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In the context of linear stability analysis, considering unsteady base flows is notoriously
difficult. A generalisation of modal linear stability analysis, allowing for arbitrarily
unsteady base flows over a finite time, is therefore required. The recently developed
optimally time-dependent (OTD) modes form a projection basis for the tangent space.
They capture the leading amplification directions in state space under the constraint that
they form an orthonormal basis at all times. The present numerical study illustrates
the possibility to describe a complex flow case using the leading OTD modes. The
flow under investigation is an unsteady case of the Blasius boundary layer, featuring
streamwise streaks of finite length and relevant to bypass transition. It corresponds to
the state space trajectory initiated by the minimal seed; such a trajectory is unsteady,
free from any spatial symmetry and shadows the laminar–turbulent separatrix for a finite
time only. The finite-time instability of this unsteady base flow is investigated using the
8 leading OTD modes. The analysis includes the computation of finite-time Lyapunov
exponents as well as instantaneous eigenvalues, and of the associated flow structures. The
reconstructed instantaneous eigenmodes are all of outer type. They map unambiguously
the spatial regions of largest instantaneous growth. Other flow structures, previously
reported as secondary, are identified with this method as relevant to streak switching
and to streamwise vortical ejections. The dynamics inside the tangent space features both
modal and non-modal amplification. Non-normality within the reduced tangent subspace,
quantified by the instantaneous numerical abscissa, emerges only as the unsteadiness of
the base flow is reduced.
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1. Introduction

Hydrodynamic stability theory aims at characterising the stability of a given base flow to
infinitesimal or finite-amplitude disturbances. In most academic cases, the base flow of
interest is known analytically and is generally independent of time (Drazin & Reid 2004).
There are, however, physical contexts in which the choice of a physically relevant base flow
is not obvious. Bypass transition to turbulence in shear flows falls into this category: there
is ample experimental and numerical evidence that turbulent fluctuations emerge from
the breakdown of laminar streamwise streaks of sufficiently strong amplitude (Morkovin
1969; Henningson, Lundbladh & Johansson 1993; Jacobs & Durbin 2001; Matsubara &
Alfredsson 2001; Brandt & Henningson 2002; Brandt, Schlatter & Henningson 2004)
rather than from the destabilisation of the steady laminar base flow. Streamwise streaks,
originally called Klebanoff modes, are loosely defined as spanwise modulations of the
streamwise velocity field (Klebanoff, Tidstrom & Sargent 1962). They are predominantly
streamwise-independent structures supporting three-dimensional wiggles convected at
different velocities (Brandt et al. 2003). Streaks are not associated mathematically with
unstable eigenmodes of the purely laminar base flow, instead they emerge because of
the non-normality of the associated linear operator (Schmid & Henningson 2001) via
a mechanism called lift-up. This mechanism transfers streamwise vorticity upstream
into streaks further downstream (Landahl 1980; Brandt 2014). Careful early experiments
have suggested that their breakdown follows an instability mechanism (Bakchinov et al.
1995; Alfredsson & Matsubara 1996; Matsubara & Alfredsson 2001; Asai, Minagawa &
Nishioka 2002). The exact temporal dynamics of finite-amplitude streaks is, however, not
trivial. In several numerical studies, a frozen (two-dimensional) finite-amplitude streak
pattern was considered as a base flow, and its linear stability analysis was carried out by
assuming that the perturbations are inviscid (Andersson et al. 2001; Kawahara et al. 2003;
Brandt 2007). The unstable eigenfunctions identified break the translational invariance
of the initial streaks. The main outcome of the stability analysis of streamwise-invariant
streaks is the possibility for two different ways of breaking this streamwise invariance,
either by symmetric (varicose) or anti-symmetric (sinuous) eigenmodes. Around that time,
Hamilton, Kim & Waleffe (1995) made use of the concept of subcritical streak instability
to justify the three-dimensionality of the self-sustaining process in all shear flows
(Hamilton et al. 1995; Waleffe 1997). Hœpffner, Brandt & Henningson (2005), following
Schoppa & Hussain (2002), showed that streamwise modulations of the streaks observed
during transition, although possible as a linear instability of the frozen streaks, can also
arise for lower streak amplitudes via non-normal amplification of streak disturbances over
a finite time. In a related study, the secondary instability of time-dependent streaks in
channel flow was addressed by adopting a finite-time formalism by Cossu, Chevalier &
Henningson (2007). Schlatter et al. (2008) studied the secondary instability of streaks
via nonlinear impulse response. Linear stability features were later extracted directly from
numerical data (Vaughan & Zaki 2011; Hack & Zaki 2014) by considering an instantaneous
streamwise-independent base flow. More recently, the stability of streaks in turbulent flows
was also considered by focusing on the associated mean flow rather than on instantaneous
flow fields (Alizard 2015; Cassinelli, de Giovanetti & Hwang 2017). It remains hence an
open question whether there are additional insights for stability analysis by considering
fully unsteady three-dimensional base flows. This paper is devoted to a computational
exploration of the possibilities offered by this approach.

In the context of initial value problems, an initial condition at time t = t0 is represented
by a point in the associated state space. The knowledge of a given initial condition defines
uniquely the base flow, i.e. the unsteady state space trajectory initiated by that particular
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initial condition. In principle, the arbitrary unsteadiness of the base flow is not an obstacle
to modal linear stability analysis (LSA), at least when the base flow corresponds to
an attractor defined over unbounded times. The generalisation of eigenvalues is given
by (time-independent) Lyapunov exponents (LEs), defined as ergodic averages of the
instantaneous divergence rate between trajectories (Viana 2014). The generalisation of
the eigenvectors is given by the (time-dependent) covariant Lyapunov vectors (CLVs); see
Ginelli et al. (2007), Kuptsov & Parlitz (2012) and Pikovsky & Politi (2016). Eventually, in
the present study, an additional theoretical limitation is the requirement that the method be
applicable to a base flow defined only over a finite time interval. This requirement is made
necessary by the convective nature of the boundary layer and the fact that any spatially
localised perturbation to the Blasius flow has to exit a bounded computational domain in
a finite time. In this context, most infinite-time concepts such as eigenvalues need to be
formally redefined over the finite time interval of interest. While this does not pose any
strong mathematical difficulty, it crucially determines the mathematical toolbox relevant
for that problem.

We are interested here in a base flow featuring streamwise streaks of finite length
and width, with an unsteady dynamics. Since we wish to define the base flow in
an unambiguous way, it is initialised at t = 0 from a well-defined finite-amplitude
perturbation to the original laminar Blasius flow. In the present context of identifying
the mechanisms allowing for transition from a minimal level of disturbance, the selected
initial condition is the laminar base flow, perturbed at t = 0 by the so-called minimal
seed (Kerswell 2018). The minimal seed is defined rigorously as the disturbance of lowest
energy capable of triggering turbulence, or equivalently the point on the edge manifold
closest to the laminar attractor in energy norm (Kerswell 2018). Its computation is based
on a nonlinear optimisation method (Pringle & Kerswell 2010; Cherubini et al. 2011b;
Vavaliaris, Beneitez & Henningson 2020) and in practice requires an optimisation time
interval (0, Topt). The trajectory initiated by this flow field is called optimal edge trajectory.
By construction, it is an edge trajectory i.e. it belongs to the invariant set called the
laminar–turbulent boundary: some infinitesimal perturbations to such trajectories lead to
relaminarisation while others trigger turbulent flow. The concept of edge trajectory was
originally introduced in bistable parallel shear flows (Itano & Toh 2001): the asymptotic
fate of such edge trajectories form the edge state, a relative attractor in state space, whose
stable manifold divides the state space in two disjoint and complementary basins. Its
extension to boundary layer flows is trivial for parallel boundary layer flows (Biau 2012;
Khapko et al. 2013, 2014, 2016) but less straightforward in spatially developing boundary
layer flows like the Blasius boundary layer (Cherubini et al. 2011b; Duguet et al. 2012). In
such cases, the concept of a turbulent attractor is not clearly defined, yet edge trajectories
can still be identified, at least over finite times. In boundary layers, the edge concept
becomes fragile on very long time scales because the laminar Blasius flow can develop
instabilities to Tollmien–Schlichting waves over long time horizons (Beneitez et al. 2019;
Beneitez, Duguet & Henningson 2020a). In the absence of an asymptotic state, the stability
of finite-time edge trajectories cannot be investigated using LEs and CLVs, all based on
ergodic infinite-time averages. The generalisations of eigenvalues/LEs on finite times are,
trivially, the finite-time LEs (FTLEs). Their large-time limits, when they are defined,
coincide indeed with LEs (Haller 2015). The eigenvectors do not, however, admit any
simple finite-time generalisation.

We chose for this task the optimally time-dependent (OTD) modes introduced recently
by Babaee & Sapsis (2016). The associated formalism has two advantages: it computes
physically meaningful directions in the tangent space, and yields accurate numerical
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estimates of the FTLEs. The OTD modes approximate the linearised dynamics Blanchard
& Sapsis (2019) around the base flow trajectory in an optimal way, yet under the constraint
that the modes remain orthogonal at all times. Orthogonality is not a property shared
by CLVs. Handling an orthogonal basis is in practice a strong technical advantage over
ill-conditioned bases. The trade-off is that the OTD modes do not fulfil the covariance
property. Note that, when both are defined, the leading OTD mode still coincides with
the leading CLV for sufficiently long times. The reduced linearised operator, obtained
by projecting the original operator on the r first OTD modes, can be used to estimate
the stability characteristics of the high-dimensional problem, otherwise prohibitively
expensive to compute. In particular, the eigenvalues of this reduced-order operator yield
an accurate approximation of the FTLEs of the full system (Babaee et al. 2017). Besides,
whereas the OTD modes themselves are not interpretable physically, instantaneous
eigenmodes can be reconstructed in physical space from the diagonalisation of the
reduced-order operator. As shown by Babaee & Sapsis (2016) from specific examples, over
shorter time horizons well-initialised OTD modes can capture the non-normality of the
underlying dynamics. These properties make OTD modes an interesting tool specifically
for transient phenomena. On a technical level, their implementation requires neither
solutions of the adjoint system, nor data to be input and no iterative scheme: the OTD
modes are computed in real time together with the time-evolving base flow. They, however,
need to be initialised at t = 0. There is currently no accepted general way of choosing
initial conditions for these modes, although it is expected that past some finite transient
time the OTD directions naturally align with the most important directions of the system.
The OTD modes have been used recently in several hydrodynamic applications, including
the identification of bursting phenomena (Farazmand & Sapsis 2016), the control of linear
instabilities (Blanchard, Mowlavi & Sapsis 2019) and the stability of pulsating Poiseuille
flow (Kern et al. 2021) as well as for faster edge tracking in high dimension (Beneitez
et al. 2020b). The current investigation, motivated by these promising properties, is an
opportunity to test a new computational framework for stability calculations considered
until now as challenging.

The present study revisits the optimal edge trajectory in the Blasius boundary layer
by considering it as the new finite-time base flow, and by determining its stability
characteristics using the new finite-time framework offered by OTD modes. In particular,
the physical structure of the leading modes will be analysed at different times, with a focus
on the influence of the time dependence of the base flow on the results.

The structure of this paper is as follows. The OTD modes are introduced mathematically
in a general context in § 2. The computational set-up, the implementation and the details of
the reference edge trajectory are described in § 3. Section 4 contains the stability analysis
using the proposed methodology. Finally, the conclusions are given and discussed in § 5.

2. Theoretical framework

2.1. Linearisation around an arbitrary base flow
The context of the current study is very general. Assuming that a spatially discretised
flow field can be represented by n independent real-valued degrees of freedom with
n � 1 (see e.g. Gibson, Halcrow & Cvitanović 2008), we consider R

n as the original
high-dimensional space of reference. We suppose a non-autonomous dynamical system
defined over a time interval [t0, t1)

dQ
dt

= f (Q, t), Q(t0) = Q0, (2.1a,b)
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where Q0, Q ∈ R
n, and f : R

n → R
n is a diffeomorphism. We suppose both t0 and

t1 finite although t1 → +∞ is also possible. For a given choice of Q0, we define the
solution to (2.1a,b), namely Q̄ : (t0 : t1) → R

n as the base flow whose stability we will
now determine.

Let q(t) represent a small perturbation to Q̄(t), small enough so that the dynamics can
be linearised around Q̄(t) (mathematically q evolves in the tangent space associated with
the dynamics). Then q is governed by the linearised equation

dq
dt

= L(Q̄, t)q, L(Q̄, t) = ∇Qf (Q̄, t), (2.2a,b)

where ∇Q f (Q̄, t) is the n × n (time-dependent) Jacobian matrix, evaluated along the base
flow at time t. The OTD modes, to be introduced in § 2.3, form a basis of time-dependent
real-valued vectors (a complex-valued definition is also possible, but is not discussed here).
They approximate in an optimal way the leading directions of the Jacobian operator. They
are better understood after the notion of covariant vectors is discussed in § 2.2.

2.2. Covariance property
An ideal basis for the linearised dynamics should allow one to split the whole
n-dimensional tangent space into a direct sum of subspaces evolving along the flow,
each one with its own specific dynamics (Pikovsky & Politi 2016). The associated
time-dependent directions spanning these subspaces are referred to as dynamically
covariant. If the base flow Q̄ does not depend on time, the covariance property classically
defines expanding and contracting eigenspaces, the covariant vectors are the associated
eigenvectors and that the temporal rate of change of their norm defines the eigenvalues. In
the general case, these vectors are called CLVs, or sometimes simply Lyapunov vectors.
By definition, CLVs can be re-interpreted as zeros of the functional

J = lim
δt→0

1
(δt)2

n∑
i=1

||wi(t + δt) − (∇F t+δt
t )wi(t)||2, (2.3)

where F t+δt
t : R

n → R
n is the infinitesimal forward propagator associated with (2.1a,b).

The Jacobian matrix ∇F t+δt
t maps a vector of the tangent space wi(t) at time t to its image

at the later time t + δt in the corresponding tangent space.
The issues associated with CLVs are twofold. First, they are not necessarily mutually

orthogonal at a given time, making the associated basis possibly ill conditioned. Second,
the only algorithms known to compute them are proven to be valid only on attractors on
which the dynamics is ergodic (Ginelli et al. 2007; Kuptsov & Parlitz 2012); CLVs are
thus essentially an inappropriate computational tool for the study of transients.

2.3. Optimally time-dependent modes
Babaee & Sapsis (2016) defined the OTD modes ui, i = 1, . . . , r as a computational
compromise. These are minimisers of the functional J in (2.3), under the additional
constraint that they form an orthonormal basis at all times. The orthonormality constraint
simply reads

〈ui(t), uj(t)〉 = δij, i, j = 1, . . . , r, r � n, (2.4)

where 〈·, ·〉 denotes the inner product associated with the L2 norm and δij is the classical
Kronecker symbol. The time evolutions of the OTD modes and of a set of initially random
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OTD modes

Random vectors

t1 t2 t3

t1 t2 t3

(b)

(a)

Figure 1. Sketch of different vector bases for the tangent space of a given unsteady base flow. Temporal
evolution of respectively OTD modes (red, a) and random unit vectors (orange, b) propagated along a base
flow trajectory. The leading non-rescaled direction coincides with the leading OTD mode and is shown pointing
upwards at all times.

unit vectors are depicted schematically in figure 1 for illustration purposes. Random unit
vectors would follow the tangent dynamics and all align rapidly with the most expanding
direction, making them poor candidates to describe and analyse the dynamics of the
tangent space. The OTD modes follow the tangent dynamics but stay orthonormal at all
times, avoiding any alignment issues which might occur using e.g. CLVs. This constraint
destroys the interpretability of each OTD direction in terms of the covariant dynamics.
However, the orthonormality of the OTD modes is particularly appealing for reduced-order
modelling, for instance in the context of control (Blanchard & Sapsis 2019; Blanchard et al.
2019).

As derived in Babaee & Sapsis (2016), the maximisation of J in (2.3) under the
orthogonality constraint (2.4) yields a system of coupled nonlinear evolution equations

dui

dt
= L(t)ui −

r∑
j=1

[〈L(t)ui, uj〉 − Aij(t)]uj, i = 1, . . . , r. (2.5)

The nonlinearity is a direct consequence from the orthonormality constraint. The matrix
A ∈ R

r×r refers a priori to any skew-symmetric matrix. The discretised equations (2.5)
for i = 1, . . . , r form, together with (2.1a,b), a closed (r + 1)-dimensional system of
real-valued ODEs. The ui modes depend on the instantaneous vector Q̄(t), however, Q̄
itself is unaffected by the evolution of the ui modes. In Blanchard & Sapsis (2019), a
particular choice of A was made

Aij =
⎧⎨
⎩

−〈Luj, ui〉, j < i
0, i = j
〈Lui, uj〉, j > i,

(2.6)

which is also considered here. An arbitrary choice of A would lead to a fully coupled
system so that each ui appears in every equation in (2.5). However, under the current
choice the set of r equations in (2.5) has a lower triangular form: the evolution of the ith
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mode depends only on the modes from 1 to i, making the OTD formulation hierarchical.
The resulting evolution equation for each OTD mode becomes

dui

dt
= L(t)ui − 〈L(t)ui, ui〉ui −

i−1∑
j=1

[〈L(t)ui, uj〉 + 〈L(t)uj, ui〉]uj. (2.7)

The nonlinear system of r (2.7) can be evolved forward in time together with (2.1a,b),
from which the matrix L can be evaluated at all times. Equation (2.1a,b) remains, however,
independent of the evolution of each ui. This results in an (r + 1) × n-dimensional
asymmetrically coupled dynamical system. The OTD modes retain a (short-time) memory
of their initial conditions. They are in general not covariant, except for base flows such that
all instantaneous eigenvectors remain normal to each other.

2.4. The reduced linearised operator
In order to analyse the linearised dynamics within the reduced subspace optimally spanned
by the OTD modes, Babaee & Sapsis (2016) introduced the reduced operator Lr defined
by projecting the high-dimensional operator L onto the OTD directions

Lrij(t) = 〈ui, L(t)uj〉 i, j = 1, . . . , r. (2.8)

In particular, all the instantaneous stability indicators defined in the next subsection will
be derived from algebraic properties of the r × r matrix Lr evaluated at the relevant times.

For a time-independent linearised operator L the space spanned by the modes {ui}r
i=1

converges asymptotically to the most unstable eigenspace of L. Moreover, if L happens to
be also symmetric, the OTD modes coincide with its eigenvectors at all times.

2.5. Instantaneous stability indicators
As emphasised in Babaee & Sapsis (2016), although they correspond to divergence-free
vector fields, the ui modes do not have a direct physical interpretation as flow fields.
More meaningful vector sets can nevertheless be reconstructed instantaneously from
the knowledge of the ui modes and the reduced operator. At every time, Lr(t) can be
diagonalised as Lr = EλΛr(Eλ)−1 with Eλ and Λr = diag(λ1(t), . . . , λr(t)). The new
modes uλi , i = 1, . . . , r are defined (using the summation convention) by

uλi (t) = Eλij(t)uj(t). (2.9)

Unlike the ui modes, the uλi modes are not necessarily mutually orthogonal. They
are interpreted as instantaneous eigenmodes. They are the only velocity fields used for
visualisation in this paper. We emphasise that, although the ui modes are real valued,
the modes uλi are complex valued and come in pairs. Only the real parts, with arbitrary
phase, of the associated velocity fields will be represented. The time-dependent numbers
λ1(t), . . . , λr(t), i = 1, . . . , r are labelled instantaneous eigenvalues and are complex
valued.

Another key scalar quantity is the instantaneous numerical abscissa σ(t), a positive
number, defined as the largest eigenvalue of the symmetrised reduced operator (L + LT)/2
(Embree & Trefethen 2005). Here, σ corresponds to the largest possible growth rate at a
given time, due to both normal and non-normal effects combined together. Whenever L is
non-normal, σ is strictly larger than the real part of all λi values.
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For a given integer value r, it is a natural extension to define σr as the largest eigenvalue
of the symmetrised reduced operator (Lr + LT

r )/2. The gap

gr(t) := min
i

|σr − Re(λi)| = σr − Re(λ1), (2.10)

quantifies the non-normality of the reduced linearised operator at each instant. The values
of gr(t) bound from below the value of gn(t) corresponding to the full high-dimensional
system. In the remainder of the paper we will not make a difference between gr and gn
and will simply use the notation g(t). Note that for arbitrary time-dependent operators and
finite r, it is possible to have σr ≈ max λi even for a non-normal operator.

2.6. Finite-time Lyapunov exponents
For a general dynamical system in dimension n, characterised by a propagator F t

t0 , the
Cauchy–Green tensor C t

t0 is defined as

C t
t0(q0) := [∇F t

t0(q0)]
T[∇F t

t0(q0)]. (2.11)

The associated FTLEs are defined directly from the eigenvalues γ1 > γ2 > · · · > γn of
the Cauchy–Green tensor (Haller 2015). These eigenvalues are real and positive by virtue
of the positive definiteness of the Cauchy–Green tensor. Each FTLE is defined, for an
initial time t0 and a horizon time T > 0 (Haller 2015), as

(Λ
t0+T
t0 )i = 1

T
log

√
γi, i = 1, . . . , n. (2.12)

Babaee et al. (2017) provided an analytical proof that, for any integer r > 0, the
r-dimensional OTD subspace aligns exponentially fast, i.e. for increasing T with the space
spanned by the r most dominant left vectors of the Cauchy–Green tensor. The exact rate
of convergence depends on the spectrum of the problem at hand. The OTD formulation
is hence a robust direct method to estimate the r leading FTLEs (Λ

t0+T
t0 )i, i = 1, . . . , r

of the full system at any time t0 (Babaee et al. 2017; Sapsis 2018; Blanchard & Sapsis
2019), provided the time horizon T is large enough. As a consequence the FTLEs (Λ

t0+T
t0 )i,

i = 1, . . . , r are evaluated simply by averaging over time the diagonal elements of Lr
(Blanchard & Sapsis 2019). They are expressed as

(Λ
t0+T
t0 )i ≈ 1

T

∫ t0+T

t0
〈ui(τ ), Lr(τ )ui(τ )〉 dτ, i = 1, . . . , r. (2.13)

It can be useful to relate the OTD modes to other known vector sets from the literature
beyond the CLVs. The Gram–Schmidt vectors are precisely involved in the classical
algorithms used for computing FTLEs and hence LEs (see e.g. Shimada & Nagashima
1979). The OTD modes coincide with the so-called Gram–Schmidt vectors, at least in
the limit where the Gram–Schmidt vectors are continuously re-orthogonalised (Blanchard
& Sapsis 2019). The same modes have also been called sometimes backwards Lyapunov
vectors Kuptsov & Parlitz (2012). Unlike the CLVs, the OTD modes depend on the choice
of the inner product except for the leading mode.

3. Computational set-up

3.1. Direct numerical simulation
The Blasius boundary layer is the incompressible flow over a semi-infinite flat plate. It
develops at the leading edge of the plate in the absence of a streamwise pressure gradient.
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Instability of the optimal edge trajectory

Let x, y, z denote the streamwise, wall-normal and spanwise directions, respectively.
Here, v is the total velocity field, vB = (uB, vB, 0) that of the steady Blasius solution,
then u := v − vB = (u, v, w) is the perturbation velocity field. All quantities are made
non-dimensional using the free-stream velocity U∞ and the boundary layer thickness
δ∗(x) := ∫ ∞

0 (1 − uB(x)/U∞) dy of the undisturbed (steady) Blasius flow. A local
Reynolds number can be defined as Reδ∗(x) := U∞δ∗/ν, with ν the kinematic viscosity
of the fluid. The value of Reδ∗

0
= Reδ∗(x = 0) is imposed at the upstream end (x = 0)

of the computational domain, located at a finite distance downstream of the leading
edge.

The boundary conditions for the edge trajectory at the wall (y = 0) are of no-slip and
no-penetration type

u = v = w = 0, (3.1)

and at the upper domain boundary (y = Ly) of Neumann type to allow for a natural growth
of the boundary layer

∂u
∂y

= ∂v

∂y
= ∂w

∂y
= 0. (3.2)

A fringe region located at the downstream end of the domain damps outgoing velocity
perturbations consistently with the streamwise periodic boundary conditions. The fringe
is imposed as a volume force F (t, x, y, z) of the form

F = γ (x)(U(x, y, z) − v(t, x, y, z)), (3.3)

where γ (x) is a non-negative fringe function detailed in Chevalier et al. (2007). The
streamwise component of U(x, y, z) is defined as

Ux = U(x, y, z) + [U(x + xL, y, z) − U(x, y, z)]S
(

x − xblend

Δblend

)
, (3.4)

where S(xblend, Δblend) is a blending function connecting smoothly the outflow to the
inflow, and U(x, y, z) solves the boundary layer equations. The wall-normal component
of U is obtained via the continuity equation. In the present work the fringe length is
Δblend = 600, xL=2500 and γmax = 0.8.

The present approach has been successfully applied in most works referenced in
Chevalier et al. (2007), and in several later publications including Duguet et al. (2012) and
Beneitez et al. (2019). The effect of the fringe on outgoing perturbations, allowing for the
simulation of spatially developing flows in the presence of periodic boundary conditions
was analysed in full mathematical detail in Nordström, Nordin & Henningson (1999).

The temporal integration of the incompressible Navier–Stokes equations is performed
using the pseudo-spectral solver SIMSON (Chevalier et al. 2007). This direct numerical
simulation (DNS) code solves the equations in the wall-normal velocity-vorticity
formulation. The solution is advanced in time using a second-order Crank–Nicholson
scheme for the linear terms and a fourth-order low-storage Runge–Kutta scheme for the
nonlinear terms. The timestep is fixed to 
t = 0.2 in terms of U∞ and δ∗

0 . The velocity
field is expanded along Nx Fourier modes in the streamwise direction x and Nz modes in
the spanwise direction z, Ny Chebyshev modes are used in the wall-normal direction y
using the Chebyshev-tau method. The evaluation of the nonlinear terms obeys the 3/2-rule
for dealiasing.

The additional equations (2.7) ruling the evolution of the OTD modes are advanced
in time using the same scheme, based on an explicit evaluation of the inner products at
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every collocation point at every timestep. The initial conditions for the modes i = 1, . . . , r
are spatially localised disturbance velocity fields, consistent with the localised nature of
the perturbations to the streaks observed in bypass transition. The boundary conditions
for (2.5) are the same as for the original DNS. The choice of boundary conditions
is particularly sensitive for the perturbation equations. Further details can be found in
Appendix A. The computational requirements for each individual OTD mode are the same
as a full DNS.

Although, as described in Beneitez et al. (2019), it would be possible to use a moving
box technique to track localised disturbances over long time horizons using limited
computational resources, this is not required here because of the limited tracking time.
The reference frame is hence understood as the laboratory frame. The computational
set-up for the edge tracking is similar to that in Vavaliaris et al. (2020). The computational
domain Ω has dimensions [Lx, Ly, Lz] = [2500, 60, 100] and the velocity field is expanded
on [Nx, Ny, Nz] = [2048, 201, 256] modes before dealiasing. This numerical resolution is
comparable locally to that used in Duguet et al. (2012) and Beneitez et al. (2019). The
computation of the OTD modes starts at initial time t = 0 from the (spatially localised)
minimal seed computed in Vavaliaris et al. (2020) corresponding to the state shown in
Figure 3. It ends at t = 800, at which time the localised perturbation has not yet left the
computational domain.

The computation of the OTD modes in (2.5) depends on the definition of the inner
product, chosen here as

〈u, u′〉 =
∫

Ω

(uu′ + vv′ + ww′) dΩ, (3.5)

where u = (u, v, w) and u′ = (u′, v′, w′) are any two flow fields with finite L2 norm, and
dΩ = dx dy dz is the usual infinitesimal integration element over the numerical domain Ω .

3.2. The optimal edge trajectory
The minimal seed M refers to the perturbation closest in kinetic energy to the laminar
Blasius boundary layer flow, and able to trigger subcritical transition. This particular
optimal condition was selected because it gives rise to a fully nonlinear trajectory
relevant for the method tested. Moreover, it is uniquely defined by the parameters for
the optimisation algorithm, namely here the Reynolds number value Reδ∗

0
= 240.458.

That value of Reδ(x = 0) is chosen to match previous works (Cherubini et al. 2011a;
Vavaliaris et al. 2020), in particular the original work by Cherubini et al. (2011a)
where the non-dimensionalisation differs from the present one. Note that in parallel
flows the Reynolds number entirely defines the dynamical system, however, in spatially
developing flows the Reynolds number is intrinsically linked to the streamwise coordinate.
Consequently, the minimal seed is conditioned by the range of Reynolds numbers
(streamwise distances) allowed for in the time evolution of the perturbations. This results
in the minimal seed being dependent on the inlet Reynolds number, on the length of
the computational domain and on the optimisation time (Vavaliaris et al. 2020; Beneitez
et al. 2020a). In Vavaliaris et al. (2020) the chosen optimisation time is Topt = 400 and
the computational domain length Lx = 500. Here, M is computed iteratively using the
nonlinear adjoint-based optimisation framework of Rabin, Caulfield & Kerswell (2012),
Kerswell (2018). The maximised objective function is the energy gain at a given time
Topt, G(Topt) = E(Topt)/E(0), where E(t) is the perturbation kinetic energy at time t. The
optimisation framework follows Foures, Caulfield & Schmid (2013) and is based on the
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Figure 2. State portrait of the optimal edge trajectory in the Blasius boundary layer using the variables Ωx,
Ωy and W defined by (3.6)–(3.8). The edge trajectory starts at t = 0 from the minimal seed M computed
in Vavaliaris et al. (2020). The part of the edge trajectory (green) investigated in this work, t ∈ [0, 800], is
shown using a thicker line. The other trajectories start from the neighbourhood of M, they bracket the edge
trajectory, and approach either the laminar (blue) or the turbulent state (red). Dots are plotted every 50 time
units, highlighting the slowdown already after t = 100. Here, M indicates the location of the minimal seed.

implementation into the open-source solver Nek5000 originally implemented by Rinaldi,
Canton & Schlatter (2019). The optimal state determined for a near-to-threshold initial
energy E0 was bisected using an edge tracking algorithm (Itano & Toh 2001; Skufca, Yorke
& Eckhardt 2006), so that the computed trajectory approximates well an edge trajectory
for t � 800, the bracketing trajectories differing by less than 2 % in the observable used
for edge tracking. This property is crucial for the stability study: initialising the base flow
for the OTD analysis from outside the edge manifold would possibly result in a different
transition scenario, as reported e.g. in Cherubini et al. (2011a). Although the investigation
in Beneitez et al. (2019) warned against the possible interference between edge trajectories
and unstable Tollmien–Schlichting waves over time scales O(104), no such phenomenon
will be encountered with the present set-up, since the considered observation time is
O(103).

A state portrait is shown in figure 2, based on the three global quantities already used in
previous studies (Duguet et al. 2012; Beneitez et al. 2019, 2020a)

Ωx = (δ∗
0/δ)1/2

(
1
V

∫
V

|ωx|2 dv

)1/2

, (3.6)

Ωy = (δ∗
0/δ)1/2

(
1
V

∫
V

|ωy|2 dv

)1/2

, (3.7)

W = (δ∗
0/δ)3/2

(
1
V

∫
V

|w|2 dv

)1/2

. (3.8)

The quantities ωx and ωy are the streamwise and wall-normal perturbation vorticity
components, respectively, and the integration is carried over the computation domain of
volume V . The prefactors in powers of (δ∗

0/δ) make use of the value of the boundary layer
thickness evaluated at the centre of mass, see Duguet et al. (2012). In figure 2, the edge
trajectory is highlighted using a thicker (green) line, and the time interval t ∈ [0, 800]
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Figure 3. Three-dimensional top view of the perturbation velocity field corresponding to the initial condition
of the reference trajectory. Contours of u = −8 × 10−3 (blue), u = 6 × 10−3 (red) and global λ∗2 = −4 × 10−4,
where λ∗2 denotes the vortex identification criterion introduced by Jeong & Hussain (1995). The streamwise
extension of the minimal seed is ∼22 length units.

(a)

(b)

(c)

Figure 4. Three-dimensional top view of the perturbation velocity field reference trajectory at (a) t = 100,
contours of u = −8 × 10−3 (blue), u = 6 × 10−3 (red) and global λ∗2 = −1 × 10−4, where λ∗2 denotes the
vortex identification criterion introduced by Jeong & Hussain (1995). The distance between the vertical lines is

x = 50 (b) t = 280, contours of u = −5 × 10−2 (blue), u = 6 × 10−2 (red) and λ∗2 = 1 × 10−4. The distance
between the vertical lines is 
x = 50 and (c) t = 720, contours of u = −5 × 10−2 (blue), u = 6 × 10−2 (red)
and global λ∗2 = 1 × 10−4. The distance between the vertical lines is 
x = 100.

considered in this study is highlighted using a thicker green line (with equispaced dots
every 50 time units). The thinner lines in red and blue correspond to trajectories closely
bracketing the edge trajectory.

It is useful to recall the main features of the unsteady base flow reported by Vavaliaris
et al. (2020). For early times t � 60 the dynamics is dominated by a three-dimensional
version of the Orr mechanism (Vavaliaris et al. 2020), where vortical disturbances initially
tilted against the mean shear progressively untilt as time increases. For 60 � t � 200 the
lift-up mechanism takes over and a pair of streamwise streaks forms. Both mechanisms are
known to be non-modal, the stronger energy amplification being associated with the lift-up
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Figure 5. Real part of the instantaneous eigenvalues Re(λi), i = 1, . . . , 8 (solid lines) and instantaneous
numerical abscissa σ (dashed red) of the reduced operator Lr, plotted vs time. Here, λ1 is highlighted (orange
line). Vertical dashed line indicates t = 50.

(Schmid & Henningson 2001). For t � 200 the energy growth slows down. Snapshots of
the velocity field along the optimal edge trajectory are shown in figure 4 at times t = 100,
280 and 720. From t � 100 onwards, the edge trajectory consists of a localised pair of high-
and low-speed streaks (Beneitez et al. 2019) with an undulation linked to oblique waves. It
experiences a couple of streak-switching events around t ≈ 500 and t ≈ 700. The streaks
elongate with time but remain always localised in the streamwise and spanwise directions.
By construction, typical infinitesimal perturbations of this unstable flow field will make it
evolve either towards an incipient turbulent spot or towards the laminar state. It is precisely
their state space location on the verge of bypass transition that makes edge trajectories a
relevant choice as a base flow (Khapko et al. 2016). Imposing an optimality condition has
the advantage of making the current trajectory well defined.

4. Results

This section is devoted to the analysis of the stability properties of the optimal trajectory
described in § 3 using r = 8 OTD modes. The choice of 8 modes aims at producing the
largest possible subspace while keeping the simulations computationally feasible. The cost
of each OTD mode is comparable to an additional DNS to be run in parallel to the original
base flow. Moreover, the choice of number of modes is comparable to previous simulations
of similar scale (Babaee & Sapsis 2016). We restrain our study to the time interval t ∈
[0, 800].

4.1. Finite-time stability analysis

4.1.1. Instantaneous growth rates
We begin by reporting the real part of the instantaneous eigenvalues λi(t), i = 1, . . . , r,
computed over the whole trajectory. They are shown together with the instantaneous
numerical abscissa σ(t) vs time in figure 5. The gap g(t) = σ(t) − Re(λ1), which
quantifies the instantaneous non-normality of the reduced operator, is displayed as a black
line in figure 6. These quantities have all been defined in § 2.5.

The time series of these instantaneous growth rates can be grossly divided into two
phases. In the initial phase for t � 100, the two leading growth rates vary rapidly in
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Figure 6. Quantifier g(t) of the non-normality in the reduced system (black). Norm of the vector formed by
the time derivatives of the observables used in the state portrait of figure 2: dΩx/dt, dΩy/dt and dW/dt as
defined in (4.1) (red). The figure starts at t = 50.

time while the others are all negative. In a second phase starting at t ≈ 100, Re(λ1)
dominates in the range 0.2–0.3, with a slight decaying trend as time increases. All other
eigenvalues remain close to zero in real part, never exceeding 0.1. A quick glance at the
state portrait in figure 2 suggests that this second phase corresponds to a clear slowdown
of the dynamics of the base flow itself. If the dynamics is quasi-steady, it is expected that
the stability properties of the edge trajectory mimic qualitatively the stability properties
of steady/travelling edge states reported in other shear flow studies: one large dominating
unstable eigenvalue, representing a strong instability in a direction transverse to the edge
manifold, associated with many other eigenvalues of lesser magnitude responsible for the
slow chaotic fluctuations within the edge manifold (Duguet, Willis & Kerswell 2008). This
expectation is largely confirmed by figure 5 for t � 100.

A finer analysis of the fluctuations of the growth rates is possible both in the initial
and the quasi-steady phases. This is achieved by focusing on the gap g(t), interpreted
as a measure of instantaneous non-normality within the OTD subspace. For the initial
times t � 50, σ = Re(λ1) = Re(λ2) > 0. After t = 50, the gap g rises from zero to a
maximum of approximately 0.4. It later decreases to smaller values of ≈0.1. As for the
other λi values, they are all negative at t = 0 but grow at the same pace and cross zero
at t ≈ 100. At later times, all instantaneous growth rates stabilise, while Re(λ1) decreases
gently in a non-monotonic manner, and g(t) oscillates around low values ≈0.05–0.1. The
fact that the peak of g(t) occurs before t = 100 is consistent with the reported occurrence
of purely non-normal Orr and lift-up mechanisms along the edge trajectory for these
times (Vavaliaris et al. 2020). The sensitivity of the edge trajectory appears high where
the edge trajectory also experiences strong non-normal amplification. However, the fact
that g ≈ 0, i.e. σ = λ1 at the earliest times t � 50, may be wrongly attributed to a lack
of non-normal potential of L(t). To start with, this is a property of the instantaneous
reduced operator Lr(t) computed for a given value of r, not necessarily of the full operator
L(t). The reverse is yet true: non-normal features of the reduced-order operator Lr(t)
carry over to L(t). Moreover, after trying several different initialisations this result was
found to depend crucially on the choice of the OTD basis for t = 0, at least over early
times t � 50. This makes it difficult to draw general conclusions for short enough times,
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consistently with the study of Babaee et al. (2017). This is possibly confirmed by the
very transient behaviour of the eigenvalues λ2 to λ8. From t ≈ 50 on, the non-normal
potential within the OTD subspace is high again as expected, judging from the large
values of g(t), and transient effects due to the initialisation of the OTD modes can be
neglected.

A peak at t ≈ 60, and a smaller one at t ≈ 100, are evident in the data for σ(t) in
figure 5(a). These times are perfectly consistent with the occurrence of both the Orr and
the lift-up mechanisms described in Vavaliaris et al. (2020). Two additional bumps for both
g(t) and σ(t) can also be seen at t ≈ 550 and t ≈ 720. According to Vavaliaris et al. (2020),
these two times correspond to streak-switching events. This suggests that streak-switching
events, themselves an inherent part of the self-sustained mechanism (Khapko et al. 2013;
Beneitez et al. 2019), are linked to stronger non-normality than the rest of the edge
trajectory.

Eventually, figure 6 also shows the norm of the time derivatives of the three observables
Ωx, Ωy and W used in figure 2. This quantity is defined as ξ via

ξ(t) =
√(

dΩx

dt

)2

+
(

dΩy

dt

)2

+ C
(

dW
dt

)2

, (4.1)

where C is a unity-valued constant ensuring the correct dimensionality. It is plotted in
figure 6 in connection with the time evolution of g(t). We analyse now these quantities by
considering consecutive sub-intervals of the edge trajectory starting from the minimal
seed: (i) t ∈ [0, 60] (Orr mechanism in the base flow) corresponds to a very rapid
evolution of the observables ξ(t). The OTD modes, however, take time to catch up with
non-normality until t ≈ 80, as shown by g(t); (ii) t ∈ [60, 200] corresponds to the lift-up
in the base flow effect associated with non-normal growth. Here, g(t) appears largest
for t ≈ 80 and decreases rapidly until t ≈ 130, where a change in the slope of g(t)
can be noticed. The value of ξ(t) mirrors this behaviour, suggesting that non-normality
is decreasing as the lift-up of the base flow ends; (iii) the trajectory has reached the
relative attractor past t � 200. In this stage we observe that the slowdown of the dynamics
indicated by ξ(t) corresponds to higher values of g(t), and vice versa. This can be seen
in the intervals t ∈ [300, 400], where the dip in g(t) corresponds to a peak in ξ(t), and in
t ∈ [500, 600], where an increase in g(t) corresponds to a dip in ξ(t).

4.1.2. Characterisation as an outer mode instability
In the original study on streak breakdown by Vaughan & Zaki (2011), where the base flow
consists of a quasi-steady localised streak rather than a time-dependent one, a distinction
was made between two types of modes. The main criterion is the wall-normal position of
the energy of each mode with respect to the location of the critical layer, the latter being
known from inviscid analysis. The modes with a critical layer close to the wall (such as
Orr–Sommerfeld modes) are denoted as inner modes, while those with a critical layer in
the free stream are denoted as outer modes. Another characterisation of the inner vs outer
mode distinction, also suggested by Vaughan & Zaki (2011), relies on the relation between
the growth rate of the mode and the streak amplitude. Although the present context differs,
notably because of the unsteady aspect of the streaks, such a characterisation can also be
applied to the modes determined by our method. Figure 7 shows the values of the two
largest instantaneous eigenvalues Re(λ1,2) plotted vs Ωx, in figure 7(a), and vs the volume
average energy in the spanwise direction ||w||2. These quantities are used as a proxy for the
instantaneous amplitude of the streaky edge state. It can be directly compared with figure 7
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Figure 7. (a) Green lines: Re(λ1,2) vs Ωx, red line σ . The dots denote t = 50, the trajectory starts from the
values on the left of the figure. (b) Right: idem for Re(λ1,2) vs ||w||2, the volume average spanwise velocity.
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Figure 8. Histograms of all r = 8 reduced-order FTLEs (Λ
t0+T
t0 )i (i = 1, . . . , 8) sampled over various time

window values of t0 ∈ [0, 720] along the unsteady base flow trajectory. Horizon times T = 10, 20, 30, 50 and
70. The histograms are normalised so that their integral is equal to 1; (a) t0 ∈ [0, 720], (b) t0 ∈ [100, 720].

from Vaughan & Zaki (2011), where the growth rate is plotted vs the streak amplitude
(called Au). The corresponding figure was used to define a classification of the instability
mechanisms: inner mode refers to an instability mode present for arbitrary small values
of Au, in contrast with outer modes which are not found for vanishing streak amplitude.
In the present case, positive growth rates are only found for non-vanishing values of the
observable Ωx � 0.05. Interpreting Ωx as an alternative definition of streak amplitude
unambiguously indicates that the dominant instability of the edge state should be classified
as an outer mode instability.

4.1.3. Finite-time Lyapunov exponents
Figure 8(a) shows distributions of FTLEs (Λ

t0+T
t0 )i (i = 1, . . . , 8) computed within the

interval t0 ∈ [0, 800]. Figure 8(b) is similar except that the values of t0 are restrained to
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the sub-interval t0 ∈ [100, 800]. In both plots the time horizon T takes increasing values
from 10 to 70. Comparing the different values of T essentially confirms the robustness
of the FTLE distributions with respect to the time horizon. The reason why all FTLES
from i = 1 to 8 are reported together is the frequent change in the ordering of the growth
rates, occurring every time an eigenvalue crossing takes place (Babaee et al. 2017). The
many negative occurrences in figure 8(a), as well as the largest occurrences (�0.3) can
be attributed to the choice of initial conditions for the OTD modes, including accidentally
co-aligned disturbances. A potential improvement of the initial conditions could be the
computation of the eigenvectors associated with the minimal seed, by assuming no time
dependency. This would result in eigendirections already within the initial tangent space.
Even though there is no guarantee that these directions will remain in the tangent space
at later times, they can be expected to be physically relevant at least for the initial times.
These occurrences indeed disappear entirely in figure 8(a) after the initial first 100 time
units have been discarded, consistently with the results of § 4.1.1. Since the original
bisection algorithm is essentially a shooting method (Itano & Toh 2001), we expect one
of the FTLEs to be the signature of the instability of the edge manifold. In other words
this FTLE is associated with an unstable direction pointing transversally to it. The other
additional positive FTLEs have no choice but to be associated with the weak apparently
unsteady dynamics taking place within the relative attractor, rather than transversally to
it. This conclusion is consistent with the results of § 4.1.1. The two peaks in figure 8(a),
close to 0.15 and 0.3, correspond to a higher number of occurrences. They can be related
respectively to the slow and fast separation of vortical disturbances, later to be shed from
the main edge structure, see Duguet et al. (2012).

4.1.4. Local expansion rates
When dealing with proper attractors defined over unbounded times, it is common
to estimate numerically its dimension. Among the different possible definitions, the
Kaplan–Yorke dimension DKY is of interest, because it only requires the values of the
leading LEs λi, once ranked in descending order λ1 > λ2 > · · · > λr. It is defined as

DKY = j + Sj

|λj+1| , (4.2)

where Sj the cumulative sum

Sj =
j∑

i=1

λi, (4.3)

and j is the only integer such that Sj > 0, but Sj+1 < 0. In the present case the long-time
LEs λ1, . . . cannot be computed since the dynamics takes place over finite times. The
above definition can, however, be generalised to finite-time problems by considering either
the instantaneous or the finite-time exponents (Kuptsov & Kuznetsov 2018). The current
analysis is based on the sum Sj, rather than on the effective dimension DKY which can
be constructed from Sj in (4.3) only if j is large enough. Indeed, with the present value
of r = 8, there are not enough negative exponents to define DKY according to (4.2).
Geometrically, Sj(t) is understood as the instantaneous rate of change of the volume of
an infinitesimal state space element defined in the corresponding j-dimensional subspace
(Kuptsov & Kuznetsov 2018). In figure 9 we show the cumulative sum Sj(t) as a function
of time, computed in two different ways. Figure 9(a) has Sj(t) based on the instantaneous
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Figure 9. (a) Cumulative sum Sj(t) of Re(λi), i = 1, . . . , j at different times and for j = 1, . . . , 8.
(b) Cumulative sum of Λ

t0+T
t0 at different times.

growth rates Re(λi), i = 1, . . . , j. Figure 9(b) has St0+T
t0 based on the FTLEs Λ

t0+T
t0 , which

are computed over an entire time interval.
It is observed that, for j � 8 and t ≤ 800, both cumulative sums never become negative.

This confirms that the instantaneous and the finite-time Kaplan–Yorke dimensions of the
underlying relative attractor are both strictly larger than 8. Interestingly, Sj decreases with
t0, up to t = 550, for all j values. For the last values of t0 plotted, Sj even eventually
decreases with j, which suggests that instantaneous eigenvalues with negative growth rate
start to contribute to the instantaneous/FTLE spectrum at later times. From a geometric
point of view, the fact that Sj stays always positive suggests that the volume of infinitesimal
state space elements of the reduced r-dimensional space grows with time. This is in
contrast with the full n-dimensional space where such a volume has to decrease, since the
original dynamical system (2.1a,b) is dissipative. In other words, the present reduction,
with the choice of r = 8, does not incorporate enough dissipative modes, only active
modes. Conducting a similar numerical experiment with much larger r is as of today too
demanding in terms of memory requirements, at least for the Blasius flow.

4.1.5. Summary
The main learnings from the OTD stability analysis restrained to r = 8 modes are the
following: the dominant edge instability qualifies an outer mode mechanism linked with
the wall-normal vorticity of the localised streak. Past the initial 50 time units where the
analysis depends on the initialisation of the modes, several mechanisms can be identified
from the three peaks in the FTLE spectrum. The dominant instability corresponds to
an instability transverse to the edge manifold, while the others correspond to the slow
variability of the edge trajectory itself: the dynamics of the perturbations mimics the
dynamics inherent to the base flow itself, including the streak phenomenon. The local
dimension of the tangent space exceeds the value of r = 8. Finally, we observe that the
non-normal amplification of disturbances increases when the change of the base flow in
time becomes slower and vice versa.
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4.2. Modal structures
Beyond global indicators characterising the tangent dynamics, a description of the
modal structures in physical space is required. We recall (see § 2.5) that the flow fields
visualised correspond to the real part of the vectors uλi defined in (2.9). Two-dimensional
visualisations are shown for two different times, namely t = 280 and 720. The modes come
in complex conjugate pairs for the considered times, therefore we only display here every
other mode among the computed ones. The velocity field of the base flow at these two
times, selected along the edge trajectory after the initial transient, is shown in figure 4.
It consists of a wiggly finite-length streak flanked with shorter streamwise vortices. At
these two times, both snapshots are comparable, the main differences being the longer
streamwise extent together (of approximately 500δ∗

0) with a spanwise narrower structure of
extent 40δ∗

0 at the later time. Taking into account the dynamics of the base flow near these
two times enriches the description. Near t = 280 the formation of streaks by the lift-up
mechanism is almost mature (Vavaliaris et al. 2020) and the dynamics relaxes towards
quasi-steady motion. By contrast, in the time units following t = 720, low and high-speed
streak are on the verge of exchanging their spanwise position.

The instantaneous eigenmodes for t = 280 are first shown in figures 10–13. The
representation, inspired by the experimental figures of Balamurugan & Mandal (2017),
is based on a pseudocolour plot of the streamwise velocity perturbation for the reference
trajectory, overlapped with lines indicating 40 %–100 % of the maximum range of the
vorticity normal to the planes at z = −4, y = 2.5 and x = 325. The planes are selected
to intersect relevant regions of the main structure. We describe now the observed flow
structures. The present method as well as the underlying modal decomposition are new in
fluid mechanics apart from Babaee & Sapsis (2016). Therefore for pedagogic reasons we
chose to display the flow fields of every computed instantaneous eigenmode, omitting the
redundant conjugate modes.

For t = 280, the spatial structure of each of the 8 leading OTD modes superimposes well
with the active part of the main structure, which consists of a sinuous streak of finite length.
As a consequence the OTD modes inherit this sinuous structure. Importantly, no spatial
symmetry has been imposed neither on the base flow nor on the disturbances modes.
This differs from the classical study of Andersson et al. (2001) where the base flow has no
streamwise dependence. The long-standing question about the symmetries of the leading
eigenmodes, namely whether they are symmetric with respect to the plane z = 0 (sinuous)
or antisymmetric (varicose), becomes irrelevant here. In particular the varicose symmetry,
which is consistent with the formation of hairpin vortices, is not characteristic of any of the
modes investigated. The classical conclusion of Andersson et al. (2001), namely that the
sinuous instability of streaks is the most unstable mechanism of paramount importance for
streak breakdown, remains valid. Further visualisation of the modes at t = 280 highlights
the shear layers in the flow, visible in the xy plane. The xz-plane shows that most of the
activity of the mode is located within the active core of the streak and its upstream tail.
The yz-plane confirms the localisation of the mode on the top shear layer. For all modes,
energy is located mostly within the active core or upstream of it. This is in line with
the former observation that secondary structures shed downstream of the edge state are
not key ingredients of the self-sustained cycle (Duguet et al. 2012). Streamwise velocity
profiles for the instantaneous eigenmodes are shown in figure 14. They suggest robust
localisation close to the edge of the boundary layer. In all panels in figure 14, the y-location
for the largest amplitude of the streaks is displaced towards larger values with increasing
x: the head of the streaks characterising the edge trajectory appears tilted upwards. This is
again consistent with the description of outer mode instability in Vaughan & Zaki (2011).
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Figure 10. Snapshots at t = 280, uλ1. Two-dimensional grey scale planes of the perturbation velocity of the
edge trajectory with arbitrary amplitude, contour lines of ωk k = {x, y, z}, normal to the corresponding plane
for each {uλi }, corresponding to 40 % to 100 % of its maximum value. For each mode, from top to bottom the
planes displayed are z = −4, y = 2.5 and x = 325.
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Figure 11. Snapshots at t = 280. Mode uλ3. Same as figure 10.
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Figure 12. Snapshots at t = 280. Mode uλ5. Same as figure 10.
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Figure 13. Snapshots at t = 280. Mode uλ8. Same as figure 10.

The relevance of this region is furthermore consistent with the interpretation in Hack &
Zaki (2014), where streak instability proceeds via outer modes localised near the edge
of the boundary layer. As for the differences between the different modes uλ1, . . . , uλ8, at
t = 280 they are not very pronounced yet. Only uλ1 stands out through a less pronounced
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Figure 14. Streamwise velocity profiles of uλ1 at t = 280 corresponding to positions x = 320 (solid), x = 340
(dashed), x = 360 (dot-dashed) for (a) z = −4, (b) z = −2, (c) z = 2, (d) z = 4.

tail of streamwise vorticity at the upstream edge. It was checked that perturbing the edge
trajectory at t = 280 by uλ1, with amplitude ±10−4, leads either to a turbulent flow or to
relaminarisation. This confirms that this eigendirection is transverse to the edge manifold
at the considered time.

Most features discussed above are also attested at a later time t = 720 as shown in
figures 15 and 16, just before streak switching takes place. There are, however, noticeable
differences. At t = 720, all the instantaneous eigenvalues are still positive, with λ1 strictly
larger than the other eigenvalues and λ8 closer to zero. The leading OTD mode uλ1 is
still similar in shape to uλ3 and uλ5, while uλ8 clearly displays a different structure; uλ1
displays strong activity at the edge of the boundary layer, upstream of the active core,
strictly above the corresponding shear layer of the base flow (it is most visible on the
streamwise velocity component). More noticeable is the fact that the modal structures are
lifted towards the edge of the boundary layer, see e.g. the xy plane of figure 16(a) for uλ1.
The vortical structures associated with this mode form a larger angle with the wall than the
base flow itself. It was again checked that the eigendirection uλ1 is transverse to the edge
manifold at the considered time. The structures highlighted in uλ8 are of particular interest.
They correspond to the region where a new high-speed streak is in the process of being
spanned (see the supplementary material in Vavaliaris et al. (2020) for further evidence).
The corresponding OTD mode(s) should hence not only be understood as the manifestation
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Figure 15. Streamwise velocity profiles of uλ1 at t = 720 corresponding to positions x = 480 (solid), x = 500
(dashed), x = 520 (dot-dashed) for (a) z = −4, (b) z = −2, (c) z = 2, (d) z = 4.

of an instability of a simple instability-free base flow, instead it can be interpreted as
precursor(s) of events that will anyway occur along the edge trajectory. The positive FTLEs
associated with the corresponding instantaneous eigenmode are a signature of short-term
unpredictability, they quantify the temporal volatility of the streak-switching phenomenon.

Further strengthening the discussion above, figure 20 shows the same snapshots as in
figure 4 superimposed now with contours of λ2 for the leading OTD mode. It can be
seen in both figures 20(a) and 20(b) that the instability mode is mostly localised within
the edge structure. The localisation within the active core is even clearer in figure 20(b).
Furthermore, figure 21 shows greater localisation in the side where a new high-speed streak
is to be generated.

Some elements of this analysis could have been anticipated. The OTD framework, in
line with the whole concept of Lyapunov analysis, is a generalisation of modal stability
analysis to arbitrarily unsteady base flows. Non-normal features can be captured provided
an insightful initialisation of the OTD modes, yet these features are not expected to persist
over longer time horizons, e.g. those involved in the evaluation of FTLEs. However, the
Orr as well as the lift-up mechanism, which dominate the dynamics at early times, are
intrinsically non-normal mechanisms of finite duration. In principle, a large number of
eigenvectors is needed to capture transient growth accurately. This explains why so many
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Figure 16. Snapshots at t = 720, uλ1. Two-dimensional grey scale planes of the perturbation velocity of the
edge trajectory with arbitrary amplitude, contour lines of ωk k = {x, y, z}, normal to the corresponding plane
for each {uλi }, corresponding to 40 % to 100 % of its maximum value. For each mode, from top to bottom the
planes displayed are z = −1.6, y = 2.5 and x = 610.
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Figure 17. Snapshots at t = 720. Mode uλ3. Same as figure 16.
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Figure 18. Snapshots at t = 720. Mode uλ5. Same as figure 16.

0.20

0.10

–0.01
5

0 –0.11

0.26

0.12

–0.02

–0.16

z

y

x
550

10

0

–10

0.23

0.10

–0.02

–0.15

–10 –5 0

z

y

5 10

5

0

600 650 700

550 600 650 700

(a)

(b)

(c)

Figure 19. Snapshots at t = 720. Mode uλ8. Same as figure 16. Note that the large red structure in the xy-plane
is located in the region where a new streak will be spanned (Vavaliaris et al. 2020) and the supplementary
material therein.

modes possess a similar structure. This trend is aggravated by the fact that for small r, the
captured non-normality is an estimate of the non-normality of the whole system.

If the description in terms of few OTD modes can seem irrelevant at the earliest times
when non-normality dominates, the situation becomes tractable again with small r as soon
as the growth of the streaks slows down. The corresponding visualisations for t = 280 and
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(b)

(a)

Figure 20. Three-dimensional top view of the leading instantaneous eigenmode uλ1 with arbitrary amplitude,
superimposed on the edge trajectory from figure 4; (a) t = 280, contours of u = −5 × 10−2 (white), u =
6 × 10−2 (black) for the same snapshot as in figure 4 and λ2 = −0.29 % of its maximum value (green) for
the leading OTD mode, (b) t = 720, contours of u = −5 × 10−2 (white), u = 6 × 10−2 (black) for the same
snapshot as in figure 4 and λ2 = −0.47 % (green) of its maximum value for the leading OTD mode.

Figure 21. Three-dimensional top view of the eighth instantaneous eigenmode uλ8, with arbitrary amplitude,
superimposed on the edge trajectory from figure 4 t = 720, contours of u = −5 × 10−2 (white), u = 6 × 10−2

(black) for the same snapshot as in figure 4 and λ2 = −2.3 % (green) of its maximum value.

t = 720 are displayed in figures 10–13 and figures 16–19. At this stage the instantaneous
eigenvalue distribution as well as FTLE distribution is more comparable to the usual
spectrum of edge state solutions, see figure 8: one dominant unstable eigenvalue marking
a direction locally transversal to the edge manifold, several weakly positive eigenvalues
expressing the chaotic nature of the edge state fluctuations and (not appreciable here
because of the small value of r) a large set of stable eigenvalues expressing the attraction
of the edge state within the edge manifold.

One clear feature from physical space visualisations, regardless of the quantity plotted,
is how the localised support of all OTD modes, except here for uλ8, superimposes exactly
with the location of the edge state. This suggests that the present modes, if they contribute
to an instability of the edge state, would not make the main coherent edge state spread
spatially, at least at the level of the linearised dynamics. As far as the unsteady dynamics
restricted to the edge manifold is concerned, this suggests that shift sideways are excluded
near t ≈ 280 whereas they are likely to occur at t ≈ 720. Such sideways shifts have been
reported in most edge states of boundary layer flows (Khapko et al. 2013, 2016; Beneitez
et al. 2019), ASBL (Khapko et al. 2016) as well as channel flow (Toh & Itano 2003). As
in the present case, the shift phases are usually short and alternate with long shift-free
phases. Another robust feature of all localised edge states concerns transition from the
edge state to the turbulent state: the transition process consists of two consecutive steps:
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first a local intensification of the disturbances within the active core, followed by spatial
spreading (Mellibovsky et al. 2009; Duguet, Willis & Kerswell 2010; Duguet et al. 2013).

The consecutive nature of these two events would suggest that the spreading phase
is nonlinear, while the intensification phase can be understood partially from the linear
instability of the edge state. The fact that the spreading is reflected in the spatial structure
of at least one instantaneous eigenmode uλ8 at the later time t = 720, suggests, however,
that spanwise spreading can be partially predicted and described at this time by linear
mechanisms. These new results suggest further study.

5. Conclusion and outlooks

We have used the recently developed framework of the OTD modes to study the linearised
dynamics about a segment from a well-defined unsteady base flow. The methodology was
applied to a complex hydrodynamic case at the limit of our computational capabilities, and
yields results in line with the expected physics. It even performs beyond expectations by
revealing new physical phenomena. The physical system under investigation is the Blasius
boundary layer flow. The original trajectory under scrutiny belongs by construction to the
edge manifold delimiting bypass from natural transition. However, the study is restricted
to timespans short enough such that Tollmien–Schlichting waves do not have time to
affect the transition process. This unsteady trajectory is re-interpreted as an unsteady base
flow, whose linear (modal) stability analysis is expected to contain information about the
stability of localised streaks, as observed in instances of bypass transition. This choice
of base flow, due to its three-dimensionality and its unsteady dynamics, represents an
excellent test case for a new stability approach.

Limiting ourselves, as a computational compromise, to a projection basis consisting
of only 8 OTD modes, we have computed the instantaneous eigenvalues along the
unsteady trajectory. The streaky base flow displays a couple of unstable complex conjugate
eigenvalues which dominate the finite-time stability of the trajectory. The remaining
eigenvalues investigated have a positive real part as well, yet with a smaller magnitude.
This is consistent with the expectations for chaotic dynamics within the edge manifold,
although the notion of chaos is usually kept for the infinite-time frameworks.

Numerical evidence suggests that the leading instability mechanism(s) in this study
correspond to an outer mode as described by Vaughan & Zaki (2011) and Hack &
Zaki (2014), even if the corresponding perturbations lack the long wavelength structure
characteristic of streak eigenmodes reported so far (Andersson et al. 2001; Brandt 2014).
We have also analysed the FTLEs along the trajectory by considering several time
horizons. The results confirm the presence of one fast unstable direction vs many slower
state space directions. Moreover, we could confirm that the underlying invariant set has a
finite-time fractal dimension strictly larger than 8.

The leading modal structures obtained from the OTD modes are not trivial to describe,
mainly due to the lack of spatial symmetry of the base flow. The main property exploited
in this study regards the spatial localisation of the modes. Most of the modes computed for
r = 8 display, in an instantaneous fashion, the same localisation properties as the original
base flow. The most unstable perturbations display a positive instantaneous growth rate,
and their vortical activity is classically located in the region adjacent to the streaks, where
the total shear is highest (Schmid & Henningson 2001). In particular, the perturbations in
the xy-plane are tilted from the wall by an angle larger than the base flow, particularly at
larger times. Some of the modal perturbations extracted also display vortical fluctuations
upstream of the base flow, while one identified mode even displays localisation on the
spanwise side of the base flow (at a later time only). It is suggested that the latter
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eigenmode plays an active role as precursor in streak-switching events, the same events
that lead the localised edge state to propagate sideways. Downstream fluctuations are,
however, absent from the leading instantaneous eigenmodes, suggesting that they are not
fundamental to the temporal sustainment of the edge state (Duguet et al. 2012).

Although the method originally targets a modal description of the relevant finite-time
instabilities, it can also capture non-normal amplification mechanisms (Babaee & Sapsis
2016). In practice, the exact amount of non-normality predicted, as well as the associated
energy amplification, are constantly underestimated for finite r compared with the
full-dimensional problem, mainly because a larger number of instantaneous eigenmodes
would be required to faithfully capture non-normal effects. Nevertheless these results
confirm that non-normal effects also play a role in the streak breakdown phenomenon
(Schoppa & Hussain 2002; Hœpffner et al. 2005).

This study highlights the relatively large sensitivity, on short times, of the instantaneous
eigenvalues to the initialisation of the OTD modes. It is expected from theoretical
arguments (Babaee et al. 2017) that FTLEs can be safely computed from the eigenvalues
only past a transient time, which is a priori unknown and case dependent. A detailed
comparison between two different arbitrary initialisations suggests that, in the present
case, only the early times prior to t ≈ 50 are highly dependent on the choice made for
t = 0 (cf. figure 23. Although this transient can be considered as short relative to the
complete transition process, it still represents a clear limitation of the method as far as early
times are concerned. At times larger than 50, the instantaneous eigenvalues λ1, . . . evolve
qualitatively similarly with time although instantaneously eigenvalues may differ between
the two simulations. The corresponding trend is also valid for the numerical abscissa σ .
If the dynamics belonged to an attractor, the time-averaged FTLEs would converge to the
LEs, known to be independent of the initialisation Pikovsky & Politi (2016). Although
the present case does not revolve around a genuine attractor in state space, the results
in figure 23 clearly suggest that the late-time dynamics can be considered as temporally
converged. Note that for r large enough the discrepancy between different initialisations
is expected to vanish even at finite times, for instantaneous eigenvalues as well as for the
numerical abscissa. However, additional modes (and thus larger r) also imply a significant
increase in computational time.

On the technical level, several points require further discussion and study:

(i) the size of the OTD subspace cannot be determined a priori (Babaee & Sapsis 2016;
Kern et al. 2021). This is in particular relevant to capture the non-normality along
the reference trajectory, where a large number of modes are required. Note that in
cases with extensive systems, or ‘weak turbulence’, such as Kuramoto–Sivashinsky
(Cvitanović, Davidchack & Siminos 2010) just a few modes are required to entirely
describe the most unstable subspace, whereas in pulsating Poiseuille flow more than
70 modes are required to fully describe the non-normal behaviour (Kern et al. 2021).
However, it has been shown that much lower number of modes r ≈ 6 could already
bring relevant physical insight (Kern et al. 2021);

(ii) eigenvalue crossing can make the OTD basis readapt multiple times;
(iii) the modal structures arising from the OTD framework are not associated with a

single mode in the sense of classical LSA. The projected OTD modes contain
information about several different mechanisms taking place at the same time, in
particular for very complex reference trajectories.

To further clarify the potential of the OTD modes in the present complex flow case, we
gather our main results in the following list:
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(i) first demonstration that the stability analysis of unsteady trajectories is technically
possible for a complex large-scale system, without resorting to average LEs or CLVs,
even in the case where those might not be available;

(ii) evidence that one unstable mode dominates over all the others at all times, a feature
not at all obvious for an aperiodic flow;

(iii) quantification of FTLEs along the edge trajectory, including the early times;
(iv) quantification of the growth of state space volumes as time progresses, showing that

at later times the requested number of modes is reduced compared with earlier times;
(v) first quantitative evidence for non-normal effects in an aperiodic flow;

(vi) occurrence of spanwise shifts detected in the higher-order modes at late times;
(vii) evidence that the sinuous symmetry prevails over the streamwise-independent

structures throughout all the study. In particular varicose perturbations, known as
an alternative way to break streamwise independence and popularised by hairpin
vortex studies, appear absent from our study;

(viii) evidence that the new modes found in the present analysis can also be described as
outer modes.

Looking ahead, although for intermediate times the OTD modes capture the non-normal
features of the underlying linear dynamics, for large times the proposed methodology (edge
tracking together with LSA using OTD modes) is essentially a generalisation of modal
stability analysis to unsteady cases. Persistent consequences of the non-normality include
for instance the finite-time instabilities likely to occur during the Orr mechanism (for t <

60) and the lift-up at later times. Both require further extensions of this methodology for a
quantitative prediction. The optimal framework proposed by Schmid (2007) is intrinsically
non-modal, and it is well suited to the identification of the disturbance most amplified in
finite time over an unsteady base flow. The corresponding adjoint-looping algorithm was
used successfully by Cossu et al. (2007) in channel flow, except that the reference trajectory
chosen was not an edge trajectory but a linear transient. It would be interesting to apply the
same methodology on an unsteady edge trajectory and compare the results with the present
ones, to see whether one of the methods can predict the finite-time growth of coherent
structures not captured by the other technique. Moreover, the possibility of combining
these several techniques together is interesting for future developments in stability analysis.
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Appendix A. Further computational details

This appendix provides further details about the computation of the OTD modes using a
pseudospectral approach, and in particular using the SIMSON code (Chevalier et al. 2007).
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Consider the equations for the evolution of the OTD modes about a trajectory evolved with
the Navier–Stokes equations

u̇i = LNS(ui) − 〈LNS(ui), ui〉ui −
i−1∑
j=1

[〈LNS(ui), uj〉 + 〈LNS(uj), ui〉]uj, (A1)

where LNS denotes the linearised Navier–Stokes operator. Bold letters denote quantities
in physical space, which are discretised into R

n degrees of freedom. The linearised
Navier–Stokes functional without external forcing applied to a field ui reads

LNS(ui) = −(Ub · ∇)ui − (ui · ∇)Ub − ∇pi + 1
Re

∇2ui. (A2)

The additional constraint to the linearised Navier–Stokes equations is introduced in
SIMSON in the form of an explicit forcing at each timestep. Boundary conditions
are implemented into the linear part of the solver, while the nonlinear terms are
evaluated explicitly. In the present case, evaluating explicitly the inner products involving
the linearised Navier–Stokes operator can produce erroneous results if the boundary
conditions on the additional forcing term are not applied properly. The term LNS(ui) needs
to contain the boundary conditions corresponding to the linearised operator to provide a
correct forcing term and Lr in the computations. In particular, it is necessary to apply
Neumann boundary conditions on the free stream and Dirichlet boundary conditions at
the wall

ui( y = 0) = ∂ui

∂y
( y = Ly) = 0, (A3)

when recovering the wall-normal velocity from the fourth-order equation arising from the
velocity–vorticity formulation (Chevalier et al. 2007). This differs from the main body of
the implementation in SIMSON since the correct boundary conditions need to be applied
in the explicit term involving LNS(ui) as well as the implicit part of the solver.

The OTD modes converge exponentially fast to the most unstable directions of the
Cauchy–Green tensor (Babaee et al. 2017), and after a long time only depend on the point
of the trajectory where they are computed (Blanchard & Sapsis 2019). However, the OTD
modes depend on their initialisation (Babaee & Sapsis 2016; Kern et al. 2021). It has been
observed that there is not a universal time for which the OTD subspace is converged to the
most unstable directions. Nevertheless, relevant physical features may be observed from
early times (Babaee & Sapsis 2016).

Appendix B. Initial conditions for the OTD modes

An additional point to consider is that, if one of the directions not part of the basis
becomes unstable enough, the basis will need to re-adapt. This is due to (2.5) being evolved
continuously, whereas the introduction of a different vector in the most unstable subspace
occurs discontinuously (Babaee & Sapsis 2016).

The choice of the initial condition for the OTD modes plays therefore a crucial role
for the OTD framework. Since our reference trajectory consists of several finite-time
events of interest, our goal is to choose initial conditions which adapt as quickly as
possible to the most unstable dynamics. We therefore chose initial conditions which are
physically relevant to excite instability mechanisms on the edge trajectory. The initial
condition for the first mode is exactly the perturbation to the Blasius boundary layer
associated with the edge state. This represents infinitesimal perturbations of the same
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Figure 22. Snapshots at t = 120. Contours of the wall-normal velocity V for uλ1 obtained from two different
sets of initial conditions. (a) Subset of initial conditions used in the current work. (b) Alternative initial
conditions described in Appendix B. Note that according to (2.9), the {uλ} are not normalised.

shape as the edge trajectory. The initial conditions for modes 2–8 correspond to pairs
of counter-rotating vortices with different spatial extensions. The counter-rotating vortices
are also rotated about the y axis to remove any symmetric constraint. This set of initial
conditions is not orthogonal by construction and therefore a Gram-Schmidt algorithm is
performed before initialising the OTD computations. The results reported in the body of
the paper correspond to these initial conditions.

To check the robustness of the results, alternative sets of initial conditions have been
tested using r = 4: (i) the 4 leading modes from the results in the main body of the paper
and (ii) random noise. Using r = 4 modes only appeared sufficient to illustrate the main
aspects of the subsequent checks.

A comparison for the wall-normal component of the leading projected OTD mode at
t = 120, obtained using the two different sets of initial conditions can be seen in figure 22.
The figure shows an agreement about the general physical features of the perturbation, i.e.
the high-speed streak flanked by two low-speed streaks is present in both cases. However,
no exact match is observed. The convergence to a unique set of OTD modes is expected
to be exponentially fast (Babaee & Sapsis 2016; Babaee et al. 2017; Blanchard & Sapsis
2019), but the explicit times are strongly case dependent.
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Figure 23. Instantaneous eigenvalues for r = 4 corresponding to two different initialisations: (a) edge state
perturbation over the Blasius boundary layer and counter rotating vortices, (b) random noise.

The most unstable instantaneous eigenvalues are shown in figure 23. It can be observed
that, in the case of the random noise, the initial peak is lost. It is reasonable to assume that
the unsteady base flow changes too fast during the initial times while the OTD subspace
has not had enough time to adapt. On the other hand, the second peak identified at t ∼ 80
is well identified with both sets of initial conditions.

We should consider random noise as the worst choice of initial conditions, since it
is entirely agnostic to the underlying reference trajectory. The results presented above
further strengthen the importance of the choice of initial conditions. They indicate that,
although the OTD approach is robust at large enough times, it remains dependent on the
initialisation for times earlier than t ≈ 100.
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