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ABSTRACT
We present a non-commutative algorithm for the product of 3 × 5
by 5 × 5 matrices using 58 multiplications. This algorithm allows
to construct a non-commutative algorithm for multiplying 5 × 5
(resp. 10 × 10, 15 × 15) matrices using 98 (resp. 686, 2088) multi-
plications. Furthermore, we describe an approximate algorithm
that requires 89 multiplications and computes this product with an
arbitrary small error.

CCS CONCEPTS
•Computingmethodologies→ Exact arithmetic algorithms;
Linear algebra algorithms.
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1 INTRODUCTION
Even if matrix multiplication is one of the most fundamental tool in
scientific computing, it is still not completely understood. Strassen’s
algorithm [28], with 7 recursive multiplications and 18 additions,
was the first sub-cubic time algorithm for matrix product (with a
cost of 𝑂 (𝑛log2 7)) and finding explicit algorithms for small size
matrix product remains today a challenge. In order to describe the
contributions presented in this paper, let us recall some well-known
terminologies for the sake of clarity.

Definitions 1.1. We denote byM𝑚,𝑛,𝑝 the bilinear map repre-
senting the matrix product of a𝑚 × 𝑛-matrix by a 𝑛 × 𝑝 matrix. In
particular, given any field F, there exist 𝑟 𝑚 × 𝑝 matrices (𝐶𝑖 )1≤𝑖≤𝑟 , 𝑟
linear forms (ℓ𝑖 )1≤𝑖≤𝑟 from F𝑚×𝑛 into F and 𝑟 linear forms (ℓ ′

𝑖
)
1≤𝑖≤𝑟

from F𝑛×𝑝 into F such that the product of the 𝑚 × 𝑛 matrix 𝐴 by
the𝑛 × 𝑝 matrix𝐵 is computed by the following computational scheme:

M𝑚,𝑛,𝑝 (𝐴, 𝐵) = 𝐴 · 𝐵 =

𝑟∑︁
𝑖=1

ℓ𝑖 (𝐴)ℓ ′𝑖 (𝐵)𝐶𝑖 . (1)

This non-commutative scheme is classically interpreted as a tensor
(see precise encoding in Section 2) and we recall that the number 𝑟
of its summands is the rank of that tensor. In this work, the no-
tations ⟨𝑚 × 𝑛 × 𝑝 : 𝑟 ⟩ stands for a tensor of rank 𝑟 encoding the
productM𝑚,𝑛,𝑝 . We denotes by ⟨𝑚 × 𝑛 × 𝑝⟩ the whole family of such
schemes independently of their rank. The tensor rank R⟨𝑚 × 𝑛 × 𝑝⟩ of
the considered matrix product is the smallest integer 𝑟 such that there
is a tensor ⟨𝑚 × 𝑛 × 𝑝 : 𝑟 ⟩ in ⟨𝑚 × 𝑛 × 𝑝⟩. Similarly, {𝑚 × 𝑛 × 𝑝 : 𝑟 }
denotes a computational scheme of rank 𝑟 involving a parameter 𝜖
whose limit computes the matrix productM𝑚,𝑛,𝑝 exactly as 𝜖 tends
to zero. The border rank ofM𝑚,𝑛,𝑝 is the smallest integer 𝑟 such that
there exits an approximate scheme {𝑚 × 𝑛 × 𝑝 : 𝑟 }.

The tensor rank R⟨𝑛 × 𝑛 × 𝑛⟩ is related to the number of multi-
plications needed to compute the product of two 𝑛 × 𝑛 and gives a
measures of its complexity such as the exponent 𝜔 of matrix multi-
plication equal to lim𝑛→∞R⟨𝑛 × 𝑛 × 𝑛⟩. There is no result relative
to asymptotic complexity in the present work and we refer to [1]
for a presentation of these researches, bibliographic references and
the last best asymptotic bound 𝑂 (𝑛2.3728596) known to date.

Alongside these galactic algorithms, a substantial amount of
work was devoted to the practical design of computational schemes
for small matrix products (see [8] for bibliographic references
and [23] for last known results). Our contribution follows this path
and improves the complexity of the product of 5 × 5 matrices and
several other algorithms.

The structure of ⟨2 × 2 × 2⟩ is broadly understood: there is basi-
cally just one rank 7 tensor ⟨2 × 2 × 2 : 7⟩ introduced in [28] up to
symmetries as shown in [10, Thm 0.1]; furthermore, in that case
the tensor rank is known to be 7 (see [29, Thm 3.1]). But already
the structure of ⟨3 × 3 × 3⟩ remains unresolved and very little is
known about the actual complexity of small matrix products.

Pursuing the works done the last 53 years in [18–20, 22], we
propose a new non-commutative algorithm for multiplying 5 × 5
matrices using 98 multiplications. More precisely, by presenting
explicit algorithms, we establish the following result:

Theorem 1.1. The tensor rank of matrix multiplication tensor
encoding the product of a 3 × 5 by a 5 × 5 matrix is bounded by 58.

This implies that the tensor rank of matrix multiplication tensor
encoding the product of 5 × 5 matrices is bounded by 98.

Furthermore, the border rank of matrix multiplication tensor en-
coding the product of 5 × 5 matrices is bounded by 89.

This theorem results mainly from the work initiated by the sec-
ond author in [26]. This work induces many algorithms (e.g. see [23]
for a complete list) and especially an algorithm ⟨3 × 3 × 6 : 40⟩ that
leads to tensors ⟨6 × 6 × 6 : 160⟩ and ⟨12 × 12 × 12 : 1040⟩ (this
last one defines a generic algorithmwith cost𝑂 (𝑛2.796) for suitable
square matrices).

2 TENSOR REPRESENTATION OF MATRIX
MULTIPLICATION

In the forthcoming sections, we present several matrix product algo-
rithms as trilinear forms. To do so, let us review the needed notions
through an well-known example. The matrix product 𝐶 = 𝐴 · 𝐵
could be computed using Strassen algorithm by performing the
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following computations (see [28]):

𝜌1 ← 𝑎11 (𝑏12 − 𝑏22),
𝜌2 ← (𝑎11 + 𝑎12)𝑏22, 𝜌4 ← (𝑎12 − 𝑎22) (𝑏21 + 𝑏22),
𝜌3 ← (𝑎21 + 𝑎22)𝑏11, 𝜌5 ← (𝑎11 + 𝑎22) (𝑏11 + 𝑏22),
𝜌6 ← 𝑎22 (𝑏21 − 𝑏11), 𝜌7 ← (𝑎21 − 𝑎11) (𝑏11 + 𝑏12),( 𝑐11 𝑐12

𝑐21 𝑐22

)
=

(
𝜌5+𝜌4−𝜌2+𝜌6 𝜌6+𝜌3

𝜌2+𝜌1 𝜌5+𝜌7+𝜌1−𝜌3

)
.

(2)

In order to consider this algorithm under a geometric standpoint,
we present it as a tensor. Matrix multiplication is a bilinear map:

F𝑚×𝑛 × F𝑛×𝑝 → F𝑚×𝑝 ,
(𝐴, 𝐵) → 𝐴 · 𝐵, (3)

where the spaces F·×· are finite vector spaces over a field F that
can be endowed with the Frobenius inner product:

⟨𝑀, 𝑁 ⟩ = Trace(𝑀⊺ · 𝑁 ). (4)

Hence, this inner product establishes an isomorphism between F·×·
and its dual space

(
F·×·

)★ allowing for example to associate matrix
multiplication and the trilinear form Trace(𝐶⊺ · 𝐴 · 𝐵):

F𝑚×𝑛 × F𝑛×𝑝 × (F𝑚×𝑝 )★ → F,
(𝐴, 𝐵,𝐶⊺) → ⟨𝐶,𝐴 · 𝐵⟩. (5)

As by construction, the space of trilinear forms is the canonical
dual space of order three tensor product, we could associate the
Strassen multiplication algorithm (2) with the tensor S defined by:∑7

𝑖=1 𝑃𝑖 ⊗𝑄𝑖 ⊗𝑆𝑖 =
(
1 0
0 0

)
⊗

(
0 1
0 −1

)
⊗

(
0 0
1 1

)
+(

1 1
0 0

)
⊗

(
0 0
0 1

)
⊗

( −1 0
1 0

)
+
(
0 0
1 1

)
⊗

(
1 0
0 0

)
⊗

(
0 1
0 −1

)
+(

0 1
0 −1

)
⊗

(
0 0
1 1

)
⊗

(
1 0
0 0

)
+
(
1 0
0 1

)
⊗

(
1 0
0 1

)
⊗

(
1 0
0 1

)
+(

0 0
0 1

)
⊗

( −1 0
1 0

)
⊗

(
1 1
0 0

)
+
( −1 0
1 0

)
⊗

(
1 1
0 0

)
⊗

(
0 0
0 1

)
(6)

in (F𝑚×𝑛)★ ⊗ (F𝑛×𝑝 )★ ⊗ F𝑚×𝑝 with 𝑚 = 𝑛 = 𝑝 = 2. As stated in
Definitions 1.1, this tensor is a particular description of the matrix
product bilinear map. Indeed, there is an infinite set of equivalent
tensors shown by the following theorem:

Theorem 2.1 ([9, § 2.8]). The isotropy group of any matrix multi-
plication tensor in ⟨𝑚 × 𝑛 × 𝑝⟩ is (psl(𝑚) × psl(𝑛) × psl(𝑝)) ⋊𝔖3,
where psl stands for the group of matrices of determinant ±1 and𝔖3

for the symmetric group on 3 elements.

The following proposition gives another description from an
invariant perspective.

Proposition 2.2 ([16, § 2.5.1]). The tensor defining the prod-
uct of a 𝑚 × 𝑛-matrix by a 𝑛 × 𝑝-matrix is isomorphic to the ten-
sor Id𝑚×𝑚 ⊗ Id𝑛×𝑛 ⊗ Id𝑝×𝑝 . This isomorphism gives the well-known
expression of the classical matrix multiplication tensor:

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑝∑︁
𝑘=1

𝐸
𝑗
𝑖
⊗ 𝐸𝑘𝑗 ⊗ 𝐸

𝑖
𝑘
, (7)

where 𝐸 𝑗
𝑖
denotes the matrix with its coefficient at the intersection of

line 𝑖 and column 𝑗 equal to 1 and all its other coefficients equal to 0.

Let us introduce now an invariant for the action described in
Theorem 2.1 that will be useful in our presentation.

Definition 2.1. Given a tensor P decomposable as sum of rank-
one elementary tensors:

P =

𝑞∑︁
𝑖=1

𝑃𝑖 ⊗ 𝑄𝑖 ⊗ 𝑆𝑖 (8)

where 𝑃𝑖 , 𝑄𝑖 and 𝑆𝑖 are matrices of suitable sizes for 𝑖 in {1, . . . , 𝑞}.
The type of a tensorP is the list [(rank 𝑃𝑖 , rank𝑄𝑖 , rank 𝑆𝑖 )]𝑖=1...𝑞 .
Inspired by [13, § 4], we encode the type of a tensor P as the

following polynomial:

𝑇P (𝑋,𝑌, 𝑍 ) =
𝑞∑︁
𝑖=1

𝑋 rank𝑃𝑖𝑌 rank𝑄𝑖𝑍 rank𝑆𝑖 . (9)

Hence, the type of Strassen’s tensor is 𝑋2𝑌2𝑍2 + 6𝑋𝑌𝑍 .
Now we precise the trilinear form of tensor that is used in the

sequel of this work. Given any triple (𝐴, 𝐵,𝐶) of suitable size ma-
trices, one can explicitly express from tensor S the Strassen matrix
multiplication algorithm computing 𝐴 · 𝐵 by the complete contrac-
tion {S, 𝐴 ⊗ 𝐵 ⊗ 𝐶}:(
(F𝑚×𝑛)★⊗(F𝑛×𝑝 )★⊗F𝑚×𝑝

)
⊗

(
F𝑚×𝑛⊗F𝑛×𝑝 ⊗ (F𝑚×𝑝 )★

)
→F,

S ⊗ (𝐴 ⊗ 𝐵 ⊗ 𝐶) → ∑7
𝑖=1⟨𝑃𝑖 , 𝐴⟩⟨𝑄𝑖 , 𝐵⟩⟨𝑆𝑖 ,𝐶⟩

(10)
that is equal to Trace(𝐴 · 𝐵 ·𝐶). Hence, for inputs𝐴 = (𝑎𝑖 𝑗 ), 𝐵 = (𝑏𝑖 𝑗 )
and 𝐶 = (𝑐𝑖 𝑗 ) of suitable sizes (𝑖 = 1, 2 and 𝑗 = 1, 2), the represen-
tation of Strassen Algorithm (2) as a trilinear form is:

𝑎11 (𝑏12 − 𝑏22) (𝑐21 + 𝑐22)
+ (𝑎11 + 𝑎12) 𝑏22 (−𝑐11 + 𝑐21)
+ (𝑎21 + 𝑎22) 𝑏11 (𝑐12 − 𝑐22)
+ (𝑎12 − 𝑎22) (𝑏21 + 𝑏22) 𝑐11

+ (𝑎11 + 𝑎22) (𝑏11 + 𝑏22) (𝑐11 + 𝑐22)
+𝑎22 (𝑏21 − 𝑏11) (𝑐11 + 𝑐12)
+ (𝑎21 − 𝑎11) (𝑏11 + 𝑏12) 𝑐22 .

(11)

Before ending this section let us recall that, as stated in introduction,
the ⟨2 × 2 × 2⟩ is pretty well-understood even in its rectangular
counterpart as shown by the following proposition:

Proposition 2.3 ([14, Thm 1]). The𝑚 × 2 by 2 × 𝑛 matrix prod-
uct can be encoded by a ⟨𝑚 × 2 × 𝑛 : ⌈(3𝑚𝑛 +max(𝑚,𝑛))/2⌉⟩ ten-
sor.

The next section is devoted to gather classical results used in the
sequel of this paper to construct new algorithm for small matrix
product.

2.1 Constructing composite tensors from small
“atomic” ones

Introducing tensor to represents matrix product and their relation-
ship with the trace operator induces naturally several interesting
results on matrix product algorithms. First, let us remark that—
given three matrices 𝐴, 𝐵 and 𝐶 of suitable sizes—the following
properties of the trace operator:

Trace (𝐴 · 𝐵 ·𝐶) = Trace (𝐶 · 𝐴 · 𝐵),
= Trace (𝐵 ·𝐶 · 𝐴),
= Trace

(
(𝐴 · 𝐵 ·𝐶)⊺

)
,

= Trace
(
𝐶⊺ · 𝐵⊺ · 𝐴⊺

)
,

(12)
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show that the following relations hold:
⟨𝑚 × 𝑛 × 𝑝 : 𝑟 ⟩ = ⟨𝑝 ×𝑚 × 𝑛 : 𝑟 ⟩ = ⟨𝑛 × 𝑝 ×𝑚 : 𝑟 ⟩,

= ⟨𝑝 × 𝑛 ×𝑚 : 𝑟 ⟩ = ⟨𝑚 × 𝑝 × 𝑛 : 𝑟 ⟩,
= ⟨𝑛 ×𝑚 × 𝑝 : 𝑟 ⟩.

(13)

Furthermore, for all ℓ such that 1 ≤ ℓ ≤ 𝑚 − 1 there is a natural
isomorphism between F𝑚×𝑛 and Fℓ×𝑛 ⊕ F(𝑚−ℓ)×𝑛 ; The same re-
mark shows that Id𝑚×𝑚 is equal to Idℓ×ℓ ⊕ Id(𝑚−ℓ)×(𝑚−ℓ) . This
relation and the tensor product’s properties imply that the ten-
sor Id𝑚×𝑚 ⊗ Id𝑛×𝑛 ⊗ Id𝑝×𝑝 is equal to
Idℓ×ℓ ⊗ Id𝑛×𝑛 ⊗ Id𝑝×𝑝 + Id(𝑚−ℓ)×(𝑚−ℓ) ⊗ Id𝑛×𝑛 ⊗ Id𝑝×𝑝 . (14)

These simple remarks and Proposition 2.2 recall that small sizes
matrix product algorithms allow by their direct sum to construct
an algorithm for the product of matrices of bigger sizes as shown
by the following well-known lemma:

Lemma 2.1. Given ⟨ℓ × 𝑛 × 𝑝 : 𝑟 ⟩ and ⟨(𝑚 − ℓ) × 𝑛 × 𝑝 : 𝑠⟩, one
can construct ⟨𝑚 × 𝑛 × 𝑝 : 𝑟 + 𝑠⟩ as follow:
⟨𝑚 × 𝑛 × 𝑝 : 𝑟 + 𝑠⟩ = ⟨ℓ × 𝑛 × 𝑝 : 𝑟 ⟩ ⊕ ⟨(𝑚 − ℓ) × 𝑛 × 𝑝 : 𝑠⟩. (15)

There is a similar construction using the tensor product:

⟨𝑚𝑢 × 𝑛𝑣 × 𝑝𝑤 : 𝑟𝑠⟩ = ⟨𝑚 × 𝑛 × 𝑝 : 𝑟 ⟩ ⊗ ⟨𝑢 × 𝑣 ×𝑤 : 𝑠⟩. (16)

We say that a tensor is “atomic” if it is not constructed using the
above constructions, Proposition 2.3 or if it is induced by Strassen’s
algorithm (see [8, § 2] and [24] for such constructions).

The previous sections were devoted to the notions and notations
necessary to describe concisely the new results on which the next
sections focus. We could now present the main result of this paper.

3 NEW EXACT ALGORITHMS
The rank of the classical tensor in ⟨3 × 5 × 5⟩ is 75. Proposition 2.3
and Lemma 2.1 improves the resulting bound to 63 as shown by
the following relations:
⟨3 × 3 × 5 : 38⟩ = ⟨3 × 3 × 3 : 23⟩ ⊕ ⟨3 × 3 × 2 : 15⟩, (17)
⟨3 × 5 × 5 : 63⟩ = ⟨3 × 3 × 5 : 38⟩ ⊕ ⟨3 × 2 × 5 : 25⟩. (18)

This boundwas superseded using ⟨3 × 3 × 5 : 36⟩ introduced in [26]
and above standard constructions.

Our results are also rooted in the same kind of experimental
mathematics combining computer power and human efforts. Thus,
let us give a short account of a method allowing to find new atomic
tensors in the next section.

3.1 How to construct small rank matrix
multiplication tensors

As any tensor in ⟨𝑚 × 𝑛 × 𝑝⟩ encodes the same bilinear map, Propo-
sition 7 implies that the following relation always holds:

⟨𝑚 × 𝑛 × 𝑝 : 𝑟 ⟩ −
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑝∑︁
𝑘=1

𝐸
𝑗
𝑖
⊗ 𝐸𝑘𝑗 ⊗ 𝐸

𝑖
𝑘
= 0. (19)

Using an ansatz with undetermined coefficients for ⟨𝑚 × 𝑛 × 𝑝 : 𝑟 ⟩,
this relation defines the Brent over-determined system of (𝑚𝑛𝑝)2
cubic polynomial equations in (𝑚𝑛 + 𝑛𝑝 + 𝑝𝑚)𝑟 unknowns (see [5,
§ 5, eq 5.03]). Theoretically, a Gröbner basis computation allows
to describe all solutions of this system and thus close the topic.

But such a resolution is not possible in practice for any matrix
size of interest. Nevertheless several original matrix multiplication
algorithms where found by hand (e.g. ⟨3 × 3 × 3 : 23⟩ in [15] and
probably Strassen’s algorithm [28]) and almost every method for
solving were tried (e.g. sat solver in [13, § 2]) with—up to our
knowledge—few complexity improvements.

For now, the almost only productive approach remains numerical
optimization method using least-squares methods and heuristics.
In fact, while objective functions derived from Equation (19) are
non-convex and nonlinear, they can be splitted in three linear sub-
systems (by helding two components of the unknown tensor fixed
for example) and their resolution boils down to linear algebra. Nev-
ertheless, in order to obtain new results, a regularization term needs
to be added and the following is chosen in this paper:

Arg min
𝑃𝑖 , 𝑄𝑖 , 𝑆𝑖

∑𝑞

𝑖=0 𝑃𝑖 ⊗𝑄𝑖 ⊗𝑆𝑖 −
∑𝑚
𝑖=0

∑𝑛
𝑗=0

∑𝑝

𝑘=0
𝐸
𝑗
𝑖
⊗𝐸𝑘

𝑗
⊗𝐸𝑖

𝑘


+𝜆

(∑𝑞

𝑖=0

𝑃𝑖 − 𝑃𝑖 + 𝑄𝑖 −𝑄𝑖

 + 𝑆𝑖 − 𝑆𝑖) . (20)

with model matrices 𝑃𝑖 , 𝑄𝑖 , 𝑆𝑖 defining the regularization and a
scalar parameter 𝜆 that determines the weight of the regularization
term. The models are designed to drive the solution to match a de-
sired structure and are choosed carefully for each iteration (see [26]
for a detailed presentation). This approach gives a uniform method
for deriving exact algorithm but also approximate one when they
are a order 1 polynomial approximation w.r.t their parameter 𝜖 .

A better precision—an approximation order greater then 1—
requires several other heuristics. If all dimensions of the problem
are greater than 3, it is not yet possible to obtain acceptably short
exact algorithms. Hence, the success of the resolution presented
here relies on heuristical expertise and tyazhelaya rabota.However,
the works ot that topic done since [26] show that the objective func-
tion of the found approximate algorithms allows to presumably
estimate the exact rank of large problems. This point will appear in
a future work.

Let us now describe the latest exact matrix multiplication tensor
found with this method.

3.2 ⟨3 × 5 × 5 : 58⟩ description
Before the detailed description done in the next section, let us first
present the type introduced in Definition 2.1 of this tensor:

17𝑋2𝑌2𝑍2 + 2𝑋𝑌4𝑍 + 𝑋3𝑌2𝑍 + 𝑋𝑌2𝑍3

+5𝑋3𝑌𝑍 + 5𝑋𝑌𝑍3 + 2𝑋2𝑌2𝑍 + 2𝑋𝑌2𝑍2 + 𝑋𝑌3𝑍

+𝑋2𝑌𝑍 + 𝑋𝑌𝑍2 + 13𝑋𝑌2𝑍

+7𝑋𝑌𝑍 = 𝑇 (𝑋,𝑌, 𝑍 ).

(21)

Remark 3.1. Considering that the indeterminates commute, the
relation 𝑇 (𝑋,𝑌, 𝑍 ) = 𝑇 (𝑍,𝑌,𝑋 ) holds. Unfortunately, even if this
property suggests the existence of a symmetry (see Equation (12)
and [9, 𝜋13 in Thm 3.4] for a detailed description), this tensor does not
have a non-trivial stabilizer. Such stabilizer are not uncommon for
tensor found using the method sketched in Section 3.1: for example the
stabilizer ((𝐶2 ×𝐶2) ⋊ 𝑆4) ⋊𝐶2 of ⟨3 × 3 × 6 : 40⟩ is of order 192
(see [23]). So, even if Comon’s conjecture was disproved in full gen-
erality (see [25]), there might be a tensor in ⟨3 × 5 × 5⟩ of rank 58
with stabilizer 𝐶2 ×𝐶2 × 𝑆3.
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As two matrix multiplication tensor of same rank could share
the same type, this invariant is not a faithful descriptions and we
give its explicit expression in the next section.

Trilinear form of ⟨3 × 5 × 5 : 58⟩. We split the forthcoming de-
scription in 13 expressions whose components have the type corre-
sponding to their indices as follow:

⟨3 × 5 × 5 : 58⟩ = 𝜏222 + 𝜏141 + 𝜏321 + 𝜏123 + 𝜏311
+ 𝜏113 + 𝜏221 + 𝜏122 + 𝜏131 + 𝜏211
+ 𝜏112 + 𝜏121 + 𝜏111 .

(22)

Let us start with 𝜏141:

𝜏141 =𝑎24

(
𝑏13 + 𝑏22 + 𝑏23 − 𝑏24
+ 𝑏33 − 𝑏35 − 𝑏43 + 𝑏44 + 𝑏45

)
(𝑐41 + 𝑐42)

− (𝑎14 − 𝑎24)
(
𝑏14 − 𝑏32 + 𝑏34 + 𝑏41
+ 𝑏42 − 𝑏44 + 𝑏51 − 𝑏54 − 𝑏55

)
𝑐41 .

(23)

𝜏211 = (𝑎12 − 𝑎22 − 𝑎25) (𝑏22 − 𝑏24) (𝑐12 + 𝑐32 + 𝑐42) (24)

𝜏112 = (𝑎12 + 𝑎14 − 𝑎15) 𝑏41 (𝑐11 + 𝑐31 + 𝑐12) . (25)

𝜏222 = (𝑎12 − 𝑎22 + 𝑎23) (𝑏22 + 𝑏31) (𝑐11 + 𝑐12 + 𝑐21 + 𝑐41)
+ (𝑎32 − 𝑎22 + 𝑎23) (𝑏22 − 𝑏33) (𝑐23 + 𝑐43 − 𝑐32 − 𝑐33)
+ (𝑎33 + 𝑎15 + 𝑎35) (𝑏52 − 𝑏31) (𝑐11 + 𝑐21 + 𝑐41 − 𝑐13)

+ (𝑎13 + 𝑎14 + 𝑎34) (𝑏42 + 𝑏33 + 𝑏35)
(
𝑐31 + 𝑐23
− 𝑐33 + 𝑐43

)
+ (𝑎25 − 𝑎31 − 𝑎35) (𝑏14 + 𝑏55) (𝑐52 − 𝑐42 − 𝑐43)
+ (𝑎24 − 𝑎11 − 𝑎14) (𝑏14 − 𝑏35 + 𝑏45) (𝑐52 − 𝑐41 − 𝑐42)
+ (𝑎21 + 𝑎12 − 𝑎22) (𝑏11 + 𝑏25) (𝑐11 + 𝑐51 + 𝑐12)
+ (𝑎21 − 𝑎22 + 𝑎32) (𝑏13 − 𝑏25) (𝑐32 + 𝑐33 − 𝑐53)
+ (𝑎31 + 𝑎15 + 𝑎35) (𝑏55 − 𝑏11) (𝑐11 + 𝑐51 − 𝑐13)

+ (𝑎12 + 𝑎24)
(
𝑏43 + 𝑏24 − 𝑏22
− 𝑏13 − 𝑏23 − 𝑏33

)
(𝑐41 + 𝑐32 + 𝑐42)

+ (𝑎11 + 𝑎14 + 𝑎34) (𝑏13 − 𝑏35 + 𝑏45) (𝑐31 − 𝑐33 + 𝑐53)

+
(
𝑎13 + 𝑎14 − 𝑎21
− 𝑎23 − 𝑎24

)
(𝑏12 + 𝑏35) (𝑐51 − 𝑐21 − 𝑐22)

+ (𝑎24 − 𝑎14 + 𝑎15) (−𝑏41 − 𝑏51 + 𝑏54 + 𝑏55) (𝑐41 − 𝑐12)
+ (𝑎34 + 𝑎15) (𝑏41 + 𝑏53) (𝑐31 + 𝑐13)
+ (𝑎32 + 𝑎25) (𝑏22 − 𝑏24 + 𝑏53) (𝑐32 − 𝑐43)
+ (𝑎33 − 𝑎25 + 𝑎35) (𝑏12 − 𝑏32 + 𝑏52 + 𝑏34) (𝑐43 − 𝑐22)
+ (𝑎13 + 𝑎14 − 𝑎24) (𝑏34 + 𝑏42 − 𝑏32) (𝑐41 − 𝑐22) .

(26)

𝜏321 =

(
𝑎13 − 𝑎23 + 𝑎33 + 𝑎14
− 𝑎24 − 𝑎25 + 𝑎35

)
(𝑏12 − 𝑏32 + 𝑏34) 𝑐22 . (27)

𝜏123 = − (𝑎13 + 𝑎14) (𝑏42 + 𝑏35)
(
𝑐31 − 𝑐21 − 𝑐22
+ 𝑐23 − 𝑐33 + 𝑐43

)
. (28)

𝜏311 =

(
𝑎13 + 𝑎15 + 𝑎22 + 𝑎33
+ 𝑎35 − 𝑎12 − 𝑎23

)
𝑏31 (𝑐21 + 𝑐11 + 𝑐41)

+
(
𝑎23 + 𝑎32 − 𝑎13 − 𝑎22
− 𝑎14 − 𝑎33 − 𝑎34

)
𝑏33 (𝑐23 − 𝑐33 + 𝑐43)

+
(
𝑎11 − 𝑎21 + 𝑎31 + 𝑎14
− 𝑎24 − 𝑎25 + 𝑎35

)
𝑏14 (𝑐52 − 𝑐42)

+
(
𝑎11 − 𝑎21 + 𝑎31 − 𝑎12
+ 𝑎22 + 𝑎15 + 𝑎35

)
𝑏11 (𝑐11 + 𝑐51)

+
(
𝑎21 + 𝑎32 − 𝑎11 − 𝑎14
− 𝑎22 − 𝑎31 − 𝑎34

)
𝑏13 (𝑐53 − 𝑐33) .

(29)

𝜏113 = (𝑎22 − 𝑎23) 𝑏22
(
𝑐11 + 𝑐12 + 𝑐21 + 𝑐22 + 𝑐23
− 𝑐32 − 𝑐33 + 𝑐41 + 𝑐42 + 𝑐43

)
− (𝑎31 + 𝑎35) 𝑏55

(
𝑐11 − 𝑐13 + 𝑐42 + 𝑐43
+ 𝑐51 − 𝑐52 − 𝑐53

)
+ (𝑎11 + 𝑎14) (𝑏35 − 𝑏45)

(
𝑐31 − 𝑐33 + 𝑐41 + 𝑐42
− 𝑐51 − 𝑐52 + 𝑐53

)
+ (𝑎22 − 𝑎21) 𝑏25

(
𝑐11 + 𝑐12 − 𝑐32
−𝑐33 + 𝑐51 + 𝑐52 + 𝑐53

)
− (𝑎33 + 𝑎35) 𝑏52 (𝑐11 + 𝑐21 + 𝑐41 − 𝑐22 − 𝑐13 − 𝑐23) .

(30)

𝜏221 = (𝑎22 − 𝑎32 + 𝑎24) (𝑏22 + 𝑏13 + 𝑏23 + 𝑏33 − 𝑏24) 𝑐32
− (𝑎12 + 𝑎14 + 𝑎34) (𝑏41 + 𝑏13 + 𝑏33 − 𝑏43) 𝑐31 .

(31)

𝜏122 = 𝑎15 (𝑏41 + 𝑏51 − 𝑏52 − 𝑏55) (𝑐11 + 𝑐41 − 𝑐13)
+𝑎25 (𝑏22 − 𝑏24 + 𝑏54 + 𝑏55) (𝑐12 + 𝑐42 + 𝑐43) .

(32)

𝜏131 = (𝑎25 − 𝑎35)
(
𝑏12 + 𝑏14 − 𝑏32 + 𝑏34
+ 𝑏52 + 𝑏53 − 𝑏54

)
𝑐43 . (33)

𝜏121 =𝑎32 (𝑏21 − 𝑏53) 𝑐13
−𝑎12 (−𝑏21 + 𝑏41 + 𝑏22 + 𝑏25) (𝑐11 + 𝑐12)
+𝑎32 (𝑏22 + 𝑏23 − 𝑏53 + 𝑏25) (𝑐32 + 𝑐33)
+𝑎34 (𝑏42 + 𝑏43 + 𝑏53 + 𝑏45) (𝑐33 − 𝑐31)
+𝑎13 (𝑏32 − 𝑏31 − 𝑏42) (𝑐21 + 𝑐41)
+𝑎33 (𝑏32 + 𝑏33 + 𝑏35 − 𝑏12 − 𝑏52) (𝑐23 + 𝑐43)
+𝑎23 (𝑏22 + 𝑏34) (𝑐22 + 𝑐42)
+𝑎31 (𝑏13 + 𝑏15 − 𝑏55) 𝑐53
+𝑎21 (𝑏14 + 𝑏15 + 𝑏25 − 𝑏35) 𝑐52
+𝑎11 (𝑏12 + 𝑏15 + 𝑏35 − 𝑏11 − 𝑏45) 𝑐51
+𝑎34 (𝑏44 + 𝑏53 − 𝑏42) 𝑐43
− (𝑎15 + 𝑎35) (𝑏11 + 𝑏31 − 𝑏51 + 𝑏53) 𝑐13
+ (𝑎22 − 𝑎12) (𝑏11 + 𝑏21 + 𝑏31 + 𝑏22 − 𝑏24) 𝑐12 .

(34)

𝜏111 = (𝑎31 + 𝑎33) 𝑏12𝑐23
+ (𝑎21 + 𝑎23 + 𝑎24 − 𝑎11 − 𝑎13 − 𝑎14) 𝑏12 (𝑐51 − 𝑐21)
+ (𝑎21 + 𝑎23 + 𝑎24) 𝑏35 (𝑐51 + 𝑐52 − 𝑐21 − 𝑐22)
+ (𝑎33 + 𝑎34) 𝑏35 (𝑐53 − 𝑐23 − 𝑐43)
+𝑎12 (𝑏13 + 𝑏23 + 𝑏33 − 𝑏43) (𝑐31 + 𝑐41 + 𝑐32 + 𝑐42)
+ (𝑎24 + 𝑎15 − 𝑎14 − 𝑎25) (𝑏54 + 𝑏55 − 𝑏51) 𝑐12
+ (𝑎32 − 𝑎34 + 𝑎35) 𝑏53 (𝑐13 + 𝑐33 + 𝑐43) .

(35)



The tensor rank of 5 × 5 matrices multiplication
is bounded by 98 and its border rank by 89

Induced geometry. As shown by Theorem 2.1, the action of the
group (psl(3) × psl(5) × psl(5)) ⋊𝐶2 on the tensor introduced in
the previous section defines classically a manifold of dimension 52
of tensors ⟨3 × 5 × 5 : 58⟩. Furthermore, this tensor have 8 serendip-
itous equalities that is couple of summands that shares the same
factor (e.g. the two first summands of Equation 35 share the fac-
tor 𝑏12). Up to our knowledge, this property was first introduced
in [27, § 9.3] but does not seem to receive the attention it deserves.
For example, this property allows to define new transformation
of a matrix multiplication tensor into another as shown by the
following lemma:

Lemma 3.1. Given any invertible 𝑞 × 𝑞-matrix𝑀 , the tensor with
serendipitous equalities

∑𝑞

𝑖=0𝑈𝑖 ⊗ 𝑉𝑖 ⊗𝑊 involving the component𝑊
is equal to the tensor

∑𝑞

𝑖=0 𝛼𝑖 ⊗ 𝛽𝑖 ⊗𝑊 defined by:( 𝛼1

.

.

.
𝛼𝑞

)
= Transpose(𝑀) ©«

𝑈1

.

.

.
𝑈𝑞

ª®¬ , ©«
𝛽1

.

.

.
𝛽𝑞

ª®¬ = 𝑀−1
©«
𝑉1

.

.

.
𝑉𝑞

ª®¬ . (36)

The proof of this lemma reduces to the trivial computation of
the expression

∑𝑞

𝑖=0𝑈𝑖 ⊗ 𝑉𝑖 ⊗𝑊 − 𝛼𝑖 ⊗ 𝛽𝑖 ⊗𝑊 .
This lemma shows that the dimension of the manifold induced

by the tensor introduced in this section is greater then that could
be expected.

The following sections are devoted to present other interesting
consequences.

3.3 Upper bound 98 on tensor rank
of ⟨5 × 5 × 5⟩

Lemma 2.1 and the tensor presented in Section 3.2 allows to con-
struct the following tensor:
⟨5 × 5 × 5 : 98⟩ = ⟨2 × 5 × 5 : 40⟩ ⊕ ⟨3 × 5 × 5 : 58⟩, (37)

with the construction of tensor ⟨2 × 5 × 5 : 40⟩ taken from [14] (its
explicit expression is given in [23]). Remark that the best theoret-
ical lower bound on the corresponding tensor rank is 48 (see [3,
Theorem 2]).

Furthermore, this new atomic tensor also improves the construc-
tion of the following algorithms:
⟨10 × 10 × 10 : 686⟩ = ⟨2 × 2 × 2 : 7⟩ ⊗ ⟨5 × 5 × 5 : 98⟩,

(38)
⟨15 × 15 × 15 : 2088⟩ = ⟨3 × 5 × 5 : 58⟩ ⊗ ⟨5 × 3 × 3 : 36⟩.

(39)
All these tensors are explicitly presented via [23].

Consequence of this new upper bound. A group-theoretic ap-
proach to the conception of matrix multiplication algorithm related
to Fourier transform on finite groups was introduced by Cohn and
Umans in [6]. The new tensor constructed in Equation (37) allows
to exhibit a limitation of this approach as shown by the following
remark.

Remark 3.2. It is shown in [11] that no group can realize 5 × 5ma-
trix multiplication better then Makarov’s algorithm ⟨5 × 5 × 5 : 100⟩

using the group-theoretic approach of Cohn and Umans [6]. Hence,
the tensor presented in this note shows that this approach does not pro-
duce better algorithms then ⟨5 × 5 × 5 : 98⟩. The same assertion holds
for ⟨3 × 3 × 3 : 23⟩ and ⟨4 × 4 × 4 : 49⟩ (see [12, Theorem 7.3]).

The next section is devoted to describe a new approximate algo-
rithm {5 × 5 × 5 : 89}.

4 NEW APPROXIMATE ALGORITHMS
Approximate matrix multiplication tensors were first introduced
by Bini et ali in [2] in order to improve asymptotic bounds. From
a practical point of view, these approximate algorithms could be
used efficiently when the coefficients are in Z/𝑝Z (see [4]). Fur-
thermore, from a theoretical point of view, these tensors allow to
work with Euclidean closure of the Brent algebraic variety defined
by Equation (19) and not the Zariski closure induced by dealing
with exact tensors. As the Zariski closure is often much larger
then the Euclidean closure, this shift of standpoint brings usually
lower bounds. Hence, the exact tensor ⟨2 × 3 × 3 : 15⟩ presented
in [14] is optimal; Smirnov describes {2 × 3 × 3 : 14} in [26] and
that bound on the corresponding border rank was proved to be
optimal in [7, Theorem 1.4]. Similarly, while the best upper bound
for tensor rank of ⟨3 × 3 × 3⟩ is 23 ([15]), {3 × 3 × 3 : 20} could be
found in [26] ([7, Theorem 1.1] reports that the lower bound is 17
for the corresponding border rank).

Lemma 2.1 shows that these atomic approximate matrix multi-
plication tensors lead to the following tensor used in the sequel:

{5 × 3 × 3 : 34} = {3 × 3 × 3 : 20} ⊕ {2 × 3 × 3 : 14}. (40)

The results in [2] are based on a partial matrix multiplication algo-
rithm that computes approximately the product of a 2 × 2-matrix𝐴
with one element vanishing (e.g. 𝑎22 = 0) and a 2 × 2-matrix 𝐵 a
full matrix. This kind of tensor were used to improve the bound on
the exponent of matrix multiplication (see [21, § 3]).

Let us now show how to complete a tensor constructed using
Equation 40 in order to define {5 × 5 × 5 : 89}.

4.1 A partial approximate matrix
multiplication

This section presents a partial approximate tensor T𝜖 that defines
an algorithm computing the product of a 5 × 5-matrix 𝐴 with 9
vanishing elements:

𝑎𝑖 𝑗 = 0, ∀(𝑖, 𝑗) such that 1 ≤ 𝑖 ≤ 3, 3 ≤ 𝑗 ≤ 5. (41)

and a full 5 × 5-matrix 𝐵.

The type of T𝜖 . Remarks that the isotropy introduced in Theo-
rem 2.1 and the associated the invariant presented in Definition 2.1
for exact matrix multiplication tensors remain obviously valid for
approximates ones. The type of T𝜖 is:

20𝑋2𝑌2𝑍2

+3𝑋2𝑌2𝑍 + 2𝑋2𝑌𝑍2 + 4𝑋𝑌2𝑍2

+7𝑋2𝑌𝑍 + 6𝑋𝑌2𝑍 + 8𝑋𝑌𝑍2

+5𝑋𝑌𝑍 .

(42)
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Again, we are going to split its description by trilinear form into
several summands whose subscript indicate the type of their com-
ponents as follow:

T𝜖 = 𝜌222 + 𝜌221 + 𝜌212 + 𝜌122 + 𝜌211 + 𝜌121 + 𝜌112 + 𝜌111 . (43)

𝜌222 =

(
𝑎11 − 𝑎22𝜖3

) (
𝑏12 − 𝑏21 − 𝑏11𝜖3

) (
𝑐21 +

𝑐12

𝜖3

)
+

(
𝑎11 + 𝑎52𝜖3

) ©«
𝑏41 + 𝑏51 − 𝑏31

+ 𝑏15
𝜖2
+ 𝑏21 − 𝑏13

𝜖3

ª®¬
(
𝑐15 + 𝑐51𝜖2

)
+

(
𝑎11 + 𝑎53 + 𝑎52𝜖3

) (
𝑏13 + 𝑏31𝜖3

) (
𝑐31 +

𝑐51

𝜖
+ 𝑐15

𝜖3

)
+

(
𝑎41 − 𝑎43 +

𝑎55

𝜖3

) (
𝑏34 + 𝑏53𝜖3

) (
𝑐35 − 𝑐44 − 𝑐45𝜖3

)
+

(
𝑎11 − 𝑎54
+ 𝑎51𝜖 + 𝑎52𝜖3

) (
𝑏14 − 𝑏41𝜖3

) (
𝑐41 +

𝑐15

𝜖3

)
+ (𝑎21 + 𝑎54)

(
𝑏42 −

𝑏45

𝜖
+ 𝑏14

𝜖3

) (
𝑐25 + 𝑐42𝜖3

)
+ (𝑎21 − 𝑎53)

(
𝑏13 + 𝑏35𝜖2 − 𝑏32𝜖3

) (
𝑐32 +

𝑐52

𝜖
+ 𝑐25

𝜖3

)
+ (𝑎22 + 𝑎45)

(
𝑏55 +

𝑏23

𝜖3

) (
𝑐54 + 𝑐32𝜖3

)
+ (𝑎32 + 𝑎44)

(
𝑏41 +

𝑏24

𝜖3

) (
𝑐14 + 𝑐43𝜖3

)
+ (𝑎12 + 𝑎43)

(
𝑏32 +

𝑏25

𝜖3

) (
𝑐24 + 𝑐51𝜖3

)
+ (𝑎22 + 𝑎41)

(
𝑏15 +

𝑏22

𝜖3

) (
𝑐54 + 𝑐22𝜖3

)
+ (𝑎43 − 𝑎52)

(
𝑏33 +

𝑏25

𝜖3

) (
𝑐34 − 𝑐55𝜖3

)
+ (𝑎45 − 𝑎32)

(
𝑏51 +

𝑏23

𝜖3

) (
𝑐14 − 𝑐33𝜖3

)
+ (𝑎41 − 𝑎32)

(
𝑏11 +

𝑏22

𝜖3

) (
𝑐14 − 𝑐23𝜖3

)
+ (𝑎22 + 𝑎44)

(
𝑏45 −

𝑏24

𝜖3

) (
𝑐54 − 𝑐42𝜖3

)
+ (𝑎41 + 𝑎52)

(
𝑏13 −

𝑏22

𝜖3

) (
𝑐34 − 𝑐25𝜖3

)
+ (𝑎12 + 𝑎44)

(
𝑏42 −

𝑏24

𝜖3

) (
𝑐24 − 𝑐41𝜖3

)
+ (𝑎32 + 𝑎43)

(
𝑏31 −

𝑏25

𝜖3

) (
𝑐14 − 𝑐53𝜖3

)
+ (𝑎44 − 𝑎52)

(
𝑏43 −

𝑏24

𝜖3

) (
𝑐34 + 𝑐45𝜖3

)
+ (𝑎45 − 𝑎12)

(
𝑏52 −

𝑏23

𝜖3

) (
𝑐24 + 𝑐31𝜖3

)
.

(44)

𝜌212 =

(𝑎51
𝜖2
− 𝑎31 + 𝑎53

𝜖3

)
𝑏13

(
𝑐15 + 𝑐55𝜖 − 𝑐53𝜖2 − 𝑐33𝜖3

)
+ (𝑎31 − 𝑎54) 𝑏14

(
𝑐43 −

𝑐15

𝜖3
− 𝑐55

𝜖2

)
.

(45)

𝜌221 =

(𝑎55 − 𝑎11
𝜖3

− 𝑎51

𝜖2
− 𝑎52𝜖

) (
𝑏14 + 𝑏15𝜖 + 𝑏51𝜖3

)
𝑐15

+
(
𝑎41 +

𝑎55

𝜖3

) (
𝑏14 + 𝑏34 − 𝑏54 + 𝑏15𝜖 + 𝑏55𝜖2

)
𝑐44

−
(𝑎21 + 𝑎55

𝜖3

) (
𝑏14 + 𝑏15𝜖 + 𝑏55𝜖2 − 𝑏52𝜖3

)
𝑐25 .

(46)

𝜌121 =𝑎32

(
𝑏21 + 𝑏22 + 𝑏23 − 𝑏24 + 𝑏25

𝜖3
− 𝑏41

)
𝑐14

+
(
𝑎51 +

𝑎54

𝜖3

) (
𝑏14 − 𝑏45𝜖2 + 𝑏44𝜖3

)
𝑐45

+
(
𝑎51 +

𝑎53

𝜖3

) (
𝑏13 + 𝑏34 + 𝑏35𝜖2 + 𝑏33𝜖3

)
𝑐35

+𝑎52
(
𝑏33 + 𝑏43 − 𝑏13 − 𝑏53 +

𝑏22 + 𝑏23 − 𝑏24 + 𝑏25
𝜖3

)
𝑐34

−𝑎12
(
𝑏32 + 𝑏42 − 𝑏12 − 𝑏52 +

𝑏22 + 𝑏23 − 𝑏24 + 𝑏25
𝜖3

)
𝑐24

−𝑎22
(
𝑏15 + 𝑏45 + 𝑏55 − 𝑏35 +

𝑏22 + 𝑏23 − 𝑏24 + 𝑏25
𝜖3

)
𝑐54 .

(47)

𝜌122 =𝑎53

(
𝑏13 + 𝑏35𝜖2

) ©«
𝑐32 − 𝑐33 − 𝑐31 +

𝑐52 − 𝑐53 − 𝑐51
𝜖

+ 𝑐55
𝜖2
+ 𝑐25 − 𝑐35

𝜖3

ª®®¬
+𝑎21𝜖2

©«
𝑏32 − 𝑏42 − 𝑏52 +

𝑏15

𝜖2

+ 𝑏55 + 𝑏45 − 𝑏35
𝜖

+ 𝑏12 − 𝑏13
𝜖3

ª®®®¬
(
𝑐52 +

𝑐25

𝜖2

)

+𝑎54
𝜖2

(
𝑏45 −

𝑏14

𝜖2

) ©«
𝑐42 − 𝑐41 − 𝑐43

+ 𝑐55
𝜖2
+ 𝑐25 + 𝑐45

𝜖3

ª®¬
+𝑎55

𝜖

(
𝑏14

𝜖
+ 𝑏15 + 𝑏55𝜖

) (𝑐25 − 𝑐44
𝜖

+ 𝑐55
)
.

(48)

𝜌211 =

(
𝑎42 +

𝑎22 − 𝑎43
𝜖3

) (
𝑏25 − 𝑏35𝜖3

) (
𝑐54 + 𝑐52𝜖3

)
+

(
𝑎45 + 𝑎52 − 𝑎42𝜖3

) (
𝑏23 − 𝑏53𝜖3

) (
𝑐35 −

𝑐34

𝜖3

)
+

(
𝑎43 − 𝑎41 − 𝑎51 −

𝑎53 + 𝑎55
𝜖3

)
𝑏34

(
𝑐35 − 𝑐45𝜖3

)
+

(
𝑎41 + 𝑎45 +

𝑎55

𝜖3

) (
𝑏54 + 𝑏53𝜖3

) (
𝑐44 + 𝑐45𝜖3

)
+

(
𝑎42 +

𝑎12 − 𝑎41
𝜖3

) (
𝑏22 − 𝑏12𝜖3

) (
𝑐24 + 𝑐21𝜖3

)
+

(𝑎31 − 𝑎55
𝜖

) (
𝑏14

𝜖
+ 𝑏15

) (𝑐15
𝜖
+ 𝑐55

)
+

(
𝑎51 + 𝑎22 −

𝑎11 + 𝑎21
𝜖3

) (
𝑏12 − 𝑏11𝜖3

)
𝑐12 .

(49)



The tensor rank of 5 × 5 matrices multiplication
is bounded by 98 and its border rank by 89

𝜌112 =𝑎43𝑏25

(
𝑐52 + 𝑐55 − 𝑐51 − 𝑐53 +

𝑐14 + 𝑐54 − 𝑐24 − 𝑐34
𝜖3

)
−𝑎41𝑏22

(
𝑐22 + 𝑐25 − 𝑐21 − 𝑐23 +

𝑐14 + 𝑐54 − 𝑐24 − 𝑐34
𝜖3

)
−𝑎45𝑏23

(
𝑐32 + 𝑐35 − 𝑐31 − 𝑐33 +

𝑐14 + 𝑐54 − 𝑐24 − 𝑐34
𝜖3

)
−𝑎44𝑏24

(
𝑐43 +

𝑐14 − 𝑐24 − 𝑐34 − 𝑐44 − 𝑐54
𝜖3

)
−𝑎11𝑏21

(𝑐51
𝜖
+ 𝑐11 + 𝑐15 − 𝑐12

𝜖3

)
+𝑎31𝑏11

(
𝑐13 + 𝑐55 − 𝑐53𝜖 +

𝑐15

𝜖

)
+

(
𝑎21 − 𝑎51𝜖3

)
𝑏12

(
𝑐22 −

𝑐52

𝜖
− 𝑐25 − 𝑐12

𝜖3

)
+

(
𝑎51 −

𝑎31

𝜖

) (
𝑏15 + 𝑏11𝜖 −

𝑏13

𝜖

) (
𝑐55 − 𝑐53𝜖 +

𝑐15

𝜖

)
.

(50)

𝜌111 =

(
𝑎42 −

𝑎44

𝜖3

) (
𝑏24 − 𝑏44𝜖3

) (
(𝑐41 + 𝑐42 − 𝑐45)𝜖3 + 𝑐44

)
+

(
𝑎12𝜖

3 + 𝑎11
) (

𝑏11𝜖
3 + 𝑏21

𝜖

) (𝑐11
𝜖3
+ 𝑐21

)
+

(
𝑎32 − 𝑎42𝜖3

) (
𝑏11 − 𝑏31 + 𝑏51 −

𝑏21

𝜖3

) (
𝑐14 − 𝑐13𝜖3

)
+𝑎54𝑏43𝑐35 + 𝑎31𝑏12𝑐23 .

(51)
Remark that there is 4 serendipitous equalities in this tensor.

We conclude the construction of an approximate tensor {5 × 5 × 5 : 89}
in the next section.

4.2 New upper bound 89 on border rank
of ⟨5 × 5 × 5⟩

Using the approximate matrix multiplication tensor defined in the
previous section and the construction made in Equation (40), one
can construct easily:

{5 × 5 × 5 : 89} = T𝜖 + {3 × 3 × 3 : 20} + {2 × 3 × 3 : 14}. (52)

Remark that the best theoretical lower bound on the corresponding
border rank is 45 (see [17, Corollary 1.2])).

5 PERSPECTIVES
We have presented there the upper bound 98 (resp. 89) for the
tensor (resp. border) rank of the 5 × 5-matrix product while the
best theoretical lower bound is 48 (resp. 45) (see [3, Theorem 2]
(resp. [17, Corollary 1.2])).

Furthermore, the new ⟨3 × 5 × 5 : 59⟩ improves also
• ⟨10 × 10 × 10 : 686⟩ = ⟨2 × 2 × 2 : 7⟩ ⊗ ⟨5 × 5 × 5 : 98⟩
• ⟨15 × 15 × 15 : 2088⟩ = ⟨3 × 5 × 5 : 58⟩ ⊗ ⟨5 × 3 × 3 : 36⟩

and we have a quite clear idea of all exact matrix multiplication
tensors up to size 32 × 32 × 32 induced by the best known-to-date
“atomic” such tensors. But as ⟨15 × 15 × 15 : 2088⟩’s tensor rank is
lesser then the first decomposition ⟨3 × 3 × 3 : 23⟩ ⊗ ⟨5 × 5 × 5 : 98⟩
that comes to mind, the most obvious decomposition does not al-
ways lead to the current most efficient one. Hence, there is a—simple
but requiring expensive calculation—computer based search to do
in order to construct a database for approximate tensor similar
to [23].
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