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ABSTRACT

Context. The arrival of powerful instruments will provide valuable data for the characterization of rocky exoplanets. Rocky planets
are mostly found in close-in orbits. They are therefore usually close to the circular-coplanar orbital state and are thus considered to be
in a tidally locked synchronous spin state. For planets with larger orbits, however, exoplanets should still have nonzero eccentricities
and/or obliquities, and realistic models of tides for rocky planets can allow for higher spin states than the synchronization state in the
presence of eccentricities or obliquities.
Aims. This work explores the secular evolution of a star–planet system under tidal interactions, both gravitational and thermal,
induced by the quadrupolar component of the gravitational potential and the irradiation of the planetary surface, respectively. We show
the possible spin–orbit evolution and resonances for eccentric orbits and explore the possibility of spin–orbit resonances raised by the
obliquity of the planet. Then, we focus on the additional effect of a thick atmosphere on the possible resulting spin equilibrium states
and explore the effect of the evolution of the stellar luminosity.
Methods. We implemented the general secular evolution equations of tidal interactions in the secular code called ESPEM. In partic-
ular, we focus here on the tides raised by a star on a rocky planet and consider the effect of the presence of an atmosphere, neglecting
the contribution of the stellar tide. The solid part of the tides was modeled with an anelastic rheology (Andrade model), while the
atmospheric tides were modeled with an analytical formulation that was fit using a global climate model simulation.We focused on a
Sun-Venus-like system in terms of stellar parameters, orbital configuration and planet size and mass. The Sun-Venus system is a good
laboratory for studying and comparing the possible effect of atmospheric tides, and thus to explore the possible spin state of potential
Venus-like exoplanets.
Results. The formalism of Kaula associated with an Andrade rheology allows spin orbit resonances on pure rocky worlds. Similarly to
the high-order spin–orbit resonances induced by eccentricity, the spin obliquity allows the excitation of high-frequency Fourier modes
that allow some spin–orbit resonances to be stable. If the planet has a dense atmosphere, like that of Venus, another mechanism, the
thermal tides, can counterbalance the effect of the gravitational tides. We found that thermal tides change the evolution of the spin of
the planet, including the capture in spin–orbit resonances. If the spin inclination is high enough, thermal tides can drive the spin toward
an anti-synchronization state, that is, a the 1:1 spin–orbit resonance with an obliquity of 180 degrees.
Conclusions. Through our improvement of the gravitational and thermal tidal models, we can determine the dynamical state of exo-
planets better, especially if they hold a thick atmosphere. In particular, the contribution of the atmospheric tides allows us to reproduce
the spin state of Venus at a constant stellar luminosity. Our simulations have shown that the secular evolution of the spin and obliquity
can lead to a retrograde spin of the Venus-like planet if the system starts from a high spin obliquity, in agreement with previous studies.
The perturbing effect of a third body is still needed to determine the current state of Venus starting from a low initial obliquity. When
the luminosity evolution of the Sun is taken into account, the picture changes. We find that the planet never reaches equilibrium: the
timescale of the rotation evolution is longer than the luminosity variation timescale, which suggests that Venus may never reach a spin
equilibrium state, but may still evolve.

Key words. planets and satellites: terrestrial planets – planets and satellites: dynamical evolution and stability –
planet–star interactions

1. Introduction

The five thousand exoplanets discovered so far1 have revealed
a great diversity of worlds. As the number of discoveries con-
tinues to grow, an accurate modeling of exoplanets becomes
increasingly important. In the context of the arrival of new pow-
erful instruments such as the James Webb Space Telescope (i.e.
JWST; Greene et al. 2016) and the Atmospheric Remote-sensing

1 https://exoplanetarchive.ipac.caltech.edu/

Infrared Exoplanet Large-survey mission (i.e. ARIEL; Tinetti
et al. 2021; Edwards & Tinetti 2022) in the characterization of
rocky planets, we need to describe the dynamical state of rocky
exoplanets with more realistic models by taking their internal
structure and their potential atmosphere into account. A large
number of the rocky planets discovered so far are in very close-in
orbits, and are therefore usually considered to be in a circu-
lar and coplanar orbit and with a rotation that is synchronized
with their mean motion, showing a permanent dayside. For plan-
ets with larger orbits, however, the rotational state and orbital
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elements (i.e., the semi-major axis, eccentricity, orbital inclina-
tion, etc.) evolve on a much longer timescale and are expected
to have nonzero eccentricities and/or obliquities. Then, eccen-
tricity or obliquity can trap the spin in a higher rotation state,
that is in spin–orbit resonances (hereafter SORs), such as a
3:2 SOR, 2:1 SOR, or higher (e.g., Makarov & Efroimsky 2013;
Makarov et al. 2018). If a planet has an atmosphere, another tidal
mechanism must be taken into account: the atmospheric ther-
mal tides. These are caused by the differential heating between
day- and nightsides (Gold & Soter 1969; Chapman & Lindzen
1970; Dobrovolskis & Ingersoll 1980; Ingersoll & Dobrovolskis
1978; Correia & Laskar 2001; Auclair-Desrotour et al. 2017a).
This mechanism is a possible explanation for the current state of
Venus as the thermal tides can both desynchronize the planet and
increase its obliquity (e.g., Correia & Laskar 2001, 2003a). The
rotation rate and the obliquity affect the climate of the planet
by influencing the heat distribution. For example, spin rates
faster than the synchronization can help prevent atmospheres
from collapsing (e.g., Wordsworth 2015) and change the fate of
a potential surface water ocean (i.e., complete vaporisation or
not; Turbet et al. 2016) through a more effective heat redistribu-
tion in the atmosphere. We therefore need a complete dynamical
framework with relevant tidal models to determine the rotation
states of exoplanets as accurately as possible in the context of
future data.

In this article, we use the particular case of Venus to present
our recent implementation of planetary tides (Boué & Efroimsky
2019) in a secular code called ESPEM (French acronym for Evo-
lution of Planetary System and Magnetism, Benbakoura et al.
2019; Ahuir et al. 2021). Here we study the case of a Venus-like
planet around a Sun-like star. The rotation of Venus is thought to
be an equilibrium between the gravitational bodily tides and ther-
mal atmospheric tides (Correia & Laskar 2001, 2003b; Correia
et al. 2003). It is therefore a good laboratory for studying these
mechanisms. Some unresolved issues still remain, however, such
as whether the rotation of Venus is currently in equilibrium,
and how it reached its current rotational state. The competition
between the tides, gravitational and thermal, strongly depends on
the internal state, but in the case of Venus, little is known about
its internal structure. This will change with the next incoming
mission to Venus, however, as EnVision (Widemann et al.
2020), DAVINCI (Garvin et al. 2022), and VERITAS (Smrekar
et al. 2020) will bring valuable data about the internal state
of Venus and the thermal atmospheric response of the planet
(Bills et al. 2020).

To study the spin evolution of Venus-like planets, and in
particular, the capture in SORs, it is necessary to describe the
internal structure of the planet and atmosphere well. In partic-
ular, Walterová & Běhounková (2020) showed that the internal
structure also affects the SOR available by the planet. To ensure
a good description in this work, we therefore computed the grav-
itational bodily tides using the formalism of Kaula (1964) along
with the Andrade rheology (Andrade 1910), using rheological
parameters constrained from laboratory experiments on olivine
(Castillo-Rogez et al. 2011). We computed the thermal tides
using the analytical model of Leconte et al. (2015) adapted from
the prescription developed by Dobrovolskis & Ingersoll (1980)
to reproduce the current state of Venus. We also investigated the
effect of the luminosity variation of the star on the equilibrium
state between the gravitational and thermal tides.

In Sect. 2, we introduce the tidal model we used for the solid
and thermal tides and the implementation in the ESPEM code.
In Sect. 3, we discuss the evolution of the spin of a Venus-like
planet when we only consider the influence of the solid tide. In

(a)

(b)

(c)

Fig. 1. Panel a: schematic representation of the atmospheric redistribu-
tion caused by the stellar heating on a synchronously rotating planet.
The arrows show the movement of the particles of the atmosphere
pushed from the hot spot (sub-stellar) toward the cold spots (morning
and evening spots). Panel b: delayed deformation of the atmosphere
with respect to the position of the star (angle δa in the schema) due
to the rotation of the planet. Ω is the spin rate of the planet, and is n the
mean motion and the star. Panel c: two tidal contributions, gravitational
and thermal, acting in opposition on each other. Figures inspired from
Correia & Laskar (2003a).

particular, we discuss the well-known eccentricity-driven SORs
and the less well-known inclination driven SORs. In Sect. 4, we
discuss the evolution of the planet taking the thermal tides for the
constant and evolving stellar luminosity into account. Finally, we
discuss our findings and conclude in Sect. 5.

2. New model of planetary tides in ESPEM

We consider the equilibrium solid tides, which correspond to the
mass redistribution of a body (i.e., the planet) under the influ-
ence of the gravitational perturbation of a massive (or close-in)
orbiting body (i.e. the star). As the planet rotates, the solid bulge
will be ahead from the position of the star (as illustrated in red
in the Fig. 1c) if the spin of the planet is higher than the mean
motion. Then, we consider the so-called thermal tides. These
correspond to the mass redistribution of an atmosphere due to
stellar heating. In the same manner in which the gradient of the
gravitational potential causes the mass redistribution of the body,
the thermal tides are raised by the differential heating through the
atmosphere (Gold & Soter 1969; Dobrovolskis & Ingersoll 1980;
Correia & Laskar 2001). The differential temperature between
the day- and nightside causes a pressure gradient and therefore
a mass redistribution of the atmosphere. This pressure gradi-
ent continuously redistributes the atmospheric particles from
the high-temperature side (dayside) to the low-temperature side
(nightside). As Fig. 1a shows, the direction of the bulge that
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forms is parallel to the direction of the heating source (i.e.,
the star). If the planetary spin is higher than the mean motion,
as shown in Fig. 1b, the geometry of the deformation places
the atmospheric bulge behind the position of the star by anal-
ogy with the solid deformation, while the solid bulge is ahead
of the position of the star. The delayed response of the atmo-
sphere caused by its radiative damping affects the dynamics of
the planet through viscous coupling at the surface. Figure 1c
shows the combination of the gravitational and thermal tides on
the planet. The two tides compete until an equilibrium is found.

In the following, we introduce in Sect. 2.1 the formalism we
used (Kaula) and in Sect. 2.2 the complex Love number, which
allows us to express the tidal potential of the deformed planet in
terms of Fourier series. In Sect. 2.3, we extend the notion of the
potential Love number to a thermal Love number and detail the
way in which we account for the influence of the thermal tides.
In Sect. 2.4, we design a homogeneous interior model for the
planet that counterbalances the thermal tides for the excitation
of Venus. In Sect. 2.5, we discuss the corresponding orbital and
rotational equations to finally described the implementation in
the ESPEM code (Sect. 2.6).

2.1. Kaula formalism

In order to compute the tidal response of a body to a tidal per-
turbation, we need to use a formalism that is general enough to
encapsulate the frequency-dependent response of a body. This
response either requires a decomposition of the tidal potential
created by the perturber (hereafter perturbing potential) into
Fourier harmonic modes as developed by Kaula (1964), or a
time-domain approach as proposed by Correia et al. (2014) and
Gevorgyan et al. (2020). Both models allow a study of more com-
plex and realistic rocky and icy bodies (Efroimsky & Makarov
2013; Bolmont et al. 2020a). We used the formalism developed
by Darwin (1879) and adapted by Kaula (1964), hereafter the
Darwin-Kaula formalism. The Darwin–Kaula theory of bodily
tides provides the expression of the perturbing potential of a
disturbed body in Fourier series as

U =
∞∑

l=2

l∑
m=0

l∑
p=0

∑
q∈Z

Ulmpq(a, e, i, σlmpq), (1)

with a, e, and i, the semi-major axis, the eccentricity and the
inclination respectively. The indexes l,m, p, and q are the indices
of the harmonic modes, where l,m are the orders associated with
the associated Legendre polynomials, and p, q the order of the
Darwin–Kaula Fourier development. Each harmonic mode cor-
responds to an excitation frequency σlmpq, that is, the frequency
with which the perturbing potential will affect the deformed
body, defined as σlmpq = (l − 2p + q)n − mΩ (with Ω and
n the spin rate and the mean motion respectively). Figure 2
shows the contribution of three different modes (l,m, p, q), the
(2, 2, 0, 0), (2, 2, 1, 1), and (2, 2, 0, 2) modes, which correspond
to the frequencies 2(n − Ω), n − 2Ω, and 4n − 2Ω, respec-
tively. The (l,m, p, q) = (2, 2, 0, 0) mode corresponds to the
circular coplanar case (i.e., the semi-diurnal frequency). The
(2, 2, 1, 1) and (2, 2, 0, 2) modes are two of the frequencies that
are excited when the eccentricity is nonzero.

This formulation is general and fundamental enough to be
valid for an arbitrary rheology, and can also be used in the
context of the thermal tides (see Sect. 2.3). When the per-
turber is far enough away, we can keep the development of
the gravitational potential at the quadrupolar order only, l = 2

Fig. 2. Schematic representation of the contribution of the tidal modes
l,m, p, q = (2200), (2211), and (2202) in the Kaula formalism. Each
bulge represents the tidal deformation under a component of the tidal
potential Ulmpq of the perturber (point mass on the right).

(Makarov & Efroimsky 2013; Mathis & Le Poncin-Lafitte 2009).
We restricted the eccentricity expansion numerically up to the
order 7, which corresponds to the index 7 in the summation over
q and eccentricities up to 0.3.

2.2. Solid Love number

The response of a planet to the tidal disturbance is quantified
using the tidal Love number k2 (Love 1909). The Love number
links the perturbing potential and the additional potential created
by the deformed planet in response to the perturbing potential.
As we used the quadrupolar component of the tidal potential, we
can write each mode as

U tidal bulge
2mpq (σ2mpq) = k̄2(σ2mpq) U tidal perturbation

2mqp (σ2mpq), (2)

where U tidal bulge
2mpq (σ2mpq) corresponds to the quadrupolar compo-

nent of the potential Eq. (1), (l = 2), and k̄2(σ2mpq), (hereafter
k̄2) is related to the amplitude of the complex quadrupolar Love
number (Efroimsky 2012a) at the quadrupolar mode l = 2 with a
frequency dependence with σ2mpq.

Physically, the quadrupolar Love number quantifies the
response of a body submitted to a periodical external pertur-
bation of frequency σ2mpq. Here the periodical perturbation
corresponds to the tidal potential as described by Eq. (1). It can
be written as a complex number, where the real part represents
the pure elastic behavior and the imaginary part is the viscous
behavior, written as

k̄2 = ℜ (k̄2) + i ℑ (k̄2) = |k̄2| exp
(
− iϵ2

)
. (3)

Thus, we can link the phase of the exponent ϵ2 with the angle
between the tidal bulge and the position of the perturber with
δ = ϵ2/2 (Remus et al. 2012). As shown in Fig. 2, each phase is
associated with an excitation mode (2mpq).

This complex Love number can be computed for any den-
sity, shear modulus and viscosity profiles by integrating the
equations of motions and Poisson’s equation relating the dis-
placement, stress, strain and induced potential in the frequency
domain assuming a compressible Andrade rheology following
the method described in Dumoulin et al. (2017) and Tobie
et al. (2019). For a homogeneous solid body, the Love num-
ber can be determined from analytical solutions following
Efroimsky (2012b).

The tidal torque directly depends on the imaginary part of
the Love number. In the circular coplanar case, the tidal torque
applied on the planet is expressed as (Kaula 1964; Goldreich
1966; Murray & Dermott 1999)

T grav =
3
2

GM⋆R5
p

a6 ℑ(k̄2), (4)
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Fig. 3. Schematic representation of the Andrade anelastic model used in
this study (adapted from Renaud & Henning 2018). The two first compo-
nents in series represent a spring and a dashpot. The elements in parallel
represent an infinite number of springs and dashpots.

with G the gravitational constant, M⋆ the stellar mass, Rp the
planetary radius, a the semi-major axis and ℑ(k̄2) the imaginary
part of the Love number, which can be linked with the well-
known dissipation factor Q2 and the Love number modulus k2
with ℑ(k̄2(σ)) = −k2(σ)/Q2(σ)Sign(σ, Goldreich & Soter 1966;
Ogilvie 2014; Bagheri et al. 2022).

Then, we need to model an appropriate Love number k̄2 for
rocky bodies in order to compute the secular tidal effects. Most
models assume that planets are made of weakly viscous fluid
(e.g., Hut 1981; Goldreich 1966) even for rocky planets. How-
ever, it has been shown that they do not reproduce the correct
behavior for highly viscous solid bodies, such as the evolution of
their rotation (Henning et al. 2009; Efroimsky & Makarov 2013).
We used a more realistic rheological response, the Andrade rhe-
ology (Andrade 1910), to better reproduce the behavior of a rocky
body under periodical forcing (Castillo-Rogez et al. 2011). The
Andrade rheology is an anelastic model built as a combination of
dashpots and springs. It is composed with two first components
in series, a dashpot and a spring which model the pure viscous
damping and the pure elastic rigidity respectively, which cor-
respond to the so-called Maxwell rheology (e.g., Correia et al.
2014). The Maxwell components are linked in series with an
infinite number of springs and dashpots in parallel which cor-
respond to the hereditary Andrade property, which retains some
aspect of material memory (see Fig. 3 and Efroimsky 2012a
for details). This model successfully reproduces a broad range
of laboratory measurement of solid behavior under stress and
strain, including silicate minerals, metals, and ices (Andrade
1910, 1914; McCarthy & Castillo-Rogez 2013). The rheological
profile used in this study was computed with a multilayer model
following the method published by Tobie et al. (2005, 2019) and
Bolmont et al. (2020b).

The Love number can be computed with the method of
Bolmont et al. (2020a). Following Efroimsky (2012b), the com-
plex tidal Love number k̄grav

2 is given by

k̄grav
2 =

3
2

1
1 + A2J/J̄

, (5)

with J = 1/µ the unrelaxed compliance (with µ the unrelaxed
elastic shear modulus in Pa) and A2 defined by

A2 =
57J−1

8πGρ2R2
p
, (6)

with ρ the density. J̄ is the complex compliance of the mate-
rial and defined in the formalism of the Andrade rheology with
(Castillo-Rogez et al. 2011)

J̄ = J + β(iσ)−αΓ(1 + α) −
i
ησ
, (7)

with β a factor that describes the intensity of anelastic friction
in the material, Γ the Gamma function, η the shear viscosity, σ

the excitation frequency, and α an experimentally fit parameter
that which represents the frequency dependence of the transient
response. A value of α in the range of 0.23–0.28 allows us to
reproduce the dissipation factor and k2 for the Earth at different
frequencies (Tobie et al. 2019).

We studied the case of a Venus-like planet with different end-
member temperature profiles.Little is known about the interior
structure of Venus. This will likely improve with the upcoming
ES EnVision mission (Widemann et al. 2020) and the NASA
DaVinci (Garvin et al. 2022) and VERITAS (Smrekar et al.
2020) missions. In the meantime, we considered four possible
structures. We used one multilayer profile (referred to as the
reference profile) with Earth-like viscosity values as a refer-
ence, two other profiles with viscosity values divided by 10 or
multiplied by 100 relative to the reference profile and one homo-
geneous profile (see Sect. 2.4). The multilayer structures can be
considered as end members of what we think could be the real
interior of Venus (e.g., Bolmont et al. 2020a). The Love num-
bers associated with the homogeneous profile where computed
following the formula described in Bolmont et al. (2020a) and
Efroimsky (2012b; see Sect. 2.4). For the multilayer reference
structure, we derived the radial density and seismic velocities in
the mantle of the planet by using the Perple_X code2 (Connolly
2005), which uses a temperature profile from Armann & Tackley
(2012) together with the shear modulus profile from the compo-
sitional model V1 of Dumoulin et al. (2017). The viscosity was
computed as a function of the temperature and pressure profiles
as (Dumoulin et al. 2017)

η =
1
2

A−1
0 d2.5exp

(Ea + PVa

RT

)
, (8)

with Ea and Va the activation and volume energy, respectively,
and A0 the pre-exponential factor, which are parameters from the
Arrhenius equation and depend on the material and d the grain
size. The parameters of the dry olivine considered in the upper
mantle are Ea = 300 kJ mol−1, A0 = 6.08 × 10−19 Pa−1 s−1, with
a grain size d = 0.68 mm.

Figure 4 shows the internal profiles of the shear modulus µ
and the viscosity η for the homogeneous model (see Sect. 2.4),
the reference model (hereafter Vref) from Armann & Tackley
(2012), and two other models with viscosity profiles obtained
by multiplying the viscous reference structure by 0.1 or 100
(denoted V0.1 and V100, respectively).

The metallic core structure was computed using PREM
scaled to the Venusian pressure conditions (Dumoulin et al.
2017). The imaginary part of the Love numbers associated with
these profiles were computed following Dumoulin et al. (2017)
and Bolmont et al. (2020a) and are represented in Fig. 5. A less
viscous profile (dash-dotted line Fig. 4) that might correspond
to a hotter mantle, will be more dissipative than a more viscous
profile (dotted line Fig. 4) for frequencies higher than 10−11s−1

(see Fig. 4).

2.3. Thermal Love number

We considered only the feedback of the tidal bulge of the atmo-
sphere deformed by the pressure gradient at the surface, consid-
ering that the atmosphere is perfectly coupled with the surface
by viscous friction (e.g., Leconte et al. 2015; Auclair-Desrotour
et al. 2019). Thus, we neglected other feedbacks such as
the effect of the pressure gradient on the shape of the solid
crust and the gravitational anomaly of the atmosphere (see
2 http://www.perplex.ethz.ch
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Fig. 4. Shear modulus and viscosity profiles for the multilayer reference
model Vref and homogeneous model considered here, shown as solid
red and black lines, respectively. The dotted and dash-dotted red lines
represent the two profiles V0.1 and V100 derived from the multilayer
reference model with a viscosity multiplied by ×0.1 and ×100 times,
respectively. The viscosity η is computed as in Dumoulin et al. (2017)
using Eq. (8) of this work.

Fig. 5. Imaginary part of the gravitational Love number ℑ(kgrav
2 ) as a

function of the excitation frequency of a Venus-like planet for different
viscosity profiles. The multilayer reference profile Vref derived from
Armann & Tackley (2012) is shown as the solid red line. The dotted
and dash-dotted red lines represent the V0.1 and V100 profiles derived
from the multilayer reference one presented in Fig. 4. In blue we present
the imaginary Love number ℑ(kthermal

2 ) as a function of the excitation
frequency computed with Eq. (12), (in absolute values) associated with
the amplitude of the thermal tides presented in Fig. 6. The green curve
represents the homogeneous profile described in Sect. 2.4. The vertical
dotted black line represents the absolute value of the current frequency
state of Venus.

Correia & Laskar 2003a for details). Because the mass redis-
tribution of the atmosphere comes from the surface pressure
anomaly, the imaginary part of the complex moment of the
surface pressure field ℑ

(
δp2

s
)

can be used as a prescription
for the imaginary part of the thermal Love number (Leconte
et al. 2015; Auclair-Desrotour et al. 2017b). The complex
moment of the surface pressure field δp2

s describes the thermal
tides amplitude, and therefore, ℑ

(
δp2

s
)

can be used to describe
the dissipation. Then, we can relate ℑ

(
δp2

s
)

to an imaginary
thermal Love number ℑ

(
kthermal

2
)
. The relation between these

two quantities is discussed below.
To calculate the complex moment of the surface pres-

sure field δp2
s , we used the work of Leconte et al. (2015),

Fig. 6. Amplitude of the pressure bulge |δp2
s | as a function of the

normalized forcing frequency (Ω − n)/Ω. The solid line represents the
analytical solution fit for the point of Venus (red dot) computed with
Venus GCM simulations (see Leconte et al. 2015). The red bars on the
Venus point are not strictly error bars. They represent the dispersion of
the pressure bulge at the surface.

who assumed a Maxwell-like frequency dependence (Ingersoll
& Dobrovolskis 1978; Gold & Soter 1969; Auclair-Desrotour
et al. 2017b). More realistic frequency dependences have been
proposed by Auclair-Desrotour et al. (2019) as a generic for-
mulation and a scaling law, adapted for N2 atmospheres for
different surface pressures. These models will be studied in
future developments. Leconte et al. (2015) used a 3D climate
model (e.g., Leconte et al. 2013a,b; Forget et al. 2013) specif-
ically tuned for the case of Venus to reproduce the amplitude
of the thermal tides on Venus today and used this point to fit
an analytical Maxwell-like solution. The analytical formulation
of the module of the complex moment of the pressure field is
expressed as

δp2
s = −

q0

1 + i σ2ω0

, (9)

such that the imaginary part can be written as

ℑ(δp2
s ) =

q0
σ

2ω0

1 +
(
σ

2ω0

)2 , (10)

with q0 the amplitude of the quadrupole term of the pressure field
at zero frequency, ω0 the radiative frequency, and σ the excita-
tion frequency. The radiative frequency can be identified with
the inverse of the thermal equilibrium timescale. The parame-
ters fit on the GCM simulation of Venus are: q0 = 201 Pa and
ω0 = 3.77 × 10−7 s−1 (Leconte et al. 2015). Figure 6 shows the
amplitude of the pressure bulge |δp2

s | as a function of the nor-
malized forcing frequency. The solid curve shows the analytical
solution fitted from the values of the amplitude and the phase lag
computed with the GCM simulation of Venus of Leconte et al.
(2015). As it was not possible to run the specific GCM of Venus
for different rotation states, it was not possible to constrain the
Maxwell fit better.

The thermal Love number ℑ(kthermal
2 ) can be determined

from the complex moment of the surface pressure field ℑ
(
δp2

s
)

by identification between the thermal and the gravitational
torque. The expression of the thermal torque raised by the
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mass redistribution of the atmosphere is (e.g., Goldreich &
Soter 1966; Correia & Laskar 2001, 2003a; Leconte et al. 2015;
Auclair-Desrotour et al. 2017a)

T thermal =

√
24π

5
M⋆
Mp

R6
p

a3 ℑ
(
δp2

s
)
, (11)

with M⋆ the stellar mass, Mp and Rp the planetary mass and
radius respectively, and a the semi-major axis. The thermal
equivalent Love number ℑ(k2) can be written by identification
with the expression of the solid torque (Eq. (4)) as

ℑ(kthermal
2 ) = −

√
32π
15

a3Rp

GM⋆Mp
ℑ
(
δp2

s
)
, (12)

We note that in contrast to ℑ(kgrav
2 ), the thermal Love num-

ber ℑ(kthermal
2 ) depends on the semi-major axis of the planet as

the intrinsic response of the atmosphere depends on the flux
received by the planet. Then, the two torques, gravitational and
thermal, do not have the same dependence as to the semi-major
axis, which allows an equilibrium point at which the two tides
compensate for each other. The dependence of the mass of the
atmosphere is contained in the surface pressure term. We high-
light that a more massive atmosphere does not necessarily lead to
stronger atmospheric tides. For a more massive atmosphere, the
atmospheric layers are more opaque to the stellar flux. Thus, as
less stellar flux reaches the surface, the thermal tides are damped
for a more massive atmosphere. This effect strongly depends on
the composition of the atmosphere and requires a better model to
be taken into account. A more massive atmosphere is not inves-
tigated in this study. The imaginary Love number ℑ(kthermal

2 ) as
a function of the excitation frequency for the fitted analytical
model (Eq. (12)) is plotted in blue in Fig. 5 in absolute values.
In the following, we study the presence equilibrium points as a
function of tidal frequency for different internal profiles.

2.4. Equilibrium state between gravitational and thermal tides

An equilibrium state between the gravitational and thermal tides
can be determined by comparing their imaginary Love numbers.
The two tides compensate for each other when the addition of
the two imaginary Love numbers is 0 (when the two absolute
values are equal; see Fig. 5). Figure 5 shows that the ℑ(kgrav

2 ) cor-
responding to the multilayer reference profile (solid red curve)
is always higher in amplitude than the ℑ(kthermal

2 ), (solid blue
curve). Figure 7 shows the spin derivative for the multilayer ref-
erence profile, the V0.1 and V100 profiles, and the homogeneous
fit profile. Comparing the cases without and with atmosphere (in
red and blue, respectively), we find that the solid tides corre-
sponding to the multilayer reference profile are strong enough to
compensate for the thermal tides at any frequency. On the one
hand, the V0.1 profile is also sufficiently dissipative to compen-
sate for the thermal tides, as it corresponds to a more dissipative
interior and thus stronger solid tides. Thus, the spin derivatives
associated with the reference profile and the less viscous one
are not in equilibrium. The system will therefore evolve to the
1:1 SOR. On other the hand, the V100 profile leads to weaker
solid tides. In this case, the spin derivative in Fig. 7 shows that
the thermal tides are sufficient to compensate for the gravita-
tional tides, except close to the synchronization, where the solid
tides are still strong enough to make the 1:1 SOR stable. This
profile, which might correspond to a colder mantle, is not dis-
sipative enough to compensate for the thermal tides close to
the current state of Venus. This is shown in Fig. 5, where the

Fig. 7. Spin derivative as a function of the rotation (in terms of Ω/n,
Ω and n the planetary spin and mean motion respectively). In the top
panel, the red lines correspond to the solid tides, and the blue lines cor-
respond to the cases with solid and atmospheric tides. The solid lines
correspond to the reference multilayer profile Vref. The dotted and dash-
dotted lines correspond to the V0.1 and V100 profiles, respectively. In
the bottom panel, the green line represents the solid tides associated
with the homogeneous body (see Sect. 2.2 for details). The blue line
corresponds to the cases with the contribution of atmospheric tides. The
vertical dashed black line represents the current frequency of Venus
in both panels. The dots (filled and empty) represent the equilibrium
states between the gravitational and thermal tides (stable and unstable,
respectively).

ℑ(kthermal
2 ), (solid blue curve) has a broad range of frequencies

(from 10−7 s−1 to 2 × 10−5 s−1), where it dominates the gravi-
tational Love number ℑ(kgrav

2 ) associated with the V100 profile
(dashed red curve). Thus, the two intersection points correspond
to possible equilibrium states, at which the two tides compensate
for each other. The equilibrium points shown in the top panel of
Fig. 7 (empty blue circles) correspond to the intersection point at
low frequency (about 10−7 s−1 on Fig. 5). Considering the slope
of the derivative, however, this point is not stable. The second
point at high frequency (about 4.5 × 10−5 s−1 on Fig. 5) corre-
sponds to a fast rotation of about three days. This last point is
not investigated further because, on the one hand, this state is
far from the current state of Venus, and on the other hand, it
belongs to the high-frequency regime. In our case, the Maxwell-
like frequency-dependent model of thermal tides overestimates
the strength of the thermal tides at high frequencies, as the model
was fit for the low-frequency regime (Auclair-Desrotour et al.
2019). We therefore consider our approach to be valid in the
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low-frequency range, that is, for |Ω/n| < 15. As this equilibrium
point is very far from the present-day rotation of Venus, it would
require a more complex model that is beyond the scope of this
study, and we did not investigate it further. A better model, such
as the parameterized model proposed by Auclair-Desrotour et al.
(2019), will be studied in the future.

None of the profiles reproduce the balance between the two
contributions, gravitational and thermal, close to the frequency
of Venus Using the method of Bolmont et al. (2020a) described
in Sect. 2.1 (Eqs. (5) to (7)), we fit a homogeneous profile (in
density, viscosity, and rigidity) that reproduces an equilibrium
point at the Venus frequency. As the profile we tried to con-
struct is relatively close to the multilayer profile, we used the
parameters given in Table 2 of Bolmont et al. (2020a) for this
profile of Venus at α = 0.25 and only fit the value of the vis-
cosity parameter log(η). The other parameters are the rigidity
log(µ) = 10.02 in Pa and the ratio of the Andrade and Maxwell
time τA/τM = 0.89 (Castillo-Rogez et al. 2011). The homoge-
neous profile that fits the thermal Love number ℑ(kthermal

2 ) at the
Venus frequency is found with log(η) = 22.18 and is plotted in
Fig. 5 (green curve). Figure 7 (bottom panel) shows the stable
equilibrium point between the gravitational tides associated with
the fit profile and the thermal tides (filled blue dot) at the cur-
rent frequency of Venus as well as two unstable points (empty
blue points). These points correspond to the rotation states in
which the two tides compensate for each other. We must high-
light that the homogeneous profile allows for spin equilibrium
at the current frequency of Venus in a very narrow range of
internal states. As the interior temperature profile evolves on
geologic timescales, it will be relevant to take the associated
change of dissipation due to progressive cooling into account,
which evolves on timescales of 100 Myr (Bower et al. 2019),
or radiogenic decay, tidal heating, and so on, to fully charac-
terize the spin equilibrium. This temperature dependence will be
addressed in future studies.

2.5. Secular equations

The secular equations we implemented were derived from the
Hamiltonian formalism by Boué & Efroimsky (2019). We used
Eqs. (116)–(123) of their work, which were derived within
the Darwin-Kaula formalism (see Appendix A). One important
hypothesis, that was formulated to derive these equations is the
gyroscopic approximation, which implies that the spin rate of
a body is much faster than the evolution of the spin-axis ori-
entation. This approximation invalidates the equations when the
spin tends to zero for a noncoplanar orbit. A singularity occurs
when the spin rate is zero within this approximation (see Boué
& Efroimsky 2019). The validity of the equations for an inclined
orbit close to the null rotation state will need to be revisited.

In this formalism, the inclination is defined by the angle
between the orbital plane and the equatorial plane, which in
other words corresponds to the angle between the orbital angular
momentum and the planetary spin angular momentum3.

The development of Boué & Efroimsky (2019) also includes
the deformation of the secondary under the tidal effect of the pri-
mary. We neglected the tidal deformation of the secondary. The
resulting secular equations of the spin, eccentricity, and orbital
inclination are presented in Appendix A.

3 This angle is also often referred to as the obliquity, for instance, the
obliquity of the Earth is about 23 degrees. In this study, we would thus
say that the inclination of the Earth is 23 degrees.

2.6. Implementation in the ESPEM code

We implemented the secular equations of Boué & Efroimsky
(2019) in the code ESPEM (Benbakoura et al. 2019; Ahuir et al.
2021). This is a secular code integrating the dynamical evolution
of a star–planet system. The code takes the coupling between
the two layers of low-mass stars into account (convective and
radiative layers), as well as the effect of the stellar wind and
the torque due to the tides raised by the planet on the convec-
tive envelope star and the torque due to the star–planet magnetic
interactions for circular and coplanar orbits (Ahuir et al. 2021).
The code was only used to compute the angular momentum
exchange between the planetary orbit and the stellar radiative
core and convective envelope angular momentum (Benbakoura
et al. 2019; Ahuir et al. 2021). We have added the tidal torque
of the star on the planet within the formalism described in this
paper. In addition to the equation for the semi-major axis, we
also implemented the equations governing further osculating ele-
ments of the planet, such as the eccentricity, orbital inclination,
longitude of ascending node, argument of periapsis, and plane-
tary spin. The equations for spin, eccentricity, and inclination,
longitude of ascending node and argument of periastron can be
found in Eqs. (A.2)–(A.6).

The user needs to provide a data file describing the time
evolution of the mass and radius of the star as well as the evo-
lution of the mass and radius of the radiative and convective
envelopes, of the moment of inertia and the stellar luminosity.
The stellar evolution is computed with evolution files provided
by the code STAREVOL (Amard et al. 2016), which gives the
internal dissipation and the evolution of the stellar quantities
(e.g., the mass, radius of the radiative core, and convective
envelope, and luminosity). The evolution of the stellar lumi-
nosity is used in Sect. 4.2. The user also needs to specify
the initial conditions of the osculating elements of the planet
as well as the rotation rate. The code also needs a data file
describing the frequency dependence of the real and imagi-
nary parts of the tidal Love number of the planet. This latter
file should also provide the mass, radius, and the radius of
gyration of the planet (which represents the internal density
distribution). The Love numbers provided in these data files
were computed with the method described in Sect. 2.4. As
explained in Sect. 2.1, several frequencies are excited depend-
ing on the eccentricity and inclination. These frequencies were
computed for each time step. The real and imaginary parts
of the Love number were interpolated linearly from their fre-
quency dependence in the data file. These interpolated values
were then used to compute the derivatives of all the quantities
mentioned before.

We used the parameters of a Sun-Venus system, that is,
a Venus-like mass and radius planet orbiting at 0.723 AU.
The parameters we used are listed in Table 1. The initial spin
rate is shown from Ω/n = 2.1 for the ESPEM simulations as the
SORs we studied are below this spin rate. The longitude of the
ascending node and argument of pericenter, were set to zero.

The effect of the stellar tides, stellar wind or the evolution of
the stellar layers were not taken into account in this study. We
focused here only on the evolution of the rotation state of the
planet under the tidal perturbation of a star. We considered this
approach appropriate for studying the evolution of the planetary
system we consider here. The effect of the Venusian tides inside
the Sun can be considered to be negligible as the corresponding
evolution timescale is about 1015 Gyr order of magnitude(e.g.,
Bolmont & Mathis 2016).
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Table 1. Numerical values used in the case of a Sun-Venus-like system.

Parameter Values

Star mass (M⊙) 1
Planet mass (MEarth) 0.815
Planet radius (REarth) 0.857
Semi-major axis (AU) 0.723
Eccentricity {0, 0.1, 0.2}
Spin inclination (degrees) {0, 5, 50, 120, 130}

3. Impact of the gravitational tides alone

First, we investigated the secular evolution of the spin, the eccen-
tricity, and the spin inclination of a Venus-like planet orbiting
a Sun-like star driven by the gravitational tides alone. In other
words, we first neglected the influence of the thermal tides,
which is equivalent to first considering an atmosphereless planet.
In Sect. 3.1, we discuss spin–orbit resonances for coplanar eccen-
tric orbits, and in Sect. 3.2, we discuss spin–orbit resonances for
inclined circular orbits.

3.1. Eccentricity-driven spin–orbit resonances

Hut (1981) showed that if the orbit is eccentric, the planet reaches
a pseudo-synchronization state, where the rotation rate of the
planet is comparable to the mean motion around the periastron.
The use of a model more appropriate for a highly viscous object
results in discrete stable spin states in presence of eccentricity,
however, in particular, SORs (Makarov & Efroimsky 2013). The
higher the eccentricity, the higher the SOR order. A planet begin-
ning its evolution with a high eccentricity and a spin faster than
2.5 times its orbital motion first becomes trapped in the 5:2 SOR.
Then, as the eccentricity diminishes, the planet leaves the reso-
nance to be trapped in the lower resonance, the 2:1 SOR, then
leaving this configuration for a lower SOR, the 3:2 SOR as the
eccentricity continues to decrease. Then, as the eccentricity con-
tinues to decrease, the rotation eventually becomes trapped in the
1:1 SOR, also known as the synchronous state, or tidal locking
(see also Gomes et al. 2021, with the Creep tidal model).

Figure 8 shows the evolution of the rotation state and the
eccentricity of a Venus-like planet with the multilayer internal
reference structure (see Sect. 2.2) for three initial eccentricities
(0.0, 0.1, and 0.2) in coplanar orbit. The simulations started with
an initial semi-major axis of 0.723 AU and an initial rotation
period of 100 days. The figure shows that an eccentricity of 0.2
is sufficient to allow the planet to be captured in the 2:1 SOR
and the 3:2 SOR for an eccentricity of 0.1. The planet can stay
in this SOR as the eccentricity remains high enough throughout
the simulation, as shown in the bottom panel of Fig. 8.

The order of the resonance in which the planet capture is
shown when we plot the spin derivative as a function of Ω/n (Ω
and n the planetary spin and mean motion respectively). Figure 9
shows how this quantity evolves with Ω/n for a fixed eccen-
tricity (Fig. 9a) and how it evolves with Ω/n and for different
eccentricities (Fig. 9b). Figure 9a shows that for the circular case
(e = 0, dotted blue line), only one value of the spin result in
dΩ/dt = 0, and therefore, only one possible equilibrium for the
rotation state. The equilibrium is centered at Ω/n = 1, which
corresponds to the synchronization state. Higher eccentricities
raise other resonances at a higher spin rate. For example, the
0.2 eccentric case (in green on Fig. 9a) shows the 3:2 SOR and

Fig. 8. Evolution of a Venus-like planet with an initial rotation of
100 days for three initial eccentricities (i.e., the null eccentricity, and
the 0.1 and 0.2 eccentricities). The top panel shows the evolution of the
planet rotation rate in terms of Ω/n (Ω and n are the spin and mean
motion, respectively). The bottom panel shows the variation in eccen-
tricity ∆e (i.e., (e − e(0))/e(0)).

the 2:1 SOR in addition to the 1:1 SOR. The 5:2 SOR is also
present, but the eccentricity must be higher than 0.25 to keep
this configuration stable, as the middle panel shows.

Figure 9b shows the values taken by the spin derivative
on a 2D map, as a function of Ω/n and the eccentricity, from
0.0 to 0.3. As we are restricted numerically up to the order 7
in the eccentricity expansion, we computed the evolution up to
e = 0.3. This is sufficient because the population of rocky exo-
planets does not present extreme eccentricities. The equilibrium
points can be found with the null torque in red. The stable equi-
librium states must satisfy the condition of a positive torque (in
red) to its left and a negative torque (in blue) to its right.

Figure 9b shows that increasing eccentricity allows higher-
order SORs. The synchronization is accessible with e = 0, while
the 3:2 SOR becomes accessible at e = 0.06, the 2:1 SOR at
0.16, and the 5:2 SOR at 0.26. The eccentric cases of the Fig. 9a
are overplotted in the color map with the two horizontal dotted
black lines. The evolutions shown in Fig. 8 are plotted in Fig. 9b
and 9c with the three colored arrows (with identical colors in
the two figures). The spin quickly decreases in the SOR asso-
ciated with its eccentricity. Because the eccentricity is damped
by the tides, the SORs remain until the eccentricity becomes too
low to stably maintain these configurations. Figure 9c represents
the eccentricity derivative map in the eccentricity versus rotation
state plane. In red we show the area in which the eccentricity
increases, and in blue the area in which it decreases. In particu-
lar, the eccentricity appears to be slightly excited for the e = 0.1
case shown in Fig. 8. This behavior can be explained with the
derivative map of Fig. 9c. The eccentricity in the e = 0.2 case
of Fig. 8 also appears to be excited before the state when the
rotation reached the 2 : 1 SOR.

The timescale of the eccentricity evolution is too long. The
departure from resonant states is therefore not shown here.

We confirmed the eccentricity-driven spin–orbit resonances,
such as the 1:1, 3:2, 2:1, and 5:2 SORs, and their dependence
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Fig. 9. Spin derivative dΩ/dt(rad s−2). The left panel shows the spin derivative as a function of the rotation state Ω/n (Ω and n are the spin and
mean motion, respectively). for different eccentricities. The green dots (filled and empty) represent the equilibrium states, stable (i.e., SORs) and
unstable, respectively. The middle and right panels represent the spin derivative and the eccentricity derivative as a function of the rotation state
Ω/n and the eccentricity, respectively. The red colored areas depict the positives values, the blue areas depict the negative values, and the red line
corresponds to dΩ/dt = 0. The dotted lines represent the two eccentric cases in the left panel (e = 0.1 and e = 0.2). The arrows represent the
evolutions presented in Fig. 8.

on the value of the eccentricity. Our results are also consis-
tent with the work of Walterová & Běhounková (2020). We
reproduce the eccentricity-driven resonances they showed for the
shear modulus and viscosity of our fitted hot profile. Walterová
& Běhounková (2020) pointed out that the internal composition
of the planet affects the stability of the SORs. Thus, the thermal
evolution of the internal structure should be investigated, start-
ing from a warm to a colder profile. As the temperature drives the
viscosity and melt fraction of the mantle, the effect of the tidal
heating should also be investigated and will be implemented in
future developments. Then, the effect of the tidal heating should
also be studied, but the tidal dissipation is not thought to be
important for the case of Venus. Tidal dissipation is probably
stronger for very close-in planets. The effect of the tidal heating
of these planets will be the subject of future studies.

3.2. Inclination-driven spin–orbit resonances

The inclination-driven SORs has been discussed in Boué et al.
(2016) in the context of gas giant planets responding to a
Maxwell rheology. We show here that this behavior is also found
for rocky planets with a rheology more adapted to rocky plan-
ets (Andrade), thus generalizing the findings of Boué et al.
(2016). This is the first study of inclination-driven SORs with
a realistic rheology for rocky exoplanets that generalizes the first
study of Boué et al. (2016) for giant planets, who used a simple
Maxwell rheology.

Figure 10 shows the evolution of a Venus-like planet with
the multilayer internal reference structure (see Sect. 2.2) after
2 × 108 yr of evolution for three initial inclinations and an ini-
tial rotation of 100 days in a circular orbit with the parameters
presented in Table 1. For an initial inclination of 5 degrees (blue
curve), the tides act to synchronize the rotation of the planet in
5.5 × 107 yr, while the inclination is damped to zero on longer
timescales. However, the spin can be trapped in SOR if the
initial inclination is high enough. For the initial inclination of
50 and 120 degrees, the planet is captured in the 2:1 SOR for a
few 107 yr.

Fig. 10. Evolution of a Sun-Venus-like system. The top panel shows
the evolution of the rotation state in terms of Ω/n for an initial rotation
period of about 100 days. The bottom panel shows the evolution of the
orbital inclination for different initial inclinations of about 0, 50, 120,
and 130 degrees.

As in the previous section, we investigated how the derivative
of the spin depends on rotation state Ω/n and the inclina-
tion without eccentricity. Figure 11b shows the spin derivative
strength in the plane inclination versus rotation state Ω/n. The
equilibrium points can be found with the red curves (null val-
ues of the derivative). In the same manner as in Fig. 9, the
stable equilibrium states must satisfy the condition of a posi-
tive torque (in red) on its left and a negative torque (in blue)
on its right for positive values of the rotation state Ω/n, and
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Fig. 11. Spin derivative dΩ/dt (in rad s−2). The left panel shows the spin derivative as a function of the rotation state Ω/n and for different
inclinations (5, 50, 120, and 130 degrees). The middle panel represents the value of the spin derivative as a function of Ω/n and the inclination.
The red areas depict the positives values, and the blue areas depict the negative values. The dotted black lines of the middle and right panels
represent the four inclination values (5, 50, 120, and 130 degrees) plotted in the left panel. The right panel shows a zoom into the square drawn in
the middle panel, centered on the 2 : 1 SOR. The dashed black curves depict the paths of the simulations presented in Fig. 10. The gray areas hide
the part of the figure close to the null rotation, where the equations used are no longer valid due to the gyroscopic approximation (see Sect. 2.5).

inversely for negative values of Ω/n. Figure 11a shows that only
one equilibrium is possible for low inclinations: synchronous
rotation. Increasing the inclination allows other SORs to appear
(e.g., the 2:1 SOR). For inclinations higher than 120 degrees,
the prograde rotations are no longer equilibrium points, but the
retrograde rotations are, such as the –2:1 SOR at Ω/n = −2. A
symmetry with respect to a 90-degree inclination exists. This
symmetry is clearly visible in the middle panel of Fig. 11b. In
particular, the torque at 130-degree inclination is symmetric of
the 50-degree inclination. We highlight that no SORs lie above
the 2:1 SOR in rotation. Figure 11b shows no SORs close to the
Ω/n = 3 or = 1.5. Higher spin states were also studied, but as
they do not exhibit any SORs. We therefore did not explore a spin
rate higher than 100 days. Higher rotation rates require longer
timescales to evolve than the present age of the Solar System
and are therefore not presented in this paper.

The evolution paths of Fig. 10 are overplotted in Fig. 11 for
the four initial inclinations of 5, 50, 120, and 130 degrees. For
two of these initial inclinations (50 and 120 degrees), we see a
capture in the 2:1 SOR (in Fig. 10 and in Figs. 11b and c). This
resonance island is stable for inclinations greater than 15 and
lower than 120 degrees. Thus, if the initial spin is higher than
Ω/n = 2, the spin is always be damped and trapped in the 2:1
SOR (for an inclination between 15 and 120 degrees). The spin
remains in the 2:1 SOR until the inclination becomes too low to
stably maintain this configuration.

For an initial inclination of 50 degrees, the inclination
appears to be excited by the tides and slightly increases when
the spin is higher than the 2:1 SOR. This behavior can be
explained with the shape of the inclination derivative di/dt plot-
ted in Fig. 12. It shows a positive-inclination derivative for a spin
higher than the 2:1 SOR and an inclination lower than about
80 degrees (bottom right corner of the figure). It also shows
that the inclination should also increase when the spin is slightly
higher than the synchronization and for an inclination lower than
100 degrees (red area in the vicinity of the 1:1 SOR). This
behavior is absent in Fig. 10 because the spin reaches the syn-
chronization very quickly. Higher inclination cases can show an
interesting behavior. Figure 11b clearly shows that for a high ini-
tial inclination of about 105 degrees, the synchronization state
(i.e., Ω/n = 1) is no longer a stable configuration. Then, if the

Fig. 12. Same as Fig. 11b, with the inclination derivative di/dt =
f (Ω/n, i), in rad s−1, instead of the spin derivative dΩ/dt.

system starts with a positive rotation and a sufficiently high ini-
tial inclination, the spin is damped to the antisynchronization
state Ω/n = −1, thus a retrograde rotation. As shown in Fig. 12,
however, as the spin reaches a negative value, the inclination
is driven toward 180 degrees by the tides. This will result in
a stable state where the spin is retrograde, in the antisynchro-
nization state, with an inclination of about 180 degrees. This
corresponds to a prograde rotation with an orbital inclination of
about 0 degrees. This is consistent with the symmetry on the
Ω/n = 0 axis and on the 90-degree axis of the derivative map
(Fig. 11b).

We investigated spin inclination-driven SORs, such as the
1:1, the 2:1 and their symmetric, the –1:1, and -2:1 SORs, and
the evolution of the spin inclination of the planet. We show the
range of inclination allowing for the SORs from 0 to 105 degrees
for the 1 : 1 and from 20 to 120 degrees for the 2 : 1 SOR. Our
simulations in Fig. 10 show the particular behavior of the incli-
nation for a rotation rate above Ω/n = 2, where the inclination
appears to be excited by the tides if the inclination is lower than
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Fig. 13. Panel a: inclination derivative di/dt (in rad/s) as a function of the spinΩ/n (Ω and n are the planetary spin and mean motion respectively)
and for different inclinations (from 0 to 180 degrees). Panel b: spin derivative dΩ/dt (in rad/s2) as a function of the spinΩ/n and inclinations (from
0 to 180 degrees). The red lines represent the null derivative in both panels. The arrows show the evolution of the system. They are consistent with
the sign of the inclination derivative (panel a) and the spin derivative (panel b). The dotted orange lines represent the null points of the inclination
derivative from the panel a (in red in the panel a). The image of Venus at the top of the two panels corresponds to the current state of Venus. The
black dot represents the 1:1 synchronization state. The gray area hides the part of the plots close to the null rotation.

80 degrees. Finally, the color maps in Fig. 11 show the symmet-
rical properties of the inclination-driven SORs in Ω/n = 0 and
i = 90 degrees.

The effect of the thermal tides of a Venus-like atmosphere
for different initial spin inclination is studied in the next section.

4. Venus-like atmospheric tides

As previous studies showed, the current spin state of Venus can-
not be reproduced by involving the solid tides alone (Gold &
Soter 1969; Dobrovolskis & Ingersoll 1980; Correia & Laskar
2001, 2003a,b; Correia et al. 2003; Leconte et al. 2015). In
particular, Correia & Laskar (2001) showed that atmospheric
tides can lead to four final rotation states of Venus, one of
which is the retrograde rotation observed today. They showed
that the current state of Venus cannot be reached for any initial
configuration, however. We can consider that the current spin
inclination of Venus is either high (about 177.36 degrees) and
has a rotation period of 5832.6 h, or a low spin inclination (about
2.64 degrees) and a retrograde rotation. We use the case of Venus
as a reference.

The next section (Sect. 4.1) explores the evolution of a
Venus-like planet in the spin and inclination parameter space,
with a nonevolving atmosphere, a constant luminosity, and a
nonevolving internal profile. Section 4.2 explores the effect of
the luminosity evolution of the host star, accounting for a simple
prescription for the atmospheric evolution.

4.1. Constant luminosity, nonevolving atmosphere

Leconte et al. (2015) fit the parameters of their analytical solution
of the pressure bulge (Eq. (9)) to their GCM simulation to model
the thermal tides. These parameters are given in Sect. 2.3.

In this section, we investigate the effect of the thermal forc-
ing produced by the host star on the atmosphere. We considered
two models for the interior: a multilayer model (introduced in
Sect. 2.2) and the fitted homogeneous model (introduced in
Sect. 2.4). For the thermal tides, we used the analytical model
of thermal tides fit on the present-day Venus (introduced in

Sect. 2.3.) The frequency dependence of the corresponding Love
numbers is given in Fig. 5.

As discussed in Sect. 2.4, the solid tides corresponding to
the multilayer model and its two variants (the V0.1 and V100
profiles) do not allow a stable-equilibrium point close to the
current frequency of Venus as they are either too strong or too
weak. We fit a homogeneous hot profile, using the method of
Bolmont et al. (2020a), in order to find an equilibrium point
close to the Venusian frequency (see Sect. 2.4). The shape of the
spin derivative in the bottom panel of Fig. 7 shows one stable
equilibrium state and two unstable equilibrium states. The two
unstable states, close to the synchronization, are also present in
the highly viscous V100 profile case. The negative stable spin
state was fit to correspond to the retrograde state of Venus. The
1 : 1 synchronous spin state remains stable.

As in Sect. 3.2, we used the derivative maps of dΩ/dt and
di/dt as a function of Ω/n and i to represent the evolution of the
system in Fig. 13. As discussed in Sect. 2.4, we constrained our
study at low spin rates. Because no inclined SORs are higher
than the 2:1 (see Sect. 3.2), the initial spin rate of the simu-
lations was set to Ω/n = 2.5 for most of our simulations. We
can find the set of initial spins and spin inclinations that can
lead to a stable state close to the current rotation state of Venus
(with an inclination as high as 180 degrees). Figures 13a and b
show the evolution of the system through the map, in which each
curve represents an ESPEM simulation. The solid lines show the
cases leading to an inclination as high as 180 degrees with a pro-
grade rotation, close to the current state of Venus. The dashed
lines show the cases leading to the 1 : 1 SOR and an inclination
of 0 degrees (i.e., a prograde rotation with a null inclination).
The maps show that the atmospheric tides can drive the system
toward the high-inclination state and keep the rotation on the pro-
grade spin rate (i.e., prograde rotation with a high inclination) if
the initial spin inclination is higher than about 150 degrees with
a fast initial rotation. This configuration can be reached through
the effect of a chaotic motion in the Solar System for the case of
Venus (Correia & Laskar 2003a).

Correia & Laskar (2001) argued that the current state of
Venus can be described with four final states, depending on the
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Fig. 14. Luminosity variation of a Sun-like star over the time from the
beginning to the end of the MS. The dash-dotted line represents the
simulation start time. The dotted lines represent the current time state.

evolution path of the planet. In their work, the paths leading to
the current state of Venus either evolved by increasing the spin
inclination toward 180 degrees and keeping the spin on a pro-
grade rotation by either decreasing the spin toward retrograde
rotation or keeping the spin inclination to zero degrees. In this
study, the retrograde rotation can be reached only from the evo-
lution of the spin inclination toward the high-inclination states.
None of the paths shown in Fig. 13b crosses the null spin state.
Any positive rotation with a low-inclination configuration will
drive the system in the synchronous state. As the chaotic effect
of a third body will only perturb the spin inclination of the planet
it is therefore unlikely that the rotation has crossed the null spin
during its evolution given our set of hypotheses.

4.2. Luminosity variation

Dynamical studies of the thermal tides (Correia & Laskar 2001,
2003a; Leconte et al. 2015) have considered a constant lumi-
nosity. As the thermal forcing depends on the heat flux of the
host star, we also investigated the effect of an evolving lumi-
nosity on the rotation evolution of a Venus-like planet. The
luminosity evolution of the Sun-like star in ESPEM comes from
simulations with the stellar evolution code STAREVOL (Amard
et al. 2016). Figure 14 shows the luminosity variation of the
Sun-like star we considered. The thermal Love number was com-
puted with the luminosity dependence with the formulation of
Auclair-Desrotour et al. (2017b) as

ℑ(katm
2 (σ)) = −

4
32
κτςϵL⋆a

RAT0M⋆R
σ

σ2 + ω2
0

, (13)

with L⋆ and M⋆ the stellar mass and luminosity respectively,
R the radius of the planet, a the semi-major axis, τ a weight
parameter that gives the efficiency of the coupling between the
atmosphere and the surface (0 < τ < 1), ς a shape factor depend-
ing on the spatial distribution of tidal heat sources, κ the power
per mass unit radiated by the atmosphere (where the atmosphere
is assumed to behave like a graybody, i.e., Newtonian cooling),
ϵ the effective fraction of power absorbed by the atmosphere, σ
the excitation frequency, ω0 the radiative frequency, T0 the equi-
librium surface temperature of the atmosphere, RA the specific
gas constant defined as RA = RGP/MA (RGP andMA being the
perfect gas constant and the mean molar mass respectively), and
α the shape factor depending on the spatial distribution of tidal
heat sources. The values of the parameters we used are presented
in Table 2.

Table 2. Numerical values for the thermal Love number of Eq. 13.

Parameter Values Units

T0 737 K
τ 1 –
ς 0.19 –
κ 0.286 –
ϵ 0.04 –
ω0 3.77E − 7 s−1

RGP 8.314 J mol−1 K−1

MA 43.45 g mol−1

We started the simulation at 100 Myr regarding the timescale
of the rocky planets to form (Chambers 2004). We considered the
atmosphere to be fully formed quickly, over the first 1 Myr after
the formation of the planet. Then, as the evolution of the atmo-
sphere is very uncertain, we considered it as non-evolving.The
following part presents the evolution of the system after 3.6 Gyr
of evolution.

Figure 15 shows the spin versus inclination maps with the
ESPEM simulation overplotted, in the same manner as the
Fig. 13a and 13b. Figures 15a–h show the apparition and the
evolution of the equilibrium state close to the current state of
Venus (red curve appearing in the top left corner of the map
from Figs. 15b–h). In the early stages of the simulations, the
stellar flux is lower than today, and gravitational tides dominate
the thermal ones. This means that the spin and inclination
evolution is mainly driven by the gravitational tides, following
a path consistent with Fig. 11c. Figure 15d corresponds to a
situation in which an equilibrium close to the current state of
Venus is found for the current age of the Solar System. We must
emphasize that these maps were set to reproduce the steady state
at the current state of Venus for the current solar luminosity.
Figures 15e–h show that the Solar luminosity increases faster
than the spin state. Thus, as the luminosity increases, the spin
never stays in a stable configuration, but continuously evolves
toward the stable state. The evolution of the theoretical equilib-
rium rotation state between the gravitational and thermal tides
can be found by finding the rotation rate Ωeq, which satisfies
kgrav

2 (σeq) = kthermal
2 (σeq).

Figure 16 shows the evolution of the equilibrium rotation rate
in terms of Ωeq/n and the evolution of the rotation rate Ω/n
from the ESPEM simulations shown in Fig. 15. The equilib-
rium states were determined numerically by finding the rotation
state Ωeq that verifies the equality between the gravitational and
the thermal Love number ℑ(kgrav

2 (Ωeq/n)) = ℑ(kthermal
2 (Ωeq/n))

over the evolution of the stellar luminosity. We show the evolu-
tion of the four simulations that crossed the current spin state of
Venus during their evolution in Fig. 15. These cases crossed the
equilibrium state close to the current time, but the equilibrium
point evolved faster than the rotational state of the simulation.
Figure 15h shows that the thermal tides eventually become
stronger than the gravitational tides across a large parameter
space as the luminosity increases.

In summary, the luminosity evolution leads to two effects.
First, the equilibrium changes as the balance between the gravita-
tional tides and thermal tides evolves (thermal tides dominate as
the luminosity increases). Second, the planet cannot stay in equi-
librium because the timescale of the spin evolution is longer than
the timescale of the luminosity evolution. Concerning the first
point, as the luminosity increases and the thermal tides becomes

A227, page 12 of 18



Revol, A., et al.: A&A proofs, manuscript no. aa45790-22

Fi
g.

15
.S

am
e

as
Fi

g.
13

b
fo

ra
va

ri
ab

le
lu

m
in

os
ity

.E
ac

h
pa

ne
ls

ho
w

s
th

e
de

ri
va

tio
n

m
ap

an
d

E
SP

E
M

si
m

ul
at

io
n

pa
th

s
at

di
ff

er
en

tt
im

e
st

ep
s.

T
he

im
ag

e
of

V
en

us
at

th
e

to
p

of
th

e
pl

ot
s

co
rr

es
po

nd
to

th
e

cu
rr

en
ts

pi
n

st
at

e
of

V
en

us
.T

he
bl

ue
cu

rv
es

co
rr

es
po

nd
to

E
SP

E
M

si
m

ul
at

io
ns

ev
ol

vi
ng

w
ith

tim
e

an
d

lu
m

in
os

ity
as

de
sc

ri
be

d
in

Se
ct

.4
.2

.

A227, page 13 of 18



A&A 674, A227 (2023)

Fig. 16. Evolution of the rotational equilibrium state Ωeq (in red) evolv-
ing with the stellar luminosity (Fig. 14). In blue, we show the four curves
corresponding to the rotational evolution from ESPEM that crossed the
current spin state of Venus in Fig. 15.

stronger, the equilibrium moves to higher spin rates (farther from
synchronization). Concerning the second point, the rotation of
the planet always chases the equilibria indefinitely (considering
a nonevolving atmosphere).

5. Conclusion

We presented the recent implementation of the effect of the
tides raised by the star on a telluric Venus-like planet in the
code ESPEM. We added the secular evolution of the osculat-
ing elements of the planetary orbit (a, e, i, ω, and Ω), that is the
semi-major axis, the eccentricity, the inclination, the longitude
of ascending node, the argument of periastron, and the planetary
spin. We followed the secular equations published by Boué &
Efroimsky (2019), which describe the evolution of the osculat-
ing elements of the orbit of the planet under tidal perturbations
following the Kaula formalism (Kaula 1964). Our implementa-
tion includes gravitational and thermal tides, which allowed us to
study the tidal effect of an arbitrary atmosphere on an arbitrary
planet, provided that the tidal Love numbers k2 associated with
its atmosphere and internal structure are known.

First we focused in Sect. 3.1 on the eccentricity-driven SORs
and validate our implementation by finding the 1:1, 3:2, 2:1, and
5:2 SORs, depending on the eccentricity value. Our results are
consistent with the findings of Walterová & Běhounková (2020).
Then we investigated in Sect. 3.2 the inclination-driven SORs, as
shown by Boué et al. (2016), here with the Andrade rheology. In
particular, we find the 1:1, the 2:1 and their symmetric, the –1:1,
and –2:1 SORs.

In Sect. 4.1, we investigated the effect of a thick Venus-like
atmosphere with the implementation of the analytical model of
Leconte et al. (2015). We used their fit parameters, chosen so
that GCM simulations reproduce the current state of Venus. We
fit a homogeneous internal structure that allowed gravitational
tides to balance thermal tides at the frequency of Venus. We must
emphasize that the de-spinning of Venus is a difficult task. Then,
we constrained our work to lower initial rotation rates. We find
that depending on the initial spin rate and initial spin inclina-
tion, either a spin inclination of about zero in the synchronization
state or a state close to the current retrograde rotation of Venus
results, with a spin rate close to the synchronization and a spin
inclination of 180 degrees. The synchronization state (1:1 SOR)
is reached when the planet starts with a spin inclination lower
than about 120 degrees and a prograde spin in our simulations.

The latter state can be reached when the planet starts either with
a high spin inclination (higher than about 120 degrees) and a
prograde rotation, or with a spin inclination lower than about
60 degrees and a retrograde rotation. Our results are consistent
with the final spin state of Venus found by Correia & Laskar
(2001), who computed the evolution of the spin and obliquity of
Venus under the solar tides. We point out, however, that Correia
& Laskar (2001) used different models for the gravitational tides,
which less appropriate than an Andrade rheology for silicate
bodies (i.e., the CTL, Hut 1981; Goldreich 1966; Efroimsky &
Makarov 2013) and they included the core-mantle friction. The
core–mantle friction helps to damp the spin inclination of the
planet (Correia & Laskar 2001) and should help the gravita-
tional tides to balance the thermal tides. Furthermore, they also
accounted for the chaotic motion in the Solar System (Laskar
1990). In particular, they reported that the chaotic motion helps
to transition from low to high inclination. We cannot reproduce
this with only two bodies. Further developments of the ESPEM
code will include these effects.

In Sect. 4.1, we assumed that the spin state of Venus was in
equilibrium state to fit an internal model to the thermal tides.
Our results in Sect. 4.2 showed, however, that this may not be
the case, and the spin of Venus may still be evolving because of
the variation in the solar luminosity. Thus, we investigated the
effect of the evolving luminosity on the thermal tides. The evo-
lution of the stellar luminosity leads to a continuous change in
the balance between the gravitational and the thermal tides. The
rotation of the planet will then continually increase as the lumi-
nosity increases. The luminosity evolving faster than the spin,
the rotation of the planet will chase the equilibrium state without
reaching it. We must highlight that the way in which the ther-
mal tides will continue to increase as the rotation of the planet
increase is unclear. In our case, the Maxwell-like frequency-
dependent model of thermal tides overestimates the strength of
the thermal tides at high frequencies, as the model was fit for
the low-frequency regime (Auclair-Desrotour et al. 2019). Fur-
ther studies with GCM simulations of Venus at higher rotation
rates will help to answer this question.

Exploring the complete evolution of the rotation of Venus
requires calculating the dynamical evolution of the planet in (at
least) three-body simulations. The effect of the evolution of the
internal structure and the atmosphere of the planet must also be
investigated. The strength of the gravitational and thermal tides,
and thus the balance between the two contributions, should have
varied strongly during the evolution of the planet since its forma-
tion. The current internal structure and atmospheric tides are not
sufficiently constrained, however. Future missions to Venus, such
as EnVision (Widemann et al. 2020), DAVINCI (Garvin et al.
2022), and VERITAS (Smrekar et al. 2020), will bring valuable
data on the internal state of Venus and on the thermal atmo-
spheric response of the planet (Bills et al. 2020). They will help
to determine whether the planet is in equilibrium between the
gravitational and the thermal tide. These constraints could also
help reconstruct the thermal evolution of the planet, which would
impact the competition between the gravitational and thermal
tides and thus the rotational evolution. Finally, better observa-
tions of the atmosphere, together with additional modeling of
the Venusian atmosphere, would help constrain the thermal tide.
In particular, estimating the response of the atmosphere with a
GCM to other frequencies would be extremely helpful.

In the context of exoplanets, we need to consider a rele-
vant model of tides for rocky exoplanets to characterize their
surface and potential habitability. We have shown that a rel-
evant tidal model for rocky planet allows a higher spin state
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than the synchronization, such as eccentricity-driven SORs and
also inclination-driven SORs. Planets on a large orbit can keep
nonzero eccentricity or obliquity because they evolve on a
longer timescale, and can still be trapped in this eccentricity or
obliquity-driven SORs. When a planet has an atmosphere, ther-
mal tides can excite the spin inclination to high values because
thermal tides drive the spin of Venus in its current state through
the chaotic motion of the Solar System. The strength of the ther-
mal tides also depends on the surface pressure, and thus on the
total mass of the atmosphere, on the composition that deter-
mines the atmospheric absorption, and on the dynamics of the
atmosphere. These dependences should be investigated in future
studies. We showed that the variation in host star luminosity can
also prevent the rotation of a planet from reaching equilibrium
between gravitational and thermal tides. This behavior must be
further studied for different types of star, that is, different radi-
ation spectra, and with more elaborate models of thermal tides
that take the wavelength dependence of the irradiation and the
composition of the atmosphere into account. The new genera-
tion of instruments, that is, the JWST and ARIEL (Greene et al.
2016; Tinetti et al. 2021; Edwards & Tinetti 2022), will provide
valuable data on the atmosphere of rocky worlds. The correct
modeling of the dynamical state of exoplanets is then crucial to
constrain their surface condition.
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Appendix A: Secular equations

This section presents the secular equations we implemented in
the code ESPEM. The secular equations used were developed
by Boué & Efroimsky (2019), who revisited the secular equa-
tions of Kaula (1964). We used their equations 116 to 123, which
describe the secular equations of the osculating elements, a, e, i,
Ω̄, ω, and ε the semi-major axis, the eccentricity, the inclination,
the longitude of ascending node, the argument of pericenter and
the inclination of the spin axis respectively, and θ̇ the spin rate.
Here, the inclination i is defined as the angle between the orbital
plane and the planet equator. The inclination of the spin axis ε is
defined as the inclination of the spin with respect to the inertial
frame.

These equations were computed within the gyroscopic
approximation, which implies that the spin rate of a body is
much faster than the evolution of the spin-axis orientation. This
approximation means that considering the limit within which the
spin tends to zero cannot be included.

Hereafter, the star is taken as the secondary (subscript ⋆), and
the planet as the primary (subscript p), C is the inertia momen-
tum, that is, C = MpR2

prg, with rg the gyration radius (which
represents the internal density distribution). β is the reduced
mass β = MpM⋆/(Mp + M⋆) and G the universal gravitational
constant. Flmp(i) and Glpq(e) are the inclination and eccentricity
polynomials respectively (see Appendix B). The tidal frequency
is defined asσlmpq = (l−2p+q)n−mθ̇ (with θ̇ and n the spin rate
and the mean motion respectively). The phases νlmpq are defined
as νlmpq = (l − 2p)ω + (l − 2p + q)M + mΩ̄, with M the mean
anomaly. kl is the modulus of the complex Love number |k̄l| of
degree l. The tidal potential energy V1 is defined from the Hamil-
tonian formalism as (Boué & Efroimsky 2019) H = H′ + V1.
The tidal perturbing potential R is computed with R = −V1/β.
The perturbing potential U (Eq. 1) within the Darwin-Kaula for-
malism can be related to R with R = −M⋆

β
U (Boué & Efroimsky

2019). Then, the tidal perturbing potential R is expressed in the
formalism of Kaula (1964) as

R(r, r′) =
+∞∑
l=0

(Rp

a′
)l+1GM′

a′
(Rp

a′
)l

l∑
m=0

(l − m)!
(l + m)!

(2 − δ0,m)

l∑
p=0

Flmp(i′)
∞∑

q=−∞

Glpq(e′)
l∑

h=0

Flmh(i)
∞∑

j=−∞

Glh j(e)

kl(σlmpq) cos
[
(ν′lmpq − mθ̇′) − (νlmh j − mθ̇) − εl(σlmpq)

]
,

(A.1)

where the subscript ′ (i.e., r′, a′, e′, i′, Ω̄′, and ω′) corresponds to
the coordinate of the perturber, and the parameters without sub-
script (i.e. r, a, e, i, Ω̄, andω) correspond to the coordinate where
the tides are evaluated. In the following, both the perturber and
the body on which the tides retro-act are considered to be the star,
and therefore we neglect the subscripts. All the following equa-
tions come from the Hamiltonian development and the method
of Boué & Efroimsky (2019).

The spin derivative equation is expressed from the Hamilto-
nian formalism as (Boué & Efroimsky 2019)

d2θ

dt2

∣∣∣∣∣∣
l=2
= −
β

C
∂R

∂Ω̄
(A.2)

We carry out the derivative of the perturbing function R, and
the secular equation of the spin derivative is written after some

algebra as

d2θ

dt2

∣∣∣∣∣∣
l=2
= −
GM2

⋆R5

a6C

2∑
m=0

m
(2 − m)!
(2 + m)!

(2 − δ0,m)
2∑

p=0

F2mp(i)2

7∑
q=−7

G2pq(e)2ℑ
(
k2(σ2mpq)

) (A.3)

The eccentricity derivative equation is computed from the
Hamiltonian equation as

de
dt

∣∣∣∣∣∣
l=2
=

1 − e2

na2e
∂R

∂M
−

√
1 − e2

na2e
∂R

∂ω
(A.4)

Then, the equation of the eccentricity derivative is computed
with the eccentricity squared e2 to avoid singularities when the
eccentricity tends to zero. Thus, we find

de2

dt

∣∣∣∣∣∣
l=2
= −2

√
(1 − e2)

√
G(Mp + M⋆)

M⋆
Mp

( R5
p

a13/2

)
2∑

m=0

(2 − m)!
(2 + m)!

(2 − δ0,m)
2∑

p=0

F2mp(i)2

7∑
q=−7

G2pq(e)2
(√

1 − e2(2 − 2p + q) − (2 − 2p)
)
ℑ
(
k2(σ2mpq)

)
(A.5)

The equation of the inclination derivative is also defined
from the Hamiltonian formalism as

di
dt

∣∣∣∣∣∣
l=2
=

β

Cθ̇ sin i

(∂R
∂ω
− cos i

∂R

∂Ω̄

)
−

1

na2
√

1 − e2 sin i

(∂R
∂Ω̄
− cos i

∂R

∂ω

) (A.6)

Then, we carry on the derivative of the perturbing function R,
and the equation can be written as

di
dt

∣∣∣∣∣∣
l=2
=

1
sin i

M⋆
Mp

(Rp

a

)5
2∑

m=0

(2 − m)!
(2 + m)!

(2 − δ0m)×

2∑
p=0

[βn2a2

Cθ̇

(
m cos i − (2 − 2p)

)
−

n
√

1 − e2

(
(2 − 2p) cos i − m

)]
×

F2mp(i)2
7∑

q=−7

G2pq(e)2ℑ
(
k2(σ2mpq)

)
(A.7)

The equation of the longitude of the ascending node deriva-
tive is given as

dΩ̄
dt

∣∣∣∣∣∣
l=2
=

( β cos i
Cθ̇ sin i

−
β cos ε cos Ω̄

Cθ̇ sin ε
+

1

na2
√

1 − e2 sin i

)∂R
∂i

+
β cos ε sin Ω̄ cot i

Cθ̇ sin ε
∂R

∂Ω̄
−
β cos ε

Cθ̇ sin ε
sin Ω̄
sin i

∂R

∂ω
(A.8)
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Then, after some algebra, the equation can be written as

dΩ̄
dt

∣∣∣∣∣∣
l=2
=
GM2

⋆R5
p

a6

2∑
m=0

(2 − m)!
(2 + m)!

(2 − δ0,m)
{

( 1
Cθ̇ tan i

−
cos Ω̄

Cθ̇ tan ε
+

1

βna2
√

1 − e2 sin i

)
×

1
2

2∑
p=0

∂ F2mp(i)2

∂ i

7∑
q=−7

G2pq(e)2ℜ
(
k2(σ2mpq)

)
−

sin Ω̄ cot i
Cθ̇ tan ε

m
2∑

p=0

F2mp(i)2
7∑

q=−7

G2pq(e)2ℑ
(
k2(σ2mpq)

)
+

1
Cθ̇ tan ε

sin Ω̄
sin i

l∑
p=0

(2 − 2p)F2mp(i)2
7∑

q=−7

G2pq(e)2ℑ
(
k2(σ2mpq)

)}
(A.9)

The equation of the argument of the periastron derivative is
defined as

dω
dt

∣∣∣∣∣∣
l=2
= −

β

Cθ̇ sin i
∂R

∂i
+

√
1 − e2

na2e
∂R

∂e
−

cos i

na2
√

1 − e2 sin i

∂R

∂i
(A.10)

Then, the equation can be written as

dω
dt

∣∣∣∣∣∣
l=2
=
GM2

⋆R5
p

a6

2∑
m=0

(2 − m)!
(2 + m)!

(2 − δ0,m)
2

[

−

(
1

Cθ̇ sin i
+

1

na2
√

1 − e2 tan i

1
β

) 2∑
p=0

∂ F2mp(i)2

∂ i

7∑
q=−7

G2pq(e)ℜ
(
k2(σ2mpq)

)
+

√
1 − e2

na2e
1
β

2∑
p=0

F2mp(i)
7∑

q=−7

∂ G2pq(e)2

∂ e
ℜ

(
k2(σ2mpq)

)]
(A.11)

Finally, the equation of the inclination of the spin axis is
defined as

dε
dt
= −
β

Cθ̇

(
cos Ω̄ cot i

∂R

∂Ω̄
+ sin Ω̄

∂R

∂i
−

cos Ω̄
sin i

∂R

∂ω

)
(A.12)

Then, after some algebra, we find

dε
dt
=
GM2

⋆R5

a6Cθ̇

2∑
m=0

(2 − m)!
(2 + m)!

(2 − δ0,m)
(

m cos Ω̄ cot i
2∑

p=0

F2mp(i)2
2∑

q=−2

G2pq(e)2ℑ
(
k2(σ2mpq)

)
−

1
2

sin Ω̄
2∑

p=0

∂F2mp(i)2

∂i

∞∑
q=−∞

G2pq(e)2ℜ
(
k2(σ2mpq)

)
−

cos Ω̄
sin i

2∑
p=0

(2 − 2p)F2mp(i)2
2∑

q=−2

G2pq(e)2ℑ
(
k2(σ2mpq)

))
(A.13)
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Appendix B: Table of the inclination eccentricity
from the Fourier development by Kaula, Cayley
etc

The inclination and eccentricity polynomials, Flmp(i) and
Glpq(e), respectively, are given by Eqs. 20, 23, and 24 of Kaula
(1961) and are presented in Tables B.1 and B.2. The eccen-
tricity functions are elliptic expansions that can be computed
with the Hansen function X−(l−1),(l−2p)

l−2p+q (Tisserand 1889). These
expansions are discussed by Izsak et al. (1964).

We considered eccentricities up to 0.3, which allowed us to
consider the eccentricity expansions up to order 7 (see tables
Cayley 1861). As the tidal interactions are computed at the
quadupolar order l = 2, the index m is constrained between 0
and 2 and p between −7 and 7.

Table B.1. Inclination polynomials Flmp(i) for l = 2 (Kaula 1964)

l m p Flmp(i)
2 0 0 − 3

8 sin i2

2 0 1 3
4 sin i2 − 1

2
2 0 2 − 3

8 sin i2

2 1 0 3
4 sin i(1 + cos i)

2 1 1 − 3
2 sin i cos i

2 1 2 3
4 sin i(cos i − 1)

2 2 0 3
4 (1 + cos i)2

2 2 1 3
2 sin i2

2 2 2 3
4 (1 − cos i)2

Table B.2. Eccentricity polynomials Glpq(e) from Cayley (1861), up to
order 7 in eccentricity.

l p q Glpq(e)
2 0 -7 15625.0

129024.0 e7

2 0 -6 4.0
45.0 e6

2 0 -5 81.0
1280.0 e5 + 81.0

2048.0 e7

2 0 -4 1.0
24.0 e4 + 7.0

240.0 e6

2 0 -3 1.0
48.0 e3 + 11.0

768.0 e5 + 313.0
30720.0 e7

2 0 -2 0
2 0 -1 − 1

2 e + 1
16 e3 − 5

384 e5 − 143
18432 e7

2 0 0 1 − 5
2 e2 + 13

16 e4 − 35
288 e6

2 0 1 7
2 e − 123

16 e3 + 489
128 e5 − 1763

2048 e7

2 0 2 17
2 e2 − 115

16 e4 + 601
48 e6

2 0 3 845.0
48.0 e3 − 32525.0

768.0 e5 + 208225.0
6144.0 e7

2 0 4 533.0
16.0 e4 − 13827.0

160.0 e6

2 0 5 228347.0
3840.0 e5 − 3071075.0

18432.0 e7

2 0 6 73369.0
720.0 e6

2 0 7 12144273.0
71680.0 e7

2 1 -7 G217(e)
2 1 -6 G216(e)
2 1 -5 G215(e)
2 1 -4 G214(e)
2 1 -3 G213(e)
2 1 -2 G212(e)
2 1 -1 G211(e)
2 1 0 (1 − e2)−3/2 ≃ 1 + 3

2 e2 + 15
8 e4 + 35

16 e6 + O(e9)
2 1 1 3.0

2.0 e + 27.0
16.0 e3 + 261.0

128.0 e5 + 14309.0
6144.0 e7

2 1 2 9.0
4.0 e2 + 7.0

4.0 e4 + 141.0
64.0 e6

2 1 3 53.0
16.0 e3 + 393.0

256.0 e5 + 24753.0
10240.0 e7

2 1 4 77.0
16.0 e4 + 129.0

160.0 e6

2 1 5 1773.0
256.0 e5 − 4987.0

6144.0 e7

2 1 6 3167.0
320.0 e6

2 1 7 432091.0
30720.0 e7

2 2 -7 G207(e)
2 2 -6 G206(e)
2 2 -5 G205(e)
2 2 -4 G204(e)
2 2 -3 G203(e)
2 2 -2 G202(e)
2 2 -1 G201(e)
2 2 0 G200(e)
2 2 1 G20−1(e)
2 2 2 G20−2(e)
2 2 3 G20−3(e)
2 2 4 G20−4(e)
2 2 5 G20−5(e)
2 2 6 G20−6(e)
2 2 7 G20−7(e)
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