
HAL Id: hal-04285155
https://hal.science/hal-04285155

Submitted on 14 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

UniPseudo: A universal pseudoword generator
Boris New, Jessica Bourgin, Julien Barra, Christophe Pallier

To cite this version:
Boris New, Jessica Bourgin, Julien Barra, Christophe Pallier. UniPseudo: A universal pseu-
doword generator. Quarterly Journal of Experimental Psychology, 2023, pp.174702182311643.
�10.1177/17470218231164373�. �hal-04285155�

https://hal.science/hal-04285155
https://hal.archives-ouvertes.fr

1

UniPseudo : A Universal Pseudoword Generator

Boris New1, Jessica Bourgin1, Julien Barra1, & Christophe Pallier2

1 University Savoie Mont Blanc (USMB), Chambéry, France, Laboratoire Psychologie
et Neurocognition, CNRS UMR 5105.
2 Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay,
NeuroSpin center, 91191 Gif/Yvette, France

2

Abstract
Pseudowords are letter strings that look like words but are not words. They are used
in psycholinguistic research, particularly in tasks such as lexical decision. In this
context, it is essential that the pseudowords respect the orthographic statistics of the
target language. Pseudowords that violate them would be too easy to reject in a lexical
decision and would not enforce word recognition on real words. We propose a new
pseudoword generator, UniPseudo, using an algorithm based on Markov chains of
orthographic n-grams. It generates pseudowords from a customizable database, which
allows one to control the characteristics of the items. It can produce pseudowords in
any language, in orthographic or phonological form. It is possible to generate
pseudowords with specific characteristics, such as frequency of letters, bigrams,
trigrams or quadrigrams, number of syllables, frequency of biphones, and number of
morphemes. Thus, from a list of words composed of verbs, nouns, adjectives, or
adverbs, UniPseudo can create pseudowords resembling verbs, nouns, adjectives, or
adverbs in any language using an alphabetic or syllabic system.

3

Pseudowords are stimuli created from letters that look like words but are not words.
They differ from nonwords, which are also stimuli created from letters but do not look
like words (CNLME is an example of a nonword in English). For a long time,
pseudowords have been generated by changing one or more letters of an existing word
(e.g., CLEAM created from CLEAN in Davis & Lupker, 2006). Pseudowords are
intensively used in psycholinguistics research. They are essential in a task widely used
in that field, namely the lexical decision task, where participants have to decide as
quickly as possible whether the stimulus presented on the screen is a word. To cause
participants to access their mental lexicon, it is essential that the pseudowords respect
the phonotactic rules of the language; in other words, that they are potential words.

In creating pseudowords for a lexical decision, it is difficult to avoid pseudowords that
are too easy to reject. For example, with nonwords composed only of consonants (such
as DZGLS), the participants will quickly realize that it is sufficient to detect the presence
of a vowel to take the decision and will no longer need to identify the words. In this
case reaction times will no longer reflect the processes involved in normal reading. Of
course, this example is extreme, but it shows how the construction of pseudowords or
nonwords will influence the processing of words. To ensure that pseudowords are well-
adapted to the words used in a lexical decision task, it is necessary that they conform
to the orthographic rules. Orthographic rules are specific to each language and
determine legitimate strings of letters. For example, in English, the letter sequence “qr”
is not orthographically correct (it does not exist in any English word), whereas “qu” is
perfectly valid (e.g., queen, quest, quarter).

Another criterion that is relevant when creating pseudowords is the orthographic
proximity of the pseudoword with real words. For the English Lexicon Project, Balota
et al. (2007) created a lexical decision task with 40,481 words. They created 40,481
matched pseudowords by modifying one or two letters of the original words. This
method of creating pseudowords raises the problem of the systematic orthographic
proximity of the pseudoword and the original word. Indeed, for some pseudowords,
participants can sometimes identify the original word (e.g., addomen from abdomen).
The recognition of the original word can induce an unintended experimental priming
bias that is not controlled by the experimenters.

Using the method of replacing one or two letters of the word, the identification of the
original word is much easier for long words than for short words, as the percentage of
letters common to the pseudoword and the original word is higher in longer words.
Short pseudowords have more orthographic neighbors (number of words that can be
derived by changing just one letter and preserving letter positions) than long
pseudowords. Furthermore, the influence of the original word was notably shown by
Yap, Sibley, Balota, Ratcliff, and Rueckl (2015) and Perea, Rosa, and Gómez (2005),

4

who showed that reaction times to pseudowords are notably influenced by the
frequency of the base word.

Being able to recognize the source word of a pseudoword may also affect studies that
are specifically interested in the mechanisms used when reading pseudowords. As
pseudowords, by definition, should generate limited lexical activity, they can be used
to better understand sub-lexical effects. For example, they have been used to study
the non-lexical pathway of the dual-route cascaded model (Coltheart, Rastle, Perry,
Langdon & Ziegler, 2001), which states that words can be read through a lexical route
or a grapheme–phoneme conversion route. In this framework, pseudowords allow one
to study the properties of the grapheme–phoneme conversion pathway, because they
are necessarily read by the non-lexical pathway (e.g., Proverbio, Vecchi & Zani, 2004).
In this situation, it is crucial to generate pseudowords from which the original words
are not identifiable. Moreover, before someone learns a word, it is a pseudoword for
them. Thus, studying how adults learn pseudowords can reveal the processes involved
in word acquisition.

A number of studies have also examined the impact of pseudohomophony (nonwords
spelling that can be pronounced like a word) to determine whether there are
phonological effects in silent reading (see e.g., Besner & Davelaar, 1983; Taft 1982).
Another example of the use of the pseudowords utility is the study from Taft (2004)
who manipulated the nature of the pseudowords in a lexical decision to examine
whether inflected words are recognized via their stem.

Currently, the main tools used to create pseudowords for research are the ARC
Nonword Database, WordGen, and Wuggy. We describe them briefly before
presenting our new tool for generating pseudowords.

Existing solutions for the generation of pseudowords

ARC Nonword Database

The ARC Nonword Database, developed by Rastle, Harrington, and Coltheart (2002),
contains 358,534 monosyllabic pseudowords, including 48,534 pseudohomophones.
To generate these pseudowords, the authors used a grammar based on several
phonotactic rules, allowing phonemes to be combined to create potential
monomorphemic words. Once these phonological pseudowords were generated, the
authors generate the associated orthographic forms using phoneme–grapheme
correspondence rules. These pseudowords are grouped in a database that allows the
user to select the items according to certain criteria (e.g., the number of neighbors or
their bigram frequency [adjacent pairs of letters frequency]). However, the use of this
database for research has two important limitations: it is only available in English and
contains only monosyllabic pseudowords.

5

WordGen

WordGen (Duyck, Desmet, Verbeke & Brysbaert, 2004) is a software program that
uses the CELEX (Baayen, Piepenbrock, & Gulikers, 1996) and Lexique (New, Pallier,
Brysbaert & Ferrand, 2004) databases to generate pseudowords in Dutch, English,
German, and French. These pseudowords can be generated according to their number
of letters, the size of their neighborhood, or the frequency of their bigrams. To generate
a pseudoword, the program concatenates a string of random letters and checks if this
string of letters is a word. If it is not a word, it then checks the different properties
requested and rejects the string of letters if one of these properties is violated. This
means that if the parameters are strict, WordGen may take a long time to find potential
candidates. It also means that it may be difficult for researchers not used to word with
sub-lexical statistics to find the set of parameters that will allow good pseudowords
according to the words in the experiment.

Wuggy

Wuggy (Keuleers & Brysbaert, 2010) is a software program that, in its first incarnation,
was able to generate pseudowords in Basque, Dutch, English, French, German,
Serbian, and Spanish. The current version of Wuggy (0.3.2) can also generate
pseudowords in Italian, Polish, Turkish, and Vietnamese. Wuggy uses a list of
syllabified words. These words are decomposed into subsyllabic elements, and these
subsyllabic elements are recombined to form pseudowords. To match the created
pseudowords with the words given by the psycholinguistic researchers, Wuggy tries to
filter the pseudowords with the same frequencies of subsyllabic elements and
progressively widens these constraints in terms of frequencies to find a potential
candidate. Wuggy is a powerful pseudoword generator, but it is not available for all
alphabetic languages, and it produces pseudowords that do not necessarily respect
the nature of the words (e.g., generate only present participle pseudowords in English).

None of these three solutions allows one to work from a corpus of words determined
entirely by oneself. This ability, however, would allow one to control the properties of
the input words and thus determine the properties of the generated pseudowords. For
example, from a list of words composed of verbs, nouns, adjectives, or adverbs, one
could create pseudowords resembling verbs, nouns, adjectives, or adverbs. This could
be particularly interesting for languages in which the grammatical classes have specific
orthographic properties. For instance, the present participles of French verbs have a
specific ending “ant”. If UniPseudo is given only present participles as input, the
generated pseudowords will all end with the specific ending. Whereas with Wuggy this
will not be the case because it will recombine sub-lexical elements taken from the
whole set of French words and therefore pseudowords without this specific present
participle ending will be generated.

6

Another advantage of generating pseudowords from a list of words provided by the
researcher is that it allows one to work with any language, provided that it is alphabetic
or syllabic. Current tools are based on orthographic and not phonological algorithms
(except Wuggy for English, French, and Italian) and are therefore designed to generate
pseudowords for reading or writing research. They cannot easily generate
pseudowords for auditory research. A tool using a personalized word list could work
directly on phonology whatever the desired language provided that the words in the
personalized list would be transcribed in their phonological form (e.g., table -> /teɪbəl/).
More recently, two new generators have been proposed using a custom list of words
to generate pseudowords, CGCA and UniPseudo, the latter of which is the subject of
this article.

CGCA

The CGCA algorithm (König, Calude, & Coxhead, 2020) is the most recent tool. It can
take a wordlist or a corpus as input. It extracts all unique tokens from the input to create
the origin wordlist. From the origin wordlist, it extracts all possible character-grams
(bigram, trigram, 4-gram, 5-gram, etc.) and assigns them to three possible positions:
the beginning, middle, or end of words. Finally, it iteratively generates and validates
each chain of character-grams. It outputs a list of pseudowords specific to the words
used to generate them. CGCA is available as a script on GitHub and needs to be run
it in a terminal (which non-programmers are not necessarily familiar with).

UniPseudo

UniPseudo has the following features:

● It is accessible through a web interface (http://unipseudo.lexique.org/).

● The pseudowords it generates are constructed from words given by the user.
This property allows the user (1) to generate pseudowords in any language
based on an alphabetic or syllabic system, (2) to generate pseudowords with
diacritical marks, and (3) to generate pseudowords that respect the orthographic
statistics of the input word list. Concerning (2) diacritical letters are considered
as different letters and thus UniPseudo will generate pseudowords which
probability of appearance of diacritical letters will be similar to the frequency of
diacritical letters present in the user's input. Concerning (3), it allows one to
generate pseudowords that look like inflected verbs (e.g. from Table 1: beaped),
nouns (e.g. from Table 1: encher), or adjectives. It can also generate
pseudowords that look like low-frequency words and contain potentially less
frequent sublexical parts, or high-frequency words and contain potentially more
frequent sublexical parts. Furthermore, it can be used to generate words
resembling early- or late-acquired words. Take the example of verb generation
in English. If one enters only 5-letter English verbs in the infinitive form, one

7

obtains as output 5-letter pseudowords that could be verbs in English. An
important point is that the proportion of irregular pseudo-verbs in the list should
be comparable to that of irregular verbs in the working corpus. Once it has a
sufficient list of words of a certain length with certain properties (we recommend
at least 100 words, but, in general, the more the better), UniPseudo generates
pseudowords that share the properties of these words. Thus, it is possible to
generate pseudowords with one or a combination of characteristics (frequency
of letters, bigrams, trigrams or quadrigrams, number of syllables, frequency of
biphones [adjacent pairs of phonemes], number of morphemes, etc.).

● In addition to generating orthographic pseudowords, the algorithm can also
generate phonological pseudowords. Thus, for an auditory lexical decision, it is
possible to generate pseudowords with certain phonological characteristics. If
phonemes are coded by single Unicode letters, the algorithm will also be able
to generate phonological pseudowords. The algorithm operates on single
segments sequentially using simple transitional probabilities. For example, to
generate pseudowords of 2 syllables starting with an occlusive and ending with
a nasal vowel, the user only needs to provide a corpus of input words based on
phonological representations rather than orthographic representations of words.

● It also allows words from 64 languages to be easily imported and thus
pseudowords to be generated in these 64 languages.

● It can also generate pseudowords in non-Latin alphabets.
● Its source code is available at

https://github.com/chrplr/openlexicon/tree/master/apps/unipseudo.

Algorithm used by UniPseudo
UniPseudo uses an algorithm based on Markov chains. It requires a set of words of a
given length (e.g., all 6-letter nouns). From this set, it extracts all trigrams (or bigrams
if the user decides so) at a given position (e.g., for a word of 6 letters [123456], there
are four trigrams: 123, 234, 345, and 456). Then, to create a pseudoword, it starts by
randomly selecting a trigram among those starting in initial position (respecting the
frequencies in the original corpus). Then it selects randomly a second trigram that start
with the two letters finishing the first one, among trigram starting in second position.
This process is repeated until the last trigram is reached (the 4th one for a word of 6
letters). Thus, trigrams are selected by the frequency of the input given by the user: a
trigram which is frequently in the input will have more probabilities to be selected during
the constitution of the pseudowords. This algorithm allows pseudowords to be
generated that are similar to the original words. Examples of pseudowords based on
6-letter lemmas that are either nouns or verbs are given in Table 1 in French and
English.

8

Table 1. Examples of 6-letter pseudonouns and pseudoverbs generated with
UniPseudo

French English
Pseudonouns Pseudoverbs Pseudonouns Pseudoverbs

meston voirer encher beaped
vortin bouper gradom dramed
nivard garler canure geated
nombon durgir fortor suined
bonjon gicher gunker burled
gâtate redier ruddle carned
cognal palser dinute serked
nevoir flâmer hercel fenned
parron fercir aspern hinned
intrit vanser twenzy barted
fignon dicler tendom salked
nectue dorgir figlet yelped
bilice guiser borant hanted
ordeau bantir hellot wooped
ourvie menter dinete wasked
limade claner deggon pusted
taudin sonter snique crayed
partil tonger suring railed
cavure purler sullet tashed
hébris cester gaddle hanked

This algorithm has the advantage that strong constraints can be placed on the word-
selection algorithm.
UniPseudo is using an algorithm based on Markov chains similarly to CGCA, although
its creation was not accompanied by a specific publication. Indeed, it was already
available online in a less modern and less option-rich format on the Lexique website in
20121 and it has also already been used to create the pseudowords for the MEGALEX
mega-study (Ferrand, Méot, Spinelli, New, Pallier, Bonin, Dufau, Mathôt, & Grainger,
2017). In contrast to CGCA, UniPseudo takes the position of bigrams and trigrams in

1 http://web.archive.org/web/20120315101935/http://www.lexique.org/toolbox/toolbox.pub/

9

the word more finely into consideration as far as this is a specific position. CGCA only
takes into account the beginning, middle and end positions of the word.

How to use UniPseudo
UniPseudo is available as a web application at the following address:
http://unipseudo.lexique.org/. Figure 1 shows the interface.

Figure 1: Screen capture of UniPseudo’s interface

To use UniPseudo, the user follows these steps:

● Select the desired length of the pseudowords
● Decide whether the algorithm will use trigrams or bigrams.

10

o In general, it is advisable to use trigrams. For short words (3, 4, or 5
letters), however, it is preferable to use bigrams, because trigrams yield
results that are too similar to existing words.

● Select a language among 64 possibilities.
o Selecting a language allows the algorithm to apply constraints during the

pseudowords generation, namely avoiding words with more than three
consecutive consonants or with the same consecutive letter three times
or more in Latin languages when using the bigram algorithm.

o Selecting a language also allows the use of the Word Import Tool (see
below).

If these features are not required, the user should choose the first option,
“Other.”

● Copy the list of words on which the algorithm will base the pseudowords, with a
line break separation between each word. To generate word lists, one can use
specialized databases for a given language (e.g., Lexique for French and the
English Lexicon Database for English). As mentioned earlier, it is recommended
to include at least 100 words, but, in general, the more the better. For instance,
in Figure 1, we copied all 877 words from Lexique 3.83 that met the following
criteria: 6 letters, 2 syllables, lemma (not an inflected form), noun, and a subtitle
lemma frequency2 strictly greater than 1 occurrence per million (so as not to
include too rare orthographic forms).

● Choose the number of pseudowords that UniPseudo should generate.
● Use the “Show Constraints” button to set additional constraints to the output if

you want to. The user can set constraints such as the maximum number of
accented characters possible in a pseudoword, the maximum number of
successive consonants or the maximum number of identical letters possible in
a pseudoword.

●
● Press the “Go” button.
● You get the requested pseudowords in the UniPseudo window. A manual

selection phase of the items is then necessary. If you want for example 50
pseudowords we advise you to generate at least 150 pseudowords to be able
to select the 50 best candidates proposed by UniPseudo. If the user performing
the manual selection selects on average 1 pseudoword out of 3 as he/she goes
through the list, he should minimize possible systematic bias. Indeed, the
pseudowords of the list are presented in a completely random order.

● If you want to know the construction steps of each pseudoword, the details are
presented step by step in the "Pseudowords details" tab.

2 The subtitle lemma frequency is, for a word, the sum of the frequency of its inflected and uninflected
forms in a subtitle corpus.

11

When the process is complete, the generated pseudowords appear in the right part of
the window. The user can click on “Download Pseudowords” to download an Excel file
containing the generated pseudowords.

Once the pseudowords have been generated, the chosen trigram, its position, and the
origin word can be displayed by clicking on the “Pseudowords with details” tab (see
Appendix 1). For example, the pseudoword tensus is composed of the trigram ten in
first position (from the word tennis), the trigram ens in second position (from the word
pensée), the trigram nsu in third position (from the word consul), and the trigram sus
in last position (from the word dessus).

Word Import Tool

There is another way to generate pseudowords with UniPseudo without having to first
build a custom list of base words. For the 64 languages for which there is a database
in WorldLex (Gimenes & New, 2016; see Appendix 2 for the list of the 64 languages),
it is possible to automatically import a word list of the desired length into UniPseudo
(see Figure 2). Only words with a frequency strictly greater than 0.5 are imported so
as not to include too rare orthographic forms.

12

13

Figure 2. Screen capture of the Word Import Tool

To use the Word Import Tool, the user follows these steps:

● Choose the length of the pseudowords.
● Choose whether the algorithm will use trigrams or bigrams.
● Choose a language among 64 possibilities.
● Click on “Show Word Import Tool.”
● Click on “Use words from database” to import words of the selected

language and chosen length.
● Choose the number of pseudowords desired.
● Choose if you want to use custom constraints.
● Click on “Go!”

Comparison of UniPseudo with existing tools

First, we compared the quality of the pseudowords proposed by UniPseudo to those
proposed by Wuggy and CGCA. For this, we used the LD1NN algorithm (Keuleers &
Brysbaert, 2011). This algorithm assesses how easy (or not) it is for a participant to
determine whether the presented stimulus is a pseudoword. For each stimulus in a
lexical decision, LD1NN calculates the Levenshtein distance (the minimum number of
operations, i.e. deletions, insertions or substitutions required to turn one word into the
other) between the current stimulus and the previous ones. This allows it to identify the
stimuli closest to the current stimulus. Finally, it calculates the probability of giving a
word response based on the relative frequency of words and pseudowords in this close
neighborhood.

To test the relevance of the pseudowords generated by UniPseudo, we selected from
Lexique 3.83 all the French words of 8 letters having a lemma frequency higher than 1
and containing neither space, dash, nor apostrophe. From these words, we generated
2,400 pseudowords with CGCA and UniPseudo using trigrams. Then we randomly
selected 2,400 words and used Wuggy 0.2.2b2 to generate only one pseudoword per
selected word using the default options (“match length of subsyllabic segments,”
“match letter length,” “match transition frequencies,” and “match subsyllabic segments
2 out of 3”). The word and pseudoword lists used are available on OSF.3 Once the
three lists were generated (same 2,400 words and 2,400 different pseudowords for the
three tools), we randomized their order and then applied the LD1NN algorithm to the
resulting word and pseudoword list. The results are presented in Figure 3.

3 https://osf.io/svtq5/?view_only=08894231bc094ba7853f335373056a10

14

Figure 3. Results of LD1NN algorithm presented with a group of 2,400 French 8-letter words and 2,400 8-letter
nonwords created using CGCA, Wuggy, and UniPseudo algorithms. Left panel: distribution of word bias for both words
and nonwords. Right panel: cumulative average of word bias for words and nonwords; the gray line indicates the
numerical bias for words based on the percentage of words vs. nonwords processed up to that point.

U
ni
Ps
eu
do
	

W
ug
gy
	

CG
CA
	

French	Words	

15

On the left panel of Figure 3 each vertical bar should be read as the percentage of
nonword stimuli (left subpanel) and word stimuli (right subpanel) that had a particular
bias for a word response (positive) or for a nonword response (negative). As shown on
the left panel of Figure 3, the probability of a nonword being considered a nonword (the
leftmost bar on the left subpanel) is less strong for UniPseudo than for CGCA or
Wuggy. A pseudoword is a good stimulus if it looks like a word. Indeed the answer to
decipher whether a stimulus is a word should require lexical access and not only the
detection of surface features of the pseudoword construction.

In the right panel, one can see that LD1NN increasingly detects words more effectively
in the lists generated by CGCA. When the pseudowords are made by Wuggy, the
algorithm also tends to detect words and pseudowords increasingly effectively, but the
bias remains lower than that of CGCA, especially for pseudowords. For UniPseudo,
one can observe a reduced bias for both words and pseudowords, and this bias does
not tend to increase with each trial.

We performed another analysis similar to the one described above but with lemmas
(uninflected forms) only. We selected all 8-letter words that were lemmas without
spaces, hyphens, or apostrophes and had a subtitle lemma frequency of at least 1
occurrence per million words. We used these words to create 1,800 pseudowords with
CGCA and UniPseudo. Then we randomly selected 1,800 words from which we
created 1,800 pseudowords with Wuggy by asking it to generate only one candidate
with the default options. Once the 1,800 words and 1,800 pseudowords were
generated, we randomized their order and then applied the LD1NN algorithm to the list
of words and pseudowords obtained. Again, the results on the right-hand side of
Appendix 3 show that LD1NN is better at guessing that the pseudowords are
pseudowords when they are created by CGCA and Wuggy than when they are
generated by UniPseudo. Moreover, as the trials progress, LD1NN is better at
discriminating between words and pseudowords when the pseudowords come from
Wuggy and CGCA than when they come from UniPseudo. The logistic regression
indicates that LD1NN distinguishes words from pseudowords when the pseudowords
are made with CGCA (z = 6.7, p < .001) or Wuggy (z = 9.4, p < .001), whereas it does
not distinguish words from non-words when the pseudowords are made with
UniPseudo (z = 0.1, p = .92).

Finally, we ran simulations in English to check that these results were not due to some
peculiarities of French. We selected English words from WorldLex4 with a surface
frequency of at least 1 occurrence per million words. The results are presented in
Appendices 4 (all words) and 5 (English lemmas). The results are similar to the results
observed in French. LD1NN has more difficulty discriminating between words and
pseudowords when the pseudowords are made by UniPseudo than when they are
made by Wuggy or CGCA, although the performances of UniPseudo and Wuggy are

4 http://worldlex.lexique.org

16

more similar than in previous simulations. In general, LD1NN has more difficulty
discriminating words from pseudowords with the English lexical decisions than with the
French ones, suggesting that it is easier to generate good pseudowords in English than
in French. Compared with Wuggy and CGCA, UniPseudo produces particularly
interesting results, because it combines n-grams whose position in the original word
list is preserved. This allows it to favor pseudowords with a valid structure in all
languages without the need for additional checks.

Supplementary analyses (Appendix 6, 7, 8, 9) were conducted on the pseudowords
generated by CGCA, Wuggy and UniPseudo in order to investigate the quality of the
different pseudowords lists. For the word and pseudoword lists that were generated for
the previous 4 analyses (LD1NN), we calculated frequency indices for the words and
for the pseudowords. For French words and lemmas, we used Lexique-Infra (Gimenes,
et al., 2020) to compute the frequency of letter types and tokens, bigram types and
tokens and trigram types and tokens. For English words and lemmas we used N-Watch
(Davis, 2005) to compute the frequency of bigram types and tokens and the frequency
of trigram types and tokens. The type frequency corresponds to the number of
occurrences of a given string (letter, bigram or trigram) in a corpus, while token
frequency weighted the number of occurrences by the frequency of the words. The
properties of the words and pseudowords were then compared using Welch's t-test
because the homogeneity of variances were not respected (Brow-Forsythe test: p <
.05). A significant test indicated statistically different properties between the word list
and the pseudoword list. Overall, the analyses (Appendix 6, 7) show similar results to
those obtained with LD1NN confirming the quality of the pseudowords generated by
UniPseudo.

In line with König et al. (2020), two different researchers manually coded the number
of polymorphic, near polymorphic and one-character dissimilarity for the first 100 8-
letter pseudowords generated by CGCA, Wuggy or UniPseudo in our previous French
words analysis. Köniq et al. (2020) defined polymorphic pseudowords as pseudowords
that consist of a real root plus one of more affixes, near polymorphic pseudowords as
pseudowords whose root does not exist in the language but include at least one affix,
and one-character dissimilarity pseudowords as pseudowords that are one character
away from at least one real word within the language5. In order to be able to compare
the index “one-character dissimilarity” was also computed for the first 100 words used
in our previous French words analysis. The results are presented in Table 2.

Table 2. Results from the comparison suitability evaluation (per 100 pseudowords)
 Polymorphic Near polymorphic Char Dissimilarity
UniPseudo 19 51 32
CGCA 11 52 13
Wuggy 7 52 6
Words - - 70

5 Lexique-Infra (Gimenes, et al., 2020) was used to compute one-character dissimilarity

17

The polymorphic pseudowords generated by UniPseudo, have higher counts (19%)
than any of the other pseudowords generators (11% for CGCA and 7% for Wuggy)
suggesting that UniPseudo pseudowords are more word-like. For the near polymorphic
pseudowords counts do not differ across the different generators. Finally, the number
of pseudowords being one character away from a real word is higher for UniPseudo
(32%) than for CGCA (13%) and Wuggy (6%). Wuggy results in a lower number than
CGCA. Interestingly, words tend to have more neighbours (70%) than all generators.

Conclusion
UniPseudo is an algorithm for generating pseudowords from a customizable database
that allows the user to closely control the characteristics of the input items. It produces
pseudowords in any language based on orthographic or phonological forms or on any
other string representation of the input word base. Compared with the existing tools,
UniPseudo generated pseudowords that were closer (according to the LD1NN
algorithm) to the source words. This powerful new pseudoword generation tool is freely
available and should be a valuable tool to facilitate the work of psycholinguists.

18

References
Baayen, R. H., Piepenbrock, R., & Gulikers, L. (1996). The CELEX lexical database
(cd-rom).
Balota, D. A., Yap, M. J., Hutchison, K. A., Cortese, M. J., Kessler, B., Loftis, B., ... &
Treiman, R. (2007). The English lexicon project. Behavior research methods, 39(3),
445-459.
Besner, D., & Davelaar, E. (1983). Suedohomofoan effects in visual word recognition:
evidence for phonological processing. Canadian Journal of Psychology/Revue
canadienne de psychologie, 37(2), 300.
Brysbaert, M. (2010). Wuggy: A multilingual pseudoword generator. Behavior
Research Methods 42(3), 627-633.
Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: a dual
route cascaded model of visual word recognition and reading aloud. Psychological
review, 108(1), 204.
Davis, C. J. (2005). N-Watch: A program for deriving neighborhood size and other
psycholinguistic statistics. Behavior research methods, 37(1), 65-70.
Davis, C. J., & Lupker, S. J. (2006). Masked inhibitory priming in English: Evidence
for lexical inhibition. Journal of Experimental Psychology: Human Perception and
Performance, 32(3), 668.
Duyck, W., Desmet, T., Verbeke, L. P., & Brysbaert, M. (2004). WordGen: A tool for
word selection and nonword generation in Dutch, English, German, and French.
Behavior Research Methods, Instruments, & Computers, 36(3), 488-499.
Ferrand, L., Méot, A., Spinelli, E., New, B., Pallier, C., Bonin, P., ... &
Gimenes, M., & New, B. (2016). Worldlex: Twitter and blog word frequencies for 66
languages. Behavior research methods, 48(3), 963-972.
Gimenes, M., Perret, C., & New, B. (2020). Lexique-Infra: grapheme-phoneme,
phoneme-grapheme regularity, consistency, and other sublexical statistics for
137,717 polysyllabic French words. Behavior Research Methods, 52(6), 2480-2488.
Grainger, J. (2018). MEGALEX: A megastudy of visual and auditory word recognition.
Behavior Research Methods, 50(3), 1285-1307.
Keuleers, E., & Brysbaert, M. (2010). Wuggy: A multilingual pseudoword generator.
Behavior research methods, 42(3), 627-633.
König, J., Calude, A. S., & Coxhead, A. (2020). Using character-grams to
automatically generate pseudowords and how to evaluate them. Applied Linguistics,
41(6), 878-900.
New, B., Pallier, C., Brysbaert, M., & Ferrand, L. (2004). Lexique 2: A new French
lexical database. Behavior Research Methods, Instruments, & Computers, 36(3),
516-524.
Perea, M., Rosa, E., & Gómez, C. (2005). The frequency effect for pseudowords in
the lexical decision task. Perception & Psychophysics, 67(2), 301-314.
Proverbio, A. M., Vecchi, L., & Zani, A. (2004). From orthography to phonetics: ERP
measures of grapheme-to-phoneme conversion mechanisms in reading. Journal of
cognitive neuroscience, 16(2), 301-317.

19

Taft, M. (1982). An alternative to grapheme-phoneme conversion rules?. Memory &
Cognition, 10(5), 465-474.
Taft, M. (2004). Morphological decomposition and the reverse base frequency
effect. The Quarterly Journal of Experimental Psychology Section A, 57(4), 745-765.
Yap, M. J., Sibley, D. E., Balota, D. A., Ratcliff, R., & Rueckl, J. (2015). Responding
to nonwords in the lexical decision task: Insights from the English Lexicon Project.
Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(3), 597.

20

Appendix 1. Screen capture of the "Pseudowords with details" tab

21

22

Afrikaans Catalan French Hungarian Latvian Persian Sinhala Tamil
Albanian Croatian Georgian Icelandic Lithuanian Polish Slovak Telugu

Amharic Czech German Indonesian Macedonia
n

Portugues
e Brazil Slovenian Turkish

Arabic Danish Greek Italian Malayalam Portugues
e Europe

Spanish
Latin
America

Ukrainian

Armenian Dutch Greenlandi
c Japanese Malaysian Punjabi Spanish

Spain Urdu

Azeri English Gujarati Kannada Mongolian Romanian Swahili Uzbek

Bengali Estonian Hebrew Kazakh Nepali Russian Swedish Vietnames
e

Bosnian Finnish Hindi Khmer Norwegian Serbian Tagalog Welsh

Appendix 2. List of the 64 languages for which words can be automatically selected
in UniPseudo

23

Appendix 3. Results of LD1NN algorithm presented with a group of 1800 French 8-
letter lemma words and 1800 8-letter nonwords created from CGCA, Wuggy and
UniPseudo algorithms. Left panel: distribution of word bias for both words and
nonwords. Right panel: cumulative average of word bias for words and nonwords; the
grey line indicates the numerical bias for words based on the percentage of words vs.
nonwords processed up to that point.

French	 Lemmas	
LemmasLemm

U
ni
Ps
eu
do
	

W
ug
gy
	

CG
CA
	

24

Appendix 4. Results of LD1NN algorithm presented with a group of 1900 English 8-
letter words and 1900 8-letter nonwords created from CGCA, Wuggy and UniPseudo
algorithms. Left panel: distribution of word bias for both words and nonwords. Right
panel: cumulative average of word bias for words and nonwords; the grey line
indicates the numerical bias for words based on the percentage of words vs.
nonwords processed up to that point.

English	Words	

U
ni
Ps
eu
do
	

W
ug
gy
	

CG
CA
	

25

Appendix 5. Results of LD1NN algorithm presented with a group of 900 English 8-
letter lemma words and 900 8-letter nonwords created from CGCA, Wuggy and
UniPseudo algorithms. Left panel: distribution of word bias for both words and
nonwords. Right panel: cumulative average of word bias for words and nonwords; the
grey line indicates the numerical bias for words based on the percentage of words vs.
nonwords processed up to that point.

English	Lemmas	

U
ni
Ps
eu
do
	

W
ug
gy
	

CG
CA
	

1

 French Words French Lemmas
 t df p t df p

CG
CA

Letter Type -5.582 4797.326 < .001 Letter Type -0.639 3574.176 0.523
Letter Token -6.545 4792.186 < .001 Letter Token -0.611 3597.02 0.541
Bigram Type -9.634 4794.32 < .001 Bigram Type -4.068 3597.973 < .001
Bigram Token -8.779 4750.599 < .001 Bigram Token -5.112 3571.483 < .001
Trigram Type -7.214 4749.731 < .001 Trigram Type -2.974 3567.116 0.003
Trigram Token -7.847 4748.448 < .001 Trigram Token -5.376 3496.002 < .001

Wu
ggy

Letter Type -0.301 4787.408 0.764 Letter Type -1.66 3597.537 0.097
Letter Token -0.729 4791.874 0.466 Letter Token -1.058 3597.989 0.29
Bigram Type -6.918 4793.401 < .001 Bigram Type -7.103 3597.692 < .001
Bigram Token -4.765 4790.661 < .001 Bigram Token -6.452 3569.575 < .001
Trigram Type -8.96 4792.782 < .001 Trigram Type -9.835 3573.719 < .001
Trigram Token -6.209 4795.883 < .001 Trigram Token -9.997 3516.721 < .001

Uni
Pse
ud
o

Letter Type 1.058 4797.463 0.29 Letter Type -0.983 3587.276 0.326
Letter Token 0.235 4794.207 0.814 Letter Token -1.001 3597.845 0.317
Bigram Type -0.722 4797.988 0.47 Bigram Type -0.31 3595.801 0.756
Bigram Token -0.567 4792.167 0.571 Bigram Token 0.346 3597.669 0.73
Trigram Type -1.83 4775.106 0.067 Trigram Type -0.963 3593.159 0.336
Trigram Token -0.729 4797.876 0.466 Trigram Token -0.607 3592.913 0.544

Appendix 6. Left panel: Results of Welch t-tests on the letter, bigram and trigram statistics computed on 2400 French 8-letter words
and 2400 8-letter pseudowords created from CGCA, Wuggy and UniPseudo algorithms. Right panel: Results of Welch t-tests on the
letter, bigram and trigram statistics computed on 1800 French 8-letter lemma words and 1800 8-letter pseudowords created from
CGCA, Wuggy and UniPseudo algorithms.

1

 French Words French Lemmas
 Means SD Means SD

Words

Letter Type 52132 8161 50301 7206
Letter Token 122499 19562 120165 18109
Bigram Type 5884 2141 4958 1780
Bigram Token 11677 5170 10398 4317
Trigram Type 974 721 718 540
Trigram Token 1551 1255 1366 1020

CGCA
Pseudow

ords

Letter Type 50833 8017 50140 7821
Letter Token 118927 18753 119793 18410
Bigram Type 5301 2070 4717 1785
Bigram Token 10451 4644 9692 3960
Trigram Type 832 646 667 492
Trigram Token 1285 1124 1197 858

Wuggy
Pseudow

ords

Letter Type 52066 7813 49901 7277
Letter Token 122108 18979 119527 18046
Bigram Type 5460 2090 4539 1761
Bigram Token 10978 4994 9508 3941
Trigram Type 789 702 548 497
Trigram Token 1327 1247 1049 873

UniPseud
o

Pseudow
ords

Letter Type 52333 7962 50058 7612
Letter Token 122560 18758 119558 18228
Bigram Type 5844 2116 4940 1825
Bigram Token 11599 4918 10448 4276
Trigram Type 943 666 701 521
Trigram Token 1533 1233 1346 982

Appendix 7. Left panel: Means and SD for the letter, bigram and trigram statistics
computed on 2400 French 8-letter words and 2400 8-letter pseudowords created
from CGCA, Wuggy and UniPseudo algorithms. Right panel: Means and SD for the
letter, bigram and trigram statistics computed on 1800 French 8-letter lemma words
and 1800 8-letter pseudowords created from CGCA, Wuggy and UniPseudo
algorithms.

1

 English Words English Lemmas
 t df p t df p

CGC
A

Bigram Type -8.691 3741.083 < .001 Bigram Type -1.647 1792.669 0.1
Bigram Token -7.845 3719.334 < .001 Bigram Token -1.821 1787.212 0.069
Trigram Type -10.343 3616.261 < .001 Trigram Type -4.391 1796.926 < .001
Trigram Token -8.382 3604.178 < .001 Trigram Token -5.192 1795.057 < .001

Wu
ggy

Bigram Type -3.763 3796.451 < .001 Bigram Type -4.056 1797.347 < .001
Bigram Token -2.285 3797.88 0.022 Bigram Token -2.094 1789.823 0.036
Trigram Type -3.784 3797.906 < .001 Trigram Type -8.906 1736.027 < .001
Trigram Token -1.898 3797.9 0.058 Trigram Token -8.947 1798 < .001

Uni
Pse
udo

Bigram Type -1.171 3796.118 0.242 Bigram Type 3.569 1790.452 < .001
Bigram Token -0.912 3796.966 0.362 Bigram Token 3.189 1784.594 0.001
Trigram Type -0.945 3796.63 0.345 Trigram Type 3.37 1746.204 < .001
Trigram Token -0.712 3796.51 0.476 Trigram Token 3.277 1771.565 0.001

Appendix 8. Left panel: Results of Welch t-tests on the letter, bigram and trigram statistics computed on 1900 English 8-letter words
and 1900 8-letter pseudowords created from CGCA, Wuggy and UniPseudo algorithms. Right panel: Results of Welch t-tests on the
letter, bigram and trigram statistics computed on 900 French 8-letter lemma words and 900 8-letter pseudowords created from
CGCA, Wuggy and UniPseudo algorithms.

1

 English Words English Lemmas
 Means SD Means SD

Words

Bigram Type 870.5 586.1 462.1 238.8
Bigram Token 116.0 86.2 53.1 24.3
Trigram Type 285.1 327.0 101.1 96.5
Trigram Token 38.1 50.8 9.6 6.5

CGCA
Pseudowor

ds

Bigram Type 714.5 517.8 462.1 226.1

Bigram Token 95.5 74.5 53.1 22.5
Trigram Type 186.0 260.3 101.1 94.2
Trigram Token 25.7 40.1 9.6 6.2

Wuggy
Pseudowor

ds

Bigram Type 799.6 574.4 464.4 256.9

Bigram Token 109.7 85.8 55.3 27.8
Trigram Type 244.9 328.6 91.4 97.3
Trigram Token 35.0 51.1 9.4 6.9

UniPseudo
Pseudowor

ds

Bigram Type 848.5 573.2 521.7 254.8
Bigram Token 113.5 84.8 58.9 26.5
Trigram Type 275.2 320.8 137.7 114.9
Trigram Token 36.9 49.8 12.3 7.3

Appendix 9. Means and SD for the letter, bigram and trigram statistics computed on 1900 English 8-letter words and 1900 8-letter
pseudowords created from CGCA, Wuggy and UniPseudo algorithms. Right panel: Means and SD for the letter, bigram and trigram
statistics computed on 900 French 8-letter lemma words and 900 8-letter pseudowords created from CGCA, Wuggy and UniPseudo
algorithms.

