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Three-dimensional schools of hydrodynamically axisymmetric swimmers self-propelling
at a constant velocity are studied. We introduce a low-order model for the induced velocity
based on the far-field approximation. We inquire if, by holding suitable relative positions
in the three-dimensional space, the swimmers can reduce the overall energy consumption
of the school in comparison with the same number of isolated individuals at the same
velocity. We find a considerable (several per cent) energy saving achievable by chain
formations. The benefit increases asymptotically with the number of individuals, towards
a finite limit that is a function of the minimum allowed spacing between each pair of
neighbours.

Key words: collective behaviour, propulsion, swimming/flying

1. Introduction

Living organisms often move as a group. Besides social interactions that drive such
collective locomotion, fluid-dynamic coupling has been recognized as an important factor
for formation and gait selection in groups of swimming and flying organisms (Herskin
& Steffensen 1998; Weimerskirch et al. 2001; Brumley et al. 2014; Ashraf et al. 2016;
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Li et al. 2021; Yuan et al. 2021). It can reduce the metabolic cost in birds and fish alike
(Herskin & Steffensen 1998; Weimerskirch et al. 2001). However, the energy harvesting
mechanisms differ. Birds may acquire extra lift by surfing updraft induced by the leader’s
trailing vortices. But neutrally buoyant underwater swimmers (biological and artificial
alike) spend no energy to support their own body weight, therefore they can save energy
only by reducing body drag and propelling forwards more efficiently.

Important theoretical results on the hydrodynamics of fish schooling were obtained
using the two-dimensional (2-D) approximation. Weihs (1975) considered a planar layer of
a special kind of three-dimensional (3-D) school. He postulated that the latter consisted of
a large number of identical layers that could be homogenized in the direction perpendicular
to the selected plane. Then he applied a point vortex model for the wake and derived the
diamond formation. More recently, Gazzola et al. (2016) and Filella et al. (2018) combined
the hydrodynamic interaction and the behavioural models. The velocity field induced by an
individual fish was approximated by that of a vortex dipole. The dipole strength was related
to the swimming speed using a self-propelled dipole model (Kanso & Tsang 2014). Thus
hydrodynamic interactions between individuals reduced to superposition of the induced
flow velocity.

While the vortex dipole model offered a computationally tractable alternative to the
numerical solution of the Navier–Stokes equations, a recent study by Zhang, Peterson &
Porfiri (2023) pinpointed its deficiencies, such as the absence of a wake structure and the
poor approximation when used for elongated bodies. The latter problem was solved in
the same study by redistributing the dipole vortex circulations over two sheets of vorticity
oriented along the body. However, the amended model remained a 2-D approximation.

The current exploration of energy-saving mechanisms in three dimensions, on the other
hand, focuses on near-field interactions in a pair of fish: the leader and the follower. The
follower smartly adjusts its position and tail beat phase to benefit from the unsteady flow
perturbation without penalizing the leader (Li et al. 2020; Seo & Mittal 2022). Obviously,
any large school can be split into pairs of leaders and followers that interact through
the near field. But the question remains open whether the many-to-many hydrodynamic
interaction through the far field can be of any significance. It follows from the Biot–Savart
formula that the induced velocity of a bounded region of vorticity decays more slowly in
the 2-D space than in the 3-D space. For that reason, energy-saving estimates obtained
from 2-D models may be overly optimistic. In fact, one may even doubt if there can be
any appreciable far-field interference in a 3-D school. On the other hand, a self-propelled
body in the inertia-dominated flow regime produces a momentumless vortical wake that
persists over a much longer distance than the size of the body and may be harvested by
fellow individuals. Hereby, we present a far-field superposition model that accounts for
the essential 3-D traits of the induced flow of individual self-propelled swimmers. By
using the external data for the correlation between the induced flow strength with the
individual mechanical power expenditure, the model provides quantitative estimates of
the mechanical power efficiency of a school. To keep the model simple, we restrict our
scope to axisymmetric individual wakes (of e.g. squid or rigid-body artificial underwater
vehicles, rather than fish that produce lateral waves) and the steady-state approximation.

From the standpoint of minimizing the energy cost of one selected swimmer in a group,
it is obvious that the swimmer should place itself in the low-speed region of its neighbour,
because the hydrodynamic power increases with the perceived inflow velocity. But this
behaviour may place an extra energy cost burden on the neighbours. It is not self-evident
if there exist school arrangements that minimize the hydrodynamic power of the entire
group by exploiting the far-field wake interaction in three dimensions. In this paper, we
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show constructively that they exist. We develop a model of such optimal schools, and
provide quantitative estimates of energy savings depending on the minimum allowed
distance between swimmers. The latter parameter needs to be determined by external
considerations. The model that we construct is minimalist: the swimmers are substituted
by a linear superposition of their steady-state far-field asymptotic representations. Yet it
is sufficient to conclude that energy saving is possible without unsteady wake capture or
phase matching, and the benefit accumulates with the number of swimmers in the school.
The model is described in § 2. The optimization results are presented and discussed in § 3.
Section 4 contains concluding remarks.

2. Mathematical formulation of the far-field interaction model

2.1. Velocity field of the bound vorticity
Let us first consider a circular vortex ring with an infinitesimally thin core. It is convenient
to use a cylindrical polar coordinate system with the origin at the centre of the ring and
the x-axis being the symmetry axis of the ring. Let r denote the radial coordinate. The
azimuthal coordinate does not appear in the equations. The radius of the vortex ring is a,
and its strength (circulation) is Γ .

The Stokes stream function of the ring can be expressed in terms of complete elliptic
integrals K and E (Batchelor 2000),

ψ(x, r) = Γ
√

ar
2π

{(
2
k

− k
)

K(k2)− 2
k

E(k2)

}
, where k =

(
4ar

x2 + (r + a)2

)1/2

(2.1)
is the elliptic modulus, and

K(k2) =
∫ 1

0

dt√
(1 − t2)(1 − k2t2)

, E(k2) =
∫ 1

0

√
1 − k2t2√
1 − t2

dt. (2.2a,b)

The axial velocity u = r−1 ∂ψ/∂r can also be reduced to the elliptic integrals using the
identities

dK(k2)

d(k2)
= E(k2)− (1 − k2)K(k2)

2(1 − k2)k2 ,
dE(k2)

d(k2)
= E(k2)− K(k2)

2k2 , (2.3a,b)

yielding
u = Γ Υring, (2.4)

with

Υring(x, r) = a1/2k
4πr3/2

{
1

1 − k2

(
1 − (2 − k2)

r + a
2a

)
E(k2)+ r

a
K(k2)

}
. (2.5)

When r is small, numerical evaluation of (2.4) becomes problematic. The formula for uring
at the axis is derived by keeping only the leading-order terms E(k2) ≈ π/2 and K(k2) ≈
π/2 in the respective series expansions. The axial velocity component at r = 0 becomes
equal to Γ Υring(x, 0), with

Υring(x, 0) = 1
2

a2

(x2 + a2)3/2
. (2.6)

At lateral distance r much larger than the swimmer’s body length l, any axisymmetric
steady swimmer induces the velocity asymptotically matching a vortex ring (note that the
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Figure 1. (a) Schematic representation of the vortex ring and momentumless wake model. Dimensional
circulations Γj are related to the dimensionless coefficients γj by Γj = γjΓ . (b) Postulated bound circulation
distribution. (c) Postulated normalized radial profile of the momentumless wake axial velocity component.
(d) Axial velocity component u over the azimuthal symmetry plane, obtained using the far-field approximation.
The black dashed line connects the points of minimum u at every dmin in the rear part of the field. The black
dash-dotted line connects the points of minimum u at every dmin in the front part of the field.

momentumless wake velocity decays exponentially with r; see § 2.2). Let Γ now stand for
the circulation of that ring. For slender bodies, however, it will be practical to consider an
intermediate range of distances greater than the body half-width a, but possibly smaller
than l. This velocity field can be approximated as induced by a finite number of elementary
vortex rings, each substituting for the bound vorticity over a small portion of the body (see
figure 1a):

u = Γ Υbound, where Υbound =
nr∑

j=1

γj Υring(x − xj, r), (2.7)

where xj = xnose + ( j − 1/2)l/nr is the position of the jth vortex ring, and xnose
corresponds to the front point of the body. The circulation distribution coefficients γj
are calculated as follows. First, dimensional circulations Γj are determined from a least
mean square fit of the velocity profile along a line parallel to the axis and at a constant
distance from it. Then Γ is found by summing all vortex ring circulations Γj. Finally, the
coefficients are evaluated as γj = Γj/Γ .

The above approach can be regarded as a variant of the vortex lattice method, which
substitutes the solid body in a potential flow by a perpendicular lattice of vortices. This
approximation is also suitable for real flows if the boundary layers are thin and there is no
flow separation. In the axisymmetric case, the longitudinal vortices have zero circulation.
This leads us to the approximation of the body by a system of coaxial vortex rings. If
we calculate the velocity at a test point so far from the body that the distances between
the vortex rings are much less than the distance from the body to the test point, then it
becomes possible to neglect the distance between the coaxial vortex rings, and associate
all vorticity with only one vortex ring of radius a and circulation Γ .
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2.2. Velocity field of a momentumless wake
An analytical solution of the incompressible Navier–Stokes equations that describes a
steady laminar momentumless wake can be found in Korobko, Shashmin & Shul’man
(1986). However, that solution shows the velocity decay downstream as x−2, whereas
turbulent momentumless wakes rather decay as x−1.5 (Sirviente & Patel 2000). Since there
is no analytical solution for the mean flow velocity of the turbulent momentumless wake,
let us modify the laminar functional relation (Korobko et al. 1986) to become consistent
with the turbulent rate of decay. For this purpose, we introduce adjustable parameters C
and p. Also, we regularize the singularity at x = 0. Thus the axial velocity component is
given by

u = Γ Υwake, Υwake = C
a
ξ

1
1 + ξ2−2p g(η), (2.8a,b)

where it is postulated that the radial profile is a function of the similarity variable

η = r
a
ξp

Rep , (2.9)

with ξ = x/a, and the Reynolds number Re = U∞a/ν being based on U∞, the far-field
velocity that is equal in magnitude to the swimming speed, and ν, the kinematic viscosity
of the fluid. Since this is a far-field approximation, the virtual wake origin is set at x = 0.
This simplification has little effect on the accuracy when ξ � l/a.

The radial profile of the velocity, g(η), depends on the spatial distribution of the
momentum excess and deficit in the wake. We are interested particularly in the case of
g(η) changing sign twice (see Appendix B for more detail):

g(η) = −
(

1 − η2

η2
1

)(
1 − η2

η2
2

)
exp

(
−η

2

η2
3

)
, (2.10)

where η1, η2 and η3 are constant parameters.
Since the wake is momentumless and axisymmetric, it is required that∫ ∞

0
2πη g(η) dη = 0. (2.11)

It follows that only two of the three parameters can be adjusted freely, since

2
η2

3

η2
1

η2
3

η2
2

− η2
3

η2
1

− η2
3

η2
2

+ 1 = 0. (2.12)

The far-field approximation to the velocity due to both the bound vorticity and the
momentumless wake is constructed as

u = Γ Υ, where Υ =
{
Υbound if x < 0,
Υbound + Υwake otherwise.

(2.13)

The postulate that the momentumless wake intensity scales linearly with the bound
circulation Γ is justified as follows. The drag region of the wake is formed by the separated
boundary layer, which carries the bound circulation. The jet region has momentum equal
in magnitude but of opposite sign, to ensure that the total momentum vanishes. Therefore,
the wake velocity must be proportional to Γ .
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2.3. Condition of multiple swimmers propelling at the same velocity
Let us focus on a situation when N swimmers self-propel in a fluid otherwise at rest. All
swim at the same speed −U0 in the same direction, such that their relative positions do not
vary. Hence, in the reference frame moving with the swimmers, the velocity field of the
fluid is steady. The inflow velocity at the location of the ith swimmer is the superposition
of U0 and the velocity induced by all companion swimmers:

Ui = U0 +
N∑

j=1
j /= i

uij, (2.14)

where uij is the velocity induced by the jth swimmer at the location of the ith swimmer xi.
These inflow locations are taken at the swimmer body centres, assuming that the induced
velocity has little variation over the body length. Let us use the far-field approximation
derived in the previous subsections,

uij = Γj Υ (xi), (2.15)

where Υ (xi) is calculated as defined in (2.13).
The circulation Γ and the hydrodynamic power P of a swimmer are functions of the

local inflow velocity of the surrounding fluid U. These functions can be linearized for a
small deviation of U from the reference velocity U0:

Γ (U) = Γ |U0 + ∂Γ

∂U

∣∣∣∣
U0

(U − U0), (2.16)

P(U) = P|U0 + ∂P
∂U

∣∣∣∣
U0

(U − U0), (2.17)

where Γ , P and their derivatives at U0 are evaluated using computational fluid dynamics
(CFD) simulations, as explained below. For a swimmer surrounded by neighbours, it is
assumed that U differs from U0 by a small amount of induced velocity, warranted for the
Taylor series approximation (2.16) and (2.17). Figure 1(d) confirms that |uij| < 0.02U0 for
y > 2a. Substituting (2.14) and (2.15) into (2.16), we obtain

Γi = Γ |U0 + ∂Γ

∂U

∣∣∣∣
U0

N∑
j=1
j /= i

Γj Υ (xi), i = 1, . . . ,N. (2.18)

When positions x1, . . . , xN are fixed a priori, (2.18) constitutes a system of N linear
equations with N unknowns Γ1, . . . , ΓN . By solving this system and substituting the
solution into (2.15), we evaluate the induced velocities uij for all i = 1, . . . ,N and
j = 1, . . . ,N. Then the effective inflow velocities Ui of each swimmer are evaluated
using (2.14). Finally, using (2.17), we calculate the mechanical power expenditure of each
swimmer as

Pi = P|U0 + ∂P
∂U

∣∣∣∣
U0

(Ui − U0), i = 1, . . . ,N. (2.19)
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2.4. Optimization objective
We aim to minimize the normalized school-average mechanical power expenditure,

P̄ = 1
P|U0 N

N∑
i=1

Pi, (2.20)

under the condition that all swimmers move in the same direction at the same constant
speed U0. Minimization is achieved by finding the best relative position of the swimmers.
Thus, without loss of generality, we assume x1 = 0. The Cartesian scalar components of
x2, . . . , xN provide 3N − 3 optimization parameters.

The far-field approximation fails in the vicinity of the swimmer. Therefore, only
solutions with large enough spacing between the swimmers should be admitted as optimal.
This is achieved by introducing a penalty function

Vp = max
{

0,Ap

(
1 − dmin

σpa

)}
, (2.21)

where σp is a parameter that controls the minimum allowed distance between swimmers
as a multiple of a, and Ap � 1 is a constant penalty parameter (we use Ap = 104).

The pairwise lateral separation distance between the swimmer centroids xi =
(xi, yi, zi)

T, i = 1, . . . ,N, is calculated as

dmin = min
i=1,...,N

j=1,...,i−1

√
( yj − yi)2 + (zj − zi)2. (2.22)

The penalty function (2.21) ensures that the lateral separation between swimmers is no
less than dmin. The axial coordinate is not included in the formula, therefore the optimizer
cannot choose to place swimmers either in the immediate proximity or in the wake. Thus
we disallow placing swimmers at locations where the flow is vorticity-dominated (as
known from the CFD data). The minimization objective function is

J = P̄ + Vp. (2.23)

3. Results of the numerical optimization

3.1. Individual swimmer parameter fitting
The far-field interaction model requires knowledge of the velocity field of an isolated
swimmer, as well as its hydrodynamic power expenditure. We derived representative
values of the necessary parameters from CFD simulations of a real-scale streamlined-body
artificial swimmer using the SIEMENS PLM software Simcenter STAR-CCM+ 2020.1.
The CFD methodology is described in a precursor study by Li et al. (2023), and
the simulations used in this study are detailed in the Supplementary Information.
The swimmer has body half-width a = 0.175 m and body length (BL) l = 20a. In
all calculations, we place the origin of the attached coordinate system at a distance
9.4a downstream from the nose. Thus the position of the tail in this coordinate
system is xtail = 10.6a. The swimmer cruise speed is U0 = 0.466 BL s−1. The numerical
dimensional output data from the CFD simulations are converted in this section into
dimensionless coefficients multiplied by proper scaling factors, for greater generality. Thus
the hydrodynamic power at cruise is evaluated in STAR-CCM+ as P|U0 = 0.107ρU3

0πa2,
where ρ is the water density.
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The total circulation Γ of the far-field vortex ring model was determined as follows. The
CFD velocity was sampled at the grid points distributed on a line that was offset from the
symmetry axis by 2.27a. Then the far-field formula (2.7) was evaluated at the same points.
The bound vorticity was approximated by nr = 21 rings. The products Gj = Γ γj were
treated as unknown coefficients, thus their values were found using the linear regression.
The total circulation Γ |U0 = −16.5U0a was found by the summation of Gj over j from 1
to nr. Finally, the distribution coefficients γj = Gj/Γ were determined; see figure 1(b).

Further, the momentumless wake model coefficients were fitted to the CFD data at U0.
The corresponding Reynolds number was Re = aU0/ν = 2.8 × 105. The radial profile
g(η) was adjusted to the data at distance 3.26a downstream from the tail. This resulted in
the parameter values η1 = 2.15, η2 = 5.5, η3 = 3.34, and a profile shown in figure 1(c).
The parameter values C = 0.516 and p = −0.176 ensure that the decay along the wake
axis agrees with the CFD data. Figure 1(d) visualizes the velocity reconstructed from the
far-field approximation.

The velocity field of the momentumless wake decays in the lateral direction r much
faster (exponentially) than the velocity field of the vortex rings (that decays algebraically).
Therefore, when the velocity is sampled on a line parallel to the axis, if the offset
distance is sufficiently large for the far-field vortex ring approximation to be valid, then the
momentumless wake contribution at that station is negligible. Likewise, on the axis behind
the swimmer, the momentumless wake velocity decays more slowly with the downstream
distance x than the vortex-ring-induced velocity. Therefore, coefficients of the bound
vorticity model and coefficients of the momentumless wake model can be determined
independently.

Calculation of the derivatives (∂Γ/∂U)|U0 and (∂P/∂U)|U0 required additional
simulations at two slightly different speeds. These simulations used a coarser mesh.
At U− = 0.9U0, we obtained the circulation Γ− = −15.9U0a and power P− =
0.079ρU3

0πa2. At U+ = 1.1U0, Γ+ = −19.4U0a and P+ = 0.140ρU3
0πa2. These data

enable finite-difference approximations to the derivatives, (∂Γ/∂U)|U0 = −17.4a and
(∂P/∂U)|U0 = 0.304ρU2

0πa2.

3.2. Parameters of optimal schools
The optimization problem consists in finding the swimmer positions x2, . . . , xN relative to
the first swimmer such as to minimize the objective function (2.23). We use the CMA-ES
genetic optimization algorithm (Hansen, Müller & Koumoutsakos 2003). To accelerate
the search, the swimmer coordinates vary with discrete increments that are multiples of
0.01a, and the whole domain is a cube with side length 2Nl. In all cases, the population
size parameter was equal to 500, and a sufficient number of iterations were performed to
ensure that the objective function does not change by more than 10−4 during the last 100
iterations.

Since u decays with the lateral spacing between the swimmers, an important control
parameter is σp, which enters in the penalty function (2.21). All optimal formations that
we found activated the constraint dmin = σpa. Figure 2(a) shows how the school average
power P̄min that corresponds to the minimized cost function Jmin varies with the minimum
dimensionless separation distance between swimmers dmin/a, which is controlled by σp.
The latter is an external control parameter. Its value may be selected, for example, from
the accuracy considerations of the far-field approximation or from collision avoidance
considerations. The relationship between dmin/a and P̄min suggests that reducing the lateral
distance in a school can enhance energy-saving effects. Due to this, dmin/a would tend to
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Figure 2. (a) School average power P̄min as a function of the minimum dimensionless lateral separation
distance between swimmers, dmin/a, for four different school sizes N. Continuous lines correspond to the results
of simultaneous optimization of the positions of N − 1 swimmers. Markers correspond to the results obtained
by sequentially adding one swimmer to the school and optimizing its position, shown for dmin/a = 2, 3 and 4 as
‘◦’, ‘×’ and ‘+’ signs, respectively. (b) The quantity 1 − P̄min shown as a function of dmin/a on the logarithmic
scale, for different school sizes N. The continuous lines show the optimization results, and the dashed
lines are the linear regression lines on those data: 1 − P̄min = 0.220(dmin/a)−1.97 for N = 2, 1 − P̄min =
0.286(dmin/a)−1.90 for N = 3, 1 − P̄min = 0.354(dmin/a)−1.82 for N = 7, and 1 − P̄min = 0.392(dmin/a)−1.83

for N = 11. (c) Plots of P̄min obtained using the sequential increment of N, as functions of N, for dmin/a = 3,
4 and 5.

0 under unrestricted dmin/a. In the context of optimization, the role of the penalty function
is to impose constraints on the dimensionless lateral separation. It is necessary to impose
such constraints on dmin/a during the optimization process to avoid swimmer overlap and
to match real-world situations. Energy savings of several per cent (relative to P|U0) may be
realized at dmin as small as 2a to 5a. Greater lateral separation leads to vanishing energy
saving. Trends for schools of different sizes are similar, but lower P̄min of larger schools
shows that they are slightly more efficient in saving energy. To elucidate the trend with
dmin/a, figure 2(b) shows the power economy 1 − P̄min on the logarithmic scale. It decays
at a rate close to −2 for all N, and the power-law constant is larger for greater N.

Figure 3 shows an example of a typical optimal school. The frontal projections occupy a
small region of the yz plane, such that the lateral distances between neighbours are almost
as small as possible, i.e. about 5a (0.25 BL). From the side view, each pair of neighbours
forms a leader–follower pair with 11.4a (0.57 BL) longitudinal offset. Incidentally, the
best energy-saving formations of two tetra fish were previously found to have respective
separation distances of about 0.35 BL and 0.75 BL (Li et al. 2019), and the optimum was
explained from the mean flow field considerations. It appears that similar effects apply
to an elementary leader–follower pair in a school of axisymmetric swimmers. Note that
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Figure 3. Optimized schools of N = 11 individuals with dmin/a = 5: (a) front view and (b) side view of
a school obtained by numerical optimization; (c) front view and (d) side view of a school obtained by a
direct-rule-based method. Individuals are labelled by numbers from 1 to 11.

any swimmer has at most two neighbours in its vicinity. Therefore, the induced velocities
remain small.

3.3. Two- and three-swimmer optimal schools
The optimality of chain formation motivates us to revisit the groups of two and three
swimmers. They can be considered as elementary blocks of larger schools, because the
nearest neighbours interact most strongly, even if in our model they rely only on the far
field such that unsteady effects are not included.

The minimal school consists of two swimmers (N = 2); see figure 4(a). The position of
the second swimmer relative to the first swimmer is optimized. Without loss of generality,
the first swimmer is located at the origin of the coordinate system, and the second swimmer
is on the xy plane. Thus only the distance ρ and the polar angle θ are non-zero. The optimal
values are shown in figure 5, as functions of the minimum dimensionless lateral separation
distance dmin/a. Both quantities increase monotonically. This means that the optimally
selected lateral separation increases at a greater rate than the longitudinal separation.

As conjectured in § 1, the follower is optimally placed in the rear updraft region of
the leader’s induced flow: the blue circles in figures 5(a,b), which show the position of the
follower relative to the swimmer, almost coincide with the black dashed lines that visualize
the leader’s induced field minimum velocity point coordinates as functions of relative
separation distance dmin/a. Importantly, this formation also minimizes the leader’s energy
cost, because the leader’s position relative to the follower is in the front updraft region of
the follower’s induced flow: the blue circles are also very close to the black dash-dotted
lines.

Similar staggered formations with lateral separation 0.5l and longitudinal offset 0.75l
were found to minimize the cost of transport of a pair of tetra fish (Li et al. 2019).
This arrangement corresponds to dmin/a = 6, ρ/a = 10.8, θ = 34◦ in polar coordinates.
It was explained in Li et al. (2019) by the same mechanism of mean velocity updraft as
considered in this study. However, in Li et al. (2019), the fish undulated laterally, and the
amount of power economy varied with the phase difference between the leader and the
follower. The greatest power economy would be achieved at the phase matching of the
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Figure 4. Geometrical parameters of (a) a two-swimmer school, and (b) a three-swimmer school. Points S1,
S2 and S3 correspond to the first, second and third swimmers, respectively. The coordinate system S2x′y′z′ is
obtained from S1xyz by translation of the origin from the first swimmer to the second swimmer. The planes
S2x′y′ and S1xy coincide, because the z-coordinate of the second swimmer is zero. The angle θlead is between
the negative semi-axis S1x and the line that connects S1 with S2. Point O′′ marks the perpendicular projection
of the third swimmer on the S2x′ axis. Axis O′′y′′ is parallel to S2y′, and it resides on the S2x′y′ plane. Angle
θhind is the angle between the negative semi-axis S2x′ and the line that connects S2 with S3. Angle φhind
is the angle between the line O′′S3 and the O′′y′′ axis. Schematic side views: (c) a two-swimmer school;
(d) a three-swimmer school. Respective top views: (e) a two-swimmer school; ( f ) a three-swimmer school.
The minimum dimensionless lateral distance between neighbours is dmin/a = 3.

follower undulation with the incoming wave from the leader, such as that described by
Li et al. (2020). Thus benefit from the far-field interaction and unsteady mechanisms can
accumulate.

In a school of three swimmers (N = 3, figure 4b), the optimal configuration of the
leading pair is close to that found in the two-swimmer case (N = 2): ρlead is slightly less
and θlead is slightly larger than the respective values for N = 2. The points fall on the rear
updraft line. The position of the third swimmer relative to the second swimmer is given by
three non-zero polar coordinates. The values ρhind and θhind coincide with ρlead and θlead,
respectively. The φhind angle is 120◦. The two pairs are, essentially, two two-swimmer
optimal formations combined and rotated such that the lateral separation distance between
the first and the third swimmer equals dmin. Thus the follower in each pair maximizes the
beneficial interaction with its leader, and the two pairs adjust their relative orientation to
gain extra benefit.

3.4. Rules for large schools
The previous three-swimmer analysis motivates a direct-rule-based method for
constructing larger energy-saving schools. The first three swimmers are placed such that
ρlead, θlead, ρhind and θhind are on the rear updraft line, as in figures 5(a,b) at the required
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Figure 5. Optimal values of the geometrical parameters of two- and three-swimmer schools: (a) dimensionless
distance between neighbours; (b) elevation; (c) bank. The black dashed lines show the polar coordinates ρ and
θ of the minimum (most negative) induced velocity in the rear part of the swimmer’s field, and they correspond
to the black dashed line in figure 1(d). The black dash-dotted lines show the polar coordinates ρ and −θ of the
minimum (most negative) induced velocity in the front part of the swimmer’s field, and they correspond to the
black dash-dotted line in figure 1(d).

dmin, and φhind = 120◦. The fourth swimmer is added behind the third one such that the
second, third and fourth swimmers form a three-swimmer school obeying the same rule,
but the φ angle is −120◦. Thus we ensure that the fourth swimmer is in the updraft of all
those in front. The fifth swimmer is added with φ = 120◦, and so on. Figures 3(c,d) show
a formation obtained for N = 11, and the pattern extends intuitively to any large N.

The results in figure 2(a) suggest that P̄min is smaller for larger schools. To estimate the
lower bound of P̄min, for a given dmin/a, we use the above rules to construct schools with
N ranging from 3 to 100. The markers in figure 5 show that the schools obtained using
this method are close to optimal. Visually, the values of P̄min are indistinguishable from
the (3N − 3)-parameter numerical optimization results. The discrepancy is either positive
or negative, which means that both algorithms may deliver slightly suboptimal results.
Figure 2(c) displays P̄min obtained using the direct-rule-based method, as a function of
N. At dmin/a = 3, increasing N up to 100 may provide energy benefit, but the far-field
approximation may fail at this small dmin/a. For more trustworthy values dmin/a = 4
and 5, the optimization results show that schools of N ≈ 15 swimmers are practically
as energy-saving as the largest schools.

4. Concluding remarks

Our model suggests that self-propelled 3-D swimmers can exploit each other’s induced
far field such that the entire school acquires a considerable net energy benefit. This gain is
smaller than in two dimensions, but it is non-negligible (several per cent) if the swimmers
are not far away from each other (dmin/a ≤ 5).
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The optimal schools save energy by exploiting the following properties: (i) ∂P/∂U of an
isolated swimmer is positive (see Appendix A); (ii) the flow is slowed down everywhere
upstream of the head of a swimmer, and everywhere downstream of the tail of a swimmer,
except in the wake (see figure 1d); (iii) the total flow is constructed by superposition
of individual swimmer flows in the regions exterior to the boundary layers and wakes.
The first two properties make it possible to find an arrangement where every swimmer
saves energy: arrange them in a chain so that they are all upstream (downstream) of each
other’s head (tail). The second and third properties make it so that increasing the number
of swimmers will increase the energy savings. By adding another swimmer in a chain
formation, all the other swimmers will feel an even slower flow, thereby increasing energy
savings. However, the third property implies that the distances between the swimmers
are large enough to ensure that the inflow velocities evaluated at their central points are
representative of the average inflow velocity over the body.

The interactions based on the far-field interference are distinct from the vortex phase
matching (Li et al. 2020) and the leading-edge vortex enhancement (Seo & Mittal
2022) mechanisms of two fishes that swim near each other. The latter require kinematic
adjustment of the follower’s tail beat to harvest the leader’s wake with the maximum
efficiency. The far-field interaction mechanism, on the other hand, depends on the
time-averaged velocity. It is weak if we consider only a pair of swimmers (N = 2). But the
average per capita energy benefit increases considerably with the number of individuals in
the school, up to N ≈ 15.

Optimal formations found by the optimizer in this study are chain formations. This
formation exists in fish and squid schools, although it is not the most typical one. Some
further enhancement of the model may be necessary, but it is also possible that energy
optimization is not always the main objective.

Our approach is in many respects similar to well-known low-Reynolds-number models.
But while the velocity superposition is exact in the limit of small Re, it is only a linearized
approximate method in our situation. The predictive capacity of the model is limited
further by the simplifications of using only one control point per individual, only the axial
velocity component and the steady flow approximation. Therefore, the exact amounts of
the energy benefit need to be verified further by e.g. Navier–Stokes simulations. But the
model suggests clearly that individual swimmers within a school can occupy positions
according to the perceived time-averaged velocity such that the school would expend less
energy than the same number of isolated individuals swimming at the same speed over the
same distance.
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Parameters Values

Time step 0.0015625 s
Inner iterations 10
Computational domain Length 12 m, Diameter 6 m
Total mesh grid number Static 5.2 million, Rotational 0.9 million
Boundary layer thickness Static 0.015 m, Rotational 0.005 m
Maximum grid size Static 0.16 m, Rotational 0.01 m

Table 1. Parameters of baseline individual swimmer simulations.

Case
Propeller rotation

(rpm)
Cruising speed

(m s−1) Drag (N)
Net force

(N) Thrust (N) Power (W)

90 % speed 288 1.467 15.770 0.046 15.724 32.985
98 % speed 313.6 1.597 18.390 0.039 18.351 41.959
100 % speed 320 1.630 19.075 0.033 19.042 44.436
102 % speed 326.4 1.663 19.772 0.034 19.739 46.995
110 % speed 352 1.793 22.680 0.029 22.651 58.211

Table 2. Computational results of individual swimmer performance.

Appendix A. The CFD simulation on an individual swimmer

The CFD simulation on an individual swimmer has been introduced earlier in Li et al.
(2023). In this study, we have performed Reynolds-averaged Navier–Stokes simulations
using commercial software Siemens Simcenter STAR-CCM+ 2020.1. The swimmer is an
autonomous underwater vehicle with a propeller. Its body is axisymmetric, of 3.4 m length
and 0.35 m diameter. The geometrical centre of the body is located 1.64 m downstream
from the nose.

The CFD software and turbulence model were validated previously in a study focused
on rotational wind blades (Fang et al. 2021). The propeller zone, which rotates, features the
finest computational mesh, while the other parts are static regions covered by a Cartesian
mesh. The static mesh is refined at the swimmer surface and rear zone. The boundary
condition at the frontal surface of the computational domain is set as a velocity inlet
at various values in each case. The rear surface of the computational domain is set as
a zero-pressure outlet. The side surfaces are set as symmetry boundaries. The baseline
parameters used in the simulations are listed in table 1.

A cruising propeller rotational speed 320 rpm was established based on realistic data.
Through multiple iterative simulations, the equilibrium condition (swimmer’s drag equal
to thrust) at cruising speed U0 = 1.63 m s−1 was determined. At this cruising speed,
the propeller power and the flow field around the swimmer were recorded. Additionally,
further simulations were conducted to compute the derivatives of power and flow field
with respect to the cruising speed U0. Using the same mesh, multiple simulations were
implemented to approach the equilibrium condition at speeds of 90 %, 98 %, 102 % and
110 % of the cruising speed U0. The results are presented in table 2.

To validate the mesh resolution and obtain detailed information about the wake field,
an additional simulation with refined wake-zone mesh was implemented (parameters
shown in table 3). Though the wake-zone mesh resolution in the additional simulation
is several times higher than that of the baseline simulations, the extra refinement of the
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Far-field hydrodynamic interaction in a group of swimmers

Parameters Values

Time step 0.0015625 s
Inner iterations 10
Computational domain Length 24 m, Diameter 12 m
Total mesh grid number Static 23.5 million, Rotational 0.9 million
Boundary layer mesh thickness Static 0.015 m, Rotational 0.005 m
Maximum grid size Static 0.16 m, Rotational 0.01 m, Wake zone 0.01 m

Table 3. Parameters of swimmer simulations using a fine mesh.

Case
Fixed propeller
rotation (rpm)

Fixed cruising
speed (m s−1) Drag (N)

Net force
(N)

Thrust
(N)

Power
(W)

Baseline mesh 320 1.630 19.075 −0.033 19.042 44.436
Fine mesh 320 1.630 19.021 0.021 19.042 44.440

Table 4. Comparison between computational results using two different meshes.

0.2 0.4 0.6 0.8 1.0

U/U0

0

0.5

1.0

1.5

P/
P 0

CFD data
Power-law fit
Linear fit

Figure 6. Power expenditure as a function of swimming speed. The speed is normalized by U0, and the power
is normalized by P0 = P|U0 . Asterisk markers correspond to the values obtained from the CFD simulations.
The blue dashed line is a power-law fit P/P0 = (U/U0)

2.7947. The red solid line is the linear fit used in the text.
Over the interval U/U0 ∈ [0.9, 1.1], the discrepancy is less than 3 %.

mesh does not bring any significant influence in the swimmer propulsive performance
at the cruising speed (table 4), suggesting that the baseline mesh resolution was already
sufficient to predict the propulsive performance. The detailed wake information obtained
by this additional simulation was input into our theoretical model to describe the wake
structure.

The power expenditure curve is obtained from CFD simulations of an isolated swimmer.
We performed a series of simulations at different speeds. The results are shown in
figure 6. The power P increases nonlinearly with the swimming speed U. However, in
the neighbourhood of U0, this nonlinear dependence can be approximated by a linear
dependence, following the usual procedure of linearization.
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Figure 7. Velocity excess/deficit in the wake. Dashed lines show the CFD results, and solid lines show the
far-field approximation.

Appendix B. Wake velocity profile fitting

The velocity profile in Korobko et al. (1986) consists of one jet region (excess velocity in
the inner part of the profile) and one wake region (velocity deficit in the outer part due to
the boundary layer separated from the swimmer’s body). However, in our CFD simulation,
the jet is produced by a propeller that has a central body, and the central body produces
drag (velocity deficit). Then the propeller blades produce an annular jet (excess velocity).
Finally, in the outer region, there is still a velocity deficit region due to the separated
boundary layer. In order to have these three regions in the velocity profile, we introduces a
simple (perhaps the simplest possible) modification of Korobko’s formula. Note that while
Korobko’s formula is an exact result for a laminar momentumless wake, our intent is to
have a semi-empirical formula suitable for the turbulent wake in our particular situation.
Figure 7 displays a comparison between the fit and raw CFD data. The staircase in the
CFD data is due to the low order of interpolation on the non-uniform grid.

Figure 8 displays the CFD output data and the algebraic fit of the velocity sampled along
the axis of the wake. The vertical line is drawn at the axial position xflex where the line has
an inflection point. This location is used for determining the fitting coefficients. In the
central part of the CFD curve, the fit is very close to the CFD data, therefore choosing any
x in that region for measuring velocities does not affect the results of fitting.

Appendix C. Vortex ring fitting

Figure 9 shows the results of a sensitivity analysis, when the velocity profiles are fitted
on a lines at different distances from the swimmer axis. The results in the main text are
obtained using the distance r∗

s = 4.36a, while figure 9 shows γj and Γ calculated using
several smaller or larger values of the distance. When the distance rs is small, the far-field
approximation fails, and the fitting is inaccurate. This happens at rs = 0.6r∗

s . When the
distance rs is large, the distance between the jth and ( j + 1)th vortex rings is much smaller
than rs. In this situation, the entire system of vortex rings induces the velocity closely
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Far-field hydrodynamic interaction in a group of swimmers

20 30 40 50 60 70 80 90

x/a
10–2

10–1

100

u(
r =

 0
)

CFD data
Algebraic fit

Figure 8. CFD output data and algebraic fit of the velocity on the axis of the wake. The vertical line
corresponds to the axial position xflex where the line has an inflection point.
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Figure 9. Sensitivity of (a) the vortex ring circulation coefficients γj, and (b) total circulation Γ , on the
distance rs from the axis to the fitting line.

matching a single vortex ring with the circulation Γ . For that reason, the linear regression
matrix becomes ill-conditioned; small numerical errors in the velocity sampling amplify,
and lead to spurious dispersive error in the distribution of γj. In the intermediate range
rs ∈ [0.8, 1.2], the above-mentioned sources of error vanish, the results are not sensitive
to rs, and this is the correct fit.

The results in figure 9 were obtained using nr = 21 vortex rings. Smaller values of
nr deteriorate the approximation accuracy at distances of the same order of magnitude
as the vortex ring spacing or less. Increasing nr at a constant rs provokes the spurious
dispersive error as discussed above. We found that the value nr = 21 is well adapted for
the parameters of our CFD data set.

REFERENCES

ASHRAF, I., GODOY-DIANA, R., HALLOY, J., COLLIGNON, B. & THIRIA, B. 2016 Synchronization and
collective swimming patterns in fish (Hemigrammus bleheri). J. R. Soc. Interface 13 (123), 20160734.

BATCHELOR, G.K. 2000 An Introduction to Fluid Dynamics, Cambridge Mathematical Library edn,
pp. 521–522. Cambridge University Press.

974 A34-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

80
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.802


G. Li, L. Duan, J. Sesterhenn, R. Godoy-Diana, B. Thiria and D. Kolomenskiy

BRUMLEY, D.R., WAN, K.Y., POLIN, M. & GOLDSTEIN, R.E. 2014 Flagellar synchronization through direct
hydrodynamic interactions. eLife 3, e02750.

FANG, Y., LI, G., DUAN, L., HAN, Z. & ZHAO, Y. 2021 Effect of surge motion on rotor aerodynamics and
wake characteristics of a floating horizontal-axis wind turbine. Energy 218, 119519.

FILELLA, A., NADAL, F., SIRE, C., KANSO, E. & ELOY, C. 2018 Model of collective fish behavior with
hydrodynamic interactions. Phys. Rev. Lett. 120, 198101.

GAZZOLA, M., TCHIEU, A.A., ALEXEEV, D., DE BRAUER, A. & KOUMOUTSAKOS, P. 2016 Learning to
school in the presence of hydrodynamic interactions. J. Fluid Mech. 789, 726–749.

HANSEN, N., MÜLLER, S.D. & KOUMOUTSAKOS, P. 2003 Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11 (1),
1–18.

HERSKIN, J. & STEFFENSEN, J.F. 1998 Energy savings in sea bass swimming in a school: measurements of
tail beat frequency and oxygen consumption at different swimming speeds. J. Fish Biol. 53 (2), 366–376.

KANSO, E. & TSANG, A.C.H. 2014 Dipole models of self-propelled bodies. Fluid Dyn. Res. 46 (6), 061407.
KOROBKO, V.I., SHASHMIN, V.K. & SHUL’MAN, Z.P. 1986 Contribution to the theory of linear

momentumless wake. Izv. Akad. Nauk SSSR 2, 35–39.
LI, G., DUAN, L., GODOY-DIANA, R. & THIRIA, B. 2023 Group formation of autonomous underwater

vehicles that optimizes energetic efficiency in cruising. In IEEE Underwater Technology Tokyo, Japan,
pp. 1–6. IEEE.

LI, G., KOLOMENSKIY, D., LIU, H., THIRIA, B. & GODOY-DIANA, R. 2019 On the energetics and stability
of a minimal fish school. PLoS ONE 14 (8), e0215265.

LI, L., NAGY, M., GRAVING, J.M., BAK-COLEMAN, J., XIE, G. & COUZIN, I.D. 2020 Vortex phase
matching as a strategy for schooling in robots and in fish. Nat. Commun. 11, 5408.

LI, L., RAVI, S., XIE, G. & COUZIN, I.D. 2021 Using a robotic platform to study the influence of relative
tailbeat phase on the energetic costs of side-by-side swimming in fish. Proc. R. Soc. A 477 (2249),
20200810.

SEO, J.-H. & MITTAL, R. 2022 Improved swimming performance in schooling fish via leading-edge vortex
enhancement. Bioinspir. Biomim. 17 (6), 066020.

SIRVIENTE, A.I. & PATEL, V.C. 2000 Wake of a self-propelled body. Part 1. Momentumless wake. AIAA J.
38, 613–619.

WEIHS, D. 1975 Some hydrodynamical aspects of fish schooling. In Swimming and Flying in Nature: Volume
2 (ed. T.Y.-T. Wu, C.J. Brokaw & C. Brennen), pp. 703–718. Springer.

WEIMERSKIRCH, H., MARTIN, J., CLERQUIN, Y., ALEXANDRE, P. & JIRASKOVA, S. 2001 Energy saving
in flight formation. Nature 413 (6857), 697–698.

YUAN, Z.-M., CHEN, M., JIA, L., JI, C. & INCECIK, A. 2021 Wave-riding and wave-passing by ducklings
in formation swimming. J. Fluid Mech. 928, R2.

ZHANG, P., PETERSON, S.D. & PORFIRI, M. 2023 Dipole- and vortex sheet-based models of fish swimming.
J. Theor. Biol. 556, 111313.

974 A34-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

80
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.802

	1 Introduction
	2 Mathematical formulation of the far-field interaction model
	2.1 Velocity field of the bound vorticity
	2.2 Velocity field of a momentumless wake
	2.3 Condition of multiple swimmers propelling at the same velocity
	2.4 Optimization objective

	3 Results of the numerical optimization
	3.1 Individual swimmer parameter fitting
	3.2 Parameters of optimal schools
	3.3 Two- and three-swimmer optimal schools
	3.4 Rules for large schools

	4 Concluding remarks
	Appendix A. The CFD simulation on an individual swimmer
	Appendix B. Wake velocity profile fitting
	Appendix C. Vortex ring fitting
	References

