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Abstract
Two fundamental questions in neurolinguistics
concerns the brain regions that integrate infor-
mation beyond the lexical level, and the size of
their window of integration. To address these
questions we introduce a new approach named
masked-attention generation. It uses GPT-2
transformers to generate word embeddings that
capture a fixed amount of contextual informa-
tion. We then tested whether these embeddings
could predict fMRI brain activity in humans lis-
tening to naturalistic text. The results showed
that most of the cortex within the language
network is sensitive to contextual information,
and that the right hemisphere is more sensi-
tive to longer contexts than the left. Masked-
attention generation supports previous analyses
of context-sensitivity in the brain, and comple-
ments them by quantifying the window size of
context integration per voxel.

Keywords: fmri;transformers; con-
text;brain;encoding

Introduction
Following the works of Bemis & Pylkkänen (2011,
2013), a few studies have tried to leverage computa-
tional models to identify the neural bases of compo-
sitionality and quantify brain regions’ sensitivity to in-
creasing sizes of context. Some of them, using eco-
logical paradigms, have found a hierarchy of brain
regions that are sensitive to different types of con-
textual information and different temporal receptive
fields (e.g., Jain & Huth, 2018; Toneva et al., 2022;
Wehbe et al., 2014). A notable investigation (Jain
& Huth, 2018) used pre-trained LSTM (Hochreiter &
Schmidhuber, 1997) models to study context inte-
gration. They varied the amount of context used to
generate word embeddings, and obtained maps in-
dicating brain regions’ sensitivity to different sizes of
context. In this work, we study context-sensitivity us-
ing the attention mechanisms of GPT-2 which better
integrate context than LSTMs.

Methods
fMRI Brain data. The brain data consisted of
the functional Magnetic Resonance Imaging (fMRI)

scans from the English participants of The Little
Prince fMRI Corpus (Li et al., 2022)1.

Modelling Context-limited Features with GPT-
2 using attention masks. Contextual information
was controlled by playing with the attention mech-
anisms of the GPT-2 (Radford et al., 2019)2 trans-
former. The method involves providing the model
with an input sequence and attention mask pair for
each word in the text, and retrieving the target word’s
embedding for each pair. An example is given in
Fig. 1 for a context-window size of 4.

Figure 1: Controlling tokens’ interaction using atten-
tion masks. Examples of (input sequence, attention
mask) pairs to retrieve the embedding of each word of the
target sentence (framed in red above). An input sequence
is represented by a row, the target token is colored in red,
tokens in the attention mask are blue or red (context size
= 4), and out-of-context tokens are grey.

The attention mask removed interactions with
words outside the window, while preserving interac-
tions within the context window (see Fig. 1). The
mask was a binary vector containing 0 except for
the target word and the previous n-1 words, where
it equaled 1. It preserved the positional encoding of
words in the sentence and the right use of the spe-
cial tokens, while using complete sentences. The
attention mask is the same for all the tokens in the
input sequence, modulo the incrementality. Other-
wise, information could propagate outside the con-
text window because of model’s depth.

Encoding models. The same encoding ap-
proach as Pasquiou et al. (2022, 2023) was used.

1Available from https://openneuro.org/
datasets/ds003643/versions/1.0.2

2Available from https://huggingface.co/gpt2

https://openneuro.org/datasets/ds003643/versions/1.0.2
https://openneuro.org/datasets/ds003643/versions/1.0.2
https://huggingface.co/gpt2


Figure 2: Assessing the maximal context window size over which information is integrated. A) Determination of
the maximal context-size for each parcel of the Difumo atlas. The maximal context-size is defined as the last context-size
whose ROI-score is inferior to the maximal averaged centered ROI-score minus its standard deviation. B) Surface projec-
tion of Difumo’s parcels maximal context-size in context-sensitive brain regions. C) Histograms representing the maximal
context sizes distribution across context-sensitive ROIs, in the left hemisphere (orange), and the right hemisphere (green).

For each context-window size (21 values sampled
between 1 and 45 tokens), the embeddings from
layer 9 of the 12-layer model (dim=768) were used
to fit each subject’s brain data (N=51). Then, we
examined the impact of the context-window size on
the models’ predictive performance (R scores). The
motivation behind this approach is the following. If
the model needs short-range information to build the
embedding of a word, then the embedding won’t be
affected when using a small context size. However,
if the model needs long-range information, the em-
bedding will be ‘damaged’ when using a small con-
text size. Thus, increasing context size won’t im-
prove R scores in the brain regions well-fitted by fea-
tures using short-range information. However, brain
regions well-fitted by features using long-range infor-
mation will benefit from increasing context size.

DIFUMO atlas. We computed the median R score
across voxels constituting 90% of the non-zero load-
ings of each parcel of the Difumo atlas (Dadi et al.,
2020) (referred to as ROI-score).

Assessing brain regions sensitivity to context.
For each participant and ROI, we fitted a Linear Re-
gression on the (context size, ROI-score) points to
get the slope of increase of the ROI-score as a func-
tion of context-size. Brain regions’ context-sensitivity
was estimated with a t-test on the slopes of increase
across subjects, with a FDR correction of 0.01 to ac-
count for multiple comparisons.

Quantifying the window-size over which con-

text is integrated. For each context-sensitive parcel
of the atlas, we estimated its maximal context-size,
i.e. the last context-window size over which the ROI-
score is less than one standard deviation away from
its maximal value (Fig. 2A). Maximal context-sizes
are reported in Fig. 2B.

Results & Discussion
First, most of the language related brain re-
gions are context-sensitive (Fig. 2B). This net-
work of context-sensitive brain regions is bilateral
and mostly symmetrical. Notes that low-level re-
gions such as the auditory, motor and visual cortices
are not context-sensitive. These findings support the
ones from Jain & Huth (2018).

Additionally, we found that the right hemisphere
shows sensitivity to longer contexts than the
left (Fig. 2C). The brain regions integrating longer-
context revolves around the Temporo-Parietal Junc-
tion, Superior frontal regions and medial regions.
This observation is consistent with other brain imag-
ing studies that have supported the role of the
right hemisphere in higher-level language tasks (see
Beeman & Chiarello (2013); Jung-Beeman (2005)).
Overall, our results show that modifications of lan-
guage models’ architecture (e.g., unit ablation), or
internal operations (e.g., modification of the atten-
tion mechanisms) can be used to probe precise lin-
guistic processes.
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