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1CNRS, Université Paris-Saclay, Laboratoire de Physique des Solides, 91405 Orsay, France

2Synchrotron SOLEIL, L’Orme des Merisiers,

Saint-Aubin, 91192 Gif sur Yvette, France

3Departamento de F́ısica de Materiales,

Universidad Complutense de Madrid, E-28040 Madrid, Spain

4Instituto de Magnetismo Aplicado UCM-ADIF, E-28230 Madrid, Spain

5Departamento de F́ısica de la Materia Condensada, Facultad de Ciencias,

Universidad Autónoma de Madrid, E-28049 Madrid, Spain

6Condensed Matter Physics Center (IFIMAC),

Universidad Autónoma de Madrid, E-28049 Madrid, Spain
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Abstract

We report an experimental and theoretical study of the electron-phonon coupling for α-

Sn/Ge(111), a prototypical triangular lattice surface, closely related to Sn/Si(111)-
√
3×

√
3, where

recent experimental evidence has found superconductivity [1]. We concentrate our study on the

(3×3)-phase of α-Sn/Ge(111) that appears between 150 K and 120 K and has a well-known geom-

etry with a half-filled electronic band around the Fermi energy. We show that this surface presents

a giant electron-phonon interaction that can be considered at least as partially responsible of the

different phases that this system shows at very low temperature. Our theoretical results indicate

that indeed the electron-phonon interaction in α-Sn/Ge(111)-(3 × 3) is unusually large, since we

find that λ, the electron mass enhancement for the half-filled band, is λ = 1.3. This result is in good

agreement with the experimental value obtained from high-resolution angle resolved photoemission

spectroscopy measurements, which yield λ = 1.45± 0.1.

I. INTRODUCTION

Low dimensional solids have been widely studied during the last years due to their exotic

properties [2]. Surfaces are a prominent example, since the reduction of dimensionality from

3D to 2D enhances the importance of fluctuations and entropic effects as well as the role

played by electronic correlations in surface states in competition with the degree of coupling

between those surface states and the lattice phonons. The variety of surface phenomena

encompasses Mott phases, Charge Density Waves, Thouless-Kosterlitz phases, magnetism

and superconductivity [1–13].

The α-Sn/Si(111) and α-Sn/Ge(111) surfaces, obtained by covering a Si or Ge substrate

with 0.33 monolayers of Sn, have been widely studied due to their interesting and complex

physical behavior. Recently, Weitering et al. [1] have observed superconductivity associated

with the Sn/Si(111)-(
√
3 ×

√
3)R30◦ surface states. On the other hand, calculations made

for K/Si(111):B-(
√
3×

√
3)R30◦ [14] suggest that for Si-dangling bonds the strength of the

electron-phonon (e-ph) interaction is very similar to the electron-electron (e-e) repulsion,

indicating that also in α-Sn/Si(111) there might be a close competition between the repulsive

e-e and attractive e-ph interactions [1, 15]. An important e-ph interaction associated with

partially occupied surface bands has also been observed in Si(111)-(7 × 7) (λ = 1.06 [16])

and in Ge/Si-(5×5) (λ ≃0.53 [17]). Electron-phonon coupling is thus an important element
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FIG. 1. (a) Top and side views of the Sn/Ge(111)-(3× 3) surface. (b) Surface Brillouin zone. (c)

Energy per (3 × 3)-unit cell associated with the (3×3)-distortion; ∆Z = (∆zup −∆zdown), where

∆zup, ∆zdown are the vertical displacements of the up and down Sn atoms. (d) DFT surface bands;

the shaded areas represent the projection of the bulk bands and the red line at 0 eV indicates the

Fermi energy EF .

to accurately describe semiconducting surfaces with metallic two-dimensional surface states,

and to understand a possible superconductor state and other phase transitions [1, 15, 18, 19].

In this paper we analyze the (3 × 3)-phase appearing between 150 K and 120 K [4, 6]

at the α-Sn/Ge(111) paradigmatic surface with a combined experimental and theoretical

approach to elucidate the importance of the e-ph coupling, poorly studied in the past. The

(3× 3) phase has a well-known structure that allows us to perform an accurate analysis of

its e-ph properties. Our theoretical results indicate that in this surface the e-ph interaction

is unusually large, λ = 1.3, in good agreement with the value of λ = 1.45 found by ARPES

experiments. We conclude that the strengths of the e-ph and e-e interactions are comparable,

indicating that the e-ph interaction should play an important role in the stabilization of the

low temperature phases of α-Sn/Ge(111) [4].
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II. ELECTRONIC SURFACE BANDS AND PHONONS

Sn atoms occupy T4 sites of the Ge(111) substrate in the Sn/Ge(111)-(3×3) reconstruc-

tion, which is characterized by a vertical distortion, so that one of the three Sn atoms in the

unit cell is at a higher position than the other two, see Figure 1a. The interface presents

three surface bands. One of them is completely filled and is related to the dangling bond

state of the Sn atom moving up. The dangling bond states of the two Sn down atoms create

the two other surface states; a bonding combination of those dangling bonds is associated

with the metallic band crossing the Fermi energy [7, 20]. Figure 1d shows the three surface

bands as calculated with DFT (see Supplemental Material, SM) while the bands below the

Fermi energy measured with ARPES are shown in Figure 2a. Notice that the theoretical

bandwidth of the metallic band below EF is around 0.3 eV, while the experimental width of

this band is around 0.2 eV. This is probably due to the e-e interaction which, as discussed

in the SM, yields a band narrowing effect of around 1/1.6, close to the experimental value.

We are interested in calculating the e-ph coupling associated with the “active” half-

occupied band and the surface phonons of the Sn/Ge(111)-(3×3) surface, assuming that the

active band has the measured photoemission bandwidth. As discussed in reference [21], we

find three different phonon surface modes associated with the following displacements of the

three Sn-atoms of the (3×3)-unit cell along the direction (z) perpendicular to the surface:

u⃗1 = (1, 1, 1)/
√
3 ; u⃗2 = (1,−1, 0)/

√
2 and u⃗3 = (−1,−1, 2)/

√
6. The first mode, u⃗1, only

introduces a rigid displacement of the three electron surface bands. The second mode, u⃗2,

interacts weakly with the bonding state of the half-occupied band due to its symmetry. The

crucial mode interacting with the “active” band is u⃗3, which introduces the same distortion

appearing at the (3× 3) phase, see below.

Figure 1c shows the energy per (3 × 3) unit cell along the distortion path defined by

the trajectory (
√
3 ×

√
3)R30◦ → (3 × 3), where the (

√
3 ×

√
3)R30◦ corresponds to a

flat structure with equivalent Sn atoms, as calculated using DFT-techniques (see SM). The

down-atoms move to a very good approximation 1/2 of the displacement associated with

the up-atom, ∆zdown ≃ −0.5∆zup [22]. As expected, the energy minimum appears for

the (3×3)-structure with ∼ 5 meV lower energy [4, 20, 22, 23] than the (
√
3 ×

√
3)R30◦

structure, and for a relative displacement, ∆Z0 = ∆zup − ∆zdown, of 0.29 Å [7, 20]. The

u⃗3-phonon mode is associated with the potential around that minimum. Calculations and
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FIG. 2. (a) Second derivative of the ARPES data along the ΓM3×3 direction in the second BZ (see

text). (b) Left panel: Fermi level region from (a). Right panel: Momentum Distribution Curves

corresponding to the red lines shown in the left panel. Note that the Momentum Distribution

Curves exhibit minima at the location of the band because the figure shows the second derivative

of the data. The minima (green tic marks) are fit to Lorenzians (red lines, two fits are shown). The

corresponding points appear in the left panel. (c) Experimental points and fit to the bare (black

line) and the renormalized (dashed purple line) bands, also shown in panel (b) (left).

He-scattering experiments [21] indicate that the corresponding phonon energy, ω0, is around

4.3 meV. From our DFT-calculations (Figure 1c), we obtain the potential V ≈ 1/2Kη2

around η = 0 (K =0.70 eV/Å2), where η⃗ = η(−1,−1, 2)/
√
6 defines the normal mode along

the u⃗3 direction. As ω0 =
√

K/M , we can also calculate M = 172 mp (mp is the proton

mass), in good agreement with [22].

5



III. PHOTOEMISSION EXPERIMENTS AND SURFACE BANDS

The fluctuating (
√
3×

√
3)R300 reconstruction observed at room temperature freezes into

the (3×3)-metallic phase shown in Figure 1 below 150 K. A sharp (3×3) LEED pattern is

observed in the 150-120 K range. Below this temperature, however, the intensity of the

(3×3) spots weakens [4]. The e-ph interaction can be analyzed experimentally by looking at

the mass enhancement effect that this interaction introduces in a metallic band around the

Fermi energy. This can be accurately determined by means of angle-resolved photoemission

spectroscopy (ARPES) measurements [24–27].

We have explored with ARPES the electron mass enhancement associated with the e-ph

interaction in the 120-150 K temperature range. Figure 2a shows the second derivative of the

ARPES data along the ΓM3×3 direction, where Γ belongs to the second Brillouin zone. The

surface presents two bands, one completely filled band associated with the up atoms and a

metallic band related to the down atoms. The detail of the region of the metallic band closer

to the Fermi level (Figure 2b) shows that the electronic band does not follow the parabolic

dispersion of the band at higher binding energies characterized by the bare effective mass

m0. The spectral weight in the two branches of the parabola centered around -0.6 Å−1 is

not equivalent as often happens in photoemission, due to matrix element effects [28]. Close

to the Fermi level, a kink develops in the metallic band, the slope of the band decreases and

the effective mass is affected by the e-ph coupling in such a way that m∗ = (1 + λ)m0. λ

can be obtained from the experimental values of m0 and m∗ with no further assumption.

We have therefore determined the band dispersion (dots in Figures 2b,c) from a fit of the

Momentum Distribution Curves to Lorentzian peaks. Once the experimental dispersion was

accurately determined, the data were fitted to two parabolas in order to extract m0 and m∗.

Figure 2c shows that the renormalized parabola fits both branches of experimental data,

thus providing a great confidence in the determination. A perfect agreement is however

not expected since the state does not follow an ideal parabolic dispersion in the considered

energy range, as evident from the theoretical bands (Figure 1d). From these fittings, the

e-ph mass enhancement parameter is determined to be λ = 1.45 ± 0.1, a very large value

when compared to the usual values of λ in other surfaces [29].
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IV. ELECTRON-PHONON INTERACTION. CALCULATION OF g AND λ

We analyze theoretically the e-ph interaction by means of the following Holstein Hamil-

tonian [30]:

Ĥ =
∑
iσ

ϵ0n̂iσ +
∑
ijσ

Tij ĉ
+
jσ ĉiσ +

∑
i

ω0b̂
+
i b̂i +

∑
i

g(b̂+i + b̂i)(n̂i↑ + n̂i↓ − 1) , (1)

where a local i-phonon, the u⃗3 mode, with ω0 = 4.3 meV [21] is coupled to the “active”

orbital associated with the half-filled band. In this equation, the creation, ĉ+iσ, and the

anihilation, ĉiσ, operators, as well as n̂iσ = ĉ+iσ ĉiσ, are fermion operators associated with the

i-bonding orbital of the half-filled band, characterized by the hopping interactions Tij; while

b̂+i and b̂i are the boson operators associated with the u⃗3-phonon.

In this second quantization formalism, the normal mode displacement ηi is given by√
1

(2Mω0)
(b̂+i + b̂i) ,

(with ℏ = 1), M = 172 mp being the effective mass of the u⃗3-phonon mode [31, 32]; on

the other hand, the electronic level associated with the i-bonding orbital is shifted by the

phonon mode, ηi, as follows:

δEi =
∂Ei

∂ηi
ηi =

∂E

∂η

√
1

(2Mω0)
(b̂+i + b̂i) ,

assuming ∂Ei/∂ηi site independent. This equation shows that

g =
∂E

∂η

√
1

(2Mω0)
; (2)

we calculate ∂E/∂η and g, starting from the (3 × 3)-ground state of the system, and in-

troducing a small displacement, δη, for all the Sn atoms (in the 3 × 3 unit cell), following

the u⃗3-phonon mode. Using DFT techniques, we calculate ∂E0/∂(∆Z), E0 being the energy

shift between the up and down surface bands, and ∆Z the vertical distance between up and

down Sn atoms. Since the down atoms associated with the metallic band move 1/3 of the

total displacement between up and down Sn atoms, we take δE = 1
3
δE0; moreover, the shift

in the vertical distance, δ(∆Z), between up and down Sn atoms is given by δ(∆Z) =
√

3
2
δη;
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these equations show that ∂E
∂η

= 1√
6

∂E0

∂(∆Z)
. Our calculations yield: δE0

δ(∆Z)
= 0.85 eV/Å and g

= 16.8 meV.

It is interesting to realize that this value of ∂E0

∂Z
is close to, but a little larger than, the

one calculated taking ∆E0 and ∆Z from the difference between the
√
3 ×

√
3 and 3 × 3

structures: in our calculations (see Figs. 1d and S1 in SM) ∆E0 = 0.20 eV and ∆Z0 = 0.29

Å, so that ∆E0

∆Z0
= 0.69 eV/Å; in the calculations of [20] ∆E0

∆Z0
= 0.73 eV/Å.

The e-ph interaction can be described by means of an e-ph self-energy, Σ(ω) [32], in

such a way that m∗/m0 = 1 − dΣ(ω = 0)/dω, with dΣ(ω = 0)/dω = −λ. We first obtain

Σii(ω) ≈ Σ(ω) for small ω using second-order perturbation theory in the e-ph interaction

g, and neglecting the off-diagonal self-energies contributions: Σij(ω) ≈ 0 for i ̸= j. This

approach yields (see SM):

Σ(2)(ω) = −2g2ρ0ω/ω0 (ω ≪ ω0) (3)

where ρ0 is the spin local density of states associated with the half-filled electron band. Then,

the e-ph mass enhancement parameter λ = −dΣ(ω → 0)/dω, in second order perturbation

theory, is given by λ(2) = 2g2ρ0/ω0.

The spin local density of states ρ0 is obtained using the experimental evidence of Figure

2c, where the bare two-dimensional surface band shows a parabolic behaviour below EF ; this

two-dimensional band yields a constant density of states, so that ρ0 ≈ 2.5 eV−1 because there

are 0.5 electrons per spin in a bandwidth of 0.2 eV. Then, with g = 16.8 meV and ω0 = 4.3

meV, λ(2) ≈ 0.32; this value is quite small as compared to the experimental evidence shown

above, λ = 1.45± 0.1, suggesting that contributions beyond the second order perturbation

theory are very important.

In order to go beyond second order perturbation theory in the electron-phonon interac-

tion, g, we follow references [30, 33, 34] where the half-filled Holstein Hamiltonian of equation

(1) has been analyzed as a function of g for some particular values of ω0 and ρ0. In these

works the lattice model of equation (1) is mapped into an associated impurity level that is

embedded in a lattice by means of a Dynamical Mean Field Theory Numerical Renormaliza-

tion Group (DMFT-NRG) calculation. Of particular interest for our case is the calculation in

those references, as a function of g, of the quasi-particle weight Z = (1− dΣ(ω = 0)/dω)−1

associated with the impurity density of states at the Fermi level (ω = 0); this quantity

provides λ = −dΣ(ω = 0)/dω = (1− Z) /Z which is shown in the Supplemental Material as

8



a function of g (ρ0/ω0)
1/2. Notice that is this representation we have changed the abscissa

from g to g (ρ0/ω0)
1/2 because in the limit of small g it is found that

λ(2) = −dΣ(2)(ω = 0)/dω = 2
(
g (ρ0/ω0)

1/2
)2

;

in this way, for small g, λ(2) shows a universal behaviour as a function of g (ρ0/ω0)
1/2.

Moreover, plotting λ as a function of g (ρ0/ω0)
1/2 for the particular values of ρ0 and ω0

discussed in the DMFT-NRG calculations [30, 33, 34] shows a similar behaviour, see Fig.

S2 in the SM, suggesting that to a good approximation in the DMFT-NRG solution of the

half-filled Holstein Hamiltonian λ is a universal function of g (ρ0/ω0)
1/2.

As an independent check to this conjecture, we have analyzed the case of an impurity

embedded in a semi-infinite 1-dimensional spinless chain with nearest neighbors hopping

elements, T0, and a local e-ph interaction in the last site of the chain: in this model we neglect

the posible off-diagonal self-energy terms between different sites, Σij(ω) = 0, i ̸= j, appearing

in the lattice of our initial system. Solving numerically this semi-infinite 1-dimensional model

with the e-ph interaction localized in the impurity is, however, a formidable task in the strong

coupling regime, so that in our analysis we have calculated λ for a cluster of 6 sites (see SM

for details).

A general view of our results is presented in Figure 3, where λ and λ(2) are shown as a

function of g/
√
ω0T0 for T0/ω0 = 6, 8, 10 and 12. These results show that λ/λ(2) ≈ 1 for

g/
√
ω0T0 < 0.6, while λ/λ(2) increases steeply for g/

√
ω0T0 > 1.0. In particular, taking g =

16.8 meV and ω0 = 4.3 meV, from our previous calculations, and choosing T0/ω0 = 9.7, a

value of g/
√
ω0T0 = 1.24 is obtained; this leads to λ(2) = 0.32, as calculated above in the

second order result, and to λ ≈ 1.1 to all orders in g. Thus, this simple model shows a very

important increase in the value of λ, much closer to the experimental result, due to the high

orders contributions of g. This increase in λ is also accompanied by an important increase

in the average number of phonons in the ground state of our system: < nph >≈ 3.5, this

number indicating that there is a large fluctuation of the phonon mode as corresponds to

a strong electron-phonon interaction. We should say that this simple model has been used

to check the validity of the universal behaviour of λ as a function of g(ρ0/ω0)
1/2; trying to

calculate Σ(ω) for ω ≳ ω0 is beyond the scope of this simple case.

Moreover, Figure 3 also shows that g/
√
ω0T0 is a convenient parameter for representing

λ and λ(2) as a function of the e-ph interaction, g, because for the different values of T0/ω0,

9



FIG. 3. λ = −dΣiiσ(ω → 0)/dω as a function of g/
√
ω0T0 for the cluster model (see text) for

different values of T0/ω0. The inset shows λ in a different scale; the dotted lines correspond to λ(2)

for T0/ω0 = 6 and 10.

λ presents a very similar behavior, indicating that up to a reasonable approximation λ is a

universal function of g/
√
ω0T0; notice that in the limit of the semi-infinite chain, the curves

shown in Figure 3 should converge, for small g, to the function λ = 2
(
g
√

ρ0/ω0

)2

with

ρ0 substituting for 1/T0; these arguments indicate that for the semi-infinite chain, with ρ0

proportional to 1/T0, λ is close to a universal function of g
√

ρ0/ω0, at least for λ < 3.0,

confirming the validity of the conjecture deduced from the DMFT-NRG calculations.

Then, for calculating λ for Sn/Ge(111)-3×3, we come back to those DMFT-NRG calcu-

lations and take for the Hostein Hamiltonian ρ0 = 2.5 eV−1, ω0 = 4.3 meV and g = 16.8

meV. This values yield g
√
ρ0/ω0 = 0.40 and λ = 1.30 ± 0.08 (see SM), a value in good

agreement with the results obtained from the PES experiments. We should mention that

the Sn/Ge(111)-surface shows an important high order contribution of the e-ph interaction

because of the small frequency ω0 and the high density of states ρ0.

V. DISCUSSION AND CONCLUSIONS

We have found from the experimental evidence that λ = 1.45± 0.1, a value much larger

than the ones found for Si(111)-7×7 [16], and Ge-Si(111)-5×5 [17]; combining this result

10



with our theoretical value, λ = 1.30, yields λ = 1.37 ± 0.10 which we consider to be a fair

approximation to the value of λ for the α-Sn/Ge(111)-(3×3) surface.

Regarding our theoretical calculation of the e-ph interaction, it is worth stressing that

that interaction has been analyzed by going “beyond the second order term” in the g-

coupling parameter. Notice also that in our calculations for the α-Sn/Ge(111) surface,

g
√
ρ0/ω0 = 0.40, and that the second-order calculation in g is only valid for g

√
ρ0/ω0 < 0.25

[30]. This suggests that the α-Sn/Ge(111) surface is highly non-linear in the e-ph coupling,

with < nph >≈ 3.5, and that the usual way of defining the quasi-adiabatic effective phonon-

induced attraction, measured by Unegative = 2g2/ω0 [33], should be reconsidered.

At this point we argue as follows: our calculations from the second order approximation

yield that Unegative = 2g2/ω0 = λ(2)/ρ0. Then, we suggest that, in order to include the

higher order contributions, it seems convenient to define a renormalized Unegative = λ/ρ0

which extrapolates the second order limit to higher values of g.

It is worth considering now what is the value of Unegative, as deduced from the value of

λ = 1.37 ± 0.1. This yields Unegative = λ/ρ0 = 0.55 ± 0.06 eV, this quantity being close

to, but slightly larger than, the value calculated for the effective e-e interaction for the α-

Sn/Ge(111)-(3 × 3) surface, (U − V ) ≈ 0.43 eV [4]. From these figures we conclude that

the low temperature phases of α-Sn/Ge(111), including a possible superconducting state,

should appear as a result of a delicate balance between the e-ph and e-e interactions.

VI. METHODS

Photoemission experiments were performed at the high-resolution branch of CASSIOPEE

beamline at Soleil synchrotron. The ultrahigh vacuum set up couples a surface preparation

chamber equipped with LEED and a high-resolution ARPES chamber equipped with a

manipulator operating between 400 and 5 K and with a Scienta R4000 electron analyzer

having a ±150 acceptance angle. Incoming radiation and the normal to the detector center

subtend a 45◦ angle. In our experiments, we settled the light polarization in the plane

defined by these two directions while the detector slit was perpendicular to them. The

valence band measurements were performed at hν = 80 eV. The sample preparation has

been described elsewhere [4]. The 0.33 ML Sn surface coverage was calibrated from the Sn

4d/Ge 3d intensity ratio, surface state intensity, and the evolution of the LEED pattern.
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In the DFT calculations we have used the Quantum Espresso code [35] with the PBE

exchange-correlation functional [36] and the Ultrasoft pseudopotentials provided by the code.

The (3×3) surface slab was built with 11 Ge layers and 3 Sn adatoms in T4 positions in the

upper layer. The dangling bonds of the lowest Ge layer are saturated by H atoms. The lower

two Ge-layers and the H atoms are fixed in the simulations. See Supplemental Material for

more details.

ACKNOWLEDGMENTS

This work was supported by the French Agence Nationale de la Recherche (ANR), project

SurMott, ref. NT-09-618999. We acknowledge financial support from the Spanish Ministry

of Science and Innovation through projects No. MAT2017-88258-R, PID2021-123295NB-

I00, PID2020-117024GB-C43, PID2021-125604NB-I00 and No. CEX2018-000805-M (Maŕıa
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