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Statistical physics of frictional grains: some simple applications of Edwards statistics

Eric Bertin
LIPHY, Université Grenoble Alpes and CNRS, 38000 Grenoble, France

Granular matter like sand is composed of a large number of interacting grains, and is thus ex-
pected to be amenable to a statistical physics treatment. Yet, the frictional properties of grains
make the statistical physics of granular matter significantly different from the equilibrium statistical
physics of atomic or molecular systems. We illustrate here on simple models some of the key con-
cepts of the statistical physics introduced by Edwards and coworkers more than thirty years ago to
describe shaken granular piles. Quite surprisingly, properties of such frictional systems observed at
high effective temperature (i.e., strong shaking) may share some analogies with some low temper-
ature properties of equilibrium systems. For instance, the effective specific heat of non-interacting
frictional grains under strong shaking in a harmonic potential goes to zero in the high temperature
limit. As a second example, a chain of frictional grains linked by springs exhibits a critical point at
infinite effective temperature, at odds with the zero-temperature critical point generically found in
one-dimensional equilibrium systems in the presence of local interactions.

I. INTRODUCTION

Whoever has played with sand on a beach may have
been amazed by the mechanical properties of sand. If you
take some dry sand in your hands and gently open fin-
gers, sand flows almost like water. Yet, the beach forms
an essentially solid surface on which you can walk, leav-
ing some footprints that are only partially erased by the
spontaneous relaxation dynamics of dry sand. One may
thus wonder how materials like sand that are formed of
grains of macroscopic size (and thus called ‘granular ma-
terials’) can exhibit mechanical properties that are inter-
mediate between solids and liquids. The reason for these
non-standard properties of granular materials lies in the
frictional properties of grains. Two grains in contact ex-
perience dry friction, which means that they can support
a certain amount of tangential forces at contact without
gliding. This property is no longer true with viscous fric-
tion. Simply think of beads covered with oil and put
in contact: any tiny amount of tangential forces would
make them glide one on top of the other.

On the other side, the fact that granular materials are
made of a large number of grains naturally calls for a
statistical description. However, this statistical descrip-
tion is expected to differ from the equilibrium statistical
physics formalism that describes materials made of atoms
or molecules. While atoms or molecules have a conser-
vative dynamics, the frictional properties of grains make
their dynamics dissipative, which deeply modifies their
large-scale statistical properties. In more abstract terms,
the time reversal symmetry is broken in granular ma-
terials. This important difference of granular materials
with respect to equilibrium systems has been taken into
account through a minimal generalization of the equilib-
rium statistical physics framework, as proposed by Ed-
wards and coworkers in the late 1980’s [1, 2]. The goal of
this paper is to illustrate the Edwards theory of granular
matter on simple and pedagogical examples.

The Edwards theory notably introduces an effective
temperature as a parameter characterizing the statistics

of the packing of grains. It is also related to the amount
of injected power in the packing through external forces,
for instance by shaking the grains. This effective tem-
perature is many orders of magnitude larger than the
thermodynamic temperature of the material the grains
are made of. Thermal fluctuations associated with the
thermodynamic temperature are thus negligible, as they
are for instance completely unable to lift a grain over a
height of the order of its diameter.
The article is organized as follows. Sec. II briefly in-

troduces the general framework of Edwards statistical
mechanics for systems with dry friction. Sec. III intro-
duces a simple model of non-interacting frictional parti-
cles attached to a spring, which generalizes the harmonic
oscillator model of statistical mechanics. The interest of
this model is mostly pedagogical, and qualitative analo-
gies with some aspects of quantum harmonic oscillators
are outlined. Then Sec. IV discusses a more complicated
model of frictional particles linked by springs. The pres-
ence of interactions between particles generates strong
correlations in a high temperature regime, at variance
with usual equilibrium systems where correlations appear
at low temperature. Finally, Sec. V suggests possible
computational projects for students, of varying difficul-
ties, consisting in simulating one of the above models.
Sec. VI eventually concludes the paper.

II. EDWARDS APPROACH FOR SHAKEN

GRANULAR MATTER

A statistical description of a granular pile is meaningful
if the pile is able to visit many different configurations.
To do so, it is convenient to inject energy through a ‘tap-
ping’ protocol, by which the pile is repeatedly shaken
and then let relax (after switching off the shaking mech-
anism) to a mechanically stable configuration, also called
blocked configuration for short. A blocked configuration
is such that the sum of all forces acting on any given grain
is equal to zero. Thanks to the tapping protocol, many
different blocked configurations are visited, and the pile

http://arxiv.org/abs/2204.03086v1


2

can be described by a statistics of blocked configurations.
This statistics should allow for instance for the prediction
of average values of observables like the height of the pile
or the force exerted by the grains on the container.
Let us call C the configuration of the pile, that is the

list of all grain positions. The Edwards approach first
postulates that all configurations that are not mechani-
cally stable have zero probability. This is justified by the
tapping protocol, in which one registers the successive
blocked configurations that are selected by the dynamics
after shaking and relaxation. Then, taking inspiration
from equilibrium statistical mechanics, the idea of Ed-
wards and coworkers [1, 2] is to assume that the statis-
tics of blocked configurations takes the simplest possible
form, given the macroscopic constraints to be taken into
account. By analogy with the equilibrium canonical en-
semble, one may assume that the granular pile should be
described by the most likely probability distribution of
blocked configurations with a given average value of the
total energy. Here energy may correspond to the poten-
tial energy associated with gravity and possibly to elas-
tic contributions. This assumption leads to the following
form of the probability distribution of blocked configura-
tions [1–3] (see [4] for a review),

P (C) = 1

Z
exp

(

−E(C)
Teff

)

F(C) , (1)

where Z is a normalization factor determined by the con-
dition

∑

C P (C) = 1. The parameter Teff plays a role
similar to the thermodynamic temperature T in equilib-
rium systems, or more precisely to kBT , where kB is the
Boltzmann constant. For these reasons, Teff is called an
effective temperature, although it has the dimension of an
energy. The indicator function F(C) has been included
to select blocked configurations among all possible con-
figurations, that is among all possible positions of the
grains. For a blocked configuration C, F(C) = 1, whereas
F(C) = 0 if C is not mechanically stable. Although this
general definition is simple, the explicit form of the func-
tion F(C) may be quite complicated in practice [5–9].
Note that the presence of the indicator function F(C) in
the probability distribution of configurations is precisely
what makes it different from the equilibrium canonical
distribution. In other words, the function F(C) is ex-
pected to be the key ingredient allowing for the descrip-
tion of the peculiarities of the granular phenomenology.
Other global observables than the energy may also be

taken into account. For instance, looking at the most
likely probability distribution of blocked configurations
with given average values of the total energy and of the
total volume, one finds

P (C) = 1

Z
exp

(

−E(C)
Teff

− V (C)
X

)

F(C) . (2)

The parameter X is called compactivity, and X−1 is the
analogue of the ratio p/kBT at equilibrium, where p is the
pressure. Generalizations have also been proposed, tak-
ing into account other observables like mechanical stress

fixi

x

i+1xxi−1

FIG. 1. Sketch of the frictional harmonic oscillators model,
emphasizing the driving force fi.

[10–14]. Here we focus on the simplest case and consider
throughout the paper the distribution given in Eq. (1)
that involves only the energy.
Both experimental [15–18] and numerical [19–23] tests

of the Edwards probability distribution have been per-
formed, using different forms of the probability distribu-
tion P (C) like Eqs. (1) and (2). These tests confirm that
the Edwards distribution captures at least qualitatively
most of the phenomenology of granular matter. However,
a quantitative assessment of the predictions of Edwards
theory is made difficult by the complexity of the func-
tion F(C) describing blocked configurations [5–9], which
can most often be evaluated only through rather strong
approximations [5, 24]. It is then hard to disentangle
the discrepancies resulting from the Edwards prescrip-
tion and that resulting from the approximations made
in the evaluation of the function F(C), when comparing
predictions with empirical results.

III. NON-INTERACTING FRICTIONAL

HARMONIC OSCILLATORS

A. Model and dynamics

Equilibrium statistical physics lectures usually start
by describing the simplest possible examples of systems
amenable to a statistical treatment, namely systems con-
sisting of a large number of non-interacting particles [25–
27]. These include the ideal gas, as well as assemblies of
non-interacting harmonic oscillators that may be inter-
preted for instance as the Einstein model of a crystalline
solid [28].
To illustrate the statistical physics of frictional par-

ticles proposed by Edwards and coworkers, we now de-
scribe a model of N non-interacting harmonic oscillators
with dry friction (Fig. 1). A physical realization of such
a frictional harmonic oscillator is a mass m moving on a
horizontal substrate (e.g., a table) with dry friction coef-
ficient µ, and attached to a spring of stiffness k, the other
end of the spring being attached to a wall. Assuming for
the sake of simplicity that the mass i (i = 1, . . . , N) is
constrained to move along a given axis x, the position xi

of mass i evolves according to

m
d2xi

dt2
= −kxi − µmg sign

(

dxi

dt

)

+ fi(t) . (3)
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The first term on the rhs of Eq. (3) corresponds to the
force −kxi exerted by the spring, assuming that xi = 0
corresponds to the rest position of the spring. The sec-
ond term corresponds to the dynamic dry friction force,
equal to minus the friction coefficient µ times the weight
mg (with g the gravity intensity), times the sign of the
velocity. The absolute value of the force is thus inde-
pendent of the speed, at variance with viscous friction.
Finally, the last term fi(t) is a driving force used to in-
ject energy during the tapping protocol. It could model,
for instance, a horizontal vibration of the table on which
the masses are placed.
When at rest (dxi/dt = 0), the mass is subjected to a

static dry friction force instead of the dynamic dry fric-
tion force appearing in Eq. (3). The static friction force
exactly compensates the other horizontal forces as long as
these forces do not overcome in absolute value a thresh-
old force equal to µmg. (Note that in realistic systems,
the static friction coefficient defining the threshold force
slightly differs from the dynamical one appearing in the
dynamic friction force, but we neglect this slight differ-
ence here for the sake of simplicity.) When the threshold
is exceeded, the mass starts to move. In the absence of
driving force (fi = 0), the only horizontal force apart
from the static friction force is the force exerted by the
spring. Hence the mass starts to move if k|xi| > µmg.
Conversely, blocked configurations correspond to static
configurations that verify the condition k|xi| < µmg. In
other words, blocked configurations satisfy |xi| < a, with
a characteristic length scale

a =
µmg

k
. (4)

Note that the length scale a is proportional to the friction
coefficient µ, so that a is nonzero for frictional systems
only.

B. Statistics of blocked configurations and average

energy

We now turn to the determination of the stationary
probability distribution PN (x1, . . . , xN ) associated with
the set (x1, . . . , xN ) of positions of the N masses, us-
ing the Edwards prescription given in Eq. (1). Here the
microscopic configuration C appearing in Eq. (1) is the
list of all particle positions, C = (x1, . . . , xN ). The total
energy of a configuration is given by

E(x1, . . . , xN ) =
N
∑

i=1

1

2
kx2

i . (5)

The indicator function F(C) appearing in Eq. (1) can be
formally written as

F(x1, . . . , xN ) =

N
∏

i=1

Θ(a− |xi|) (6)

where Θ(x) is the Heaviside function, Θ(x) = 1 for
x ≥ 0 and Θ(x) = 0 for x < 0. The expression of
F(x1, . . . , xN ) given in Eq. (6) simply means that a con-
figuration (x1, . . . , xN ) is a blocked configuration if all xi

satisfy |xi| < a. It follows from Eqs. (5) and (6) that the
Edwards distribution Eq. (1) factorizes as

PN (x1, . . . , xN ) =
N
∏

i=1

p(xi) (7)

with a one-body distribution p(x) given by

p(x) =
1

Z1
e−βkx2/2 if |x| < a , (8)

and p(x) = 0 otherwise, with the notation β = 1/Teff.
The quantity Z1 defined as

Z1 =

∫ a

−a

dx e−βkx2/2 , (9)

plays the role of a one-body partition function. The av-
erage energy of the N harmonic oscillator system is then
obtained as

〈E〉 = N

Z1

∫ a

−a

dx
k

2
x2 e−βkx2/2 . (10)

It is convenient at this stage to introduce the character-
istic effective temperature

T ∗ =
1

3
ka2 (11)

(the reason for introducing the 1
3 factor is discussed be-

low). Note that the temperature scale T ∗ originates from
the presence of static friction, as can be seen from the ex-
pression of a given in Eq. (4).
Thanks to the change of variable y =

√
βk x, the aver-

age energy 〈E〉 can be rewritten in the form (see Fig. 2):

〈E〉 = 1

2
NTeff fh

(

Teff

T ∗

)

, (12)

having defined the auxiliary function fh(u) as

fh(u) =

∫

√
3/u

0 dy y2 e−y2/2

∫

√
3/u

0 dy e−y2/2

. (13)

From this integral expression of the function fh(u), its
asymptotic behaviors can be determined. One finds
fh(u) → 1 for u → 0 as well as fh(u) ≈ 1/u when u → ∞.
The average energy 〈E〉 then satisfies generalized

equipartition relations in the two asymptotic regimes
Teff ≪ T ∗ and Teff ≫ T ∗:

〈E〉 ≈ 1

2
NTeff for Teff ≪ T ∗, (14)

〈E〉 ≈ 1

2
NT ∗ for Teff ≫ T ∗. (15)
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FIG. 2. Dimensionless energy density 〈E〉/NT ∗ in the fric-
tional harmonic oscillator model, as a function of the reduced
temperature Teff/T

∗, showing the energy saturation at high
temperature. Inset: specific heat CV /N versus Teff/T

∗, show-
ing a drop from the classical value 1/2 (equivalent to the
Dulong and Petit law) at low temperature to zero at high
temperature.

It follows that for a low effective temperature, a form
analogous to the equilibrium equipartition relation is ob-
tained, in the sense that the average energy is propor-
tional to the effective temperature (we recall that at
equilibrium, the average energy of N harmonic oscilla-
tors satisfies 〈E〉 = 1

2 NkBT ). In contrast, for a high
effective temperature, the average energy reaches a max-
imum value, settled by the dry friction coefficient —see
Eqs. (11) and (4). Note that the 1

3 factor in the definition
(11) of T ∗ has been introduced to get an equipartition-
like form of Eq. (15).

While the current problem is fully within the realm of
classical physics, it is of interest to note some analogy
with quantum mechanics in the following sense. Quan-
tum harmonic oscillators have discrete energy levels, and
this discreteness leads at low temperature to a concen-
tration of energy on the lowest energy level, with an ex-
ponentially small amount of energy on excited levels. As
a result, the specific heat, instead of being constant as
in classical harmonic oscillators, strongly decreases when
decreasing temperature in the low temperature regime.
It even goes to zero in the zero temperature limit [28]. At
a qualitative level, a somewhat similar phenomenon oc-
curs in the present frictional harmonic oscillator model,
when now considering the limit of high effective temper-
ature. Instead of having discrete energy levels, the fric-
tional harmonic oscillator has a bounded continuum of
energy levels, where the energy upper bound equal to
T ∗/2 per oscillator originates from static friction. At
low effective temperature (Teff ≪ T ∗), the effect of the
energy bound is negligible, and one recovers a constant
specific heat CV = d〈E〉/dTeff = 1

2N as in classical equi-
librium harmonic oscillators, corresponding in the latter
case to the Dulong and Petit law [28] (setting the Boltz-

mann constant kB = 1). Conversely, in the high tem-
perature regime, the average energy saturates to the up-
per energy bound, and the specific heat decreases and
eventually goes to zero. Using the small-u expansion
fh(u) ≈ u− 2

5u
2 of the function fh(u) defined in Eq. (13),

we obtain Cv ≈ 1
5 (T

∗/Teff)
2 for Teff ≫ T ∗ (see inset of

Fig. 2).

IV. A SHAKEN SPRING-BLOCK MODEL

A. Model and dynamics

We now go beyond the above non-interacting case,
and turn to a second example of a frictional model, to
explore further the interesting phenomenology emerging
from dry friction. We consider a one-dimensional chain
of N+1 frictional blocks of mass m on a substrate. Each
block i = 0, . . . , N , located at position xi(t), experiences
dry friction from the substrate. Blocks are connected by
springs of stiffness k and rest length l0, as illustrated on
Fig. 3. Springs thus induce interactions between blocks.
This model has been initially introduced in the context of
earthquake modeling [29, 30], and further studied later on
in Refs. [31, 32]. To avoid taking care of the no-crossing
condition between blocks, we assume the rest length l0
to be significantly larger than the typical value of spring
extensions. Similarly to the frictional harmonic oscillator
model, a block at rest starts moving if the total force ex-
erted on it by neighboring springs overcomes a threshold
force equal to the weight mg times the static friction co-
efficient µ. If the force exerted by springs remains below
the threshold force, the block does not move. We can
thus define a blocked configuration as a configuration of
the positions xi, i = 0, . . . , N , such that resulting spring
forces on each block do not exceed the threshold value
µmg.
Blocked configurations are sampled using a driving

protocol that periodically injects energy into the system.
Each period is decomposed into a driving phase of du-
ration τ , during which a strong external force is applied
to each block. The driving phase is followed by a relax-
ation phase during which the system relaxes to a blocked
configuration. The driving and relaxation phases are de-
scribed by the following dynamics.

m
d2xi

dt2
= −µmg sign

(

dxi

dt

)

+k(xi+1+xi−1−2xi)+fi(t) ,

(16)
where fi(t) is the external force applied during the
driving phase. In principle, a configuration of the
spring-block model is defined by the list of posi-
tions (x0, x1, . . . , xN ). However, two configurations
(x0, x1, . . . , xN ) and (x0 + b, x1 + b, . . . , xN + b) differing
by a global translation b can be considered as equivalent,
because the dynamics given in Eq. (16) is invariant under
such a translation. We thus rather characterize a config-
uration C of the system by the list of spring elongations,
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xxi i+1

ξ i

fi

x i−1

ξ
i−1

FIG. 3. Sketch of the frictional spring-block model.

C = (ξ1, ξ2, . . . , ξN ) with ξi = xi −xi−1 − l0 (l0 being the
rest length of the springs).

B. Statistics of blocked configurations

As mentioned above, a blocked configuration is defined
by the set of conditions

k|ξi+1 − ξi| < µmg (i = 1, . . . , N − 1), (17)

corresponding to the fact that the sum of the forces ex-
erted by springs is, in absolute value, less than the weight
mg times the friction coefficient µ. This condition can
be reformulated by introducing the same length scale
a = µmg/k as in Eq. (4) for the frictional harmonic os-
cillator, leading to a condition equivalent to Eq. (17),

|ξi+1 − ξi| < a (i = 1, . . . , N − 1). (18)

According to Edwards postulate, the distribution P (C)
of microscopic configurations is given by Eq. (1), where
the energy E(C) is the total elastic energy,

E(ξ1, . . . , ξN ) =

N
∑

i=1

1

2
kξ2i , (19)

and the indicator function F(C) can be written as

F(ξ1, . . . , ξN ) =

N−1
∏

i=1

Θ(a− |ξi+1 − ξi|), (20)

where Θ is again the Heaviside function equal to Θ(x) =
1 for x ≥ 0 and to Θ(x) = 0 for x < 0. Eq. (20) is a
formal and compact way to express the list of conditions
given in Eq. (18).
The Edwards probability distribution P (C) thus reads

P (ξ1, . . . , ξN ) =
1

Z
exp

[

−
N
∑

i=1

kξ2i
2Teff

]

N
∏

i=1

Θ(a−|ξi+1−ξi|)

(21)
with Z a normalization factor defined as

Z =

∫

dξ1 . . . dξN exp

[

−
N
∑

i=1

kξ2i
2Teff

]

N
∏

i=1

Θ(a−|ξi+1−ξi|)

(22)
and playing the role of a partition function. As before,
the effective temperature Teff is at this stage an auxil-
iary parameter that cannot be measured directly in a

numerical simulation, and one needs to find a relation
connecting Teff to the energy density ε = 〈E〉/N which
is a measurable observable.
Due to formal analogies between the Edwards distribu-

tion (1) and the usual equilibrium canonical distribution,
similar relations hold between energy and temperature.
With the notation β = T−1

eff , the average energy is ob-
tained similarly to the equilibrium case as

〈E〉 = −∂ lnZ

∂β
, (23)

as can be checked by a direct calculation. The effective
partition function Z can be evaluated using a transfer
operator technique. This method generalizes the trans-
fer matrix technique classically used to solve for instance
the one-dimensional Ising model [33] by replacing the
transfer matrix by an infinite dimensional operator that
can be handled using numerical methods. The interested
reader is referred to Ref. [32] for details. An alterna-
tive method, that we now describe, consists in using an
approximation that leads to analytically tractable calcu-
lations. The basic idea is to replace the ‘door’ function
Θ(a−|∆ξ|) appearing in Eq. (20) by a Gaussian function
exp[−(∆ξ)2/2a2] with the same width a.
Under this approximation, the partition function Z de-

fined in Eq. (22) can be rewritten as a Gaussian multidi-
mensional integral

Z =

∫

dξ1 . . . dξN e−H(ξ1,...,ξN ) (24)

where the quantity H(ξ1, . . . , ξN ) plays the role of an
effective quadratic Hamiltonian,

H(ξ1, . . . , ξN ) =

N
∑

i=1

[

1

2
βkξ2i +

1

2a2
(ξi+1 − ξi)

2

]

, (25)

using periodic boundary conditions ξN+i ≡ ξi. In more
formal terms,

Z =

∫

dξ1 . . . dξN e−
1

2
ξ·Aξ (26)

having introduced the vector ξ = (ξ1, . . . , ξN ) and the
symmetric matrix A defined as

(Aξ)j = βkξj +
1

a2
(2ξj − ξj+1 − ξj−1) . (27)

The general formula for multidimensional Gaussian inte-
grals like the one of Eq. (26) reads [33]

Z = (2π)N/2 (detA)−1/2 (28)

where detA is the determinant of the matrixA, that may
be obtained as the product of all eigenvalues of the matrix

A. Eigenvectors here correspond to Fourier modes ξ
(q)
j =

eiqj (i2 = −1), and the corresponding eigenvalue reads

λq = βk +
2

a2
(1 − cos q) (29)
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FIG. 4. Dimensionless energy density 〈E〉/NT ∗ in the
spring-block model, as a function of the reduced temperature
Teff/T

∗. The low- and high-temperature regimes are empha-
sized. Inset: specific heat CV /N versus Teff/T

∗, showing a
slow decrease from the classical value 1/2 at low temperature
to zero at high temperature.

where q = 2πn/N (n = 0, . . . , N − 1). One then finds

ln detA =

N−1
∑

n=0

ln

[

βk +
2

a2

(

1− cos
2πn

N

)]

, (30)

eventually yielding in the large N limit, using Eq. (28)
and the increment ∆q = 2π/N to turn the sum over q
into an integral,

lnZ =
N

2
ln(2π)− N

4π

∫ 2π

0

dq ln

[

βk +
2

a2
(1− cos q)

]

.

(31)
The average energy 〈E〉 then follows by differentiating
lnZ with respect to β, according to Eq. (23). The re-
sulting expression of 〈E〉 may be written in the form

〈E〉 = 1

2
NTeff fs

(

Teff

T ∗

)

(32)

with

T ∗ = ka2 (33)

[note the slightly different definition of T ∗ with respect
to Eq. (4)], and a function fs(u) defined as

fs(u) =
1

π

∫ π

0

dq

1 + 2u(1− cos q)
=

1√
1 + 4u

, (34)

where the second equality uses an integration formula
from Ref. [34]. The average energy 〈E〉 is plotted versus
temperature in Fig. 4 in rescaled form. We thus obtain
the two asymptotic regimes:

〈E〉 ≈ 1

2
NTeff for Teff ≪ T ∗, (35)

〈E〉 ≈ 1

4
N
√

T ∗ Teff for Teff ≫ T ∗. (36)

Hence, one finds a low energy regime where the energy
density ε = E/N is proportional to the effective temper-
ature Teff similarly to the equipartition relation valid at
equilibrium, and a high energy regime where ε is pro-
portional to

√
Teff . At odds with the frictional oscillator

model, the energy density ε does not saturate to a maxi-
mal value when increasing the effective temperature Teff .
Despite the lack of an upper bound on the energy, the
specific heat CV = d〈E〉/dTeff goes to zero at high effec-
tive temperature, as CV ∼ 1/

√
Teff (see inset of Fig. 4).

This slow decay of CV is to be compared with the faster
decay CV ∼ 1/T 2

eff for the frictional harmonic oscillator
model of Sec. III. As a result, the equivalent of the Du-
long and Petit law also breaks down for the spring-block
model at high temperature.

C. Correlation length and critical point

Beside effective thermodynamic properties like the av-
erage energy, it is also of interest to determine the extent
of spatial correlation in the system as a function of the
effective temperature. In one-dimensional equilibrium
systems with local interactions, like the one-dimensional
Ising model for instance [33], the correlation length di-
verges when the temperature goes to zero, which corre-
sponds to a zero-temperature critical point. Given the
formal similarities between the Edwards probability dis-
tribution (1) and the Boltzmann-Gibbs probability dis-
tribution, one might expect the spring-block model to
have a zero-temperature critical point. We will see be-
low that, quite unexpectedy, the spring-block model has
a critical point at infinite effective temperature, due to
the constraints imposed by frictional properties.
Let us define the correlation function Cr of the elon-

gations of springs separated by a distance r,

Cr =
1

N

N
∑

j=1

〈ξjξj+r〉 , (37)

using again periodic boundary conditions. Note that the
distance r is measured in numbers of springs, rather than
as a geometric length. To proceed further, it is convenient

to introduce the discrete Fourier transform ξ̂q as

ξ̂q =
1

N

N−1
∑

j=0

e−iqj ξj , (38)

with q = 2πn/N (n = 0, . . . , N − 1). Similarly, one de-

fines the discrete Fourier transform Ĉq of the correlation
function Cr,

Ĉq =
1

N

N−1
∑

r=0

e−iqr Cr . (39)

Using Eqs. (37) and (38), one finds Ĉq = 〈|ξq |2〉. Since
Fourier modes diagonalize the matrix A, standard prop-
erties of Gaussian multidimensional integrals [33] lead



7

to 〈|ξq|2〉 = 2/λq, where λq is the eigenvalue defined in
Eq. (29). One thus finds for small |q| (assuming N to be
large):

Ĉq = 2

(

βk +
q2

2a2

)−1

. (40)

In the following, we approximate at large N the dis-
crete Fourier transform by a continuous Fourier trans-
form. Noticing that the continuous Fourier transform of
an exponential correlation function

C(r) = C0 e
−|r|/ℓ (41)

reads

Ĉ(q) =
2C0ℓ

1 + (qℓ)2
(42)

we identify from Eq. (40) the expression ℓ =
√

Teff/(2T ∗)
of the correlation length, using the definition (33) of T ∗.
Note that the correlation length ℓ is dimensionless be-

cause it is measured in numbers of springs rather than
as a geometric length. To approximately convert it to a
geometric length, one may simply multiply it by the rest
length l0 of the springs.
The continuous approximation of the Fourier trans-

form used above is meaningful only when the correlation
length is much larger than one, which implies Teff ≫ T ∗.
Given that in this regime the energy density also scales as
ε ∼

√
Teff according to Eq. (36), we end up with the sim-

ple scaling relation ℓ ∼ ε. One thus concludes that the
model exhibits a critical point at infinite effective temper-
ature, or infinite energy density. This unexpected prop-
erty may be interpreted as follows. In the high energy
regime, spring extensions ξi are typically much larger
than the length a characterizing blocked configurations
according to Eq. (18). Since the probability distribution
is restricted to blocked configurations, condition (18) is
satisfied, with both |ξi| and |ξi+1| typically much larger
than a. This implies that ξi and ξi+1 are often nearly
equal, and are thus strongly correlated. The decorrela-
tion of the spring elongations ξi and ξi+r occurs only over
distances r & ℓ.

V. SUGGESTED PROJECTS FOR STUDENTS

Several numerical projects of varying levels of difficulty
are described below.

A. Numerical simulations of the frictional

harmonic oscillator

The simplest numerical project consists in simulating
the dynamics of a frictional harmonic oscillator given in
Eq. (3). As the frictional harmonic oscillators described
in Sec. III are non-interacting, simulating a single oscil-
lator is sufficient. This can be done by discretizing with

small time steps ∆t the differential equations obeyed by
the position x and velocity v of the harmonic oscillator,

dx

dt
= v ,

dv

dt
= −kx− µg sign(v) + f(t) , (43)

where for the sake of simplicity we have set the massm to
unity. It is suggested to use an Euler integration scheme

x(t+∆t) = x(t) +
dx

dt
∆t , v(t+∆t) = v(t) +

dv

dt
∆t .

(44)
A driving protocol consists in repeatedly applying a force
f(t) for a duration τ and then let the system relax to a
blocked configuration, before applying again a driving
force. A simple driving protocol may be to apply a force
f(t) that is constant during each driving period, with
the same fixed amplitude |f(t)| = f0 for all periods, but
with a sign f(t) = ±f0 randomly drawn anew with equal
probabilities at the beginning of each period. The am-
plitude f0 has to be chosen significantly larger than the
amplitude µg of the friction force, say at least f0 & 5µg.
The overall intensity of the drive is essentially given by
the product f0τ (this property has been checked in the
spring-block model [32]), and varying this driving inten-
sity in different runs allows one to vary the average energy
of the frictional harmonic oscillator. The value of τ may
be chosen of the order of τ ≈ 100. One may also vary
both f0 and τ keeping the product f0τ constant to check
that the average energy depends to a good approximation
on the product f0τ only.
A subtle point, specific to systems subjected to dry

friction, is that the particle starts to move only when the
spring force overcomes the threshold value µmg. In the
frictional oscillator model, this condition is equivalent to
|xi| < a [see Eq. (4) for the definition of a]. To initial-
ize the dynamics, one may choose at random some initial
conditions for the position x and velocity v. If the con-
dition |xi| ≤ a is satisfied, the particle does not move.
If instead |xi| > a, the particle starts to move according
to the dynamical equation (3). Motion goes on until the
velocity v becomes equal to zero, and the particle is at
rest. Then the above condition to start motion applies
again.
A natural goal of the simulation may be the measure-

ment of the average energy density

ε =
1

KN

K
∑

j=1

N
∑

i=1

1

2
kx2

i (tj) (45)

where tj , j = 1, . . . ,K are a set of equidistant times
satisfying tR = t1 < t2 < . . . < tK = tmax, with tmax the
maximal time of the simulation, and tR a relaxation time
chosen such that memory of the initial condition is lost
after an initial transient of duration tR.

B. Numerical simulations of the spring-block model

A second project consists in integrating numerically
the dynamics Eq. (16) of the spring-block model, which is
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both algorithmically and computationally more demand-
ing. The number N of springs may be chosen accord-
ing to the available computational facilities and to the
amount of time dedicated to the project. The value of
N is a priori arbitrary, but typical value may range from
a few units (e.g., N = 5) to a few thousands. The time-
discretization of the dynamics given in Eq. (16) follows
the same line as above, and the start and stop conditions
need to be carefully implemented for each block.
A driving protocol consists in repeatedly applying a

force fi(t) for a duration τ and then let the system relax
to a blocked configuration, before applying again a driv-
ing force. Two distinct driving protocols may be used.
The first protocol is similar to the one used for the fric-
tional harmonic oscillator: a force fi(t) with fixed mag-
nitude |f(t)| = f0 and a sign randomly chosen for each
block at the beginning of each driving period is applied.
Alternatively, a second driving protocol consists in ap-
plying a force fi(t) = f0 on a fraction ρ (0 < ρ < 1) of
randomly chosen blocks. Namely, for each block, a force
f0 is applied with probability ρ, otherwise no force is ap-
plied. This random choice is performed at the beginning
of each driving period. A simple choice is for instance
ρ = 0.5, but it may be of interest to test different values
of ρ in the numerical simulations to see how much the
results depend on the value of ρ.
Like for the frictional harmonic oscillator, one may

measure the average energy density

ε =
1

KN

K
∑

j=1

N
∑

i=1

1

2
kξ2i (tj) (46)

with similar definitions of the time tj as in Eq. (45). In
addition, a more involved quantity to be measured is the
correlation length of spring elongations, which requires
to simulate larger system sizes, say at least N = 100.
This correlation length is obtained by measuring the cor-
relation function

C(r) =
1

KN

K
∑

j=1

N
∑

i=1

ξi(tj)ξi+r(tj) , (47)

for r = 0, . . . , N/2 (assuming N to be even). Evalu-
ating the correlation function C(r) for different driving
intensities, one can determine the corresponding correla-
tion length ℓ from the relation C(ℓ) = e−1 C(0). This
procedure consistently allows for the correct determina-
tion of the correlation length for an exponential decay,
C(r) = C(0) e−r/ℓ, but does not assume the decay to be
exponential. For consistency, it is useful to check that the
different curves collapse when plotting C(r) as a function
of r/ℓ for different driving intensities [32]. It is suggested
to use rather strong driving intensities, f0τ in the range
[103, 104], to ensure that the correlation length is signifi-
cantly larger than one.

VI. CONCLUSION

We have discussed simple examples of applications of
the Edwards postulate for the statistical description of
systems of particles experiencing dry friction. We have
seen in particular that the restriction of the probabil-
ity distribution to blocked configurations has a strong
impact on the phenomenology of frictional systems with
respect to non-frictional ones, like the emergence of an
infinite-temperature critical point in the spring-block
model. We have also seen in the two models presented
that the effective specific heat goes to zero in the high
temperature limit. In practice, one of the main difficul-
ties of the Edwards theory precisely lies in the evaluation
of the function F(C) characterizing blocked configura-
tions. The models considered in the present paper, being
either without interactions or with a one-dimensional ge-
ometry, manage to keep this difficulty at a reasonable
level. More realistic models of granular piles need to face
this difficulty and to find appropriate approximations,
see e.g. [4] for a review.
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