key when it was a target letter), Reaction time 
for all items, Reaction time for correct answers and Expected responses.  305 
 
Corsi block-tapping test 
Block-tapping task or Corsi test (Corsi, 1972) is a visual-spatial memory span task which consists in 
remembering a sequence of cubes, reproducing then the sequence in the same order. The material is 
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the same as in the study by Kessels et al. (2000). Three complexity levels (3 cubes, 5 cubes and 7 310 
cubes) were proposed with two sequences each. As such, the maximum number of items varied from 
one level to another. In this case, each performance data was expressed as a percentage (divided by 
the maximum possible number) aiming to compare the different complexity levels. Finally, 
performance measures had seven dimensions: Pointed cubes, Correct cubes, False cubes, Omissions, 
(not pressing a cube), Exact sequences (number of cubes pointed in the expected order and position), 315 
Total Time and Expected responses.  
 
Go/No-Go 
Go/No-Go task (GNG) is a mental inhibition of motor response task. For our study, we based 
ourselves on the GNG version of Vidal et al. (2012). The stimuli were presented in a randomized 320 
manner and consisted in black disks and black squares on a white background. A shape appeared 
either full or empty. In the first level, when the shape was empty, individuals had to click on the 
ENTER key of the keyboard with their right hand (Go target). Conversely, when the letter X appeared 
randomly on the shapes, individuals had to inhibit their motor response. The X was therefore a No-
Go target. Three complexity levels were proposed. A simple level (with 90% of No-Go = X), an 325 
intermediate level (with 50% of No-Go = "X" in disk) and a difficult level (with 20% of No-Go = 
"X" in squares preceded by empty disks). Each level had 10 items presented for 200 ms followed by 
a fixation point of 500 ms. Performance measures had five dimensions: False alarms (pressing the 
key when a No-Go target was displayed), Omissions (not pressing the key when it was a Go target), 
Reaction time for correct answers, Total time, and Expected responses. Also, False alarms and 330 
Omissions were expressed as a percentage (divided by the maximum possible number) with the aim 
of comparing the different complexity levels. Indeed, the maximum number of items varied from one 
level to another. For example, in 10 items, level 1 could express maximum 9 False alarms (since this 
level had 9 No-Go), level 2 could express maximum 5 False alarms (since this level had 5 No-Go) 
and level 3 could express maximum 2 False alarms (since this level had 2 No-Go).  335 
 
WCST 
WCST (Heaton, 1981) is a card sorting task during which the participant must follow a classification 
rule and adapt to various rule changes. Therefore, this task enables the involvement of mental 
flexibility, which represents the ability to shift between tasks (Miyake et al., 2000). For the present 340 
study, we were guided by the French version validated by Godefroy et al. (2008) dealing with the 
Modified Card Sorting Test (Nelson, 1976). The top of the computer screen displayed four target 
cards (one with a red triangle, one with two green stars, one with three yellow crosses and one with 
four blue circles). At the bottom of the screen, there was a stack of several cards named response 
cards which were scrolled every 2000 ms. In this stack, the shapes could be circle, cross, star, or 345 
square, the numbers could be 1, 2, 3 or 4, and the colors yellow, red, green, or blue. Three complexity 
levels were proposed: Level 1 – Sorting by general dimensions (type of figure, color of the figure or 
number of figures). Participants had to focus on a single dimension to sort the cards. Level 2 – Sorting 
by alternating dimensions. Participants had to alternate between two distinct dimensions (for example 
color and number of figures) on each trial. Level 3 – Sorting by complex alternating dimensions. 350 
Participants had to alternate between the three dimensions on each trial. Finally, performance 
measures had six dimensions: Number of errors, Perseverative errors (when the incorrect answer 
matched the category used by the person for his/her previous answer), Reaction time for all items, 
Reaction time perseverative errors, Total time and Expected responses.  
 355 
Dual task 
This task was partly based on the previously mentioned Corsi test. But the Corsi part of this Dual 
task still had three cubes to be memorized. In parallel, a mental calculation task was added to disturb 
the memorization process. Consequently, this task was inserted between the pointing of the cubes by 
the experimenter (thus the beginning of the memorization) and the restitution of the pointing by the 360 
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participants. The calculation task was chosen since we needed a Dual task with visual-spatial memory 
and verbal memory. For this last, it was necessary to have a fast and adjustable test at the complexity 
level. Therefore, we used a calculation task based on So et al. (2017) study, with four clickable 
choices of possible answers. Three complexity levels were proposed with two sequences each. A 
simple level: single-digit addition, an intermediate level: double-digit subtraction and a difficult level: 365 
mixed arithmetic operations with multiplication and subtraction. Finally, performance measures 
offered nine dimensions, including the same performance dimensions as the Corsi in addition to 
mental calculation performance corresponding to Correct answers and Calculation total time.  
 
Questionnaires 370 
As mentioned in the introduction, as NASA-TLX and WP questionnaires are multidimensional and 
complementary, they were used in the present study.   
  
NASA-TLX questionnaire 
NASA-TLX (Hart and Staveland, 1988) rates perceive workload on six different sub-scales: Three 375 
dimensions associated with the activity (mental demands, physical demands, time pressure), two 
dimensions associated with the strategies (performance, effort) and one dimension specific to the 
individual's emotional state (frustration). After each task level, the participant has to score each 
dimension from 0 (no demand) to 100 (maximum demand). In our study, we considered each 
dimension of the NASA-TLX questionnaire and its overall score. For this last one, we used the 380 
unweighted version of the questionnaire by averaging the six dimensions in order to calculate a Raw 
Task Load Index (RTLX). This method was validated by Byers et al. (1989). Thirty years later, 
Cegarra and Morgado (2009), demonstrated that the French version showed a strong correlation 
between the weighted score (TLX) and the unweighted score (RTLX).   
 385 
Workload Profile questionnaire 
WP (Tsang and Velazquez, 1996) was based on the Multiple Resource Theory (MRT) of Wickens 
(1984, 1987) and asked the participants to provide the proportion of attentional resources used after 
they had experienced the tasks. Thus, the workload dimensions used in this technique were defined 
by the resource dimensions hypothesized in the MRT: Perceptual central processing, Response 390 
selection and execution, Spatial processing, Verbal processing, Visual processing, Auditory 
processing, Manual output, and Speech output (Rubio et al., 2004). For each task, the participant had 
to provide a number between 0 (no demand) and 100 (maximum demand) representing the proportion 
of attentional resources used in each of the eight workload dimensions. 
Since there was no solving, selection, auditory and speech tasks in our study, only four of the eight 395 
dimensions were analyzed. Indeed, referring to the main article of the questionnaire (Tsang and 
Velasquez, 1996, p. 362), this one can only be rated in a one-dimensional way. Thus, for our study, 
we considered Spatial processing scale (WP3), Verbal processing (WP4), Visual processing (WP5) 
and Manual output (WP7). 
  400 
Experimental procedure  
Each participant was clearly informed about the objectives and the course of the study before signing 
the consent letter to participate in the online study. This experiment adopted a 5 X 3 within-subject 
design with 5 task types and 3 complexity levels in tasks. The experimental phase proceeded as 
follows: 405 
- Presentation of a summary of the study by email or through professional social networks. 
- When the person showed interest, the experimenter sent her/him a link with a personal password. 
- Therefore, the participant connected to the online experimental session once the password entered, 
and an electronic signature on consent letter was requested before the pre-test questionnaire 
(questions about age, gender, level of education). 410 
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- Once these phases completed, they performed the CTs in two one-hour sessions. All tasks included 
instructions on how to perform (in the form of text, images and videos) followed by a training session 
to become familiar with the presentation of the stimuli and the required interactions. The total 
duration of one task was about 15-20 min. 
- After each task level, an electronic version of the NASA-TLX and WP questionnaires was delivered. 415 
All participants were exposed to tasks and complexity levels in random order. At the end of the study, 
all participants received 15 euros in vouchers. 
 
Data analysis  
To answer the two research questions, the following research hypotheses were defined. 420 
Concerning the question “Can we identify subjective MWL classes corresponding to the complexity 
levels?” 
H1: If the complexity levels lead to distinct MWL classes, then the means for each complexity level 
will be different and the MWL data will probably be spontaneously grouped according to their 
proximity into MWL value classes, and these classes will potentially be correlated to those obtained 425 
via the complexity levels.  
 
à First, for all subjective measures (NASA-TLX and WP questionnaires), we normalized these data 
through the correction proposed by Cousineau (Morey, 2008). This normalization was based on 
within-subjects confidence intervals which were recommended for subjective data like those from 430 
questionnaires. Cousineau’s method could be described as follows. Let yij be the ith participant's score 
in the jth condition (i = 1, ..., N; j = 1, …, M). Then, the normalized observations zij were defined as 
follows:  

𝑧#$ = 𝑦#$ −
1
𝑁	+𝑦#$	

,

$-.

+
1
𝑁𝑀++𝑦#$

,

$-.

1

#-.

 

 435 
In our case, we subtracted the mean of all conditions (the five tasks) and added the mean of every 
participant in all experimental conditions. 
 
à Then, we carried out ANOVAs to compare the MWL class averages in relation to the complexity 
levels. For each specific analysis, the characteristics of the ANOVAs will be specified in the result 440 
section.  
 
à Subsequently, we performed K-means classification to identify the "spontaneous" MWL classes 
obtained with our protocol. Indeed, comparing MWL averages through a grouping based on the 
complexity levels could artificially suggest the presence of different MWL averages by hiding the 445 
overlapping of classes. We therefore used another method to observe the groupings of MWL values, 
not based on the complexity level but on the proximity between the observed values. The classes 
obtained were then compared to those observed by considering the complexity levels.  
Therefore, the other step in analyzing our results was to investigate if we could obtain three MWL 
classes without considering complexity level. For this purpose, we used the K-means technique to 450 
perform clustering. Existing studies (Al-Mohair et al., 2015; Shaheen et al., 2020) employing 
clustering referred to K-means as a simple, reliable, and robust technique for clustering. K-means 
clustering divided the data into K sets. The number of possible sets depended on the nature of the 
data or the plausible possibility of the number of sets that a data could offer. 
 455 
à For all CTs, we kept the whole set of dimensions of the NASA-TLX, since this questionnaire must 
be considered in its entirety (Hart and Staveland, 1988) unlike WP questionnaire. Indeed, referring 
to the main article of this questionnaire (Tsang and Velasquez, 1996, p. 362), WP is specified to be 
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rated in a one-dimensional way. Therefore, for each CTs and before the clustering step, we identified 
the dimensions of the most relevant WP depending on the logic of the task, that is, the cognitive 460 
demands it generated. We also considered the results of the previous analysis (ANOVAs) showing 
the most affected WP dimension by each task. It's worth noting that in this study, we specifically 
selected the dimensions of the WP questionnaire that we deemed relevant for examination. However, 
with this protocol we did not measure all the resources spent (8 dimensions in total). Consequently, 
WP results were limited to the presented tasks and could not be generalized across other tasks. 465 
 
à Finally, we calculated the correlation between MWL classes obtained from the K-means with the 
classes obtained via the complexity levels.  
 
Concerning the question “Can we predict these MWL classes based on complexity levels and/or 470 
performance?” 
H2: If the performance measures are rich and diversified, then it will be likely to find a model which 
will correctly classify the MWL according to the complexity levels and/or performance.  
For this research question, we wanted to predict the belonging to a class of MWL values. For this 
purpose, a supervised classification (specific to each CT) was used to classify observations in 475 
different categories of the dependent variables, aiming at identifying whether an individual stayed in 
a MWL class or changed MWL class over time. 
 
à It seems interesting to note that the variable to be predicted (subjective MWL) corresponded to 
the classes established by K-means. For each analysis, we first considered complexity level as a 480 
variable for the model, followed by the comparison of the model precision with the one obtained 
when complexity level was removed from the model and that only performance was considered by 
the model. 
 
à Concerning the supervised classification technique, we selected Linear Discriminant Analysis 485 
(LDA). Besides its low computational cost (compared to the Support Vector Machine – SVM for 
instance), the LDA have been used in the domain of cognitive tasks (Abibullaev and An, 2012; Yoo 
et al., 2020). Moreover, the hyperplane of LDA used to separate different classes allowed to identify 
the features that maximize the between-class variances, while minimizing the within-class variance 
(Mohanavelu et al., 2022). This was one of the aims of our study.  490 
 
LDA model in this study, calculated the balanced accuracy for our case of multiclass analysis (ratio 
of true positives to total positives). We then considered the Cross-validation score obtained with 
complexity levels and performance combinations and the one obtained with only performance 
combinations. The details of performance measures for each task were described in the methods 495 
section. Concerning the selection of MWL variables, we used the best selection for each task based 
on previous results (ANOVAs, K-means, and correlation coefficient between MWL classes with K-
means and MWL classes with complexity levels).  
 
à We then calculated the importance of the different variables for the model. For this, we used the 500 
Permutation Feature Importance (PFI) method. PFI is defined as the decrease of the model score 
when the value of a predictor variable is randomly shuffled. PFI permutes the features at each round, 
then removes a feature from the list and associates the increase in error as the rank to the feature 
previously removed. Unfortunately, PFI showed a significant inconvenient as it did not indicate how 
many features to use but only the most highly ranked (Bel, 2020). 505 
 
Finally, to have an overall picture of our analysis procedure, we proposed a diagram (Figure 4) with 
all the steps of data analysis for the two research hypotheses. 
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 510 
Figure 4: Diagram with all the steps of data analysis for the two research hypotheses. 

 
Results 
Above all else, we started the analysis of our results by making sure that the complexity levels of our 
five CTs generated three distinct levels of performance.  515 
 
Complexity level and performance 
To compare the performances between tasks, we established a performance criterion common to all 
five CTs, the Expected responses (Cf. Cognitive tasks part). Moreover, some distributions of our data 
were not normal, and variances were not homogeneous. For this reason, we used non-parametric 520 
statistics with the JASP software (version JASP 0.16). A non-parametric Repeated-Measures 
ANOVA (with the Friedman test) was performed (with the complexity level as independent variable 
and the performance as a dependent variable) followed by Wilcoxon signed-rank tests and Conover’s 
post hoc comparisons.  
 525 
Concerning Expected responses (Figure 5), we could observe a main effect of complexity level 
independently of the tasks (Table 1 part A in Appendix; X2(2) = 145.255; p < 0.001). Levels 1 and 2 
were significantly different (Table 1 part B in Appendix; T(740) = 2.887; p = 0.004), as well as 
levels 2 and 3 (T(740) = 2.592; p = 0.010). Thus, complexity level 1 turned out to be the least complex 
level and level 3 proved to be the most complex.  530 
Moreover, considered task by task, all complexity levels were significantly different (Table 1, part C 
in Appendix) except levels 2 and 3 of GNG (W = 561.000; p = 0.086) and DT (W = 460.000; p = 
0.102). Consequently, the three complexity levels generated three distinct levels of Expected 
responses for NBT, Corsi and WCST. However, levels 2 and 3 did not show significant difference 
when using GNG and DT.  535 
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Figure 5: Performance in terms of Expected responses according to the cognitive tasks and the 

levels.  
  540 
Correspondence between MWL classes and complexity levels 
For this part, non-parametric statistics with the JASP software (version JASP 0.16) were used.  
A non-parametric Repeated-Measures ANOVA (with the Friedman test) was performed with the 
complexity levels as independent variable and the subjective measures (NASA-TLX and WP) as a 
dependent variable. Then, Wilcoxon signed-rank tests and Conover’s post hoc comparisons were 545 
used.  
 
NASA-TLX questionnaire 
Concerning overall NASA-TLX score (corresponding to the sum of the six NASA-TLX dimensions, 
Figure 6), a significant main effect of complexity level occurred (Table 2, part A in Appendix; (X2(2) 550 
= 179,626; p < 0.001). Independently of the task, all complexity levels were significantly different 
(Table 2, part B in Appendix). Furthermore, considered task by task, all complexity levels were also 
significantly different (Table 2, part C in Appendix). Hence, the three complexity levels generated 
three distinct levels of overall MWL.  
Moreover, considered level by level, NBT and GNG did not turn out significantly different for the 555 
three complexity levels. Besides, this could also be observed between NBT and DT, and GNG and 
DT (Table 2, part D in Appendix). 
 



15 

  
Figure 6: Mental workload based on overall NASA-TLX 560 

score according to the type of task and the level. 
  

Concerning the dimensions score of the NASA-TLX questionnaire, we will first consider Mental 
demand (Figure 7). A significant main effect of complexity level occurred (Table 3 in Appendix; 
X2(2) = 164,416; p < 0.001). Independently of the task, all complexity levels were significantly 565 
different. Moreover, considered task by task, all complexity levels were significantly different except 
for the levels 2 and 3 of WCST (W = 546.000; p = 0.135). Thus, the three complexity levels generated 
three distinct levels of Mental demand except for WCST. 
  
Concerning Physical demand, first, in Figure 7, MWL based on Physical demand turned out the 570 
lowest for all the tasks considered when compared to the other dimensions, with an average below 
30 in 100 on the Likert scale. Furthermore, despite a significant main effect of complexity level 
(Table 3 in Appendix; X2(2) = 14.769; p < 0.001), independently of the task, the complexity levels 
were not significantly different. This could be explained by the effect size - Kendall’s coefficient of 
concordance (Kendall’s W) - used for assessing agreement among raters. Kendall's W ranges from 0 575 
(no agreement) to 1 (complete agreement). Concerning the main effect of the complexity level for 
Physical demand, it turned out to be relatively small (W = 0.061). Moreover, considered task by task, 
the three complexity levels were not significantly different. Hence, our three complexity levels did 
not generate three distinct levels of Physical demand.  
 580 
Concerning Temporal demand, a significant main effect of complexity level occurred (Table 3 in 
Appendix; X2(2) = 49.422; p < 0.001). Independently of the task, only levels 1 and 2 (T(740) = 2.008; 
p = 0.045) were significantly different, as well as levels 1 and 3 (T(740) = 3,286; p = 0.001). However, 
considered task by task, all complexity levels were significantly different except for the levels 2 and 
3 of GNG (W = 419.000; p = 0.689). Thus, our three complexity levels generated three distinct levels 585 
of Temporal demand except for GNG.  
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Figure 7: Scores of the 6 dimensions of NASA-TLX depending on the task and complexity level. 

  590 
Concerning Effort, a significant main effect of complexity level on all tasks occurred (Table 3 in 
Appendix; X2(2) = 143.925; p < 0.001). Independently of the task, all levels were significantly 
different. Moreover, considered task by task, all complexity levels were significantly different except 
for the levels 2 and 3 of WCST (W = 518.000; p = 0.081). Hence, the three complexity levels 
generated three distinct levels of Effort except for WCST. 595 
  
Concerning Performance, a significant main effect of complexity level on all tasks occurred (Table 
3 in Appendix; X2(2) = 137.616; p < 0.001). Independently of the task, all levels were significantly 
different. Moreover, considered task by task, all complexity levels were significantly different, even 
for levels 2 and 3 of WCST (W = 409.500; p = 0.028). Thus, the three complexity levels generated 600 
three distinct levels of Performance. 
  
Finally, concerning Frustration, a significant main effect of complexity level on all tasks occurred 
(Table 3 in Appendix; X2(2) = 81.364; p < 0.001). Independently of the task, all levels were 
significantly different except for levels 2 and 3 (T(740) = 1.662; p = 0.097). Moreover, considered 605 
task by task, pairwise comparisons showed that it only concerned Corsi and DT. 
  
To summarize, three complexity levels generated three distinct levels of overall MWL. This was the 
case for the Performance for all CTs as well. This result also concerned Mental demand and Effort 
except for WCST. As well, three complexity levels generated three distinct levels of Temporal 610 
demand except for GNG. Concerning Frustration, results turned out different according to the CT 
and only Corsi and DT induced different Frustration levels as a function of complexity level. Finally, 
Physical demand was the only dimension which was not influenced by the complexity level whatever 
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the CT and compared to the other dimensions, MWL from Physical demand was the lowest for all 
the tasks considered. 615 
  
WP questionnaire 
For this part, we detailed the results of each WP dimension that we had previously selected, namely 
WP3-Spatial processing, WP4-Verbal processing, WP5-Visual processing, and WP7-Manual output 
(Cf. Workload Profile questionnaire part). 620 
  
Concerning WP5, first, in Figure 8, we could observe that compared to the other dimensions, MWL 
was the highest for nearly all the tasks considered, with an average above 30 in 100 on the Likert 
scale. Furthermore, despite a significant main effect of the task (X2(4) = 13.893; p = 0.008), Conover’s 
post hoc comparisons between tasks indicated no significant differences (Table 4, part C in 625 
Appendix). This could be explained by the relatively small effect size (W = 0.026). Moreover, a 
significant main effect of complexity level on all tasks (X2(2) = 43.682; p < 0.001) but only levels 1 
and 3 (T(740) = 3.056; p = 0.002) were significantly different. Finally, considered task by task, all 
complexity levels turned out significantly different for NBT and Corsi only. 
  630 
Concerning WP3 (Figure 8), a significant main effect of the task occurred (Table 4, part A in 
Appendix; X2(4) = 86.422; p < 0.001). WP3 for DT and Corsi were significantly greater than for 
GNG. Furthermore, WP3 for NBT was significantly lower than for all the tasks (except with GNG). 
Moreover, a main effect of complexity level occurred (Table 4, part A in Appendix; X2(2) = 27.797; 
p < 0.001) but only levels 1 and 3 were significantly different (T(740) = 2.447; p = 0.015). Considered 635 
task by task, all complexity levels turned out significantly different for Corsi only. 
  
Concerning WP4, a significant main effect of the task occurred (Table 4 in Appendix; X2(4) = 55.564; 
p < 0.001). WP4 of NBT and WCST generated the highest MWL compared to the other CTs. 
Moreover, despite a significant main effect of complexity level (X2(2) = 13.809; p = 0.001), no level 640 
was significantly different with another, even for levels 1 and 3 (T(740) = 1.699; p = 0.090). Thus, 
considered task by task, all complexity levels were significantly different for WCST only. 
  
Concerning WP7, the main effect of the task did not turn out statistically significant (X2(4) = 5.944; 
p = 0.203). Moreover, despite a statistically significant main effect of complexity level (X2(2) = 645 
15.296; p < 0.001), when compared two by two, levels did not appear significantly different, even 
for levels 1 and 3 (T(740) = 1.809; p = 0.071). This could be explained by the small effect size (W = 
0.055).  
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 650 
Figure 8: Mental workload score of four dimensions of WP questionnaire (WP3, WP4, WP5 and 

WP7) depending on the task and complexity level. 
  
To summarize, WP5 was an important dimension, since whatever the CT, MWL from WP5 appeared 
the highest compared to the other WP dimensions. This result was coherent with the logic of the tasks 655 
which were carried out on a screen with visual processing of the information. Moreover, our protocol 
with three complexity levels generated three distinct levels of WP5 for NBT and Corsi. This case 
also concerned both WP3 for Corsi and WP4 for WCST. WP7 was the only dimension which was 
not influenced by the complexity level whatever the CT.  
Moreover, for each WP dimension, there were significant differences between tasks. Concerning 660 
WP3, DT and Corsi were significantly greater than GNG. This result was logical since these two 
tasks solicited visuo-spatial memory. Concerning WP4, NBT and WCST generated the highest MWL 
compared to the other CTs. It was coherent with the logic of these tasks since they implicitly led the 
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participant to say mentally or out loud the information to keep in mind. Finally, WP7 was the only 
CT without a main effect of the task, showing therefore constituency since all participants had similar 665 
manual output (interactions limited to keystrokes or mouse/touchpad movements). 
  
Clustering subjective MWL and verifying the correlation between subjective classes and 
complexity level 
For these analyses, we used JASP software (version JASP 0.16). 670 
We used an unsupervised classification method, the K-means technique with Hartigan-Wong 
algorithm, a default parameter in JASP software. We observed the quality control of the clusters with 
three criteria. The first two were Akaike Information Criterion (AIC) and the Bayesian Information 
Criterion (BIC) which were analytical methods for estimating the relevancy of statistical models to 
each other for a given data set (the lower the values the better the clustering results). Also, we added 675 
the Silhouette score that compared the mean intra-cluster distance to the mean nearest-cluster distance 
(ranged from -1 to 1, where 1 represented a perfect score). Obtaining several quality criteria was 
critical since they could nuance the results.  
  
Variables selection for K-means clustering 680 
The selection of subjective dimensions for each task was summarized in Table 1.  
 

  
Table 1: Selection of dimensions of the WP which will be used by K-means clustering for each task. 
  685 
First, WP5 was selected for all tasks due to its dimension importance. Indeed, whatever the CT, MWL 
from WP5 turned out the highest compared to the other WP dimensions (Cf. WP questionnaire in 
Results section). 
Concerning NBT, the retained WP dimensions were WP4 and WP5. Indeed, Conover’s post hoc 
comparisons indicated that MWL based on WP3 for NBT turned out significantly lower than for all 690 
the tasks (except with GNG). Moreover, NBT presented a set of letters in the center of the screen 
without spatial movement of the stimuli and the manual interactions were limited to the directional 
pad (left and right arrow only) and were not part of the logic of the task (only verbal working 
memory).   
Concerning Corsi, the retained WP dimensions were WP3, WP5, and WP7. Indeed, Corsi showed a 695 
lower WP4 score than all the other tasks. Furthermore, verbal dimension was not supposed to come 
into play, given that the task was based on visual-spatial memory.  
Regarding GNG, the retained WP dimensions were WP5, and WP7. We discarded WP3 as it 
presented a set of stimuli in the center of the screen (black disks and black squares) without spatial 
movement of these stimuli. We also discarded WP4, given that GNG appeared significantly lower 700 
than NBT and WCST (tasks involving verbal processing). 
Concerning WCST, the retained WP dimensions were WP3, WP4 and WP5. We discarded WP7 
given that manual interactions were not part of the logic of the task (which implied mostly mental 
flexibility).   
Concerning DT, the retained WP dimensions were WP3, WP4 and WP5. Indeed, DT solicited visual-705 
spatial memory (WP3) during the Corsi test and verbal dimension during the calculation task. We 
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discarded WP7 given that all its levels did not turn out significantly different (Cf. Table 4 in 
Appendix).  
  
Once the WP dimensions selection step over, we realized a K-means clustering of the data with all 710 
the selected subjective variables (Cf. Table 1) to determine the number of proposed clusters 
associated with the quality criteria scores. We therefore performed K-means clustering in three ways. 
The first aimed to perform the K-means model, optimizing it by the Silhouette score followed by BIC 
and AIC values with a limit of 10 clusters (default setting on JASP software). Then, we compared 
these scores with another way of clustering data: fixing K = 3 clusters.  715 
 
Accordingly, for each selected subjective variables, we obtained 4 X 3 scores with 4 ways of 
clustering and 3 clustering quality criteria (Cf. Table 5 in Appendix).  
First, for the results analysis, for each quality – for instance, the AIC value - we identified among the 
selected subjective variables (Cf. Table 1) which one gave the best AIC value score (gray cells in 720 
Figure 5 in Appendix). Then, in a second step, we identified the selected subjective variables, fixed 
at K = 3, which gave the two best AIC values. Green cells and light blue were respectively the best 
selected subjective variables (based on AIC) fixed at 3, and the second one. This method allowed for 
the selection of the selected subjective variables showing the best scores for K = 3 compared to the 
scores obtained in the same conditions but with an optimized K. 725 
  
Then, we wanted to determine whether the MWL values classified in each of the three classes of 
clustering were actually obtained in the conditions believed to induce these MWL classes. Thus, we 
examined if a high correlation occurred (ranging from "0"- no correlation to "100"- best correlation) 
between the assignment of a MWL data in a MWL class by K-means and the data assignment by 730 
complexity levels. 
  
Concerning NBT, we compared the reliability of rankings on the basis of different combinations of 
selected subjective variables based on complete NASA-TLX, WP4 and WP5. For each variable 
selection, the clustering quality criteria for each clustering technique had been considered beforehand, 735 
once optimized by the Silhouette score followed by the BIC and AIC values. Comparing the AIC 
values (the lower the values the better the clustering results) when the classification was fixed at three 
clusters or optimizing by AIC, the results ranged from 513.520 (shaded cell in Table 5 in Appendix) 
to 790.680. Moreover, among the fixed K = 3, the NASA/WP5 selection obtained the lowest AIC 
score (thus the best score) with 644.160 (which was relatively close to 513.520, the best score with 740 
AIC optimization). Concerning BIC value (the lower the values the better the clustering results) with 
the K = 3 fixed, the NASA/WP5 selection obtained the lowest BIC score with 708.600 (which was 
relatively close to 667.610, the best score with BIC optimization). Concerning Silhouette score 
(ranging from “-1”- poor clustering to “1”- very good clustering) with the fixed K = 3, the selection 
NASA/WP4 obtained the highest Silhouette score (thus the best score) with 0.230 (which was 745 
relatively close to 0.290, the best score with Silhouette optimization). Therefore, we were able to 
obtain three classes of MWL classes with high quality indicators for the NASA/WP4 and NASA 
/WP5 selections.  
 
Concerning correlation coefficient (Table 2) between MWL classes with K-means and MWL classes 750 
with complexity levels, we obtained respectively 0.64 and 0.65 for NASA/WP4 and NASA/WP5 
selections. 
  
Concerning Corsi, we compared different selected subjective variables based on complete NASA-
TLX, WP3, WP5 and WP7. Concerning AIC value with K = 3 fixed (Table 5 in Appendix), the 755 
selection NASA/WP3 obtained the lowest AIC score with 573.400 (which was relatively close to 
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457.160, the best score with AIC optimization). Concerning BIC value with K = 3 fixed, the selection 
NASA/WP3 obtained the lowest BIC score with 637.840 (which was relatively close to 609.490, the 
best score with BIC optimization). Concerning Silhouette score with fixed K = 3, the selection 
NASA/WP3/WP5 obtained the highest Silhouette score with 0.260 (which was relatively close to 760 
0.340, the best score with Silhouette optimization). We could also notice that NASA/WP5 selection 
consistently arrived in second place while being very close to the results of NASA/WP3. Therefore, 
three classes of MWL classes could be obtained with high quality indicators for NASA/WP3, NASA 
/WP5 and NASA/WP3/WP5 selections. Concerning correlation coefficient (Table 2) between MWL 
classes with K-means and MWL classes with complexity levels, we obtained respectively 0.79; 0.82 765 
and 0.80 for NASA/WP3, NASA/WP5 and NASA/WP3/WP5 selections.  
 
As an example, the Figure 9 showed visually the overlap between the three clusters of subjective 
MWL (with NASA-TLX/WP5) for the Corsi test. The results were presented in a PCA (Principal 
Component Analysis) space, as the representation in the PCA space allowed to reduce the number of 770 
dimensions of the data (there were 7 dimensions of MWL). 
Thus, the part A showed the three MWL classes based on K-means. The part B showed the same 
distribution of points (than the part A), but through complexity level. We could notice that between 
the two techniques, there was a good agreement in the positioning of statistical individuals in the 
MWL classes. However, there was little or even no overlapping of points in part A. Concerning the 775 
part B, we observed some overlaps, particularly at the boundaries adjacent to level 2. 
 

 
Figure 9: Three MWL classes (based on K-means) in Principal Component Analysis (PCA) space 

for Corsi test. In part A, visualization independently of complexity level. In part B, the same 780 
distribution of points (than the part A),	but through complexity level. 

 
Concerning GNG, we compared different selected subjective variables based on complete NASA-
TLX, WP5 and WP7. Concerning AIC value and BIC value with K = 3 fixed (Table 5 in Appendix), 
the selection NASA/WP5, obtained the lowest AIC and BIC scores. Concerning Silhouette score with 785 
the fixed K = 3, the selection NASA/WP7, obtained the highest Silhouette score. In which concerns 
correlation coefficient (Table 2) between MWL classes with K-means and MWL classes with 
complexity levels, we obtained 0.65 for both NASA/WP5 and NASA/WP7 selections.  
  
Concerning WCST, we compared different selected subjective variables based on complete NASA-790 
TLX, WP3, WP4 and WP5. For all clustering quality criteria, NASA/WP5 selection showed the best 
scores with K = 3 fixed, closely followed by NASA/WP3 selection (Table 5 in Appendix). Moreover, 
when clustering was obtained by the Silhouette score, K-means proposed K = 3 for these two-variable 
selections. Therefore, three classes of MWL classes with high quality indicators could be obtained 
for NASA/WP3 and NASA/WP5. Concerning correlation coefficient (Table 2) between MWL 795 
classes with K-means and MWL classes with complexity levels, we obtained respectively 0.50 and 
0.51 for NASA/WP3 and NASA/WP5 selections.  
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Finally, concerning DT, we compared different selected subjective variables based on complete 
NASA-TLX, WP3, WP4 and WP5. For all clustering quality criteria, NASA/WP5 selection showed 800 
the best scores with K = 3 fixed, closely followed by NASA/WP3 selection (Table 5 in Appendix). 
Therefore, without complexity levels, three MWL classes with high quality indicators could be 
obtained for NASA/WP3 and NASA/WP5 selections. Concerning correlation coefficient (Table 2) 
between MWL classes with K-means and MWL classes with complexity levels, we obtained 
respectively 0.75 and 0.76 for NASA/WP3 and NASA/WP5 selections.  805 

 
Table 2: Correlation coefficient (Spearman) between MWL classes through K-means and 

complexity levels. 
  

In conclusion, we could obtain three classes of subjective MWL for each of the five CTs while having 810 
high quality criteria, without considering complexity levels. When each quality criterion between 
tasks was compared, the scores varied relatively little. Regarding AIC value, Corsi showed the best 
score (573.400) and WCST the worst (705.550). For BIC value, Corsi showed the best score 
(637.840) and WCST the worst (769.990). Concerning Silhouette score, GNG showed the best score 
(0.270), closely followed by Corsi (0.260) and DT was the worst (0.180). Moreover, WCST was the 815 
only task which proposed naturally K = 3 clusters with Silhouette score optimization for several 
selected subjective variables. Hence, for all three clustering quality criteria, Corsi appeared 
systematically in the lead of the CTs and WCST often appeared in the bottom. 
Furthermore, WCST (for all selected subjective variables) was the CT with the lowest correlation 
between MWL classes with K-means and MWL classes with complexity levels (≤ 0.51), unlike Corsi 820 
and DT which showed the highest correlation (> 0.70).  
  
MWL classification based on complexity levels and performance or performance only 
Procedure 
For these analyses, we used the programming language Python (version Python 3.9.7). Moreover, we 825 
only presented the best result between the selected subjective variables from previous statistics to 
avoid overloading the reading.  
 
Concerning NBT, NASA-TLX/WP4, with balanced accuracy, our model could determine subjective 
MWL based on Complexity level, False alarms, Omissions and Reaction time for all items with the 830 
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best cross-validation score equal to 57.6% (± 3.64%). Then, the importance of the different variables 
through the PFI (all performance variables combined) was considered. We calculated the importance 
of the different variables on the accuracy score for NASA-TLX/WP4 (Figure 10). The LDA model 
was mainly based on Complexity level and Expected responses for the prediction. Without Complexity 
level, the accuracy of the model was equal to 36.12% (± 2.64%) with five NBT performances: No 835 
answers, Expected responses, False alarms, Omissions, and Reaction time for all items.  
  
Concerning Corsi, NASA-TLX/WP5, with balanced accuracy, our model could determine subjective 
MWL based on Complexity level only with the best cross-validation score equal to 79.97% (± 0.0%). 
In Figure 10, the LDA model for NASA-TLX/WP5 was mainly based on Complexity level for the 840 
prediction. Without Complexity level, the accuracy of the model was equal to 53.28% (± 3.48%) with 
four Corsi performances: False cubes, Omissions, Exact sequences, and Total Time.  
  
Concerning GNG, NASA-TLX/WP5, with balanced accuracy, our model could determine subjective 
MWL based on Complexity level, Expected responses and Omissions with the best cross-validation 845 
score equal to 51.35% (± 1.75%). In Figure 10, the LDA model for NASA-TLX/WP5 was based on 
Complexity level, Expected responses and Reaction time for all answers for the prediction. Without 
Complexity level, the accuracy of the model was equal to 47.74% (± 1.9%) with three GNG 
performances: Reaction time for correct answers, Reaction time for all answers, and Expected 
responses.  850 
  
Concerning WCST, NASA-TLX/WP5, with balanced accuracy, our model could determine 
subjective MWL based on Complexity level and the Number of errors with the best cross-validation 
score equal to 53.86% (± 1.64%). In Figure 10, the LDA model for NASA-TLX/WP5 was based on 
Complexity level and Expected responses for the prediction. Without Complexity level, the accuracy 855 
of the model was equal to 42.88% (± 3.43%) with four WCST performances: Number of errors, 
Perseverative errors, Reaction time for all items and Expected responses. 
 
Finally, for DT, NASA-TLX/WP5, with balanced accuracy, our model could determine subjective 
MWL based on Complexity level with the best cross-validation score equal to 73.71% (± 0.0%). In 860 
Figure 10, the LDA model for NASA-TLX/WP5 was mainly based on Complexity level for the 
prediction. Without Complexity level, the accuracy of the model was equal to 44.74% (± 5.66%) with 
six DT performances such as False cubes, Omissions or Expected responses. 
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   865 
Figure 10: Bar graphs on the importance of five first performance variables for each task. 
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In conclusion, we were able to predict subjective MWL far beyond the chance threshold (equal to 
33%) when considering Complexity level and performance as variables for all tasks. It seems relevant 
to note that the best prediction results were based on the selected subjective variables NASA-870 
TLX/WP5 for all CTs except NBT. Therefore, this dimension turned out to be the most relevant one 
to consider for establishing the classification model. Moreover, Corsi and DT were the tasks with a 
cross-validation score appearing higher than 73% (± 0.0%). With Complexity level, the MWL 
prediction model relied predominantly on Complexity level only (according to the PFIs). The other 
tasks performed less well, but the importance of the predictive variables was not focused mostly on 875 
the Complexity level. 
Thus, when considering models only based on performance measures to predict MWL, the validation 
score decreased for Corsi and DT, but they remained above the chance threshold. Moreover, the 
validation scores also decreased for the other tasks, and Corsi remained the best candidate with a 
cross-validation score appearing higher than 50%. NBT was the worst with an accuracy smaller than 880 
40%.  
  
Discussion 
The aim of this study was to test several candidate cognitive tasks (CTs) with distinct complexity 
levels. We then tried to rely on combined statistical methods to answer the two following questions: 885 
1- Can we identify subjective mental workload classes corresponding to the complexity levels?  
2- Can we predict these mental workload classes based on complexity levels and/or performance? 
  
Conception of cognitive tasks with three complexity levels 
First, we aimed to obtain three complexity levels in terms of impact on performance (Expected 890 
responses). As expected, NBT proved to be in line with previous studies (Arvaneh et al., 2015; 
Dimitrakopoulos et al., 2017; Ries et al., 2018). In this context, NBT served initially as a benchmark 
to calibrate the complexity levels of the other tasks. As expected, for at least two tasks (Corsi and 
WCST), several complexity levels generated several Expected responses levels. Concerning GNG 
and DT, the last complexity levels were not different in terms of performances. These results could 895 
be explained by the levels of requested solicitations which were too close between the last levels for 
the two tasks. For example, in the DT, adding a multiplication (highest complexity level) to a 
subtraction (intermediate level) did not impact performance. This result was not in line with So et al. 
(2017) study that obtained significant differences in performance measures between an intermediate 
level of subtraction and a higher level with multiplication. However, the So et al. (2017) study showed 900 
a limit as it mixed multiplication and division operations during the last level, making the impact of 
the two operations difficult to distinguish. Perhaps a division would have given more significant 
differences. Nevertheless, based on our pre-test calibration phase, we could observe that division 
would have led to a too high difficulty with respect to the other tasks.  
In conclusion and to reach our first objective, the priority was to obtain three complexity levels that 905 
generated three levels of Expected responses, which NBT, Corsi and WCST demonstrated. Next, we 
aimed to know if these complexity levels also generated three MWL classes.  
 
Tasks complexity level to induce MWL classes  
In relation to the definition of MWL, which is a multidimensional concept, we systematically 910 
considered two questionnaires from two models of MWL: NASA-TLX and WP questionnaires. 
Concerning WP dimensions, for some tasks, all complexity levels generated distinct classes of MWL, 
like WP3-Spatial processing for the Corsi.  
However, no WP dimension could discriminate all MWL classes for GNG and DT. These last results 
were in contradiction with the Rubio study (2014) which observed that WP was the only 915 
questionnaire to reveal differences due to the task complexity. Nevertheless, despite a least 
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discrimination to complexity level, WP questionnaire appeared worthwhile when measuring the 
attentional resources proportion used in a particular sensory-motor dimension as specified in Tsang 
and Velasquez (1996). For example, in our study, Corsi and DT were the CTs generating the highest 
MWL based on spatial processing. These results were coherent with the logic of the tasks based on 920 
spatial memory.  
 
Concerning NASA-TLX, all complexity levels generated distinct levels of overall MWL for all CTs. 
However, across tasks, non-equivalence occurred between the overall MWL classes. Thus, the levels 
obtained were relative, not absolute, and therefore depended on the task despite a quite close “orders” 925 
of values.  Moreover, for the overall MWL classes of all tasks, the averages varied between 
approximately 100 and 300 on a scale of 600. Thus, the three levels of overall MWL were not in the 
intermediate MWL zone but in the first half of the MWL, within a low and intermediate zone of 
MWL. Even though we didn’t expect this result, it made us consider that the tasks offered allowed to 
reach levels of MWL being fairly close but nevertheless distinguishable and often difficult to obtain 930 
with subjective scales. Once this level of accuracy in discriminating MWL classes potentially 
reached, we could add a complexity level to the tasks. For this purpose, the Corsi test was the best 
candidate since, among all the tasks, it allowed the most distinct overall NASA-TLX levels. This was 
a first argument for not considering the NBT as a reference task for MWL measurement and 
modeling.    935 
Regarding the measures of each of NASA-TLX dimensions, they demonstrated that the dimensions 
contributed differently to the overall MWL score. This result was in line with previous findings 
(Rubio et al., 2014; Fallahi et al., 2016; Longo, 2017) where the overall score did not allow the 
detection of subtle variations. Nevertheless, NASA-TLX dimensions could be used to determine 
which dimensions were pulling up or down the overall NASA-TLX. For example, for all complexity 940 
levels of our NBT, Physical demand turned out the lowest compared to the other NASA-TLX 
dimensions. This result was in line with Malakoutikhah et al. (2021) study which had also compared 
the six dimensions of NASA-TLX for NBT and observed that Physical demand turned out the lowest 
compared to the other NASA-TLX dimensions. It was coherent with the solicitations of our task since 
manual interactions were limited to keystrokes or mouse/touchpad movements.  945 
  
Moreover, this study confirmed the complementary of the questionnaires based on different 
methodological or theoretical approaches. While the WP questionnaire concerned the saturation of 
the multiple pools of attentional resources, the NASA-TLX questionnaire concerned, in part, the 
impact of external factors on subjective MWL.   950 
 
Concerning our hypothesis H1, we could conclude that our protocol provided different overall MWL 
classes in relation to the complexity level. To this aim, Corsi and DT were the best tasks and WCST 
was the worst. Indeed, the NASA-TLX questionnaire is known to show a high correlation with 
performance (Rubio et al. 2004). This may explain why MWL based on NASA-TLX did not allow 955 
three distinct levels for all dimensions of GNG for which performances were not impacted by the 
third complexity level. However, through WCST which had three distinct levels of performance but 
not three levels of overall MWL, we could observe the limit of using only performance for MWL 
measurement. Performance could sometimes degrade as the complexity level increased, but MWL 
did not increase linearly. In our study, WCST turned out to be a perfect example of the non-linear 960 
relationship between subjective MWL and performance.   
 
Correspondence between MWL classes considering the complexity level  
To ensure that the three complexity levels of each task could allow distinct classes of MWL, we 
decided to consider the correlation between MWL classes of values obtained with a clustering method 965 
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(considering only subjective measures of MWL as variables) and MWL classes of values obtained 
with complexity levels.  
First, among the CTs, Corsi allowed the best clustering, that is, the most distinct MWL classes, this 
task being the one for which the most dimensions of MWL allowed this distinction between classes. 
Hence the interest in considering all the dimensions of MWL rather than just the overall value as 970 
some authors did (Radüntz, 2017; Guan et al., 2021).  
Moreover, if we compared the MWL classes obtained via the labels of complexity level or via the 
clustering, we obtained a good correspondence and more particularly for Corsi. Thus, our H1 has 
been confirmed. Thus, the Corsi test allowed the best grouping into MWL classes. Moreover, these 
classes corresponded well to what was expected via the complexity levels. These results were the 975 
second argument for not considering the NBT as a reference task. Furthermore, as far as we knew, 
no previous study had ascertained the observation of three distinct classes of MWL by combining 
two analytics methods as we did by considering the correspondence between MWL classes with K-
means and MWL classes with complexity levels. Our approach of considering the correlation 
between two different ways of grouping data was a first in the scientific literature.  980 
 
Proposal of a predictive model of MWL classes  
The Corsi test turned out to be the best task to predict MWL with complexity levels and performance. 
Therefore, this task was well dimensioned in terms of complexity levels. Thus, Corsi demonstrated a 
high level of reliability to induce a priori (at least at the beginning of the activity) the class of MWL 985 
in which the person should be. This result was the third argument for not considering the NBT as a 
reference task. Using NBT as a reference to establish a MWL model, as several authors 
(Dimitrakopoulos et al., 2017; Beh et al., 2021; Malakoutikhah et al., 2021) did, could explain the 
increasing number of studies using it to obtain several levels of MWL. A selectivity bias due to the 
number of NBT-based studies for MWL could have been introduced. Thanks to our analysis, we 990 
pointed out the limits of NBT. Concerning the Corsi test, we found different MWL classes, and these 
classes were correlated to those obtained by considering the MWL data via the complexity level. 
Moreover, for Corsi, we could propose a model based on performance and complexity levels 
predicting MWL with a good accuracy. Furthermore, Corsi had simple instructions and was not 
socially marked, as illiterates and people with different alphabets could use it. Finally, it appeared to 995 
be a CT allowing constant overall MWL gaps and easy to modify in complexity level with a high 
number of possibilities. In consequence, among our five CTs, the Corsi test proved to be the best 
candidate to fulfill our first objective.  
  
A model to predict mental workload only with performance 1000 
For the second objective of this study, we aimed to obtain a “real time” indicator in order to identify 
the “shifts” of MWL during the activity. This was another critical aspect of our work as we knew that 
MWL evolved during the activity due to its multidimensional nature. Thus, we decided to focus only 
on performance data during the task, neglecting physiological ones considered as difficult to interpret 
and with validity problems. Therefore, we tried to circumvent the limits of the correspondence 1005 
between MWL and performance data by favoring the number and thus the sensitivity of the 
performance measurements performed. Nevertheless, when the MWL predictive models were only 
based on performance measures without including the complexity level, the results decreased for all 
the tasks despite the result remaining quite good for Corsi and DT. It seems relevant to note that Corsi 
was the only task with an accuracy appearing higher than 50% (which was above the chance threshold 1010 
of about 33%). The number of performance dimensions can explain this result. Corsi and DT had the 
best predictions and had performance dimensions higher than the other tasks (7 and 9 for Corsi and 
DT respectively). Thus, multiplying the performance data was a good way to make this real-time 
indicator become more reliable and sensitive. Thus, the H2 has been confirmed.  
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Nevertheless, even if the prediction level was still much higher than the chance level for these two 1015 
tasks, adjusting the complexity level only on these models did not seem sufficient. These results were 
in line with studies indicating that performance measures could not, of themselves, describe MWL, 
since the operators could potentially vary effort to maintain a constant performance level (Reid and 
Nygren, 1988; Cain, 2007; Raufaste et al. 2014; Radüntz, 2017). Although performance measures 
could account for MWL during the activity, we must be aware of their main limit. Thus, to improve 1020 
our model, we should carry it out on other measures of MWL. Therefore, even though those 
psychophysiological measures had several constraints, they could be worthwhile to improve our 
models. It could indeed become possible to triangulate the three categories of measures (subjective, 
performance and psychophysiological) to better understand an operator's MWL (Charles and Nixon, 
2019; Longo, 2022). As a matter of fact, considering MWL through the prism of these three categories 1025 
of measures would overcome the limitations of each measure. The future studies measuring MWL 
through physiological measures should require a reference model of subjective MWL being close to 
the essence of MWL (Hart and Staveland, 1988) like our model which was based on two 
complementary models of subjective MWL. 
 1030 
Contribution to the body of knowledge 
Firstly, it is widely accepted that MWL is a multidimensional concept (Hancock et al. 2021), and our 
results support this by showing that the dimensions vary depending on the activity. Indeed, the 
NASA-TLX and WP questionnaires are complementary since they are sensitive to different sources 
of MWL. Thus, we were able to demonstrate that the cognitive tasks in our study induced different 1035 
MWL classes (with differences according to the task) depending on the complexity level of the 
activity (mental demands, time pressure), the strategies used (performance, mental effort) and the 
individual's emotional state (frustration). However, some dimensions measured by the WP did not 
appear to show significant variation across tasks, suggesting that cognitive tasks more or less saturate 
the attentional resources mobilized in each resource pool of Wickens' model (1984, 1987, 2008). In 1040 
that we confirm that MWL can be defined as the degree of activation of a finite pool of resources, 
limited in capacity, while cognitively processing a primary task over time. Thus, the variations in the 
dimensions of MWL solicited as a function of the tasks accrediting that MWL enables individuals to 
cope with static task demands, by devoted effort and attention (Longo et al., 2022). Moreover, our 
results confirmed that for the same task demand, the profile of solicitation and dimensions of MWL 1045 
are task-specific. Therefore, it's essential to carefully choose the type of measure used based on the 
task's characteristics to avoid missing any effects by selecting an unsuitable questionnaire.  
Secondly, we have demonstrated that performances can serve as a predictor of MWL, supporting 
models that establish a link between task demands, MWL and, performance (Hart and Staveland, 
1988; De Waard, 1996; Young et al., 2015). Nevertheless, we nuanced these models in that 1050 
performance predictors must be sufficiently numerous and varied to be correctly linked to changes in 
MWL. Our results also support models that emphasize the contribution of exogenous factors like the 
stress/strain model (Karasek, 1979; Raufaste et al., 2004). Indeed, the prediction of MWL increased 
for all the tasks when we included the complexity level (corresponding to task demands) as a 
predictor.  1055 
Thirdly, we proposed a protocol that can induce a desired MWL class at the beginning of an activity, 
at least for the Corsi test. Indeed, our results suggest that the NBT may not be a suitable reference 
task to model the MWL, as is currently done in some studies (Dimitrakopoulos et al., Ries et al., 
2018; 2017; Beh et al., 2021; Malakoutikhah et al., 2021). Among our five CTs, Corsi proved to be 
a better candidate as it reliably induced different MWL classes, allowing us to predict the expected 1060 
MWL. 
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Conclusion 
We tested five context-free tasks, all providing three distinct levels of overall MWL. Moreover, 
thanks to combined statistical methods, we could evaluate the distinction of three MWL classes 1065 
associated with three complexity levels. Among our five CTs, the Corsi test obtained different MWL 
classes reliably enough to make predictions about the expected MWL. Consequently, this study 
provides a foundation for future research aimed at predicting the MWL class before the activity and 
adjust the complexity level to keep the desired MWL class. For this purpose, multiplying the 
performance data was a good way to obtain a more reliable and sensitive real-time indicator. This 1070 
recommendation could also be applied to the learning context with the aim to measure or predict 
cognitive load. Thus, our future objective is to improve this model with psychophysiological 
measurements (like EEG data) of MWL available in real time during a task. 
  
Limitations 1075 
Our experiment was conducted in a remote environment. The results could be different in presence 
tasks. Moreover, the subjective MWL model could be enriched with other factors that could influence 
MWL such as internal factors (emotions or expertise) or external factors (the design for instance). 
Besides, the impact of design on MWL is a research question currently studied within our team.   
 1080 
Captions  
Figure 1: Conceptual framework of the mental workload's factors 
Figure 2: New possible use of the MWL concept in emerging applications such as medical 
remediation or Virtual Reality: (a) Online adjustment of task complexity to maintain optimized MWL 
or (b) assessment of the impact of a certain MWL level on different variables (such as stress or 1085 
presence). 
Figure 3: Experimental design of the study where participants were randomly assigned tasks. 
Figure 4: Diagram with all the steps of data analysis for the two research hypotheses. 
Figure 5: Performance in terms of Expected responses according to the cognitive tasks and the levels. 
Figure 6: Mental workload based on overall NASA-TLX score according to the type of task and the 1090 
complexity level. 
Figure 7: Scores of the 6 dimensions of NASA-TLX depending on the task and complexity level. 
Figure 8: Mental workload score of four dimensions of WP questionnaire (WP3, WP4, WP5 and 
WP7) depending on the task and complexity level. 
Figure 9: Three MWL classes (based on K-means) in Principal Component Analysis (PCA) space for 1095 
Corsi test. In part A, visualization independently of complexity level. In part B, the same distribution 
of points (than the part A),	but through complexity level. 
Figure 10: Bar graphs on the importance of five first performance variables for each task. 
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