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ABSTRACT: 

The Cretaceous marine sedimentary record is characterized by time intervals rich in 

organic matter correlating with positive carbon-isotope excursions, often called oceanic 

anoxic events. The Weissert Event corresponds to the first such event in the Cretaceous 

during the Valanginian stage. The associated palaeoenvironmental perturbations which 

include increasing marine surface-water primary productivity are hypothesized to be triggered 

by volcanic activity from large igneous provinces, and the source of nutrients is not well-

constrained (continental runoff vs. oceanic upwelling). We present isotope ratios of Pb, Sr and 

Nd together with concentrations of major and trace elements for sediments coming from the 

central Moroccan margin to test these hypotheses. We demonstrate that the nutrient input was 

dominated by continental weathering. Also, the source of sedimentary material remained 

stable during the Valanginian interval and it originated in an old source, probably the African 

Sahara region. The radiogenic isotope signatures do not show a significant contribution of 

volcanic products from any known Valanginian large igneous province to the geochemical 

budget of sediments deposited on the central Moroccan margin. While this does not preclude 

an impact of volcanic activity on the composition of seawater, it demonstrates that erupted 

volumes were not sufficient to affect the deposited sediments. 

 

Supplementary material: A supplementary table (Microsoft Excel) is attached with the 

submission. It contains three sheets: (1) ―Central Moroccan Margin‖, the analytical data 

generated and analysed during this study; (2) ―Fig.8 Data - LIPs‖, the data of known 

Valanginian large igneous provinces used for comparison; and (3) ―Fig.9 & S5 Data - source 

areas‖, the data of potential surrounding source areas used for comparison. 
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The Cretaceous marine sedimentary record is characterized by several positive carbon-isotope 

excursions (CIEs) corresponding to perturbations in the global carbon-cycle (Scholle and 

Arthur, 1980; Weissert et al., 1998). These are mainly explained by enhanced marine and 

terrestrial primary productivity and/or enhanced preservation of organic matter (Scholle and 

Arthur, 1980; Weissert, 1989; Kump and Arthur, 1999). Positive CIEs are often associated 

with records of widespread organic-rich oceanic sediments termed as ―Oceanic Anoxic 

Events‖ (OAEs, Schlanger and Jenkyns, 1976; Scholle and Arthur, 1980). The Valanginian 

stage (137.7–132.6 Ma; Gale et al., 2020) records the first positive CIE of the Cretaceous and 

is named the Weissert OAE (Lini et al., 1992; Weissert et al., 1998; Erba et al., 2004). 

However, its expression as an OAE is doubted due to the absence of significant and 

widespread organic-rich layers (Westermann et al., 2010; Kujau et al., 2012). The most 

significant in the Tethyan Realm being the centimetric ―Barrande‖ layers (1.9 – 3.7 % TOC), 

observed prior to the Valanginian positive CIE in the Vocontian basin (SE France) (Reboulet 

et al., 2003). 

The positive CIE corresponding to the ―Weissert Event‖ is observed in a wide range of 

geographic locations such as the Tethys, Atlantic, Pacific, Boreal Realm and the Southern 

Hemisphere (Hennig et al., 1999; Bartolini, 2003; Price and Mutterlose, 2004; Sprovieri et al., 

2006; McArthur et al., 2007; Aguirre-Urreta et al., 2008; Bornemann and Mutterlose, 2008; 

Charbonnier et al., 2013; Price et al., 2018). Following Martinez et al (2015), the onset of the 

Valanginian CIE is recorded at 135.22 ±1.0 Ma, and it is characterized by three phases: (1) 

rapid δ
13

Ccarb increase lasting 0.60 myr, (2) stable δ
13

Ccarb values with a duration of 1.48 myr, 

and (3) smooth decrease in δ
13

Ccarb lasting 3.77 myr. This CIE is recorded in marine 

carbonates and organic matter (Lini et al., 1992; Channell et al., 1993; Gréselle et al., 2011; 

Aguado et al., 2018), and in terrestrial fossil plants (Gröcke et al., 2005) implying a 

perturbation in both the oceanic and atmospheric carbon reservoirs. 
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The Weissert Event is associated with a warm and humid climate (Lini et al., 1992; 

Charbonnier et al., 2020), enhanced marine primary productivity (Bersezio et al., 2002; 

Bartolini, 2003; Erba and Tremolada, 2004; Duchamp-Alphonse et al., 2007; Bornemann and 

Mutterlose, 2008; Mattioli et al., 2014) and a biocalcification crisis in platform and pelagic 

settings (Channell et al., 1993; Weissert et al., 1998; Wortmann and Weissert, 2000; Erba and 

Tremolada, 2004; Föllmi et al., 2006). Two main hypotheses explain eutrophication (i.e., 

nutrient input) of the marine environment in proximal and distal marine settings. 

Intensification of the hydrological cycle is suggested to cause higher detrital and nutrient 

input in proximal settings close to fluvial influx (Lini et al., 1992; Jenkyns, 2003; Erba et al., 

2004). In contrast, nutrient input in pelagic settings is often explained by the introduction of 

nutrients from oceanic upwelling (Arthur et al., 1990; Weissert et al., 1998; Jenkyns, 2010; 

Föllmi, 2012). Such hypotheses proposed for the fertilization of the ocean need to be 

examined for the Weissert Event. 

The triggering conditions causing the environmental perturbations of the Weissert Event are 

tentatively linked with extensive volcanism from the Paraná-Etendeka large igneous province 

(LIP; Weissert et al., 1998; Erba et al., 2004; Charbonnier et al., 2017) or the Comei-Bunbury 

LIP (Zhu et al., 2009). Radiometric ages of basalts from the aforementioned LIPs cluster 

around 135.5–126 Ma (Liu et al., 2015; Almeida et al., 2018; Baksi, 2018; Rocha et al., 2020; 

Bacha et al., 2021), likely postdating the onset of the Valanginian positive CIE (135.22 ±1.0 

Ma, Martinez et al., 2015). Previous studies used Pb isotopes from ODP (ocean drilling 

program) Leg 185 Hole 1149B (western Pacific) to demonstrate a link between the Weissert 

Event and the Paraná-Etendeka LIP (Chavagnac et al., 2008; Peate, 2009). However, 

constraints provided by Sr and Nd isotopes are not necessarily consistent with such 

interpretation and the number of Valanginian samples showing a Pb isotopic shift is very low. 
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In this study, we report major and trace element concentrations and radiogenic isotope ratios 

of Pb, Sr and Nd in Valanginian carbonate sediments from two stratigraphic successions on 

the central Moroccan margin. Comparing data obtained on sediments from an onshore section 

(Zalidou; Essaouira-Agadir Basin) and an offshore Deep Sea Drilling Project succession 

(DSDP Leg 50 Hole 416A; east Atlantic) allows investigation of the geochemical similarities 

and differences between a proximal and a distal site on the same margin. In both sites, 

temporal geochemical variations are constrained by an accurate chronostratigraphic 

framework allowing us to establish whether changes occur before, during or after the Weissert 

Event. Ultimately, the aim of this study is to: (a) determine whether the source of nutrients 

(i.e., eutrophication) is continental runoff, oceanic upwelling or both and (b) search for a 

volcanic contribution in the sediments, a feature that would support a volcanic origin for the 

Weissert Event. 

Geological setting 

The Essaouira-Agadir Basin faces the eastern Atlantic margin and is located in the western 

High Atlas in Morocco (9
o
55‘ to 9

o
20‘ W, 30

o
30‘ to 31

o
05‘ N) (Fig. 1). The Essaouira-Agadir 

Basin extends offshore until the western limit of the continental margin and constitutes part of 

the present-day Atlantic passive margin (Frizon de Lamotte et al., 2008). Consequently, the 

geologic evolution of the passive margin controlled that of the basin itself (Ellouz et al., 

2003). Post-rift sedimentation along with thermal subsidence started in the middle Jurassic 

and an eustatic transgression gave way to extended marine sedimentation during the Early 

Cretaceous (Berriasian to early Hauterivian; Piqué et al., 1998; Hafid et al., 2008; Frizon de 

Lamotte et al., 2009). During the Early Cretaceous, the basin corresponded to a temperate 

platform on the south Tethyan margin between palaeo-latitudes ~15°N and ~22°N (Fig. 2).  

Sedimentary rocks of Valanginian age (137.7–132.6 Ma) were sampled from two different 

geological successions on the central Moroccan margin, one being onshore and proximal (the 
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Zalidou section) and the other being offshore and distal (DSDP Hole 416A) (Fig. S1). Both 

geological successions have a well-constrained biostratigraphy (ammonites for the onshore 

succession, and calcareous nannofossils) and chemostratigraphy (carbon isotopes) allowing to 

identify the Weissert Event (Reboulet et al., 2022; Shmeit et al., 2022). The combination of 

the two successions allowed investigation of how the geochemical signature in a proximal 

setting close to river-influence compares to that in a distal setting close to possible oceanic 

upwelling (Price et al., 1995; Poulsen et al., 1998). 

The Zalidou section 

The section is located onshore ~100 km north of Agadir city (30°54'23"N; 9°39'48"W) (Fig. 

1b). The rocks of Valanginian age are particularly well exposed and the lithostratigraphy and 

biostratigraphy (ammonites and calcareous nannofossils) are presented in Reboulet et al. 

(2022) (Fig. S2). Briefly, the section is dated from the late Berriasian (older than 137.7 Ma, 

GTS 2020) to earliest Hauterivian (younger than 132.6 Ma, GTS 2020) and consists of an 

alternation of limestone and marlstone during the Valanginian stage (Fig. S2). The lower 

Valanginian is dominated by marlstone and thin limestone beds, whereas in the upper 

Valanginian sandy deposits (sandy marlstone, sandy limestone and calcareous sandstone) 

become more common. Traces of pyrite are observed suggesting that reducing conditions 

occurred during the lower Valanginian; however, no organic-rich facies were detected. The 

Weissert Event interval is identified from the lower part of the K. inostranzewi to the upper 

part of the N. peregrinus ammonite standard zones (upper NK3A to upper NK3B, and upper 

CC3b to upper CC4a calcareous nannofossil subzones) (Fig. S2) (Reboulet et al., 2022; 

Shmeit et al., 2022).  

The DSDP Leg 50 Hole 416A drill core 

The offshore succession was drilled ~238 km NW of Zalidou (32°50'10.7"N; 10°48'03.6"W), 

at a water depth of 4201 m on the east Atlantic Ocean (Lancelot et al., 1980) (Fig. S1). The 
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Valanginian interval is identified using calcareous nannofossils between 1542 and 1119 mbsf 

(meters below seafloor; from Cores 49 to 9) (Čepek and Gartner, 1980; Shmeit et al., 2022), 

but the uppermost Valanginian is missing (Shmeit et al., 2022). The lithology is described in 

Lancelot et al. (1980). Briefly, the lithological unit VII (1624 to 1430 mbsf; Fig. S2) is 

characterized by alternation of terrigenous and carbonate-rich turbidite cycles. The 

terrigenous cycles consist of fine-grained sandstone, siltstone and mudstone; whereas, the 

carbonate-rich cycles consist of quartz-rich calcarenite, micritic limestone, siltstone and 

marlstone. The overlying lithological unit VI (1430 to 880 mbsf) is characterized by distal 

terrigenous turbidites and differs from Unit VII by the absence of micritic limestones. The 

cycles in lithological unit VI consist of fine sandstone, siltstone, silty-mudstone along with 

calcareous mudstone and marlstone. The Weissert Event interval is identified from the upper 

NK3A to NK3B and CC3b to CC4a calcareous nannofossil subzones (from 1303 to 1122 

mbsf; Fig. S2) but part of the Event is probably missing (Shmeit et al., 2022).  

Materials and methods 

We selected twenty samples from the Valanginian in Zalidou section and forty-eight from 

DSDP Hole 416A (Fig. S2). The Zalidou samples correspond to marlstone and argillaceous-

limestone. For Hole 416A, samples were collected in the finest parts of the turbiditic cycles 

corresponding to marlstone and mudstone. Such fine-grained lithologies were selected to 

minimize geochemical changes due to different rock types that would potentially overprint 

those due to source/sedimentation changes. The Zalidou samples have CaCO3 content of ~40 

%, and Hole 416A samples between 8 and 50% (Shmeit et al., 2022; Supplementary Table). 

Due to the scarcity of available samples in the upper Valanginian of Hole 416A, we chose 

samples with the highest possible CaCO3 content although it was low (<10 %). All samples 

were finely crushed in an agate mortar for the subsequent elemental and isotopic analyses. 

Major and trace elements 
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Major elements and loss on ignition were measured by the CNRS Service d‘Analyse des 

Roches et des Minéraux (SARM) in Nancy, France. Rock samples were digested using alkali 

fusion, and major element analyses were done by flow injection inductively coupled plasma 

mass spectrometry (ICP-MS) following Carignan et al. (2001). Accuracy was assessed based 

on international reference materials (BR, AN-G, UB-N, DR-N and GH; Carignan et al., 

2001). Complete duplicate analysis of one of our samples demonstrates a reproducibility 

better than 5 % (Supplementary Table). Also, the chemical index of alteration (CIA) was 

calculated using the molecular proportions of Al, Ca, Na and K oxides while also correcting 

the molar proportion of CaO for phosphate and carbonate. This correction is needed for 

carbonate sediments to restrict the molar proportion of CaO to that derived from silicate 

minerals (see Bomou et al., 2013; and references therein). 

Trace element concentrations were measured at the IPGP (Institut de Physique du Globe de 

Paris) Paris, France. The methods used were similar to those described in Chauvel et al. 

(2011), with slight modifications. About 100 mg of each sample was dissolved in 

concentrated HNO3:HF using Parr bombs maintained at 150
o
C for over two weeks. The only 

exceptions were the three basalt reference materials (BHVO-2, BR-24 and BE-N) digested in 

Savillex Teflon beakers because they do not contain refractory minerals. After dissolution, 

samples were diluted using 0.5M HNO3 plus traces of HF to reach a dilution factor of 10000. 

A 5 ppb indium standard was added to all samples prior to measurement on an Agilent 8900 

ICP-MS. Except for low masses 
7
Li, 

9
Be and 

11
B, all masses were measured in collision mode 

with a 5 ml min
-1

 He flux in the collision reaction cell to remove polyatomic interferences. 

The international reference material BE-N was used to calibrate the signal (external 

calibration) and was run every 5-6 samples during the entire sequence. The procedural blanks 

were negligible. The accuracy of our data as evaluated from analyses of reference rock 

materials (BHVO-2 and BR-24) is generally better than 5 % (Supplementary Table). The 
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precision was assessed from complete duplicate analyses of three samples that reproduce 

within 5 % for most elements (Supplementary Table). 

Radiogenic isotopes (Pb, Sr and Nd) 

Chemical separations and isotopic measurements were done at the IPGP. Methods generally 

follow those described in Chauvel et al. (2011) after the dissolution of approximately 50 mg 

of rock powder in Savillex Teflon beakers at 125
o
C for ten days. Procedural blanks (n= 12) 

were low (Pb <54 pg, Sr <100 pg and Nd <86 pg), but there were two exceptions: one Sr 

blank at 770 pg and one Nd blank at 1800 pg. These two high values remain negligible 

relative to the quantity of element in the samples and correspond to 0.016 % and 1.05 % of 

the mass isolated from the least concentrated samples for Sr and Nd, respectively. Pb, Sr and 

Nd isotopic ratios were measured on a Multi-Collector ICP-MS (Thermo scientific Neptune 

plus) equipped with an Apex IR introductory system. Cones used for lead and strontium were 

a Jet sampler with an H skimmer, and for neodymium a Jet sampler with an X skimmer. The 

sample flow rate was at 50 µl min
-1

; sample measurement, including the wash and uptake 

time, was 10 min/sample. For Nd, N2 gas was introduced in the Apex IR system at 4 bars 

pressure to reduce the oxides of Nd, which could form in the plasma and interfere with the 

signal.  

Measured strontium and neodymium isotope ratios were normalized to 
88

Sr/
86

Sr = 0.1194 and 

146
Nd/

144
Nd = 0.7219 (O‘Nions et al., 1979). For lead measurements, the samples were spiked 

with thallium (5 ppb) and normalized to 
205

Tl/
203

Tl: 2.38714 (White et al., 2000). International 

reference materials (NBS 981 Pb, NBS 987 Sr and AMES Rennes Nd) were measured every 

four samples, and the average isotopic ratio of the session was used to correct for the bias 

relative to values published by Jochum et al. (2011) for Pb, by Thirlwall (1991) for Sr and by 

Chauvel et al. (2011) for Nd. Isotopic ratios measured on complete duplicate analyses of five 
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samples and two dissolutions of the AGV-2 geochemical reference demonstrate that both the 

reproducibility and the accuracy are excellent (Supplementary Table). 

The initial isotope ratios of Pb, Sr and Nd were calculated at 135 Ma to correct for radiogenic 

decay (Equation 1; Supplementary Table).  

(
 

  )
           

 (
 

  )
       

 (
 

  )
       

(     )  (1) 

with  : radiogenic daughter isotope,   : stable isotope of the same element,  : radioactive 

parent isotope,  : decay constant and t: time in years. 

Results 

Major elements 

The major element contents of Zalidou and Hole 416A samples are reported in 

Supplementary Table. The average Al2O3 content is higher in Hole 416A (15 ±7 wt%) than in 

Zalidou (9 ±5 wt.%) (Fig. 3). The errors correspond to variability between samples, calculated 

as two times the standard deviation of the mean. In contrast, the average SiO2 content is 

slightly higher in the Zalidou samples (47 ±15 wt%) than in Hole 416A samples (43 ±17 

wt%). The CaO is comparable between both successions but shows larger variation in Hole 

416A (avg. 11 ±15 wt%) than in Zalidou (avg. 17 ±10). The studied sediments from Zalidou 

lie in the middle of a ―triangular‖ field defined by three end-members of oceanic sediment 

composition (i.e., silica-rich, clay and carbonate) while most of the Hole 416A samples define 

a trend between clay and carbonate (Fig. 3). 

Stratigraphic variations in the SiO2 and CaO contents (wt.%) at Zalidou show a stable trend 

during the entire studied interval (Fig. 4). The Al2O3 content shows possibly higher values (12 

±6 wt.%) in the upper part of the Weissert Event between 25.05 and 32.8 m, compared with 

the rest of the succession (9 ±5 wt.%) (Fig. 4). Also, the calculated CIA is slightly higher (74 

±4) in the same interval compared with the rest of the succession (68 ±6). At Hole 416A, the 

SiO2 content is steady throughout the studied interval (Fig. 4). The Al2O3 content increases 
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from 11 ±2 wt.% before the Weissert Event (NK3A and upper CC3a to lower CC3b 

nannofossil subzones) to 16 ±7 wt.% during it (upper NK3A to NK3B and upper CC3b to 

CC4a nannofossil subzones). The CaO content is low (7 ±8 wt.%) within the Weissert Event 

between 1280.7 and 1187.9 mbsf (upper NK3A to NK3B and upper CC3b to CC4a 

nannofossil subzones), compared with the rest of the succession (19 ±15 wt.%) (Fig. 4). 

Lastly, the CIA does not signficantly vary. 

Trace elements 

Figure 5 shows the concentrations in Zalidou and Hole 416A of Al2O3 vs. selected trace 

elements representing different oceanic sediment end-members. Lithium, which is contained 

in fine-grained clays, is higher in Hole 416A (avg. 87 ±42 ppm) compared with Zalidou (avg. 

46 ±37 ppm) (Fig. 5a). Similarly, this applies to other elements contained in clays (e.g., Cs 

and Rb; Supplementary Table). The REE contents, whose budget is mainly controlled by the 

abundance of clays, are slightly higher in Hole 416A than in Zalidou. For example, the 

concentration of Nd is higher in Hole 416A (avg. 33 ±17 ppm) compared with Zalidou (avg. 

25 ±2 ppm) (Fig. 5b). Strontium, which substitutes Ca in calcium carbonate minerals, is 

higher and more variable in Hole 416A (avg. 407 ±239 ppm) compared with Zalidou (avg. 

302 ±215 ppm) (Fig. 5c). Lastly, the high field strength elements (HFSE), mainly carried by 

heavy minerals present in the coarse-grained detrital sands, are significantly higher in Zalidou 

than in Hole 416A (Supplementary Table). For example, the Zr concentration is on average 

302 ±217 ppm in the former section against a lower concentration of 137 ±63 in the latter 

(Fig. 5d).  

Stratigraphic variations, at Zalidou, in the trace elements contained in clays and coarser grain 

detrital materials (Li and Nd) are stable throughout the studied interval (Fig. 4). Strontium, 

possibly representing a carbonate component, is also stable. The Zr concentration is 

consistently low (178 ±87 ppm) in the upper part of the Weissert Event between 25.05 and 
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32.8 m, compared with the rest of the succession (346 ±176 ppm) (Fig. 4). This corresponds 

to the time interval when Al2O3 contents are higher (O. nicklesi ammonite Subzone, NK3B 

and CC4a nannofossil subzones; Fig. 4). At Hole 416A, the concentration of Li increases 

from 61 ±7 ppm before the Weissert Event to 90 ±40 ppm after it (Fig. 4); this corresponds to 

the time interval when Al2O3 contents also increase (upper NK3A to NK3B and upper CC3b 

to CC4a nannofossil subzones). The concentration of Nd is steady during the studied interval, 

although it is variable during the Weissert Event (Fig. 4). The concentrations of Sr and Zr are 

steady on average during the studied interval.  

Radiogenic isotopes 

The initial (i) and measured (m) isotopic ratios display similar stratigraphic trends, and the 

former are consistently slightly lower than the latter (Fig. 6). In Zalidou, Pb isotopic ratios are 

stable during the entire Valanginian stage (
206

Pb/
204

Pb(i): avg. 18.61 ±0.16 and 
208

Pb/
204

Pb(i): 

38.68 ±0.26, 2σ) except for the 
207

Pb/
204

Pb(i), which potentially increases slightly from 15.678 

±0.004 (2σ) before the Weissert Event to 15.683 ±0.011 (2σ) during the Event, and to 15.685 

±0.006 (2σ) after it. The Sr isotope ratios are also stable throughout the studied interval (avg. 

0.710 ±0.001, 2σ). However, the 
143

Nd/
144

Nd(i) are less variable (0.51190 ±0.00002, 2σ) 

before the Weissert Event and in its lower part, than in the rest of the succession (0.51190 

±0.00004, 2σ) (Fig. 6). Two ―outliers‖ have different Pb initial isotope ratios in the Zalidou 

section (Za 51b: 28.95 m and Za 56a: 40.6 m; Fig. 6). Sample Za 51b has a low 
206

Pb/
204

Pb(i) 

and a high 
208

Pb/
204

Pb(i) due to its high U/Pb and low Th/Pb ratios (Supplementary Table). 

Sample Za 56a has a low 
208

Pb/
204

Pb(i) because of its high Th/Pb ratio. We suspect that these 

anomalous ratios are due to recent events and are unrelated to the original contents, resulting 

in an overcorrection with age. In Hole 416A, Pb isotopic ratios are steady during the 

Valanginian stage (
206

Pb/
204

Pb(i): avg. 18.68 ±0.15; 
207

Pb/
204

Pb(i): 15.69 ±0.02; 
208

Pb/
204

Pb(i): 

38.73 ±0.15, 2σ). The Sr isotopic ratios are highly variable (avg. 0.7106 ±0.0027, 2σ) and do 
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not show any significant trend. The Nd isotopic ratios are moderately constant (avg. 0.51190 

±0.00007, 2σ). The 
143

Nd/
144

Nd(i) show minor variations (0.51187 ±0.00003, 2σ) during the 

Weissert Event (between 1263 and 1188 mbsf; upper NK3A-lower NK3B and upper CC3b 

nannofossil subzones) than during the rest of the studied time-interval (0.51191 ±0.00007, 

2σ). 

The 
206

Pb/
204

Pb(i) and 
207

Pb/
204

Pb(i) are similar in the two sites (Fig. 7a). However, the 

208
Pb/

204
Pb(i) are slightly higher in Hole 416A than in Zalidou, such that the majority of Hole 

416A samples have 
208

Pb/
204

Pb(i) >38.75 while Zalidou samples have ratios <38.75 (Fig. 7b). 

The 
87

Sr/
86

Sr(i) isotopic ratios are on average slightly higher and more variable in Hole 416A 

than in Zalidou, some samples from Hole 416A have 
87

Sr/
86

Sr(i) >0.7106 (Fig. 7c). In contrast, 

all samples from Zalidou have ratios <0.7106. Finally, the 
143

Nd/
144

Nd(i) ratios are similar in 

both successions (Fig. 7d). 

Discussion 

The positive carbon isotope excursion (CIE) corresponding to the Weissert Event 

(Valanginian stage, 137.7–132.6 Ma) is mainly interpreted as the consequence of enhanced 

marine primary productivity (Lini et al., 1992; Bartolini, 2003; Erba et al., 2004). Multiple 

micropalaeontological (e.g., Bersezio et al., 2002; Duchamp-Alphonse et al., 2007; 

Bornemann and Mutterlose, 2008; Mattioli et al., 2014) and geochemical studies (e.g., Plank 

et al., 2000; Bartolini, 2003; Morales et al., 2015) support increasing marine primary 

productivity and fertility during the Valanginian stage. 

An increase in marine primary productivity requires enhanced nutrification, and two main 

hypotheses exist: higher continental weathering rates or intensified oceanic upwelling (Lini et 

al., 1992; Föllmi et al., 1994; Erba et al., 2004). The two processes would have different 

impacts in proximal and distal marine settings. Thus, comparing the time evolution of the two 

types of settings could help understand the cause(s) of increasing productivity. Enhanced 
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continental weathering and hydrolyzing conditions are demonstrated during the Valanginian 

stage from clay-mineral assemblages (Westermann et al., 2013; Charbonnier et al., 2020), 

spore-pollen ratios (Kujau et al., 2013) and sediment-enrichments in continentally sourced 

elements (Al, Mn, Fe and P; Van De Schootbrugge et al., 2003; Kuhn et al., 2005; Duchamp-

Alphonse et al., 2007; Morales et al., 2015). Continental weathering ultimately increases 

nutrient input in proximal marine settings close to fluvial discharge. Thereby, substantial 

nutrient input from the continent would result in a crustal geochemical signature on the 

central Moroccan margin sediments, particularly in the proximal setting (Zalidou) which is 

closer to river input. In contrast, the upwelling of nutrient-rich deep waters should increase 

nutrient levels in pelagic settings (Bartolini, 2003; Erba et al., 2004; Föllmi, 2012). Existing 

evidence include abundance peaks in the radiolarian taxa Pantanellium in the Tethys and the 

Pacific (Jud, 1994; Bartolini, 2003). Also, the presence of steryl ethers in the Pacific which 

may be biomarkers of cool water, high seasonal productivity and/or nutrient input by 

upwelling (Brassell, 2009). A significant nutrient input from upwelling on the central 

Moroccan margin should enhance an oceanic crust signature in the sediments and it should be 

more pronounced in the distal setting (Hole 416A) which is closer to possible oceanic 

upwelling. 

Is there any geochemical change on the central Moroccan margin during the Weissert 

Event? 

In the proximal Zalidou section, the steady stratigraphic trends in the selected major element 

contents (Al2O3, SiO2 and CaO) support that continental weathering and the input of detrital 

material, from both coarse- and fine-grained minerals, was stable throughout the Valanginian 

stage (Fig. 4). The trace elements associated with detrital and continental sources (e.g., Li and 

Nd) also display a steady trend (Fig. 4), supporting an almost continuous weathering and 

hydrolysis regime. However, the consistently low concentrations of HFSE (i.e., Zr and Hf) in 
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the upper part of the Weissert Event (between 25.05 and 32.8 m, O. nicklesi ammonite 

Subzone, NK3B and CC4a nannofossil subzones; see Fig. 4 and Supplementary Table) 

suggest low deposition of coarse-grained clastics (i.e., quartz). This may be related to the 

sandy-marlstones (fine-grained lithology) of this interval, which were deposited under 

conditions of sea-level rise (maximal flooding; Reboulet et al., 2022). The calculated CIA is 

generally steady, further supporting a constant rate of hydrolysis on the continent. The 

slightly higher values at the same level where HFSE have low concentrations might reflect 

higher contents of fine-grained material, such as alluminosilicates, related to the deeper 

depositional setting. Furthermore, the unchanged Pb, Sr and Nd isotopic ratios do not support 

any geochemical change during the Valanginian stage (Fig. 6). 

In the distal Hole 416A, the stable SiO2 content and CIA suggest, respectively, a steady input 

of coarse-grained clastic material and a constant rate of hydrolysis for the entire Valanginian 

stage (Fig. 4). However, the increasing Al2O3 content suggests higher input of fine-grained 

detrital material within the Weissert Event (from 1280.71 to 1187.94 mbsf, upper NK3A to 

NK3B and upper CC3b to CC4a nannofossil subzones). A concomitant reduction in carbonate 

deposition is also suggested from the decreasing CaO content. Such changes are evident at the 

beginning of the Weissert Event within the lithological unit VI. In the lower part of that unit, 

two calcareous and quartz-rich turbidite cycles are recognized, whereas, in its upper part, the 

cycles are uniform and grade from sandstone to marlstone and claystone (Lancelot et al., 

1980). The level of this lithological change is not certain, occurring gradually, and was first 

recorded at ~1299 mbsf (core 22). Additionally, the increase in Li concentration during the 

Weissert Event (upper NK3A to NK3B, and upper CC3b to CC4a nannofossil subzones) 

complements the observation from major elements (Fig. 4) since the proportion of clays 

controls lithium contents. The input of continental and coarse-grained clastics was probably 

steady, as observed from the uniform HFSE and REE contents (Fig. 4; Supplementary Table). 
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Finally, the Pb, Sr and Nd isotopic ratios do not show any significant change throughout the 

studied Valanginian interval (Fig. 6); even if inter-sample variations in Sr and Nd are 

observed, they are most probably related to the increase in clay-mineral deposition during the 

Weissert Event. 

In summary, there is no significant change in the sediment major and trace element 

concentrations on the central Moroccan margin during the Valanginian stage. The few 

stratigraphic variations in major and trace element concentrations are most probably caused 

by variations in sediment lithology, with higher clay input and lower detrital quartz input 

during the upper part of the Weissert Event in Zalidou and within the identified Weissert 

Event interval in Hole 416A. Similarly, the radiogenic isotopes Pb, Sr and Nd do not show 

any significant trend during the Valanginian stage, suggesting no major change in the source 

material during the Event.  

How do sediments from proximal and distal sites compare? 

The distal Hole 416A shows a simple binary mixture of clay and carbonate sediment. In 

contrast, the proximal Zalidou section shows a more complicated mixture of detrital deposits 

with a continental origin (silica-rich and clay) and carbonates. This complexity is depicted by 

the distribution of the major elements (Fig. 3). Hole 416A sediments are relatively rich in Al-

rich components such as fine-grained clays (i.e., aluminosilicates). The Zalidou sediments are 

relatively rich in coarse-grained Si-rich components (i.e., quartz), as shown by the slightly 

higher SiO2 content. It is noteworthy that the analyzed samples correspond to fine-grained 

lithologies, as was avoided the sampling of coarse-grained sediment. The observed difference 

between sites (proximal versus distal) is caused by the different depositional settings. Clays 

are light-weight minerals and can travel further and accumulate in the deeper setting (Hole 

416A). In contrast, coarse-grained clastic minerals are heavy and accumulate in the proximal 

setting close to river output (Zalidou).  

ACCEPTED M
ANUSCRIPT

Downloaded from https://www.lyellcollection.org by Majd Shmeit on Dec 09, 2022



 

Differences in the concentrations of trace elements between Zalidou and Hole 416A also 

highlight their different depositional settings. The higher concentrations of Li in Hole 416A 

reflect the more significant proportion of clays compared with Zalidou (Fig. 5a), since Li is 

concentrated in fine-grained minerals rather than coarse-grained minerals (Sauzéat et al., 

2015; and references therein). Additionally, Li could reflect a higher proportion of authigenic 

clay minerals in Hole 416A rather than detrital clays (see Andrews et al., 2020; and references 

therein). The concentration of Nd is marginally higher in Hole 416A compared with Zalidou, 

indicating that both successions record input from continental detrital material. Lastly, the 

high Zr concentration in Zalidou compared to Hole 416A (Fig. 5d), is explained by its 

proximal depositional setting close to the fluvial input of coarse clastic minerals. Zirconium, 

like other HFSE reside in heavy minerals such as zircon, minerals that are not transported far 

in a basin and are deposited close to the continental margin (Patchett et al., 1984). In contrast, 

fine-grained clays (light-weight) deposited farther away from the continent show deficiencies 

in Zr and Hf.  

The initial isotope ratios of Pb, Sr and Nd are comparable between both studied successions 

except for few differences. The slightly more radiogenic 
208

Pb/
204

Pb(i) and 
87

Sr/
86

Sr(i) ratios in 

Hole 416A compared to Zalidou can be explained by a contribution from a source of more 

radiogenic sediments (Figs. 7b and 7c). In summary, the geochemical differences observed 

between the two studied successions relate mainly to their depositional setting (proximal 

versus distal) and to the associated chemical fractionation occurring during the transport of 

sediments. 

Is there volcanic input during the Weissert Event? 

The aforementioned environmental perturbations are tentatively linked to extensive volcanism 

from the Paraná-Etendeka large igneous province (LIP) of South America – SW Africa 

(Weissert et al., 1998; Erba et al., 2004) or the Comei-Bunbury LIP of SE Tibet – SW 
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Australia (Zhu et al., 2009). Uncertainties related to age models (e.g., scarcity of data, 

uncertainty in age models and in absolute age calibration) hinder direct temporal correlation 

between these LIPs and the Weissert Event (Charbonnier et al., 2017). Radiometric ages of 

basalts from the Paraná-Etendeka LIP (135.5–126 Ma; e.g., Thompson et al., 2001; Trumbull 

et al., 2004; Almeida et al., 2018; Baksi, 2018; Rocha et al., 2020; Bacha et al., 2021) and the 

Comei-Bunbury LIP (134–123 Ma; e.g., Zhu et al., 2008, 2009; Liu et al., 2015) likely post-

date the onset of the Valanginian positive carbon-isotope excursion (135.22 ±1.0 Ma; 

Martinez et al., 2015). Moreover, Charbonnier et al. (2017) observed mercury enrichments 

interpreted as volcanic in origin in sediments at or near the onset of the Weissert Event from 

the Central Tethys. Fesneau et al. (2009) observed an ochre-colored layer of lower 

Valanginian age in the Vocontian Basin (France) enriched in trace elements with a specific 

magmatic affinity (Zr, Ba, Th, Y, Hf, U, Pb, Nb, Ta). The layer was interpreted as ―bentonite‖ 

of volcanic origin. These studies cannot designate unambiguously if one or both LIPs were 

involved during the Weissert Event. Chavagnac et al. (2008) and Peate (2009) observed 

overlapping Pb isotopic compositions from Hole 1149B and magmas from the Paraná-

Etendeka LIP. The majority of samples which show a Pb isotopic shift in Hole 1149B (upper 

lithological unit IV; Core 20R to 16R) belong to the Hauterivian stage (Lozar and Tremolada, 

2003), and the Nd-Sr isotope ratios were not compared with the aforementioned LIPs. Using a 

combination of Pb, Sr and Nd isotopes should constrain the relationship between any of the 

aforementioned LIPs and the Weissert Event. For example, a volcanic contribution to the 

sediments is expected to cause a more radiogenic Nd isotopic composition (i.e., radiogenic 

mantle source) and less radiogenic Sr and Pb isotope ratios.  

On the central Moroccan margin, the Nd isotopic composition in both studied successions 

does not increase to more radiogenic ratios (Fig. 6). Furthermore, Figure 8 compares the 

initial isotope ratios (135 Ma) of Pb, Sr and Nd obtained on the central Moroccan margin 
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sediments to those published for the suggested Valanginian LIPs. Lead and Sr isotopic ratios 

of the sediments overlap with the higher ratios reported for the Paraná-Etendeka LIP, at 

206
Pb/

204
Pb(i) >18.5, 

207
Pb/

204
Pb(i) >15.66, 

208
Pb/

204
Pb(i) >38.5 and 

87
Sr/

86
Sr(i) > 0.708. 

However, the Nd isotopic ratios are lower on the central Moroccan margin sediments 

(
143

Nd/
144

Nd(i)< 0.5120) to any of the LIPs (
143

Nd/
144

Nd(i)> 0.5120) shown in Figure 8d. This 

difference is a strong argument against a significant role of volcanic material from the LIPs to 

sediment during the Valanginian stage on the central Moroccan margin.  

Continental runoff versus upwelling as causing eutrophication 

The trace element patterns of Zalidou and Hole 416A normalized to the upper continental 

crust (UCC) values of Rudnick and Gao (2013) are shown in Figure S3. The studied 

successions show trace elements patterns similar to the UCC for the majority of elements. 

This similarity suggests that the sediment trace-element budget is controlled by material with 

a continental origin. The few element enrichments/depletions relative to the UCC are caused 

by the chemical fractionation of elements occurring during sediment transport (see caption 

Fig. S3). As a consequence, the trace element patterns of Hole 416A bulk sediments exclude 

the possibility of a significant role of nutrient input from oceanic upwelling to the 

composition of the deposits. The Hole 416A sediments have a chemical signature primarily 

controlled by terrigenous input. Indeed, the sedimentation rate in Hole 416A is high (65 m 

Myr
-1

) and the sediments are dominated by detrital material (Lancelot et al., 1980). Also, 

Carpentier et al. (2013) demonstrated that offshore settings close to continental shelves have a 

chemical composition (signature) similar to the nearby continental source areas. Alternatively, 

during the Valanginian the oceanic and atmospheric conditions were not severe such that they 

did not induce significant upwelling on this part of the Moroccan margin. 

Our new isotope results also support that upwelling did not significantly contribute to Hole 

416A sediments. In principle, strong upwelling should induce a ―juvenile‖ oceanic crust 
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isotopic signature to the sediments. However, this is not the case at Hole 416A. First, the Pb 

and Sr isotopic ratios of Hole 416A sediments are very similar to those of the Zalidou 

proximal sediments, supporting the interpretation that they were fed by the same continental 

source (Fig. 7). Second, the average ɛNd values in the two studied successions are identical (~ 

–12 ±1; Supplementary Table) and of continental origin, even lower than the average upper 

continental crust value (−10.3 ± 1.2, 1σ) reported by Chauvel et al. (2014). These similar 

values further support a common continental source for Zalidou and Hole 416A and 

undermine a significant contribution to the sediments from upwelling.  

What is the source of the central Moroccan margin sediments? 

The Pb, Sr and Nd isotopic compositions of the central Moroccan margin sediments are 

dominated by continental material. Therefore, it is worth comparing the isotopic composition 

of sediments to what is known for the surrounding crustal areas exposed during the 

Valanginian in order to establish the source area(s). Lead and Nd isotopes are particularly 

useful in this respect because model ages can be calculated for both isotopic systems. Such 

model ages do not provide a precise measure of the age of the eroded material. Still, they 

estimate the average age of formation of the material eroded from the continental crust. The 

slope defined by the central Moroccan margin sediments in a 
206

Pb/
204

Pb(m) versus 

207
Pb/

204
Pb(m) isotopic space (Fig. S4 and its caption) provides an average model age of about 

1.1 Ga for the source of the sediments. In comparison, Nd isotopes provide a model age of 

about 1.9 Ga when using the parameters from Chauvel et al. (2008 and 2014). Therefore, both 

isotopic systems suggest that the central Moroccan margin was fed by sediments from an old 

and continental ―cratonic‖ source. Additionally, the source of sediments did not change 

during the Valanginian stage, as observed from the unchanged isotopic ratios of Pb, Sr and 

Nd (Fig. 6). 
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The best approach to trace the origin of sediments deposited in the basin is to compare the 

isotopic compositions of sediments and potential sources in the area. We measured Pb, Sr and 

Nd isotopes in the sediments but studies of potential sources reporting data for the combined 

three isotopic systems are limited. Thereby, we considered only Nd and Sr isotopes in Figure 

9 because they are the only two isotopic systems for which an extensive database exists. 

Because most published data on the potential sources do not report the parent-daughter 

isotope ratios, we calculated their initial isotope ratios at 135 Ma (Supplementary Table) 

using the recommended Sm/Nd and Rb/Sr ratios for the upper continental crust (Rudnick and 

Gao, 2013).  

Given that these terranes are old crustal materials, it should not be a problem. 

In the Sr-Nd space of Figure 9, the central Moroccan margin sediments overlap with the 

African dust sources (Sahara region; Fig. S5), both having 
143

Nd/
144

Nd(m) ratios clustering 

between 0.5118 – 0.5120. The Sr isotopic composition of the African dust sources is highly 

variable and generally more radiogenic than that of the central Moroccan margin sediments 

(Fig. 9), but it is probably due to the fine size of dust particles naturally more concentrated in 

Rb-rich clays and consequently have more radiogenic Sr isotope ratios. Moreover, the studied 

sediments lie in between two additional end-members: (1) the West African Craton (2.1 Ga) 

(Fig. S5); and (2) the surrounding Moroccan massifs as the NE Meseta (344 Ma), Anti-Atlas 

(560–543 Ma) and the central Jebilet (240 Ma) (Fig. 9 and Fig. S5). The contribution of 

sediments via fluvial input from both of these ―cratonic‖ end-members is highly plausible 

considering their geographic proximity to the studied successions. It is noteworthy that the 

Jebilet massif and the Anti-Atlas are closer to the Zalidou section (see Fig. 1a and Fig. S5), 

whereas the Moroccan Meseta is closer to the Hole 416A (Fig. S5). 

The slightly more radiogenic Pb and Sr ratios observed in Hole 416A compared with Zalidou 

(Figs. 7b and 7c) might have their origin in a relatively less important contribution of fluvial-
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input in the offshore succession, resulting in a more significant signature of the dust 

component. Figure S6 compares the initial Pb and Sr isotope ratios of sediments in Zalidou 

and Hole 416A with surrounding areas for which data exist for these isotopic systems; it 

suggests that the far African Sahara regions (Saharan metacraton and Sahel Desert; Fig. S5) 

could cause such a shift to more radiogenic Pb and Sr isotopic ratios. Nonetheless, surface 

winds blew SW over north Africa during the Cretaceous (Poulsen et al., 1998), so the 

relatively northward Hole 416A should hypothetically receive less dust input (see Fig. 1a and 

Fig. S5). Accordingly, fluvial input from other massifs more proximal to Hole 416A (e.g., the 

middle Atlas) could have caused this difference, but we can not test for their contribution due 

to the lack of isotope studies. 

In summary, the isotopic signature of the central Moroccan margin sediments is dominated by 

old continental sources. The African Sahara regions could have significantly contributed to 

the central Moroccan margin sediments through wind transport. Today, the Sahara and north 

African terrains are known as the most important dust sources to the Atlantic Ocean (e.g., 

Grousset and Biscaye, 2005; Abouchami et al., 2013). During the Valanginian stage (137.7–

132.6 Ma), dust input from old African terrains located eastward could be similarly expected. 

Indeed, the wind circulation models of Price et al. (1995) demonstrate west and SW wind 

vectors over north Africa in the Jurassic and the Cretaceous. Additionally, the surrounding 

Moroccan massifs could have contributed to the sediments via direct fluvial transport. 

Conclusions 

Valanginian carbonate deposits from two geological successions on the central Moroccan 

margin show geochemical signatures characteristic of their respective depositional settings 

(proximal versus distal). The onshore Zalidou section consists of a mixture of detrital (silica-

rich and clay) and carbonate materials, while the offshore DSDP Hole 416A shows a binary 

mixture of clay and carbonate. The major and trace elements show higher coarse-detrital input 
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(silica-rich) in the Zalidou section and higher authigenic clay input (aluminosilicates) in Hole 

416A. This is due to mineral sorting processes occurring during the transport of sediments, 

leading to the chemical fractionation of some elements. Nonetheless, the similar radiogenic 

isotope signature between both sites suggests a common ―old‖ and continental source for all 

sediments. No trace of a significant input from oceanic upwelling can be detected in the distal 

site sediments. This suggests that the central Moroccan margin was primarily fed by nutrients 

from continental runoff and weathering before, during and after the Weissert Event. The 

source of sediments also did not change throughout the studied Valanginian interval and was 

most probably the African Sahara regions. 

No volcanic contribution from the Paraná-Etendeka or the Comei-Bunbury large igneous 

provinces (LIPs) were detected in the sediments during the entire Valanginian stage. If any 

such material reached the central Moroccan margin, the quantities must have been small 

enough to not modify the dominantly continental signature of the sediments. It can not be 

excluded that volcanic material might have affected seawater without changing the 

composition of deposited sediments during the Weissert Event. It is therefore difficult to 

imagine that the LIPs triggered the Weissert Event recorded in the studied area. Our study 

shows the potential of combining several radiogenic isotopes to test for a volcanic 

contribution in sediments during the Weissert Event, and to identify the specific LIP that was 

involved. 
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Figure captions 

Fig. 1. Location of the study area in SW Morocco, modified from Ouajhain et al. 

(2009). (a) Location of the central Moroccan margin including the Essaouira-Agadir Basin 

and DSDP Hole 416A (star shapenot to scale). (b) Geological sketch including the location 

of the Zalidou section (star shape) 

Fig. 2. Palaeogeographic map of the Valanginian (~135 Ma) showing the approximate 

location of the central Moroccan margin (star shape). The "red masses" correspond to the 

approximate locations of the Valanginian large igneous provinces (LIPs). Construction from 

Scotese (2016) PaleoAtlas 

Fig. 3. a) SiO2 and b) CaO vs. Al2O3 contents (wt %) in Zalidou and Hole 416A 

plotted before, during and after the Weissert Event. Also, data points are shown from Plank et 

al. (2007) for Site 1149, Plank and Ludden (1992) for Site 765 and Carpentier et al. (2009) for 

Sites 144 and 543 

Fig. 4. Stratigraphic variations of selected major and trace elements in Zalidou and 

Hole 416A. Also plotted, the δ
13

Ccarb from Shmeit et al. (2022). The colored interval (green) 

corresponds to the Weissert Event following Shmeit et al. (2022). For more information on 

the litho- and bio-stratigraphy see caption of Fig. S2. CIA: chemical index of alteration, 

defined as the molar ratio of [Al2O3/(Al2O3+CaO*+Na2O+K2O)]×100, with CaO* 

representing CaO in silicate minerals only 

Fig. 5. Comparison of trace elements between Zalidou and Hole 416A. Data points are 

shown from Plank et al. (2007) for Site 1149, Plank and Ludden (1992) for Site 765 and 

Carpentier et al. (2009) for Sites 144 and 543 
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Fig. 6. Stratigraphic variations in measured and initial isotope ratios of Pb, Sr and Nd 

in Zalidou and Hole 416A (see Supplementary Table). Error bars on measured isotopic ratios 

are assessed from analytical measurements of the international reference materials. The 

colored interval (green) corresponds to the Weissert Event following Shmeit et al. (2022); see 

also caption of Fig. S2. Initial isotope ratios are calculated at 135 Ma using the decay 

constants and the half-life of parent/daughter decay systems from Villa et al. (2015) for Rb-

Sr, Jaffey et al. (1971) and Le Roux and Glendenin (1963) for U-Th-Pb, and Villa et al. 

(2020) for Sm-Nd 

Fig. 7. Comparing the initial (i) isotope ratios at 135 Ma of Pb, Sr and Nd between 

Zalidou and Hole 416A sediments 

Fig. 8. Comparing the initial isotope ratios at 135 Ma of the central Moroccan margin 

sediments with Early Cretaceous large igneous provinces (LIPs). References of the isotope 

ratios for LIPs (see also Supplementary Table): Paraná basalts (Hawkesworth et al., 1986; 

Peate and Hawkesworth, 1996; Peate et al., 1999; Turner et al., 1999; Rocha-Júnior et al., 

2013; Barreto et al., 2016; Rämö et al., 2016; Marques et al., 1999; 2018), Etendeka basalts 

(Ewart et al., 1998a, 2004a; Le Roex and Lanyon, 1998; Mingram et al., 2000; Thompson et 

al., 2001), Etendeka silicic sequences (Ewart et al., 1998b, 2004b; Trumbull et al., 2004), 

Comei basalts (Zhu et al., 2008; Liu et al., 2015) and the Bunbury basalt and silicic sequences 

(Ewart et al., 1992; Frey et al., 1996; Allen et al., 1997; Direen et al., 2017) 

Fig. 9. Comparing initial isotope ratios of the central Moroccan margin sediments with 

surrounding possible source areas having only Sr and Nd isotopes. Green-scale: Moroccan 

massifs; yellow-scale: African and Saharan dust sources; and purple-scale: West African 

Craton. Data references (see also Supplementary Table): Central Jebilet 240-330 Ma (Essaifi 

et al., 2014; Bouloton et al., 2019), Anti-Atlas 543-560 Ma (Toummite et al., 2013; Belkacim 

et al., 2017), Central High Atlas 165-125 Ma (Essaifi and Zayane, 2018), Western High Atlas 
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290 Ma (Gasquet et al., 1992), NE Meseta 344 Ma (Ajaji et al., 1998) and east Moroco 

complex including the El Jadida complex (Chalot-Prat, 1995; Gasquet et al., 2005; EL Haibi 

et al., 2020); Holocene Peri-Saharan dust (Grousset et al., 1992), modern African and Saharan 

dust (Grousset and Biscaye, 2005; Skonieczny et al., 2013; Gross et al., 2016), modern Sahel 

desert dusts (Kumar et al., 2014), modern along with Holocene subtropical Saharan/Atlantic 

sediments (Grousset et al., 1998; Meyer et al., 2011) and the central Sahara Bodélé 

Depression (Abouchami et al., 2013); and WAC (West African Craton) 2.1 Ga (Boher et al., 

1992; Pawlig et al., 2006; Tapsoba et al., 2013), 2.9 Ga WAC and Reguibat Rise (Blanc et al., 

1992; Peucat et al., 1996; 2005; Bea et al., 2013; Montero et al., 2014) and 900 Ma Saharan 

metacraton (Küster et al., 2008) 
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Legend:
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