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METASTABILITY FROM THE LARGE DEVIATIONS POINT OF

VIEW: A Γ-EXPANSION OF THE LEVEL TWO LARGE

DEVIATIONS RATE FUNCTIONAL OF NON-REVERSIBLE

FINITE-STATE MARKOV CHAINS

C. LANDIM

Abstract. Consider a sequence of continuous-time Markov chains (X
(n)
t :

t ≥ 0) evolving on a fixed finite state space V . Let In be the level two large

deviations rate functional for X
(n)
t , as t→∞. Under a hypothesis on the jump

rates, we prove that In can be written as In = I(0) +
∑

1≤p≤q(1/θ
(p)
n ) I(p) for

some rate functionals I(p). The weights θ
(p)
n correspond to the time-scales at

which the sequence of Markov chains X
(n)
t exhibit a metastable behavior, and

the zero level sets of the rate functionals I(p) identify the metastable states.

1. Introduction

Fix a finite set V and consider a sequence (X
(n)
t : t ≥ 0), n ≥ 1, of V -valued,

irreducible continuous-time Markov chains. Denote the jump rates by Rn : V ×V →
R+, and the generator by Ln, so that

(Lnf)(x) =
∑
y∈V

Rn(x, y) { f(y) − f(x) } , f : V → R . (1.1)

Let πn be the unique stationary state.
Denote by P(V ) the space of probability measures on V endowed with the weak

topology, and by L
(n)
t the empirical measure of the chain X

(n)
t defined as :

L
(n)
t :=

1

t

∫ t

0

δ
X

(n)
s

ds , (1.2)

where δx, x ∈ V , represents the Dirac measure concentrated at x. Thus, L
(n)
t is a

random element of P(V ) and L
(n)
t (V0), V0 ⊂ V , stands for the average amount of

time the process X
(n)
t stays at V0 in the time interval [0, t],

As the Markov chain X
(n)
t is irreducible, by the ergodic theorem, for any starting

point x ∈ V , as t→∞, the empirical measure L
(n)
t converges in probability to the

stationary state πn.
Donsker and Varadhan [10] proved the associated large deviations principle: for

any x ∈ V , µ ∈ P(V ),

Pn
x

[
L

(n)
t ∼ µ

]
≈ e−t In(µ) , as t→∞ . (1.3)
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2 C. LANDIM

In this formula, Px = Pn
x , x ∈ V , represents the distribution of the process X

(n)
t

starting from x, and In : P(V ) → [0,+∞) be the level two large deviations rate
functional given by

In(µ) := sup
H
J

(n)
H (µ) := sup

H
−
∫
V

e−H Lne
H dµ , (1.4)

where the supremum is carried over all functions H : V → R. A precise statement
of (1.3) requires some notation and is postponed to the next section. The functional

In provides the cost for the empirical measure L
(n)
t to be close to µ for a very large

t. By Lemma A.8, as the process is irreducible, In(µ) = 0 if, and only if, µ = πn,
We examine in this article the behavior of the functionals In as n → ∞ under

some natural hypotheses on the jump rates Rn. Assume, initially, that the jump
rates Rn(x, y) converge, as n→∞, to a limit represented by R0(x, y):

R0(x, y) := lim
n
Rn(x, y) ∈ R+ , y 6= x ∈ V . (1.5)

Denote by L0 the generator associated to these rates and by I(0) the corresponding
large deviations rate functional. By Proposition 2.1, as n→∞, In(µ) converges to
I(0)(µ) for all µ ∈ P(V ).

If the Markov chain Xt induced by the jump rates R0 has only one closed irre-
ducible class, the asymptotic analysis of the functionals In ends with Proposition
2.1. In contrast, if Xt has more than one closed irreducible class a finer description
of In is possible.

Denote by V1, . . . ,Vn, n ≥ 2, the closed irreducible classes of Xt. Let π]j be

the stationary state supported in Vj . By Lemma A.8, I(0) vanishes at any convex

combination of the measures π]j . Since, by Proposition 2.1, In(µ) converges to

I(0)(µ) it is natural to consider the sequence θn In(µ), for some θn → ∞ and a

convex combination µ =
∑
j ωj π

]
j of the measures π]j , longing to obtain a non-

trivial limit.
To find the correct sequence θn, remark that, by (1.4), θn In represents the large

deviations rate functional of the Markov chain induced by the generator θn Ln,

that is, the rate functional of the Markov chain X
(n)
t observed at the time scale θn:

X1,n
t := X

(n)
θn t

.
Denote by βn,j the transition time from Vj to ∪k 6=jVk, this is the mean time

for the process X
(n)
t to hit ∪k 6=jVk when it starts from Vj . For the sake of the

argument, assume that βn = βn,1.
Fix a time-scale θn such that θn →∞, θn/βn → 0. Denote this last relation by

θn ≺ βn or βn � θn. As the transition time from Vj to ∪k 6=jVk is of order βn and

βn � θn, in the time-scale θn starting from Vj the chain X
(n)
t does not visit the

set ∪k 6=jVk. Therefore, the cost for keeping the process at Vj should vanish, and

one expects θn In(π]1) → 0. Actually, as βn,j � θn for all j, the same conclusion

should hold for all measures π]j , and to derive a non-trivial limit for θn In one has

to observe the chain X
(n)
t in a time-scale at least of the order βn.

In the time scale βn, starting from Vj the process visits ∪k 6=jVk. There is, in

consequence, a positive cost to maintain it at Vj and θn In(π]1) should converge
to a positive limit. If all sequence βn,j are of the same order, this completes the
description of In. Otherwise, one has to go to longer time-scales.
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The main result of this article, Theorem 2.3, presents the time-scales 1 ≺ θ(1)
n ≺

· · · ≺ θ(q)
n and functionals I(1), · · · , I(q)

n such that

θ(p)
n In −→ I(p) , 1 ≤ p ≤ q .

This result permits to write the functional In as the expansion

In = I(0) +

q∑
p=1

1

θ
(p)
n

I(p) . (1.6)

The weights θ
(p)
n correspond to the time-scales at which the sequence of Markov

chains X
(n)
t exhibit a metastable behavior, and the zero level sets of the rate func-

tionals I(p) identify the metastable states.
The proof o Theorem 2.3 relies on [4, 23] where the metastable behavior of the

sequence X
(n)
t has been investigated. The expansion (1.6) has been derived for

reversible diffusions in [12] and for reversible finite state Msrkov chains in [5]. It
should be a universal property of Markov chains and should hold for dynamics
whose state space depend on n and which exhibit a metastable behavior at different
time-scales. This includes, among others models, randoms walks and diffusions in
potential fields [7,19–22,24,25,28,30], condensing zero-range processes [1,3,16,27,
29], inclusion processes [6, 9, 13–15].

We believe that the argument proposed here to derive the expansion of the large
deviations rate functional can be adapted to cover these dynamics.

2. Notation and Results

We present in this section the main result of the article. Consider a sequence

(X
(n)
t : t ≥ 0), n ≥ 1, of V -valued, irreducible continuous-time Markov chains

whose generator is given by (1.1).
Denote by D(R+,W ), W a finite set, the space of right-continuous functions

x : R+ →W with left-limits endowed with the Skorohod topology and the associated

Borel σ-algebra. Let Px = Pn
x , x ∈ V , be the distribution of the process X

(n)
t

starting from x. This is the probability measure on the path space D(R+, V )

induced by the Markov chain X
(n)
t starting from x. Expectation with respect to

Px is represented by Ex.

Recall the definition of the empirical measure L
(n)
t introduced in (1.2). Donsker

and Varadhan [10] proved a large deviations principle for the empirical measure

L
(n)
t . More precisely, they showed that for any subset A of P(V ),

− inf
µ∈Ao

In(µ) ≤ lim inf
t→∞

inf
x∈V

1

t
ln P(n)

x

[
L

(n)
t ∈ A

]
≤ lim sup

t→∞
sup
x∈V

1

t
ln P(n)

x

[
L

(n)
t ∈ A

]
≤ − inf

µ∈A
In(µ) .

(2.1)

In this formula, Ao, A represent the interior, closure of A, respectively, and In is
the large deviations rate functional introduced in (1.4).

We examine in this article the asymptotic behavior of the rate functional In.
In the context of large deviations, the appropriate notion of convergence is the
Γ-convergence defined as follows. We refer to [8] for an overview on this subject.
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Fix a Polish space X and a sequence (Un : n ∈ N) of functionals on X , Un : X →
[0,+∞]. The sequence Un Γ-converges to the functional U : X → [0,+∞] if and
only if the two following conditions are met:

(i) Γ-liminf. The functional U is a Γ-liminf for the sequence Un: For each
x ∈ X and each sequence xn → x, we have that lim infn Un(xn) ≥ U(x).

(ii) Γ-limsup. The functional U is a Γ-limsup for the sequence Un: For each
x ∈ X there exists a sequence xn → x such that

lim sup
n→∞

Un(xn) ≤ U(x) . (2.2)

Recall that we denote by Rn(x, y) the jump rates of the Markov chain X
(n)
t .

Assume that the rates converge, as n → ∞, to a finite limit denoted by R0(x, y),
see (1.5), and that R0(x′, y′) > 0 for some y′ 6= x′ ∈ V . The jump rates R0(x, y)
induce a continuous-time Markov chain on V , denoted by (Xt : t ≥ 0), which, of
course, may be reducible. Denote by L(0) its generator and by I(0) : P(V ) → R+

the associated occupation-time large deviations rate functional, given by

I(0)(µ) = sup
H
−
∑
x∈V

e−H(x)
[

(L(0)eH) (x)
]
µ(x) , (2.3)

where the supremum is carried over all functions H : V → R. Next result is proved
in Section 5.

Proposition 2.1. The sequence of functionals In Γ-converges to I(0).

Assume from now on that

the Markov chain Xt has more than one closed irreducible class. (2.4)

Under this hypothesis we may investigate further the asymptotic behavior of the
rate functional In.

Main assumption. To examine the convergence of θn In for some sequence θn →
∞, we introduce a natural hypothesis on the jump rates proposed in [4] and adopted
in [5, 11,23].

For two sequences of positive real numbers (αn : n ≥ 1), (βn : n ≥ 1), αn ≺ βn or
βn � αn means that limn→∞ αn/βn = 0. Similarly, αn � βn or βn � αn indicates
that either αn ≺ βn or αn/βn converges to a positive real number a ∈ (0,∞).

Two sequences of positive real numbers (αn : n ≥ 1), (βn : n ≥ 1) are said to be
comparable if αn ≺ βn, βn ≺ αn or αn/βn → a ∈ (0,∞). This condition excludes
the possibility that lim infn αn/βn 6= lim supn αn/βn.

A set of sequences (αu
n : n ≥ 1), u ∈ R, of positive real numbers, indexed by some

finite set R, is said to be comparable if for all u, v ∈ R the sequence (αu
n : n ≥ 1),

(αv
n : n ≥ 1) are comparable.
Denote by E ⊂ {(x, y) ∈ V × V : y 6= x} a set of directed edges, and assume

that for all n ≥ 1,

Rn(x, y) > 0 if, and only if, (x, y) ∈ E . (2.5)

Let Z+ = {0, 1, 2, . . . }, and Σm, m ≥ 1, be the set of functions k : E → Z+ such
that

∑
(x,y)∈E k(x, y) = m. We assume, hereafter, that for every m ≥ 1 the set of

sequences ( ∏
(x,y)∈E

Rn(x, y)k(x,y) : n ≥ 1
)
, k ∈ Σm , (2.6)
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is comparable.
As observed in [4] (see Remark 2.2 in [5]), assumption (2.6) is fulfilled by all

statistical mechanics models which evolve on a fixed finite state space and whose
metastable behaviour has been derived.

Tree decomposition. Under the assumptions (2.4), (2.5) and (2.6), [4, 23] con-

structed a rooted tree which describes the behaviour of the Markov chain X
(n)
t at

all different time-scales. We refer to [5] for a clear presentation of the construction
as well as a simple example, and recall here the main ideas.

Denote by q + 1 ≥ 2 the number of generations of the tree. The elements of the

p-th generation form a partition of V , and are represented by W
(p)
1 , . . . ,W

(p)
mp ,Ωp

for some finite increasing sequence 1 = m1 ≤ · · · ≤ mq+1. The set Ωp may be empty

while the sets W
(p)
j are all non-empty. As mp ≥ 1, each generation has at least one

element. Here is a list of the main properties of the tree:

(1.a) Each generation of the tree forms a partition of V ;
(1.b) The root, or 0-th generation, is the set V . The first generation has one or

two elements depending on whether Ω1 is empty or not. If Ω1 = ∅, it has

one element, the set W
(1)
1 = V . If Ω1 6= ∅, it has two elements, the sets

W
(1)
1 and Ω1 = (W

(1)
1 )c.

(1.c) Each child of a vertex is a subset of its parent: For each 0 ≤ p ≤ q,

1 ≤ j ≤ mp+1, either W
(p+1)
j ⊂W

(p)
k for some 1 ≤ k ≤ mp or W

(p+1)
j ⊂ Ωp.

Moreover, Ωp+1 ⊂ Ωp;
(1.d) According to the notation, the number of elements of generation p is equal

to mp + 1Ωp 6=∅, where 1A 6=∅ is equal to 1 if A is not empty and 0 oth-
erwise. Starting from the first generation, the number of descendents of a
generation strictly increases: for 1 ≤ p ≤ q, mp+1Ωp 6=∅ < mp+1 +1Ωp+1 6=∅.

Construction of the tree. We describe in this subsection the details of the
construction of the tree. it is formed from the leaves to the root. The leaves
V

(1)
1 , . . . ,V

(1)
n1 are the closed irreducible classes of the Markov chain Xt introduced

in the previous section, and ∆1 the set of transient states. The sets V
(1)
j were rep-

resented there by Vj , a notation frequently adopted below. In view of the definition

of the sets V
(1)
j , n1 corresponds to the number of closed irreducible classes of the

process Xt, which we assumed in (2.4) to be larger than or equal to 2.
We turn to the construction of the parents of the leaves. This procedure will be

repeated recursively to define all generations from the leaves to the root. Denote
by Φ1 : V → S1 the projection defined by

Φ1( · ) =
∑
j∈S1

j χ
V

(1)
j

( · ) ,

where χA stands for the indicator function of the set A. Hence, Φ1 projects to 0

all elements of ∆1 and to j the ones of V
(1)
j .

It follows from the main results of [18,23] and [5, Lemmata 4.7] that there exist a

time-scale θ
(1)
n � 1 and a S1-valued Markov chain X(1)

t (note that this process does

not take the value 0), such that the finite-dimensional distributions of Φ1(X
(n)

tθ
(1)
n

)
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converge to those of X(1)
1 :

Φ1

(
X

(n)

tθ
(1)
n

) f.d.d.
−−−→ X(1)

t . (2.7)

Denote by R
(1)
1 , . . . ,R

(1)
n2 the recurrent classes of the S1-valued Markov chain

X(1)
t , and by T1 the transient states. Let R(1) = ∪jR(1)

j , and observe that {R(1)
1 , . . . ,

R
(1)
n2 ,T1} forms a partition of the set S1. This partition of S1 induces a new partition

of V . Let

V(2)
m :=

⋃
j∈R(1)

m

V
(1)
j , T(1) :=

⋃
j∈T1

V
(1)
j , m ∈ S2 := {1, . . . , n2} , (2.8)

so that V = ∆2 ∪ V(2), where

V(2) =
⋃
m∈S2

V(2)
m , ∆2 := ∆1 ∪ T(2) .

It is shown in [23] that the Markov chain X(1)
t is non-degenerate in the sense

that there exists at least one edge (j, k), k 6= j ∈ S1, such that r(1)(j, k) > 0,

where r(1)( · , · ) represents the jump rates of the Markov chain X(1)
t . In particular,

either j is a transient state or j and k belong to the same closed irreducible class.
Therefore, the number of recurrent classes (n2) is strictly smaller than the number
of S1 elements (n1): n2 < n1. Since, on the other hand, ∆2 ⊃ ∆1, the number of
leaves’ parents (the generation q− 1 in the previous subsection) is strictly smaller
than the one of leaves (the generation q).

In conclusion, from the partition V
(1)
1 , . . . ,V

(1)
n1 ,∆1, the theory presented in [23]

produced a time-scale θ
(1)
n � 1, a S1-valued Markov chain X(1)

t , and a coarser

partition V
(2)
1 , . . . ,V

(2)
n2 , ∆2. The construction of the tree proceeds by recurrence.

Assume that, for some p > 1, the recursion has produced

(a) Time scales 1 ≺ θ(1)
n ≺ · · · ≺ θ(p−1)

n ;

(b) Sq-valued Markov chains X(q)
t , 1 ≤ q < p, where Sq = {1, . . . , nq};

(c) Partitions V
(r)
1 , . . . ,V

(r)
nr ,∆r, 1 ≤ r ≤ p

satisfying (2.7), (2.8) (with the obvious modifications which appear in (2.9), (2.10)).
Assume, furthermore, that np > 1. Then, by [18, 23] and [5, Lemmata 5.6], there

exist a time-scale θ
(p)
n � θ

(p−1)
n and a Sp-valued Markov chain X(p)

t such that the

finite-dimensional distributions of Φp(X
(n)

tθ
(p)
n

) converge to those of X(p)
1 :

Φp
(
X

(n)

tθ
(p)
n

) f.d.d.
−−−→ X(p)

t . (2.9)

In this formula, Φp : V → Sp represents the projection defined by

Φp( · ) =
∑
j∈Sp

j χ
V

(p)
j

( · ) .

Denote by R
(p)
1 , . . . ,R

(p)
np+1 the recurrent classes of the Sp-valued Markov chain

X(p)
t , and by Tp the transient states. Let R(p) = ∪jR(p)

j , and observe that {R(p)
1 , . . . ,

R
(p)
np+1 ,Tp} forms a partition of the set Sp. This partition of Sp induces a new
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partition of V . Let

V(p+1)
m :=

⋃
j∈R(p)

m

V
(p)
j , T(p) :=

⋃
j∈Tp

V
(p)
j , m ∈ Sp+1 := {1, . . . , np+1} ,

(2.10)
so that V = ∆p+1 ∪ V(p+1), where

V(p+1) =
⋃

m∈Sp+1

V(p+1)
m , ∆p+1 := ∆p ∪ T(p+1) .

As above, it is shown in [23] that the Markov chain X(p)
t is non-degenerate so

that np+1 < np. The induction can proceed if np+1 > 1, otherwise it ends. Denote
by q the first integer r such that nr+1 = 1, (equivalently, the first r such that

the Markov chain X(r)
t has only one recurrent class). At this point the iteration

stops and the partition of V produced is {V(q+1)
1 ,∆q+1} which may have one or

two elements, depending on whether ∆q+1 is empty or not.
To recover the tree presented in the previous subsection, add a final partition

equal to V which will identified to the root of the tree, and for 1 ≤ p ≤ q + 1,
k ∈ Sq+2−p = {1, . . . , nq+2−p}, set

mp := nq+2−p , W
(p)
k := V

(q+2−p)
k , Ωp = ∆q+2−p .

It is easy to check that conditions (1.a)–(1.d) are fulfilled.

A set of measures. We construct in this subsection a set of probability measures

π
(p)
j , 1 ≤ p ≤ q + 1, j ∈ Sp, on V which describe the evolution of the chain X

(n)
t

and such that

the support of π
(p)
j is the set V

(p)
j . (2.11)

We proceed by induction. Let π
(1)
j , j ∈ S1, be the probability measure on V

(1)
j

given by π
(1)
j = π]j , where, recall, π]j represents the stationary states of the Markov

chain Xt restricted to the closed irreducible class V
(1)
j = Vj . Clearly, condition

(2.11) is fulfilled.

Fix 1 ≤ p ≤ q, and assume that the probability measures π
(p)
j , j ∈ Sp, has been

defined and satisfy condition (2.11). Denote by M
(p)
m (·), m ∈ Sp+1, the stationary

state of the Markov chain X(p)
t restricted to the closed irreducible class R

(p)
m . The

measure M
(p)
m is understood as a measure on Sp = {1, . . . , np} which vanishes on

the complement of R
(p)
m . Let π

(p+1)
m be the probability measure on V

(p+1)
m given by

π(p+1)
m (x) :=

∑
j∈R(p)

m

M (p)
m (j)π

(p)
j (x) , x ∈ V . (2.12)

Clearly, condition (2.11) holds, and the measure π
(p+1)
m , 1 ≤ p ≤ q, m ∈ Sp+1,

is a convex combination of the measures π
(p)
j , j ∈ R

(p)
m . Moreover, by [5, Theorem

3.1 and Proposition 3.2], for all z ∈ V
(p)
j ,

lim
n→∞

πn(z)

πn(V
(p)
j )

= π
(p)
j (z) ∈ (0, 1] , lim

n→∞
πn(∆q+1) = 0 . (2.13)
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By (2.12), the measures π
(p)
j , 2 ≤ p ≤ q + 1, j ∈ Sp, are convex combinations

of the measures π
(1)
k , k ∈ S1. By (2.13), for all x ∈ V(q+1), limn→∞ πn(x) exists

and belongs to (0, 1]. By (2.13), and since by (1.c) ∆p ⊂ ∆p+1 for 1 ≤ p ≤ q,
limn→∞ πn(∆p) = 0 for all p.

A complete description of the chain X
(n)
t . The statement of next result re-

quires some notation. Denote by HA, H+
A , A ⊂ V , the hitting and return time of

A:

HA := inf
{
t > 0 : X

(n)
t ∈ A

}
, H+

A := inf
{
t > τ1 : X

(n)
t ∈ A

}
, (2.14)

where τ1 represents the time of the first jump of the chain X
(n)
t : τ1 = inf{t > 0 :

X
(n)
t 6= X

(n)
0 }.

For 1 ≤ p ≤ q + 1, k ∈ Sp, let

V̆
(p)
k :=

⋃
j∈Sp\{k}

V
(p)
j .

Define a(p−1) : V × Sp → [0, 1] as follows. Fix j ∈ Sp. If x 6∈ V(p), set

a(p−1)(x, j) := lim
n→∞

Pn
x

[
H

V
(p)
j

< H
V̆

(p)
j

]
,

while, if x ∈ V
(p)
k for k ∈ Sp, set a(p−1)(x, j) = δj,k. For p = q + 1, as Sq+1 is a

singleton, a(q)(x, 1) = 1 for all x ∈ V .

Denote by p
(n)
t (x, y) the transition probability of the Markov chain X

(n)
t :

p
(n)
t (x, y) := Pn

x

[
Xt = y

]
, x , y ∈ V , t > 0 .

Next result is [5, Theorem 3.1 and Proposition 3.2].

Theorem 2.2. Under the hypotheses (2.5) and (2.6), for each 1 ≤ p ≤ q, t > 0,
x ∈ V ,

lim
n→∞

p
(n)

tθ
(p)
n

(x, · ) =
∑
j∈Sp

ω
(p)
t (x, j)π

(p)
j ( · ) , (2.15)

where
ω

(p)
t (x, j) =

∑
k∈Sp

a(p−1)(x, k) p
(p)
t (k, j) ,

and p
(p)
t (k, j) is the transition matrix of the Markov chain X(p)

t . Moreover,

(3.a) Let θ
(0)
n = 1, θ

(q+1)
n = +∞ for all n ≥ 1. For each 1 ≤ p ≤ q + 1, sequence

(βn : n ≥ 1) such that θ
(p−1)
n ≺ βn ≺ θ

(p)
n , and x ∈ V ,

lim
n→∞

p
(n)
βn

(x, · ) = =
∑
j∈Sp

a(p−1)(x, j)π
(p)
j ( · ) .

(3.b) For all 1 ≤ p ≤ q, 1 ≤ j ≤ np, x ∈ V ,

lim
t→∞

lim
n→∞

p
(n)

tθ
(p)
n

(x, · ) =
∑

m∈Sp+1

a(p)(x,m)π(p+1)
m ( · ) .

Equation (2.15) and properties (3.a), (3.b) describe the behavior of the Markov

chain X
(n)
t in all time-scales. By (2.15), for instance, starting from x, as n → ∞,

the distribution of X
(n)

tθ
(p)
n

is a convex combination of the measures π
(p)
j . The weights

ω
(p)
t (x, j) have a simple interpretation: ω

(p)
t (x, j) is equal to the probability that
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starting from x the chain reaches the set V(p) at V
(p)
k times the probability that the

Markov chain X(p)
t starting from k is at j at time t.

Clearly, by (2.15), for all 1 ≤ p ≤ q, j ∈ Sp, x ∈ V ,

lim
t→0

lim
n→∞

p
(n)

tθ
(p)
n

(x, · ) =
∑
j∈Sp

a(p−1)(x, j)π
(p)
j ( · ) .

The Γ-expansion of the rate functional In. We are now in a position to state
the main result of this article. Denote by P(Sp), 1 ≤ p ≤ q, the set of probability

measures on Sp and by L(p) the generator of the Sp-valued Markov chain X(p)
t . Let

I(p) : P(Sp)→ [0,+∞) be the level two large deviations rate functional of X(p)
t given

by

I(p)(ω) := sup
h
−
∑
j∈Sp

ωj e
−h(j) (L(p)eh)(j) , (2.16)

where the supremum is carried over all functions h : Sp → R. Denote by I(p) : P(V )→
[0,+∞] the functional given by

I(p)(µ) :=


I(p)(ω) if µ =

∑
j∈Sp

ωj π
(p)
j for ω ∈ P(Sp) ,

+∞ otherwise .

(2.17)

The main result of the article reads as follows.

Theorem 2.3. For each 1 ≤ p ≤ q, the functional θ
(p)
n In Γ-converges to I(p).

This theorem provides an expansion of the large deviations rate function In
which can be written as

In = I(0) +

q∑
p=1

1

θ
(p)
n

I(p) . (2.18)

Therefore, the rate function In encodes all the characteristics of the metastable

behavior of the chain X
(n)
t . The time-scales θ

(p)
n appear as the weights of the

expansion, and, by (2.17), the meta-stable states π
(p)
j , j ∈ Sp, generate the space

where the rate functional I(p)(µ) is finite.
Next result is a simple consequence of the level two large deviations principle

(2.1) and the Γ-convergence stated in the previous theorem and in Proposition 2.1.
(cf. Corollary 4.3 in [26]).

Corollary 2.4. Fix 0 ≤ p ≤ q and recall that θ
(0)
n = 1. For every closed subset F

and open subset G of P(V ),

lim sup
n→∞

lim sup
t→∞

θ
(p)
n

t
sup
x∈V

log Pn
x

[ 1

t

∫ t

0

δXns ds ∈ F
]
≤ − inf

µ∈F
I(p)(µ) ,

lim inf
n→∞

lim inf
t→∞

θ
(p)
n

t
inf
x∈V

log Pn
x

[ 1

t

∫ t

0

δXns ds ∈ G
]
≥ − inf

µ∈G
I(p)(µ) .
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Organisation of the paper. The article is organised as follows. In Section 3, we
obtain some estimates on the jump rates. This is a technical section which can be
skipped in a first reading. In Section 4, we prove the Γ− lim sup for the sequence
of large deviations rate functionals associated to the trace process. Proposition 2.1
and Theorem 2.3 are proved in Section 5.

In the appendices we present general results on finite state Markov chains needed
in the proof of Theorem 2.3 and which do not require assumption (2.6). In Appendix
A we derive some properties of level two large deviations rate functionals. This leads
us to introduce reflected and tilted dynamics. In Appendix B we investigate the
convergence of these functionals, and in Appendix C the relation between the trace
process and the rate functionals. Throughout the article we assume the reader to
be familiar with the results presented in the appendices.

3. The jump rates

In this section, we state some estimates of the jump rates of the trace process
on the sets V(p) needed in the next sections. We assume that the reader is familiar
with the notation and results presented in the appendix.

Fix 1 ≤ p ≤ q, and denote by {Y n,pt : t ≥ 0} the trace of {X(n)
t : t ≥ 0} on V(p),

and by R
(p)
n : V(p) × V(p) → R+ its jump rates. By equation (2.5) in [17],

R(p)
n (x, y) = λn(x) Pn

x

[
Hy = H+

V(p)

]
, x , y ∈ V(p) , x 6= y . (3.1)

Let r
(p)
n (i, j), j 6= i ∈ Sp, be the mean rate at which the trace process Y n,pt jumps

from V
(p)
i to V

(p)
j :

r(p)
n (i, j) :=

1

πn(V
(p)
i )

∑
x∈V(p)

i

πn(x)
∑
y∈V(p)

j

R(p)
n (x, y) . (3.2)

By [23, Theorem 2.7 and 2.12], the sequences θ
(p)
n r

(p)
n (i, j) converge for all i 6= j ∈

Sp. Denote the limits by r(p)(i, j):

r(p)(i, j) := lim
n→∞

θ(p)
n r(p)

n (i, j) ∈ R+ . (3.3)

Recall from (A.10) the definition of the reflection of a Markov process on a subset
of its state space.

Lemma 3.1. For all n ≥ 1, 1 ≤ p ≤ q, j ∈ Sp, the trace process Y n,pt reflected at

V
(p)
j is irreducible,

Proof. Fix 1 ≤ p ≤ q, j ∈ Sp, x, y ∈ V
(p)
j . We have to prove that there exists a path

(x = x0, x1, . . . , x` = y) such that xi ∈ V
(p)
j , R

(p)
n (xi, xi+1) > 0 for all 0 ≤ i < `,

n ≥ 1.
By Propositions 6.1 and 6.3 in [2], the trace process Y n,pt is an irreducible, V(p)-

valued continuous-time Markov chain. Fix j ∈ Sp and denote by Y n,p,jt the process

Y n,pt reflected at V
(p)
j .

The proof is by induction on p. Fix p = 1 and consider the reflected process Y n,1,jt

for j ∈ S1. By definition of V(1), the set V
(1)
j is a closed irreducible class for the

chain Xt. Therefore, for all x 6= y ∈ V
(1)
j , there exists a path (x = x0, x1, . . . , x` = y)

such that xi ∈ V
(1)
j , R0(xi, xi+1) > 0, 0 ≤ i < `. By assumptions (1.5), (2.5), for
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all n ≥ 1, Rn(xi, xi+1) > 0 as well, and by (C.3), R
(1)
n (xi, xi+1) > 0, completing

the proof for p = 1.
Fix p > 1, and assume that the assertion of the lemma holds for 1 ≤ q < p.

Consider the reflected process Y n,p,mt for m ∈ Sp, and fix y 6= x ∈ V
(p)
m . By

definition of V
(p)
m , there exists a subset Sp,m ⊂ Sp−1 such that V

(p)
m = ∪j∈Sp,mV

(p−1)
j .

There are two cases. Assume first that x and y belong to the same set V
(p−1)
j .

By the induction assumption, there exists a path (x = x0, x1, . . . , x` = y) such

that xi ∈ V
(p−1)
j , R

(p−1)
n (xi, xi+1) > 0 for all 0 ≤ i < ` and n ≥ 1. By (C.3),

R
(p)
n (xi, xi+1) ≥ R

(p−1)
n (xi, xi+1), so that R

(p)
n (xi, xi+1) > 0 for all 0 ≤ i < ` and

n ≥ 1.

Assume now that x ∈ V
(p−1)
j and y ∈ V

(p−1)
k for k 6= j ∈ Sp,m. By construc-

tion of V
(p)
m , there exists a sequence (j = j0, j1, . . . , jr = k) such that ja ∈ Sp,m,

r(p−1)(ja, ja+1) > 0, 0 ≤ a < r. To keep the proof simple assume that r(p−1)(j, k) >
0. The reader will see that the proof in the general case is similar.

Since r(p−1)(j, k) > 0, by (3.3), (3.2) and (2.13), there exists x′ ∈ V
(p−1)
j , y′ ∈

V
(p−1)
k such that R

(p−1)
n (x′, y′) > 0 for n sufficiently large. By (2.5) and (C.2),

R
(p−1)
n (x′, y′) > 0 for all n ≥ 1. Hence, by (C.3), R

(p)
n (x′, y′) > 0 for all n ≥ 1. We

may now repeat the argument presented in the previous paragraph to construct a

path in the set V
(p−1)
j from x to x′, and a second one in the set V

(p−1)
k from y′ to

y. Chaining the paths yields a path (x = z0, z1, . . . , z` = y) such that zi ∈ V
(p)
m ,

R
(p)
n (zi, zi+1) > 0 for all 0 ≤ i < ` and n ≥ 1. This completes the proof of the

lemma. �

Lemma 3.2. Fix 1 ≤ p ≤ q. Then, for all x, y ∈ V(p),

lim
n→∞

R(p)
n (x, y) = R0(x, y) .

Proof. Fix 1 ≤ p ≤ q and x, y ∈ V(p). By (3.1), decomposing the probability
appearing on the right-hand side of this equation according to the first jump yields
that

R(p)
n (x, y) = Rn(x, y) +

∑
z 6=y

Rn(x, z) Pn
z

[
Hy = HV(p)

]
.

The first term converges to R0(x, y). As x ∈ V(p) and (by the tree construction)
V(p) is the union of some sets Vk, k ∈ S1, x ∈ Vj for some j ∈ S1. The probability

on the second term vanishes if z ∈ V(p). We may therefore restrict the sum to
z 6∈ V(p), or to Vcj (because Vj ⊂ V(p)). However, by definition of Vj , Rn(x, z)→ 0
for all z 6∈ Vj . Thus, the second term of the previous displayed formula vanishes,
which completes the proof of the lemma. �

Lemma 3.3. Fix 1 ≤ p ≤ q. Then,

lim sup
n→∞

θ(p)
n R(p)

n (x, y) < ∞

for all k 6= j ∈ Sp, x ∈ V
(p)
j , y ∈ V

(p)
k .
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Proof. As y ∈ V
(p)
k , R

(p)
n (x, y) ≤ R

(p)
n (x,V

(p)
k ). By (2.13), there exists a finite

constant C0 such that

θ(p)
n R(p)

n (x, y) ≤ C0 θ
(p)
n

∑
z∈V(p)

j

πn(z)

πn(V
(p)
j )

R(p)
n (z,V

(p)
k ) .

It remains to recall (3.3) to complete the proof. �

Lemma 3.4. For all 1 ≤ p ≤ q, k 6= j ∈ S1 such that V
(1)
j ∪ V

(1)
k ⊂ V(p), x ∈ V

(1)
j ,

the sequence θ
(1)
n R

(p)
n (x,V

(1)
k ) is bounded.

Proof. The proof is by induction on p. For p = 1, the assertion of the lemma follows
from (3.3), (3.2) and (2.13).

Fix p > 1, and assume that the assertion of the lemma holds for 1 ≤ q < p. Fix

k 6= j ∈ S1 such that V
(1)
j ∪ V

(1)
k ⊂ V(p), x ∈ V

(1)
j . By (3.1),

R(p)
n (x,V

(1)
k ) = λn(x) Pn

x

[
H

V
(1)
k

= H+
V(p)

]
.

Recall that V(p) ⊂ V(p−1). Assume that H+
V(p) = H+

V(p−1) . Later we consider the

case H+
V(p) > H+

V(p−1) . In the first case, we need to estimate

λn(x) Pn
x

[
H

V
(1)
k

= H+
V(p) , H

+
V(p) = H+

V(p−1)

]
≤ λn(x) Pn

x

[
H

V
(1)
k

= H+
V(p−1)

]
= R(p−1)

n (x,V
(1)
k ) .

By the induction hypothesis this later quantity multiplied by θ
(1)
n is bounded.

It remains to estimate the expression

λn(x) Pn
x

[
H+

V(p−1) < H+
V(p)

]
.

By construction, there exists S′p−1 ⊂ Sp−1 such that V(p−1) \V(p) = ∪`∈S′p−1
V

(p−1)
` .

Mind that S′p−1 consists of the transient points of the Sp−1-valued Markov chain

X(p−1)
t . Since x ∈ V(p) ⊂ V(p−1), let m ∈ Sp−1 \ S′p−1 such that x ∈ V

(p−1)
m . With

this notation, the previous term is bounded by∑
`∈S′p−1

λn(x) Pn
x

[
H

V
(p−1)
`

= H+
V(p−1)

]
=

∑
`∈S′p−1

R(p−1)
n (x,V

(p−1)
` ) .

By(3.3), (3.2) and (2.13), the limit as n→∞ of the previous expression multiplied

by θ
(p−1)
n is bounded by ∑

`∈S′p−1

r(p−1)(m, `) .

This sum vanishes because m is a recurrent point of the chains X(p−1)
t and S′p−1 is

a transient subset. To complete the proof of the lemma, it remains to recall that

θ
(1)
n ≤ θ(p−1)

n . �

Lemma 3.5. Fix 1 ≤ p < q ≤ q. Then, r(p)(i, k) = 0 for all k 6= i ∈ Sp such that

V
(p)
k 6⊂ V(q), V

(p)
i ⊂ V(q).

Proof. As V
(p)
k ⊂ V(p) and V

(p)
k 6⊂ V(q), by the tree construction there exists p ≤

p′ < q such that V
(p)
k ⊂ V(p′) and V

(p)
k 6⊂ V(p′+1). Since V

(p)
k ⊂ V(p′), there exists
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` ∈ Sp′ such that V
(p)
k ⊂ V

(p′)
` . As V

(p)
k 6⊂ V(p′+1), ` is a transient state for the

Markov chain X(p′)
t .

On the other hand, as V
(p)
i ⊂ V(q) and V(q) ⊂ V(p′), V

(p)
i ⊂ V(p′). Thus, there

exists m ∈ Sp′ such that V
(p)
i ⊂ V

(p′)
m . As V

(p)
i ⊂ V(q) ⊂ V(p′+1), m is a recurrent

state for the Markov chain X(p′)
t . In particular, m 6= `.

As m is recurrent and ` transient for the Markov chain X(p′)
t , r(p′)(m, `) = 0.

Thus, by (3.3) and (3.2),

0 = lim
n→∞

θ(p′)
n r(p′)

n (m, `) = lim
n→∞

θ(p′)
n

1

πn(V
(p′)
m )

∑
x∈V(p′)

m

πn(x)R(p′)
n (x,V

(p′)
` ) .

By (3.1), for n fixed the expression on right-hand side is equal to

θ(p′)
n

1

πn(V
(p′)
m )

∑
x∈V(p′)

m

πn(x)λn(x) Pn
x

[
H

V
(p′)
`

= H+
V(p′)

]
. (3.4)

Since V
(p)
k ⊂ V

(p′)
` and V(p) ⊃ V(p′),

Pn
x

[
H

V
(p)
k

= H+
V(p)

]
≤ Pn

x

[
H

V
(p′)
`

= H+
V(p′)

]
.

Hence, as θ
(p′)
n ≥ θ(p)

n and V
(p′)
m ⊃ V

(p)
i , by (2.13), (3.4) is bounded below by

c0 θ
(p)
n

∑
x∈V(p)

i

λn(x) Pn
x

[
H

V
(p)
k

= H+
V(p)

]
for some positive constant c0. This expression is clearly bounded below by

c0 θ
(p)
n

1

πn(V
(p)
i )

∑
x∈V(p)

i

πn(x)λn(x) Pn
x

[
H

V
(p)
k

= H+
V(p)

]
= c0 r

(p)
n (i, k) .

Collecting the previous estimates yields that this expression vanishes as n→∞, as
claimed. �

For 1 ≤ p < q ≤ q and i 6= j ∈ Sp. Assume that V
(p)
i and V

(p)
j are contained in

V(q): V
(p)
i ∪ V

(p)
j ⊂ V(q). Let

rp,qn (i, j) :=
1

πn(V
(p)
i )

∑
x∈V(p)

i

πn(x)
∑
y∈V(p)

j

R(q)
n (x, y) .

The difference with respect to rpn(i, j) is that we replaced R
(p)
n (x, y) by R

(q)
n (x, y),

that is, the trace on V(p) by the one on the smaller set V(q).

Corollary 3.6. Fix 1 ≤ p < q ≤ q, i 6= j ∈ Sp. Assume that there exists m ∈ Sq
such that V

(p)
i ∪ V

(p)
j ⊂ V

(q)
m . Then,

lim
n→∞

θ(p)
n rp,qn (i, j) = r(p)(i, j) .

Proof. By (3.3), (3.2) and (3.1),

rp(i, j) = lim
n→∞

θ
(p)
n

πn(V
(p)
i )

∑
x∈V(p)

i

πn(x)λn(x) Pn
x

[
H

V
(p)
j

= H+
V(p)

]
. (3.5)
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Let Sp,q := {k ∈ Sp : V
(p)
k ⊂ V(q)}, V(p,q) := ∪k∈Sp,qV

(p)
k , U(p,q) := V(p) \ V(q).

By Lemma 3.5,

lim
n→∞

θ
(p)
n

πn(V
(p)
i )

∑
x∈V(p)

i

πn(x)λn(x) Pn
x

[
HU(p,q) = H+

V(p)

]
= 0 . (3.6)

Since V(p) = V(p,q) ∪ U(p,q), V(p,q) ∩ U(p,q) = ∅, the sets {HU(p,q) = H+
V(p)} and

{H+
V(q) = H+

V(p)} form a partition of the space. Decomposing the event appearing
in (3.5) according to this partition, by (3.6),

rp(i, j) = lim
n→∞

θ
(p)
n

πn(V
(p)
i )

∑
x∈V(p)

i

πn(x)λn(x) Pn
x

[
H

V
(p)
j

= H+
V(q) , H

+
V(q) = H+

V(p)

]
.

By (3.6) once more,

rp(i, j) = lim
n→∞

θ
(p)
n

πn(V
(p)
i )

∑
x∈V(p)

i

πn(x)λn(x) Pn
x

[
H

V
(p)
j

= H+
V(q)

]
.

By definition, the right-hand side is limn→∞ θ
(p)
n rp,qn (i, j), which completes the

proof of the lemma. �

Lemma 3.7. Fix 1 ≤ p < q ≤ q. Then,

r(p)(i, k) = 0

for all k 6= i ∈ Sp such that V
(p)
i ⊂ V

(q)
a , V

(p)
k ⊂ V

(q)
b for some a 6= b ∈ Sq.

Proof. Fix 1 ≤ p < q ≤ q, and k 6= i ∈ Sp such that V
(p)
i ⊂ V

(q)
a , V

(p)
k ⊂ V

(q)
b for

some a 6= b ∈ Sq. Both states i and k are recurrent for the chain X(p)
t because if

one of them was transient it would not belong to V(p+1) ⊃ V(q).
Suppose by contradiction that r(p)(i, k) > 0. Hence, since both states are recur-

rent, they belong to the same irreducible class. In particular, there exists m ∈ Sp+1

such that V
(p)
i ∪ V

(p)
k ⊂ V

(p+1)
m , so that V

(p)
i ∪ V

(p)
k ⊂ V

(q)
c for some c ∈ Sq, in

contradictions with the hypotheses. �

4. Γ− lim sup of the trace

The main result of this section, Proposition 4.1, states that I(p) is a Γ− lim sup

for the sequence θ
(p)
n I

(p)
n . Here, I

(p)
n stands for the large deviations rate functionals

of the trace processes Y n,pt . We assume below that the reader is familiar with the
notation and results presented in the appendix.

Fix 1 ≤ p ≤ q. Denote by I
(p)
n : P(V(p)) → [0,+∞) the occupation time large

deviations rate functional of the trace process Y n,pt :

I(p)
n (µ) := sup

H
−

∑
x∈V(p)

µ(x) e−H(x) [ (TV(p)Ln) eH) ](x) , (4.1)

where the supremum is carried over all functions H : V(p) → R and TV(p)Ln, in-
troduced and examined in Appendix C, is the generator of the trace process Y n,pt .
The main result of this section reads as follows.
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Proposition 4.1. For all µ ∈ P(V(p)), there exists a sequence of measures µn ∈
P(V(p)) such that µn → µ and

lim sup
n→∞

θ(p)
n I(p)

n (µn) ≤ I(p)(µ) .

The proof of Proposition 4.1 is divided in several lemmata. Fix 1 ≤ p ≤ q

and a measure µ ∈ P(V(p)) which can be represented as µ =
∑
j∈Sp ωj π

(p)
j for

some ω ∈ P(Sp) such that ωj > 0 for all j ∈ Sp. We first construct a sequence

µn ∈ P(V(p)) which converges to µ.

Denote by Q
(p)
a , 1 ≤ a ≤ `p, the equivalent classes of the Markov chain X(p)

t , by

D
(p)
a , 1 ≤ a ≤ mp, the ones which are not singletons, and by Ssgl

p the set of states
j ∈ Sp such that {j} is an equivalent class. Clearly,

Sp =

`p⋃
a=1

Q(p)
a = Ssgl

p ∪
mp⋃
a=1

D(p)
a . (4.2)

Recall from Appendix A the definition of a Markov chain reflected at a set and

the notation used to represent its generator. Denote by L(p)
a , 1 ≤ a ≤ mp, the

generator L(p) reflected at D
(p)
a : L(p)

a := R
D

(p)
a

L(p). As ωj > 0 for all j ∈ D
(p)
a , by

Lemma A.3, there exists ha : D
(p)
a → R which solves the optimal problem (A.3) for

IL(p)
a

(ω).

Let W
(p)
a := ∪

j∈D(p)
a

V
(p)
j , 1 ≤ ` ≤ mp. The generator of the trace process Y n,pt

reflected at the set W
(p)
a is denoted by R

W
(p)
a

TV(p) Ln.

Lemma 4.2. The Markov chain associated to the generator R
W

(p)
a

TV(p) Ln is ir-

reducible.

Proof. Recall from [2, Proposition 6.1] that the Markov chain induced by the trace

generator TV(p) Ln is irreducible. Since D
(p)
a is an equivalent class for the Markov

chain X(p)
t , the argument presented in the proof of Lemma 3.1 yields that the

Markov chain induced by the reflected generator R
W

(p)
a

TV(p) Ln is also irreducible.

�

Denote by Ha : W
(p)
a → R the function given by

Ha =
∑

j∈D(p)
a

ha(j)χ
V

(p)
j
, (4.3)

where, recall, χA stands for the indicator function of the set A. Recall from (A.5)
the definition of a tilted generator MG L, and consider the generator MHa RW

(p)
a

TV(p) Ln.

Since tilting the generator does not affect its irreducibility, it follows from the pre-
vious result that the Markov chain associated to the generator MHa RW

(p)
a

TV(p) Ln

is also irreducible. Denote by µp,an ∈ P(W
(p)
a ) its stationary state.

Lemma 4.3. The sequence of probability measures µp,an converges to
∑
j∈D(p)

a
ω

(a)
j π

(p)
j ,

where ω
(a)
j = ωj/Ωa, Ωa =

∑
j∈D(p)

a
ωj.

Proof. Since P(W
(p)
a ) is compact for the weak topology, it is enough to prove unique-

ness of limit points. consider a subsequence of µp,an , still denoted by µp,an , which

converges to a limit denoted by ν ∈ P(W
(p)
a ).
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Step 1: ν on the sets V
(1)
i . The set W

(p)
a is the union of sets V

(p)
i , which in turn

are formed by sets V
(1)
j . Hence, W

(p)
a = ∪i∈Sa1V

(1)
i for some subset Sa1 of S1.

Fix x ∈ W
(p)
a and assume that x ∈ V

(1)
k for some k ∈ Sa1 . Since µp,an is the

stationary state for the chain induced by the generator MHa RW
(p)
a

TV(p) Ln,∑
y∈W(p)

a

µp,an (y)R(p)
n (y, x) eHa(x)−Ha(y) =

∑
y∈W(p)

a

µp,an (x)R(p)
n (x, y) eHa(y)−Ha(x) .

Since µp,an → ν, taking n→∞ in the previous formula, by Lemma 3.2,∑
y∈W(p)

a

ν(y)R0(y, x) eHa(x)−Ha(y) =
∑

y∈W(p)
a

ν(x)R0(x, y) eHa(y)−Ha(x) .

By definition of the sets V
(1)
i , R0(z, w) = 0 if z ∈ V

(1)
i , w ∈ V

(1)
i′ and i 6= i′. Hence,

as x ∈ V
(1)
k and Ha is contant on each set V

(p)
j , the previous identity becomes∑

y∈V(1)
k

ν(y)R0(y, x) =
∑
y∈V(1)

k

ν(x)R0(x, y) .

Therefore, the measure ν restricted to V
(1)
k is a stationary measure for the Markov

chain Xt restricted to V
(1)
k . Since this process is irreducible on V

(1)
k , by the definition

of π
(1)
k given right after (2.11), ν( · ) = ν(V

(1)
k )π

(1)
k ( · ). Hence, ν is a convex

combination of the stationary states π
(1)
` :

ν =
∑
k∈Sa1

ϑ1(k)π
(1)
k (4.4)

for some probability measure ϑ1 on Sa1 .

Step 2: An equation for ϑ1. Fix 1 ≤ r ≤ p, and let Sar := {i ∈ Sr : V
(r)
i ⊂W

(p)
a }

so that W
(p)
a = ∪i∈SarV

(r)
i . Fix g : Sar → R and let G : W

(p)
a → R be given by

G =
∑
j∈Sar

g(j)χ
V

(r)
j

. As µp,an is a stationary state,∑
x∈W(p)

a

µp,an (x)
∑

y∈W(p)
a

R(p)
n (x, y) eHa(y)−Ha(x)

[
G(y) − G(x)

]
= 0 .

Since Ha is constant on the sets V
(p)
` , it is also constant on the sets V

(r)
j , which are

subsets of the former sets. By definition of G and Ha, this identity can be written
as ∑
j∈Sar

∑
k∈Sar \{j}

efa(k)−fa(j)
[
g(k) − g(j)

] ∑
x∈V(r)

j

µp,an (x)R(p)
n (x,V

(r)
k ) = 0 . (4.5)

Here fa : Sar → R is the function defined by fa(j) = ha(m) for all j ∈ Sa,mr , where

Sa,mr := {i ∈ Sr : V
(r)
i ⊂ V

(p)
m }, m ∈ Sap .

If p = 1, jump to Step 5. Assume below that p > 1 and set r = 1. We claim
that for each j 6= k ∈ Sa1 ,

lim
n→∞

θ(1)
n

∑
x∈V(1)

j

µp,an (x)R(p)
n (x,V

(1)
k ) = ϑ1(j) r(1)(j, k) , (4.6)

where ϑ1 ∈ P(Sa1 ) is the probability measure obtained in the first step.
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To prove (4.6), rewrite the expression on the left-hand side as

θ(1)
n

∑
x∈V(1)

j

πn(V
(1)
j )

πn(x)
µp,an (x)

πn(x)

πn(V
(1)
j )

R(p)
n (x,V

(1)
k ) .

By the first part of the proof, µp,an (x)→ ϑ1(j)π
(1)
j (x). By (2.13), πn(V

(1)
j )/πn(x)→

1/π
(1)
j (x). By Lemma 3.4, the sequence θ

(1)
n R

(p)
n (x,V

(1)
k ) is bounded. Therefore,

by Corollary 3.6, (4.6) holds.
By (4.5) and (4.6),∑

j∈Sa1

∑
k∈Sa1 \{j}

ϑ1(j) r(1)(j, k) efa(k)−fa(j)
[
g(k) − g(j)

]
= 0

for all functions g : Sa1 → R.

By Lemma 3.7, r(1)(j, k) = 0 for all j ∈ Sa,m1 , k ∈ Sa,`1 and m 6= `. We may
therefore rewrite the previous identity as∑

m∈Sap

∑
j∈Sa,m1

∑
k∈Sa,m1 \{j}

ϑ1(j) r(1)(j, k) efa(k)−fa(j)
[
g(k) − g(j)

]
= 0 .

As the function fa is constant on each Sa,m1 , we may remove the exponential from
the previous equation and rewrite the identity as∑

j∈Sa1

∑
k∈Sa1 \{j}

ϑ1(j) r(1)(j, k)
[
g(k) − g(j)

]
= 0

for all functions g : Sa1 → R. Hence, ϑ1(·) is a stationary state for the chain X(1)
t

reflected at Sa1 .

Step 3: from ϑ1 to ϑ2 Recall that if p = 1, the proof continues at Step 5. By

its definition, given a few lines above equation (2.12), M
(1)
m , m ∈ S2, represents the

stationary state of the chain X(1)
t reflected at S2,m

1 = {j ∈ S1 : V
(1)
j ⊂ V

(2)
m }. Since

ϑ1 is a stationary state of the chain X(1)
t whose support is contained in Sa1 , ϑ1 is a

convex combination of the measures M
(1)
m , m ∈ Sa2 :

ϑ1( · ) =
∑
m∈Sa2

ϑ2(m)M (1)
m ( · )

for a probability measure ϑ2 ∈ P(Sa2 ). Thus,

ν( · ) =
∑
k∈Sa1

ϑ1(k)π
(1)
k ( · ) =

∑
k∈Sa1

∑
m∈Sa2

ϑ2(m)M (1)
m (k)π

(1)
k ( · ) .

Changing the order of summation, and recalling the definition of the measures π
(2)
m

yields that

ν( · ) =
∑
m∈Sa2

ϑ2(m)
∑

k∈S2,m
1

M (1)
m (k)π

(1)
k ( · ) =

∑
m∈Sa2

ϑ2(m)π(2)
m ( · ) . (4.7)

Step 2 and 3 permitted to pass from (4.4) to (4.7). That is, at the end of Step

1 we obtained that ν is a convex combination of the measures π
(1)
j . We now have

shown that it is, actually, a convex combination of the measures π
(2)
j . Next step

consist in iterating this argument to obtain that ν is, actually, a convex combination

of the measures π
(p)
j .
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Step 4: An iteration. If p = 2 the proof continues at Step 5. Assume here that
p > 2, and suppose that we proved that

ν( · ) =
∑
j∈Sas

ϑs(j)π
(s)
j ( · )

for some 2 ≤ s < p and some probability measure ϑs ∈ P(Sas ).
Resume the proof of Step 2 at equation (4.5) with r = s. Recall the argument

presented to derive (4.6). Fix j 6= k ∈ Sas . Inserting πn(V
(s)
j )/πn(x) instead of

πn(V
(1)
j )/πn(x) yields that

lim
n→∞

θ(s)
n

∑
x∈V(s)

j

µp,an (x)R(p)
n (x,V

(s)
k ) = ϑs(j) r

(s)(j, k) . (4.8)

By Lemma 3.7, r(s)(j, k) = 0 if j ∈ Sa,`s , k ∈ Sa,ms and ` 6= m. Hence, applying the
arguments presented in Step 3, one gets that

ν( · ) =
∑

j∈Sas+1

ϑs+1(j)π
(s+1)
j ( · )

for some some probability measure ϑs+1 ∈ P(Sas+1).
Iterating this procedure yields that

ν( · ) =
∑
j∈Sap

ϑp(j)π
(p)
j ( · ) (4.9)

for some some probability measure ϑp ∈ P(Sap ).

Step 5: Conclusion. Applying again the arguments presented in Step 2 yields
that ∑

j∈Sap

∑
k∈Sap\{j}

ϑp(j) r
(p)(j, k) eha(k)−ha(j)

[
g(k) − g(j)

]
= 0

for all function g : Sap → R. In particular, ϑp is a stationary state for the Sap -valued

Markov chain which jumps from j to k at rate r
(p)
ha

(j, k) := r(p)(j, k) exp{ha(k) −
ha(j)}. Since the chain X(p)

t is irreducible on Sap , so is the one with jump rates

r
(p)
ha

(j, k). Hence, ϑp is the unique stationary state. Since ω is also stationary,

ϑp( · ) = Ω−1
a ω( · ).

This proves the uniqueness of limit points of the sequence µp,an and completes
the proof of the lemma. �

Fix j ∈ Ssgl
p . By Lemma 3.1, the Markov chain induced by the generator

R
V

(p)
j

TV(p)Ln is irreducible. Denote by νp,jn ∈ P(V
(p)
j ) its stationary state.

Lemma 4.4. For each j ∈ Ssgl
p , the sequence of probability measures νp,jn converges

to π
(p)
j .

Proof. The proof is similar (and simpler) than the one of Lemma 4.3. It amounts

to take H = 0 and W
(p)
a = V

(p)
j . �
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Consider the measures µp,an , νp,jn , 1 ≤ a ≤ mp, j ∈ Ssgl
p , as probability measures

on V(p), and let µn ∈ P(V(p)) be the measure given by

µn( · ) =

mp∑
a=1

Ωa µ
p,a
n ( · ) +

∑
j∈Ssgl

p

ωj ν
p,j
n ( · ) . (4.10)

Next result follows from (4.2) and Lemmata 4.3 and 4.4.

Corollary 4.5. The sequence of probability measures µn converges to µ.

Fix µ ∈ P(V(p)) which can be represented as µ =
∑
j∈Sp ωj π

(p)
j for some ω ∈

P(Sp) such that ωj > 0 for all j ∈ Sp. Recall the definition of Ωa, ω(a) introduced

in Lemma 4.3. By definition of I(p), Lemma A.7 and (A.14),

I(p)(µ) =

mp∑
a=1

Ωa IL(p)
a

(ω(a)) +

`p∑
a=1

∑
b 6=a

∑
j∈Q(p)

a

∑
k∈Q(p)

b

ωj r
(p)(j, k) . (4.11)

Note that we can restrict the first sum in the second term of the right-hand side to
the transient equivalent classes.

Lemma 4.6. Fix 1 ≤ p ≤ q, and a measure µ ∈ P(V(p)) which can be represented

as µ =
∑
j∈Sp ωj π

(p)
j for some ω ∈ P(Sp) such that ωj > 0 for all j ∈ Sp. Let

(µn : n ≥ 1) be the sequence of probability measures introduced in (4.10). Then,

lim sup
n→∞

θ(p)
n I(p)

n (µn) ≤ I(p)(µ) .

Proof. By convexity,

I(p)
n (µn) ≤

mp∑
a=1

Ωa I
(p)
n (µp,an ) +

∑
j∈Ssgl

p

ωj I
(p)
n (νp,jn ) . (4.12)

We investigate the asymptotic behavior of each term separately.
Fix j ∈ Ssgl

p . By Lemma A.7 and equation (A.14), since the support of the

measure νp,jn is the set V
(p)
j , and, by Lemma 3.1, the trace process Y n,pt reflected

at V
(p)
j is irreducible,

I(p)
n (νp,jn ) = IR

V
(p)
j

T
V(p)Ln(νp,jn ) +

∑
x∈V(p)

j

∑
y∈V(p)\V(p)

j

νp,jn (x)R(p)
n (x, y) .

The first term on the right-hand side vanishes because νp,jn is the stationary state
of the process induced by the generator R

V
(p)
j

TV(p)Ln. By the proof of (4.6), or

(4.8), the second term multiplied by θ
(p)
n converges to

∑
k∈Sp\{j} r

(p)(j, k) so that

lim
n→∞

θ(p)
n

∑
j∈Ssgl

p

ωj I
(p)
n (νp,jn ) =

∑
j∈Ssgl

p

∑
k∈Sp\{j}

ωj r
(p)(j, k) .

The analysis of the asymptotic behavior of the first term on the right-hand side
in (4.12) is similar. Fix 1 ≤ a ≤ mp. Since the support of the measure µp,an is the
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set W
(p)
a , and, by Lemma 4.2, the trace process Y n,pt reflected at W

(p)
a is irreducible,

by Lemma (A.7) and equation (A.14),

I(p)
n (µp,an ) = IR

W
(p)
a

T
V(p)Ln(µp,an ) +

∑
x∈W(p)

a

∑
y∈V(p)\W(p)

a

µp,an (x)R(p)
n (x, y) . (4.13)

Since µp,an is the stationary state of the dynamics induced by the generator MHa

R
W

(p)
a

TV(p)Ln, where Ha is the function introduced in (4.3), by Lemma A.2,

IR
W

(p)
a

T
V(p)Ln(µp,an ) = −

∑
x∈W(p)

a

∑
y∈W(p)

a \{x}

µp,an (x)Rn(x, y)
[
eHa(y)−Ha(x) − 1

]
.

As Ha is constant and equal to ha(j) on each set V
(p)
j , j ∈ D

(p)
a = Sap , the previous

expression is equal to

−
∑
j∈Sap

∑
k∈Sap\{j}

[
eha(k)−ha(j) − 1

] ∑
x∈V(p)

j

∑
y∈V(p)

k

µp,an (x)Rn(x, y) .

Hence, by the proof of (4.6), or (4.8),

lim
n→∞

θ(p)
n IR

W
(p)
a

T
V(p)Ln(µp,an ) = −

∑
j∈Sap

∑
k∈Sap\{j}

[
eha(k)−ha(j) − 1

]
ω

(a)
j r(p)(j, k) .

As ha : Sap → R is the function which solves the optimal problem (A.3) for IL(p)
a

(ω(a)),

the right-hand side is equal to IL(p)
a

(ω(a)) so that

lim
n→∞

θ(p)
n IR

W
(p)
a

T
V(p)Ln(µp,an ) = IL(p)

a
(ω(a)) .

By similar reasons, the second term on the right-hand in (4.13) multiplied by

θ
(p)
n converges to

∑
j∈Sap

∑
k∈Sp\Sap

ω
(a)
j r(p)(j, k) so that

lim
n→∞

θ(p)
n

mp∑
a=1

Ωa I
(p)
n (µp,an ) =

mp∑
a=1

ΩaIL(p)
a

(ω(a)) +

mp∑
a=1

∑
j∈Sap

∑
k∈Sp\Sap

ωj r
(p)(j, k) .

By (4.11), the right-hand side is equal to I(p)(µ), completing the proof of the
lemma. �

Proof of Proposition 4.1. Fix 1 ≤ p ≤ q and µ ∈ P(V(p)). By Lemmata B.4 and
B.5, we may assume that µ(x) > 0 for all x ∈ V(p). If I(p)(µ) =∞, there is nothing

to prove. Assume, therefore, that µ =
∑
j∈Sp ωj π

(p)
j for some ω ∈ P(Sp). Since

µ(x) > 0 for all x ∈ V(p), ωj > 0 for all j ∈ Sp. To complete the proof it remains
to recall the assertions of Corollary 4.5 and Lemma 4.6. �

5. Proofs of Proposition 2.1 and Theorem 2.3

We first present some properties of the functionals I(p).

Lemma 5.1. Fix 1 ≤ p < q. Then,

I(p+1)(µ) < ∞ if and only if I(p)(µ) = 0 .
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Proof. Suppose that I(p)(µ) = 0. Then, by (2.17), µ =
∑
j∈Sp ωj π

(p)
j for some

ω ∈ P(Sp) and I(p)(ω) = 0. By the definition (2.16) of I(p) and Lemma A.8, ω is

a stationary state of the Markov chain X(p)
t , that is, ω is a convex combination of

the measures M
(p)
m , m ∈ Sp+1:

ω(j) =
∑

m∈Sp+1

ϑ(m)M (p)
m (j) , j ∈ Sp ,

for some ϑ ∈ P(Sp+1). Inserting this expression in the formula for µ and changing
the order of summation yields that

µ =
∑

m∈Sp+1

ϑ(m)
∑
j∈Sp

M (p)
m (j)π

(p)
j =

∑
m∈Sp+1

ϑ(m)π(p+1)
m ,

where we used identity (2.12) in the last step. This proves the first assertion of the
lemma because I(p+1)(ϑ) <∞ for all ϑ ∈ P(Sp+1). We turn to the converse.

Suppose that I(p+1)(µ) < ∞. In this case, by (2.17), µ =
∑
m∈Sp+1

ϑ(m)π
(p+1)
m

for some ϑ ∈ P(Sp+1). By (2.12), this identity can be rewritten as

µ( · ) =
∑
j∈Sp

( ∑
m∈Sp+1

ϑ(m)M (p)
m (j)

)
π

(p)
j ( · ) .

Therefore, by definition of I(p), I(p)(µ) = I(p)(ω), where ω(j) =
∑
m∈Sp+1

ϑ(m)M
(p)
m (j).

As the measures M
(p)
m are stationary for the chain X(p)

t , so is ω. Thus, by Lemma
A.8, I(p)(ω) = 0, as claimed. �

By Lemma A.8, I(0)(µ) = 0 if and only if there exists a probability measure ω
on S1 such that

µ =
∑
j∈S1

ωj π
(1)
j .

By (2.17) and since I(1)(ω) < ∞ for all ω ∈ P(S1), µ has this form if and only if
I(1)(µ) <∞. Hence, the previous lemma holds for p = 0 as well:

I(1)(µ) < ∞ if and only if I(0)(µ) = 0 . (5.1)

We turn to the proof of Proposition 2.1. In sake of completeness, we reproduce
the proof that I(0) is a Γ − lim inf of the sequence In presented in [5] and which
applies to non-reversible dynamics. Next result is the second half of [5, Proposition
8.3].

Lemma 5.2. The functional I(0) : P(V )→ R+ is a Γ− lim inf of the sequence In.

Proof. Fix µ ∈ P(V ) and a sequence of probability measures µn in P(V) converging
to µ. By definition of In,

In(µn) ≥ −
∫
V

Lnu

u
dµn = −

∑
x∈V

µn(x)

u(x)

∑
y∈V

Rn(x, y) [u(y)− u(x) ]

for all u : V → (0,∞). As µn → µ and Rn → R0, this expression converges to

−
∑

y 6=x∈V

µ(x)

u(x)
R0(x, y) [u(y)− u(x) ] .
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Therefore,

lim inf
n→∞

In(µn) ≥ sup
u>0
−

∑
y 6=x∈V

µ(x)

u(x)
R0(x, y) [u(y)− u(x) ] = I(0)(µ) ,

which completes the proof of the lemma. �

We turn to the Γ− lim sup. Fix a measure µ ∈ P(V ) such that µ(x) > 0 for all

x ∈ V . Denote by D
(0)
1 , . . . ,D

(0)
m0 the equivalent classes of the chain Xt which are

not singletons.

By definition, the Markov chain Xt reflected at D
(0)
a , 1 ≤ a ≤ m0, is irreducible.

Denote by µ
D

(0)
a

the measure µ conditioned to D
(0)
a defined by equation (A.13). Let

Ha : D
(0)
a → R be the function given by Lemma A.3 which turns µ

D
(0)
a

a stationary

state for the Markov chain induced by MHaRD
(0)
a

L(0), the generator R
D

(0)
a

L(0)

tilted by Ha.
By Corollary A.10,

I(0)(µ) = −
m0∑
a=1

∑
x∈Da

∑
y∈Da\{x}

µ(x)RHa(x, y) +
∑
x∈V

∑
y∈V \{x}

µ(x)R0(x, y) , (5.2)

where RHa(x, y) = R0(x, y) eHa(y)−Ha(x)

Lemma 5.3. For all µ ∈ P(V ),

lim sup
n→∞

In(µ) ≤ I(0)(µ) .

Proof. Denote by Xµ,n
t the Markov chain Xn

t reflected at Vµ, and by Dn
1 , . . . ,D

n
mn

the equivalent classes of the chain Xµ,n
t which are not singletons. By assumption

(2.5), the sets Da do not depend on n and we may remove the index n from the
notation. Moreover, since Rn(x, y) converges to R0(x, y), for all 1 ≤ a ≤ m0, there

exists 1 ≤ b ≤ m such that D
(0)
a ⊂ Db.

By Lemma A.7, In(µ) = Kn(µ), where Kn(µ) is given by (A.15) with the rates
R replaced by Rn. The functional Kn is composed of two terms. The second, as
n→∞, converges to ∑

x∈V

∑
y∈V \{x}

µ(x)R0(x, y) .

We turn to the first term of Kn, given by

−
m∑
b=1

∑
x∈Db

∑
y∈Db\{x}

µ(x)Rn(x, y) eH
(b)
n (y)−H(b)

n (x) , (5.3)

where H
(b)
n : Db → R is the function (unique up to an additive constant) which

turns µ a stationary state for the chain induced by M
H

(b)
n

RDb
Ln (the generator

RDb
Ln tilted by H

(b)
n ).

Since for all 1 ≤ a ≤ m0, there exists 1 ≤ b ≤ m such that D
(0)
a ⊂ Db, the sum

appearing in the previous displayed equation is bounded above by

−
m∑
b=1

∑
a

∑
x∈D(0)

a

∑
y∈D(0)

a \{x}

µ(x)Rn(x, y) eH
(b)
n (y)−H(b)

n (x) , (5.4)
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where the second sum is performed over all 1 ≤ a ≤ m0 such that D
(0)
a ⊂ Db.

Fix b and a satisfying D
(0)
a ⊂ Db. By (A.8), there exists a finite constant C

(b)
n

such that |H(b)
n (y)−H(b)

n (x) | ≤ C(b)
n for all y 6= x ∈ Db. Since Rn(x, y)→ R0(x, y),

and µ(x) > 0 for all x ∈ D
(0)
a , as Xµt is irreducible in D

(0)
a , by Remark A.4, there

exists a finite constant Ca, independent of n, such that |H(b)
n (y) −H(b)

n (x) | ≤ Ca
for all y 6= x ∈ D

(0)
a . Therefore, there exists a function Ga : D

(0)
a → R and a

subsequence n′ such that Hn′(y)−Hn′(x)→ G(y)−G(x) for all x, y ∈ D
(0)
a .

In conclusion, through a subsequence, (5.4) converges to

−
m0∑
a=1

∑
x∈D(0)

a

∑
y∈D(0)

a \{x}

µ(x)R0(x, y) eGa(y)−Ga(x)

≤ −
m0∑
a=1

∑
x∈D(0)

a

∑
y∈D(0)

a \{x}

µ(x)R0(x, y) eHa(y)−Ha(x) ,

where Ha is the function which appears in (5.2). The inequality holds because for
each 1 ≤ a ≤ m0, Ha is the function which optimises the sum. To complete the
proof of the lemma, it remains to collect the previous estimates. �

Next result is a consequence of the two previous lemmata.

Corollary 5.4. The functional In Γ-converge to I(0).

Proof of Theorem 2.3. The proof is by induction in p. The case p = 0 is covered
by Corollary 5.4. Fix 1 ≤ p ≤ q and assume that the result holds for 0 ≤ p′ < p.
In sake of completeness we reproduce below the proof of the Γ − lim inf taken
from [5, Proposition 8.4].

Γ − lim inf: For all µ ∈ P(V ) and all sequence of probability measures µn ∈ P(V )
such that µn → µ,

lim inf
n→∞

θ(p)
n I(p)

n (µn) ≥ I(p)(µ) . (5.5)

Fix a probability measure µ on V and a sequence µn converging to µ. Sup-

pose that I(p−1)(µ) > 0. In this case, since θ
(p−1)
n In Γ-converges to I(p−1) and

θ
(p)
n /θ

(p−1)
n →∞,

lim inf
n→∞

θ(p)
n In(µn) = lim inf

n→∞

θ
(p)
n

θ
(p−1)
n

θ(p−1)
n In(µn) ≥ I(p−1)(µ) lim

n→∞

θ
(p)
n

θ
(p−1)
n

= ∞ .

On the other hand, by Lemma 5.1, I(p)(µ) = ∞. This proves the Γ − lim inf
convergence for measures µ such that I(p−1)(µ) > 0.

Assume that I(p−1)(µ) = 0. By Lemma 5.1 and (5.1), there exists a probability

measure ω on Sp such that µ =
∑
j∈Sp ωj π

(p)
j . By definition of In,

In(µn) ≥ −
∫
V

Lnu

u
dµn

for all u : V → (0,∞).

Fix a function h : V(p) → (0,∞) which is constant on each V
(p)
j , j ∈ Sp: h =∑

j∈Sp h(j)χ
V

(p)
j

. Let un : V → R be the solution of the Poisson equation (C.5)

with L = Ln, A = V(p) and u = h. By the representation (C.7), it is clear that
un(x) ∈ (0,∞) for all x ∈ V .
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Since un is harmonic on V \ V(p) and un = h on V(p), by (C.8), the right-hand
side of the previous displayed equation with u = un is equal to

−
∫
V(p)

Lnun
un

dµn = −
∫
V(p)

Lnun
h

dµn = −
∫
V(p)

(TV(p)Ln)h

h
dµn .

Since h is constant on each set V
(p)
j (and equal to h(j)), the last integral is equal

to

−
∑
j,k∈Sp

[ h(k)− h(j) ]

h(j)

∑
x∈V(p)

j

πn(x)
µn(x)

πn(x)
R(p)
n (x,V

(p)
k ) ,

where R
(p)
n (x,V

(p)
k ) =

∑
y∈V(p)

k

R
(p)
n (x, y). By (2.13), πn(x)/πn(V

(p)
j ) → π

(p)
j (x) for

all x ∈ V
(p)
j . Thus, since µn → µ =

∑
j∈Sp ωj π

(p)
j ,

lim
n→∞

πn(V
(p)
j )

µn(x)

πn(x)
= ωj for all x ∈ V

(p)
j .

Therefore, by (3.2), (3.3), as n→∞, the penultimate expression multiplied by θ
(p)
n

converges to

−
∑
j∈Sp

ωj
1

h(j)

∑
k∈Sp

r(p)(j, k) [ h(k)− h(j) ] = −
∑
j∈Sp

ωj
L(p)h

h
.

Summarising, we proved that

lim inf
n→∞

θ(p)
n In(µn) ≥ sup

h
−
∑
j∈Sp

ωj
L(p)h

h
,

where the supremum is carried over all functions h : Sp → (0,∞). By (2.16), (2.17),

the right-hand side is precisely I(p)(µ), which completes the proof of the Γ− lim inf.

Γ − lim sup. Fix µ ∈ P(V ). If I(p)(µ) = ∞, there is nothing to prove. Assume,

therefore, that µ =
∑
j∈Sp ωj π

(p)
j for some ω ∈ P(Sp).

By Lemmata B.4 and B.3, it is enough to prove the theorem for measures µ =∑
j∈Sp ωj π

(p)
j for some ω ∈ P(Sp) such that ωj > 0 for all j ∈ Sp. Fix such a

measure µ. Let µn ∈ P(V(p)) be the measure given by (4.10). By Corollary 4.5 and
Lemma 4.6, µn → µ and

lim sup
n→∞

θ(p)
n I(p)

n (µn) ≤ I(p)(µ) . (5.6)

Since the trace process Y n,pt is irreducible and µn(x) > 0 for all x ∈ V(p), by
Lemma A.3, there exists un : V(p) → (0,∞) such that

I(p)
n (µn) = −

∫
V(p)

1

un

[
(TV(p)Ln)un

]
dµn .

Denote by vn the harmonic extension of un to V given by (C.5) with A, L replaced
by V(p), Ln, respectively. Let νn be the stationary state of the tilted generator
Mvn Ln. By Proposition C.1,

In(νn) ≤ I(p)
n (µn) . (5.7)

In view of (5.6), (5.7), it remains to show that νn → µ.

As νn is the stationary state of the Markov chain X
(n)
t tilted by vn, by [2,

Proposition 6.3], νn conditioned to V(p) is the stationary state of the Markov chain
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induced by the generator TV(p) Mvn Ln. By Lemma C.4 this generator coincides
with Mun TV(p) Ln. By definition, µn is the stationary state of this later Markov
chain. Hence, µn( · ) = νn( · |V(p) ).

Since µn → µ and µn( · ) = νn( · |V(p) ), it is enough to show that νn(V(p) )→ 1.
Assume, by contradiction, that lim supn νn(z) > 0 for some z ∈ V \ V(p). Since
P(V ) is compact for the weak topology, consider a subsequence, still denoted by
νn, such that νn → ν ∈ P(V ), ν(z) > 0. By the Γ− lim inf,

lim inf
n→∞

θ(p)
n In(νn) ≥ I(p)(ν) .

Since ν(z) > 0, z ∈ V \ V(p), I(p)(ν) = +∞. However, by (5.6), (5.7),

lim sup
n→∞

θ(p)
n In(νn) ≤ I(p)(µ) = I(p)(ω) < ∞ .

Hence, νn(V(p) )→ 1 and νn → µ, which completes the proof of the theorem. �

Appendix A. The rate function

Fix a finite set V . Consider a V -valued continuous-time Markov chain (Xt : t ≥
0), and denote by L its generator. The jump rates are represented by R( · , · ), so
that

(Lf)(x) =
∑
y∈V

R(x, y) { f(y) − f(x) } (A.1)

for all functions f : V → R. Denote by λ(x), x ∈ V , the holding rates and by
p(x, y), x, y ∈ V , the jump probabilities, so that R(x, y) = λ(x) p(x, y). Mind that
we do not suppose the process to be irreducible. We assume, however, that λ(x) > 0
for all x ∈ V . The case where some holding rates might vanish is considered at the
end of this section.

Denote by P(V ) the space of probability measures on V endowed with the weak
topology. For a function H : V → R, define JH : P(V )→ R by

JH(µ) := −
∫
V

e−HLeH dµ = −
∑
x,y∈V

µ(x)R(x, y)
[
eH(y)−H(x) − 1

]
, (A.2)

and let

I(µ) := sup
H
JH(µ) , (A.3)

where the supremum is carried over all functions H : V → R.
To stress the dependence of the functionals JH and I on the generator L, we

sometimes denote them by JL,H and IL, respectively. Next result collects simple
properties of the functionals JH and I.

Lemma A.1. For each µ ∈ P(V ), the functional H 7→ JH(µ) is concave, and
JH+c(µ) = JH(µ) for all constants c. The functional I is convex, lower-semicon-
tinuous, non-negative, and bounded by

∑
x∈V µ(x)λ(x).

Recall that a measure µ ∈ P(V ) is a stationary state for the Markov chain
induced by the generator L if

∫
V

(Lf) dµ = 0 for all function f : V → R. As we do
not assume the chain to be irreducible, the stationary state may not be unique.

The Euler-Lagrange equation for I reads as∫
V

(MH L)Gdµ = 0 for all G : V → R . (A.4)
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In this formula, for a function H : V → R, MH L represents the tilted generator
given by

[ (MH L) f ] (x) =
∑
y∈V

e−H(x)R(x, y) eH(y)
[
f(y) − f(x)

]
(A.5)

for f : V → R. Let RH(x, y) := e−H(x)R(x, y) eH(y). Next result clarify the
meaning of the Euler-Lagrange equation (A.4).

Lemma A.2. A probability measure µ in V is a stationary state for the Markov
chain induced by the generator MHL if, and only if,

I(µ) = JH(µ) . (A.6)

Proof. Suppose that µ is a stationary state for the Markov chain induced by the
generator MHL. Then, for all functions G : V → R,

JG(µ) − JH(µ) = −
∑
x,y∈V

µ(x)R(x, y)
[
eG(y)−G(x) − eH(y)−H(x)

]
= −

∑
x,y∈V

µ(x)RH(x, y)
[
eF (y)−F (x) − 1

]
,

where F = G −H. Since µ is a stationary state for the Markov chain induced by
the generator MHL, the previous expression is equal to

−
∑
x,y∈V

µ(x)RH(x, y)
{
eF (y)−F (x) − 1 − [F (y) − F (x) ]

}
.

This expression is negative because a 7→ ea − 1 − a is positive. This proves that
I(µ) = supG JG(µ) ≤ JH(µ), as claimed.

Conversely, suppose that (A.6) holds. Fix G : V → R. Then, the function
a 7→ JH+aG(µ) assumes a maximum at a = 0. Its derivative at a = 0 is given by∫
V

(MHL)Gdµ. Hence, (A.4) holds for all G yielding that µ is stationary for the
Markov chain induced by the generator MHL. �

Lemma A.3. Assume that the Markov chain induced by the generator L is irre-
ducible and that µ(x) > 0 for all x ∈ V . Then, there exists a function H : V → R,
unique up to an additive constant, such that

I(µ) = JH(µ) .

Moreover,

I(µ) =
∑
x,y∈V

µ(x)R(x, y)
{

[H(y)−H(x) ] eH(y)−H(x) − eH(y)−H(x) + 1
}
, (A.7)

and

max
x,y∈V

|H(y)−H(x) | ≤ |V | ln
1 +

∑
x,y∈V µ(x)R(x, y)

minz,w µ(z)R(z, y)
, (A.8)

where the minimum is performed over all edges (z, w) such that R(z, w) > 0.

Proof. Since I(µ) is bounded, there exists a sequence (Hn : n ≥ 1) of functions
Hn : V → R such that

I(µ) = lim
n→∞

JHn(µ) .

Fix x0 ∈ V . Since JH+c(µ) = JH(µ), redefine the sequence Hn so that Hn(x0) = 0
for all n ≥ 1.
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Claim 1: The sequence Hn is uniformly bounded.
By definition of the sequence Hn and since I is positive, there exists n0 ≥ 1 such

that ∑
x,y∈V

µ(x)R(x, y)
[
eHn(y)−Hn(x) − 1

]
≤ 1

for all n ≥ n0. Hence,∑
x,y∈V

µ(x)R(x, y) eHn(y)−Hn(x) ≤ C0 := 1 +
∑
x,y∈V

µ(x)R(x, y) .

Thus,

Hn(y) − Hn(x) ≤ C1 := ln
C0

minx,y µ(x)R(x, y)
(A.9)

for all n ≥ n0 and all edges (x, y) such that R(x, y) > 0. In this equation the
minimum is performed over all edges (x, y) such that µ(x)R(x, y) > 0.

Fix x ∈ V \ {x0}. Since the process is irreducible, there exists a self-avoiding
path x0, x1, . . . , xk = x such that R(xi, xi+1) > 0 for all 0 ≤ i < k. Hence, by
(A.9), Hn(x) = Hn(xk)−Hn(x0) ≤ C1 k ≤ C2 := C1 |V |.

Conversely, there exists a self-avoiding path x = y0, y1, . . . , yj = x0 such that
R(yi, yi+1) > 0 for all 0 ≤ i < j. Hence, by (A.9), −Hn(x) = Hn(x0) −Hn(x) =
Hn(yj)−Hn(y0) ≤ C1 j ≤ C1 |V | = C2, which proves Claim 1.

As the sequence Hn is uniformly bounded, we may extract a subsequence, still
denoted by Hn, which converges pointwisely to a function H. By definition of the
sequence Hn and by continuity,

I(µ) = lim
n→∞

JHn(µ) = JH(µ) ,

as asserted. Moreover, maxx,y∈V |H(y)−H(x) | ≤ C2, proving (A.8).
We turn to the proof of uniqueness. Assume that there are two functions, denoted

by H and G, which minimize. Let Fθ = θH + (1 − θ)G, 0 ≤ θ ≤ 1. By concavity
of the functional J , for all 0 ≤ θ ≤ 1,

I(µ) ≥ JFθ (µ) ≥ θ JH(µ) + (1− θ) JG(µ) = I(µ) .

Hence, θ 7→ JFθ (µ) is constant. Taking the second derivative yields that∑
x,y∈V

µ(x)R(x, y)
{ [

G(y)−G(x)
]
−
[
H(y)−H(x)

] }2
eFθ(y)−Fθ(x) = 0

for all 0 < θ < 1. Hence, G(y)−G(x) = H(y)−H(x) if µ(x)R(x, y) > 0. As the
process is irreducible and the measure positive, G = H+c for some constant c ∈ R.

To show the validity of (A.7), note that

I(µ) = JH(µ) =
∑
x,y∈V

µ(x)R(x, y)
{

1 − eH(y)−H(x)
}
.

Since, by Lemma A.2, µ is a stationary state for the Markov chain induced by the
generator MHL,

0 =
∑
x,y∈V

µ(x)R(x, y) eH(y)−H(x) [H(y)−H(x) ] .

Adding the two previous identities yields (A.7). �
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Remark A.4. It follows from the previous proof that the minimum in the denom-
inator in equation (A.8) can be restricted to a subset of edges E0 which keeps the
chain irreducible.

Next result follows from the two previous lemmata.

Corollary A.5. Assume that the Markov chain induced by the generator L is
irreducible and that µ(x) > 0 for all x ∈ V . Then, there exists a function H : V → R
such that µ is stationary for MHL.

Corollary A.6. Assume that the Markov chain induced by the generator L is
irreducible and that µ(x) > 0 for all x ∈ V . Then, I(µ) = 0 if and only if µ is the
stationary state.

Proof. Assume that I(µ) = 0. Then, since a ea − ea + 1 ≥ 0, each term in the
sum (A.7) vanishes, and H(y) = H(x) if µ(x)R(x, y) > 0. As the Markov chain
is irreducible, H is constant. To complete the argument, it remains to recall that,
by Lemma A.2, µ is a stationary state for the chain induced by the generator
MHL = L.

Conversely, suppose that µ is the stationary state. Then, µ is a stationary
state for the chain induced by the generator MHL for H = 0. By Lemma A.2,
I(µ) = J0(µ) = 0, as claimed. �

Reducible Markov chains. In this subsection, we derive a formula for I(µ) in
the case where the process Xt is reducible or the support of µ a proper subset of
V .

Denote by RAL, A a proper subset of V which is not a singleton, the generator
of the Markov chain Xt reflected at A. This is the A-valued Markov chain which
jumps from x ∈ A to y ∈ A at rate R(x, y). Its generator reads as

[ (RAL) f ] (x) =
∑
y∈A

R(x, y) [ f(y)− f(x) ] , x ∈ A . (A.10)

Clearly, this chain may be reducible even if the original one is irreducible.
Fix a probability measure µ ∈ P(V ), and denote by Vµ its support, Vµ = {x ∈

V : µ(x) > 0}, and by Xµ
t the Markov chain reflected at Vµ. Mind that we do not

assume Vµ to be a proper subset of V .
The formula for I(µ) relies on the construction of a directed graph without

directed loops. Denote by by Q1, . . . ,Q` the equivalence classes of the chain Xµ
t .

These classes form the set of vertices of the directed graph. Draw a directed arrow
from Qa to Qb if there exists x ∈ Qa and y ∈ Qb such that R(x, y) > 0. Denote
the set of directed edges by A and the graph by G = (Q,A), where Q is the set
{Q1, . . . ,Q`} of vertices.

A path in the graph G is a sequence vertices (Qaj : 0 ≤ j ≤ m), such that
there is a directed arrow from Qaj to Qaj+1

for 0 ≤ j < m. This directed graph
has no directed loops because the existence of a directed loop would contradict the
definition of the sets Qa as equivalent classes. (Mind that undirected loops might
exist).

Let C1, . . . ,Cp be the closed irreducible classes and T1, . . . ,Tq be the transient
ones, so that p + q = `. Since the sets Cj are closed irreducible classes, these sets
are not the tail of a directed edge in the graph. On the other hand, as the elements
of Ti are transient for the chain Xµ

t , there is a path (Ti = Ta0 , . . . ,Tam−1,Cj) from
Ti to some irreducible class Cj .
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Fix a transient class Ti. Denote by D(Ti) the length of the longest path from Ti
to a closed irreducible class. The function D is well defined because (a) the set of
vertices is finite, (b) there is at least a path, (c) there are no directed loops in the
graph.

Fix a, b such that there is a directed arrow from Ta to Tb. Then,

D(Ta) ≥ D(Tb) + 1 . (A.11)

Indeed, it is enough to consider the longest path from Tb to the irreducible classes.
Ta does not belong to the path because there are no directed loops. By adding Ta
at the beginning of the path from Tb to the irreducible classes, we obtain a path
from Ta to the irreducible classes of length D(Tb) + 1, proving (A.11).

Setting D(Cj) = 0 for all 1 ≤ j ≤ p, we may extend (A.11) to the closed
irreducible classes. Fix a, b such that there is a directed arrow from Ta to Cb.
Then,

D(Ta) ≥ D(Cb) + 1 (A.12)

because D(Ta) ≥ 1. Finally, we may lift the function D to Vµ by setting D(x) =
D(Qa) for all x ∈ Qa.

Recall from (A.10) that we represent by RAL the generator of the process Xt

reflected at A. Assume that the chain induced by the generator RAL is irreducible.
Let IRAL : P(A)→ R+ the functional given by

IRAL(µ) := sup
H
−
∫
A

e−H
[

(RAL ) eH
]
dµ ,

where the supremum is carried over all functions H : A→ R.
Denote by Da, 1 ≤ a ≤ m the equivalent classes of the chain Xµ

t with at least
two elements. Note that µ(Da) > 0 for all a and that m ≤ `. Let µA, A ⊂ V such
that µ(A) > 0, be the measure µ conditioned to A:

µA(x) :=
µ(x)

µ(A)
, x ∈ A . (A.13)

Let K : P(V )→ R+ the functional given by

K(µ) =

m∑
a=1

µ(Da) IRDaL
(µDa

) +
∑
x∈Vµ

∑
y 6∈Vµ

µ(x)R(x, y)

+
∑̀
a=1

∑
b6=a

∑
x∈Qa

∑
y∈Qb

µ(x)R(x, y) .

(A.14)

In this formula, since closed irreducible equivalent classes are not the tail of any
directed edge, we may restrict the sum over a to transient equivalent classes. More-
over, if R(x, y) > 0 for some x ∈ Qa, y ∈ Qb, then R(z, w) = 0 for all z ∈ Qb,
w ∈ Qa. Hence, in the last sum, each pair (a, b) is counted only once.

In view of Lemma A.3, we may rewrite (A.14) as

K(µ) = −
m∑
a=1

∑
x∈Da

∑
y∈Da\{x}

µ(x)RHa(x, y) +
∑
x∈V

∑
y∈V \{x}

µ(x)R(x, y) , (A.15)

where Ha : Da → R is the function (unique up to an additive constant) which turns
the measure µ conditioned to Da stationary for the chain induced by MHaRDa

L

(the generator RDa
L tilted by Ha).
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Lemma A.7. For all µ ∈ P(V )

I(µ) = K(µ) .

Proof. We first prove that I(µ) ≤ K(µ). Fix H : V → R. By definition of Vµ,∫
V

e−HLeH dµ =
∑

x∈Vµ,y∈V
µ(x)R(x, y)

[
eH(y)−H(x) − 1

]
.

The right-hand side can be rewritten as

∑
x∈Vµ,y 6∈Vµ

cH(x, y) +

m∑
a=1

∑
x∈Da,y∈Da

cH(x, y) +
∑̀
a=1

∑
b 6=a

∑
x∈Qa

∑
y∈Qb

cH(x, y) , (A.16)

where cH(x, y) = µ(x)R(x, y) [ exp{H(y)−H(x)} − 1 ].
As cH(x, y) ≥ −µ(x)R(x, y), the sum of the first and third terms of the previous

displayed equation are bounded below by

−
∑

x∈Vµ,y 6∈Vµ

µ(x)R(x, y) −
∑̀
a=1

∑
b6=a

∑
x∈Qa

∑
y∈Qb

µ(x)R(x, y) .

The second term of that formula is bounded below by

m∑
a=1

inf
G

∑
x∈Da,y∈Da

cG(x, y) = −
m∑
a=1

µ(Da) IRDaL
(µDa) .

Up to this point we proved that∫
V

e−HLeH dµ ≥ −K(µ)

for all H : V → R. Multiplying by −1 and optimising over H yields that I(µ) ≤
K(µ).

We turn to the converse inequality. For each set Da the Markov chain induced by
the generator RDa

L is irreducible and µ(x) > 0 for all x ∈ Da. Hence, by Lemma
A.3, there exists a function Ga : Da → R which solves the variational problem

IRDaL
(µDa

) = sup
H
−
∫
Da

e−H (RDa
L) eH dµDa

= −
∫
Da

e−Ga (RDa
L) eGa dµDa

,

(A.17)
where the supremum is carried over all functions H : Da → R.

Recall the definition of the function D : Vµ → R introduced above (A.11). Define
the sequence of functions Hn : V → R by

Hn(x) =


−n x 6∈ Vµ ,
Ga(x) + nD(x) x ∈ Da ,

nD(x) x ∈ Vµ \ ∪1≤a≤mDa .

(A.18)

By definition of the functional I and since Vµ stands for the support of µ,

I(µ) ≥ − lim inf
n→∞

∫
Vµ

e−HnLeHn dµ .
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For a fixed n the previous integral is equal to the sum in (A.16) with Hn replacing
H. By definition of Hn, as n→∞, the first term in (A.16) converges to

−
∑

x∈Vµ,y 6∈Vµ

µ(x)R(x, y) .

Since D(x) = D(y) for elements x, y in the same equivalent class Da, by (A.17),
for every n ≥ 1, the second term in (A.16) is equal to

m∑
a=1

∑
x∈Da,y∈Da

cGa(x, y) =

m∑
a=1

µ(Da)

∫
Da

e−Ga (RDa
L) eGa dµDa

= −
m∑
a=1

µ(Da) IRDaL
(µDa) .

Finally, to estimate the third term in (A.16), fix x ∈ Qa, y ∈ Qb such that R(x, y) >
0. By (A.11), (A.12), D(x) ≥ D(y) + 1. Thus, Hn(y)−Hn(x) ≤ −n+C0 for some
finite constant C0 independent of n, and, as n → ∞, the second term in (A.16)
converges to

−
∑̀
a=1

∑
b6=a

∑
x∈Qa

∑
y∈Qb

µ(x)R(x, y)

Collecting all previous estimates yields that

I(µ) ≥ − lim inf
n→∞

∫
V

e−HnLeHn dµ = K(µ) ,

which completes the proof of the lemma. �

Lemma A.8. A measure µ ∈ P(V ) is a stationary state of the Markov chain Xt

if and only if I(µ) = 0.

Proof. Assume that I(µ) = 0. Then, by Lemma A.7, all terms on the right-hand
side of (A.14) vanish. As the second and third terms vanish the support of µ
consists of the union of closed irreducible sets of the Markov chain. Since the
first term vanishes, by Corollary A.6, µ restricted to these irreducible classes is a
stationary state. Hence, µ is a convex combination of the stationary states, and,
hence, a stationary state.

Suppose that µ is a stationary state. Then, its support is the union of closed
irreducible classes. Therefore, the second and third terms on the right-hand side of
(A.14) vanish. Fix a closed irreducible class of the chain contained in the support
of µ. The restriction of µ to this set is strictly positive. Hence, by Corollary A.6,
the first term on the right-hand side of (A.14) also vanishes. This completes the
proof of the lemma. �

Degenerate generators. In this subsection, we consider generators whose holding
rates might vanish. Let V0 = {x : λ(x) > 0} and keep in mind that V0 may be a
proper subset of V .

Denote by L0 the generator L restricted to V0:

(L0f)(x) =
∑
y∈V0

R(x, y) { f(y) − f(x) } , f : V0 → R .

Fix a measure µ ∈ P(V ). Clearly, if µ(V0) = 0, then for all H : V → R, JH(µ) = 0
and I(µ) = 0. The next lemma covers the case where µ(V0) > 0. To stress the
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dependence of the functional JH introduced at (A.2) on the generator L, denote it
below by JL,H . For a function G : V0 → R, let JL0,G : P(V0)→ R be the functional
given by

JL0,G(ν) := −
∫
V0

e−GL0e
G dν .

Let IL0
: P(V0)→ R be the functional defined by (A.3) with JH replaced by JL0,G

and where the supremum is carried over all functions G : V0 → R.

Lemma A.9. For all measures µ ∈ P(V ) such that µ(V0) > 0,

JL,H(µ) = µ(V0)
{
JL0,HV0

(µV0
) −

∑
x∈V0

∑
y∈V \V0

µV0
(x)R(x, y)

[
eH(y)−H(x)− 1

] }
,

where HV0
: V0 → R stands for the restriction of H to V0: HV0

(x) = H(x), x ∈ V0.
In particular,

IL(µ) = µ(V0) IL0(µV0) +
∑
x∈V0

∑
y∈V \V0

µ(x)R(x, y) .

Proof. The first assertion of the lemma is a simple identity. The proof of the second
one is similar to the one of Lemma A.7. We argue as in this lemma to show that
IL(µ) is bounded by the right-hand side of the identity. The converse inequality is
obtained by observing that to optimize JL,H(µ) it is convenient to set H(y) = −∞
for y ∈ V \ V0. More precisely, one proceeds just as in the proof of Lemma A.7 to
obtain an optimal sequence Hn defined in V0 and then extend it to V \ V0 in such
a way that Hn(y)−Hn(x)→ −∞ for all y ∈ V \ V0, x ∈ V0. �

The previous lemma allows us to restrict our attention to non-singular genera-
tors. This is the content of the next result.

Corollary A.10. For all measures µ ∈ P(V ) such that µ(V0) > 0,

IL(µ) = −
m∑
a=1

∑
x∈Da

∑
y∈Da\{x}

µ(x)RHa(x, y) +
∑
x∈V

∑
y∈V \{x}

µ(x)R(x, y) ,

where Da, 1 ≤ a ≤ m, represent the equivalent classes of the reflected chain Xµ
t

with at least two elements, and Ha : Da → R the function (unique up to an additive
constant) which turns the measure µ conditioned to Da stationary for the chain
induced by MHaRDa L (the generator RDa L tilted by Ha).

Proof. By Lemma A.9, IL(µ) is the sum of two terms. Consider µ(V0) IL0(µV0).
By Lemma A.7, IL0(µV0) = KL0(µV0), where KL0 is given by equation (A.15) with
the set V replaced by V0 in the second sum. Clearly, the equivalent classes of the
reflected chain Xµ

t with at least two elements for the generator L0 coincide with
the ones for the generator L. On the other hand there is nor harm to replace in
the second sum of (A.15) the condition x ∈ V0 by x ∈ V as R(x, y) = 0 for all
x ∈ V \ V0. Hence,

µ(V0) IL0(µV0) = −
m∑
a=1

∑
x∈Da

∑
y∈Da\{x}

µ(x)RHa(x, y) +
∑
x∈V

∑
y∈V0\{x}

µ(x)R(x, y) .

To complete the proof of the corollary, it remains to recall the formula for IL(µ)
presented in Lemma A.9. �
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Appendix B. Convergence of level 2 rate functionals

In this section, we present some general results on the convergence of level 2
large deviations rate functionals. The first result asserts that the rate functionals
converge provided the jump rates converge.

Denote by Ln, n ≥ 1, the generator of a V -valued continuous-time Markov
chain whose jump rates are represented by Rn( · , · ). Let In : P(V ) → R+ be the
occupation time large deviations rate functional associated to the generator Ln.
This is the functional defined by formula (A.3) with the rates Rn replacing R. We
first consider the case where L is irreducible.

Lemma B.1. Suppose that the Markov chains induced by the generators Ln, n ≥ 1,
and L are irreducible, and that Rn(x, y)→ R(x, y) ∈ R+ for all y 6= x ∈ V . Then,
In(µ)→ I(µ) for all µ ∈ P(V ) such that µ(x) > 0 for all x ∈ V . Here, I represents
the rate functional associated to the jump rates R.

Proof. Fix H : V → R and denote by J
(n)
H : P(V ) → R the functional given by

(A.2) with R replaced by Rn. Then, as Rn(x, y)→ R(x, y), for all H : V → R

In(µ) ≥ J
(n)
H (µ) → JH(µ) .

Maximizing over H yields that lim infn→∞ In(µ) ≥ I(µ). Note that we did not use
the irreducibility of L in this part of the proof.

Conversely, since the Markov chain induced by the generator Ln is irreducible

and the support of µ is the set V , by Lemmata A.3 and A.2, In(µ) = J
(n)
Hn

(µ),
where Hn is the function which turns µ the stationary stated for the tilted generator
MHn Ln.

Denote by E the oriented edges (x, y) ∈ V × V such that R(x, y) > 0. Let
a = min{µ(x)R(x, y) : (x, y) ∈ E} > 0. As Rn converges to R, there exists n0 > 0
such that min{µ(x)Rn(x, y) : (x, y) ∈ E} ≥ a/2. Since the Markov chain induced
by the rates R(x, y) is irreducible and the rates Rn converge to R, by (A.8) and
Remark A.4, there exists a finite constant C0 such that

max
y,x∈V

|Hn(y)−Hn(x) | ≤ C0 (B.1)

for all n ≥ n0.
Therefore, there exist functions G : V → R and a subsequence n′ such that

Hn′(y)−Hn′(x)→ G(y)−G(x) for all x, y ∈ V . Hence, through this subsequence

J
(n)
Hn

(µ) converges to JH(µ) ≤ I(µ). This proves that lim supn In(µ) ≤ I(µ) and
completes the proof of the lemma. �

We now remove the assumption that L is irreducible.

Lemma B.2. Suppose that the Markov chain induced by the generator Ln is irre-
ducible for all n ≥ 1 and that Rn(x, y) → R(x, y) ∈ R+ for all y 6= x ∈ V . Then,
In(µ)→ I(µ) for all µ ∈ P(V ) such that µ(x) > 0 for all x ∈ V .

Proof. In Lemma B.1, we proved that lim infn→∞ In(µ) ≥ I(µ). Conversely, since
the Markov chain induced by the generator Ln is irreducible and the support of µ

is the set V , by Lemmata A.3 and A.2, In(µ) = J
(n)
Hn

(µ), where Hn is the function
which turns µ the stationary stated for the tilted generator MHn Ln.
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Denote by Qa, 1 ≤ a ≤ `µ the equivalent classes of the generator L, and by Da,

1 ≤ a ≤ mµ the ones with at least two elements. By definition of J
(n)
Hn

(µ),

J
(n)
Hn

(µ) ≤
mµ∑
a=1

µ(Da) J
(n)
Da,Hn

(µDa
) +

`µ∑
a=1

∑
b 6=a

∑
x∈Qa

∑
y∈Qb

µ(x)Rn(x, y) ,

where J
(n)
Da,Hn

(ν) =
∑
x∈Da

∑
y∈Da\{x}

ν(x)Rn(x, y)
[

1 − eHn(y)−Hn(x)
]

As n→∞, the second term converges to the same sum with R in place of Rn. We
turn to the first term.

Fix 1 ≤ a ≤ mµ. By the arguments presented in the proof of Lemma B.1,
(B.1) holds provided the maximum is carried over x, y ∈ Da. Therefore, by the

end of the proof of that lemma, lim supn J
(n)
Da,Hn

(µDa
) ≤ IRDaL

(µDa
). Recollecting

the previous estimates and recalling Lemma A.7 and definition (A.14) yields that
lim supn In(µ) ≤ I(µ). This completes the proof of the lemma. �

Γ-convergence. In this subsection we present a result on Γ-convergence used in
the article. Recall from Section 2 the definition of Γ-convergence. Fix a Polish
space X and a functional U : X → [0,+∞].

Definition B.3. A subset X0 of X is said to be U -dense if for every x ∈ X such
that U(x) <∞, there exists a sequence (xk : k ≥ 1) such that xk ∈ X0, xk → x and
U(xk)→ U(x).

Lemma B.4. Let X0 be a U -dense subset of X . To show that U is a Γ-limsup for
the sequence Un, it is enough to show that for every x ∈ X0, there exists a sequence
(xn : n ≥ 1) such that xn → x and (2.2) holds.

Proof. Assume that for each x ∈ X0, there exists a sequence (xn : n ≥ 1) such that
xn → x and (2.2) holds.

Fix x ∈ X . We have to show that (2.2) holds for some sequence xn ∈ X which
converges to x. If U(x) = ∞, there is nothing to prove. Assume, therefore, that
U(x) < ∞. As X0 is U -dense, there exists a sequence (x(k) : k ≥ 1) such that
x(k) ∈ X0, x(k) → x, and U(x(k))→ U(x).

Since the result holds for elements of X0, for each k ≥ 1, there exists a sequence

(x
(k)
n : n ≥ 1) such that x

(k)
n → x(k), lim supn→∞ Un(x

(k)
n ) ≤ U(x(k)). At this point,

a classical diagonal argument permits to construct a sequence xn such that xn → x,
lim supn→∞ Un(xn) ≤ U(x), as claimed. �

We return to the context of the article and assume that X = P(V ).

Lemma B.5. Let P+ be the subset of P(V ) formed by the measures whose support
is V : P+ = {µ ∈ P(V ) : µ(x) > 0 ∀x ∈ V }. The set P+ is I-dense.

Proof. Fix µ ∈ P(V ) and let ν be the uniform probability measure on V . Set
µn = [1− (1/n)]µ+ (1/n) ν. Clearly, µn ∈ P(V ) and µn → µ. It remains to show
that I(µn)→ I(µ).

Recall from Lemma A.1 the properties of the functional I. By the lower-
semicontinuity of I, I(µ) ≤ lim infn I(µn). By convexity, I(µn) ≤ [1−(1/n)] I(µ) +
(1/n) I(ν). Since I(ν) ≤ |V |−1

∑
x∈V λ(x) <∞, lim supn I(µn) ≤ I(µ), as claimed.

�
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Appendix C. Trace process and level 2 rate functionals

We examine in this section the effect of reducing the state space, by taking the
trace of the process, on the large deviations rate functional. We first recall the
definition of the trace process and some of its properties.

Denote by TA(t), A ( V , the total time the process Xt spends in A in the
time-interval [0, t]:

TA(t) =

∫ t

0

χA(Xs) ds ,

where, recall, χA represents the indicator function of the set A. Denote by SA(t)
the generalized inverse of TA(t):

SA(t) = sup{ s ≥ 0 : TA(s) ≤ t } .

The trace of Xt on A, denoted by (XA
t : t ≥ 0), is defined by

XA
t = XSA(t) ; t ≥ 0 . (C.1)

By Propositions 6.1 and 6.3 in [2], the trace process is an irreducible, A-valued
continuous-time Markov chain, obtained by turning off the clock when the process
Xt visits the set Ac, that is, by deleting all excursions to Ac. For this reason, it is
called the trace process of Xt on A. For a V -valued Markov chain generator L and
a proper subset A of V , denote by TAL the generator of the trace process on A.

Denote by RTA( · , · ) the jump rates of the trace process. Suppose that A =
V \ {z}. The first equation after [2, Corollary 6.2] asserts that for all x, y ∈ A,

RTV \{z}(x, y) = R(x, y) + R(x, z) p(z, y) , (C.2)

where p( · , · ) represents the jump probability of the chain Xt. In particular,
RTV \{z}(x, y) ≥ R(x, y). Iterating this procedure yields that

RTA(x, y) ≥ R(x, y) (C.3)

for all A ⊂ V , x 6= y ∈ A.
We turn to the rate functional. To simplify certain formulae, we represent the

rate function as

I(µ) = sup
u
−
∫
V

Lu

u
dµ ,

where the supremum is carried out over all strictly positive functions u : V →
(0,∞). In consequence, in this section, MuL stands for the tilted generator given
by

(MuLf)(x) =
∑
y∈V

Ru(x, y) [ f(y) − f(x) ] , Ru(x, y) =
1

u(x)
R(x, y)u(y) .

(C.4)
Denote by IT

A the large deviations rate functional associated to the trace gener-
ator TAL:

IT
A(µ) := sup

u
−
∫
A

(TAL)u

u
dµ , µ ∈ P(A) ,

where the sup is carried over all functions u : A→ (0,∞).
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Fix u : A→ (0,∞), and denote by Hu = HL u the L-harmonic extension of u to
V , that is, the solution of the Poisson equation{

Lv = 0 , V \A ,

v = u , A .
(C.5)

Next proposition is the main result of this section.

Proposition C.1. Assume that the Markov chain induced by the generator L is
irreducible. Fix µ ∈ P(V ) and assume that its support, denoted by A, is a proper
subset of V . Then,

IT
A(µ) ≤ I(µ) .

Conversely, let u : A→ (0,∞) such that

IT
A(µ) = −

∫
A

(TAL)u

u
dµ .

Denote by v = HAu the harmonic extension of u to V given by the solution of
(C.5). Let ν be the stationary state of the tilted generator MvL. Then,

IT
A(µ) =

1

ν(A)
I(ν) .

Harmonic extension. The harmonic extension has a stochastic representation.
Denote by HA, H+

A , A ⊂ V , the hitting and return time of A:

HA := inf
{
t > 0 : Xt ∈ A

}
, H+

A := inf
{
t > τ1 : Xt ∈ A

}
, (C.6)

where τ1 represents the time of the first jump of the chain Xt: τ1 = inf{t > 0 :
Xt 6= X0}. By the strong Markov property, the solution of the Poisson equation
can be represented as

(Hu) (x) = Ex[u(XHA
) ] , x ∈ V . (C.7)

In particular,

min
y∈A

u(y) ≤ min
x∈V

(Hu) (x) ≤ max
x∈V

(Hu) (x) ≤ max
y∈A

u(y) .

Moreover, by [5, Lemma A.1],

[ (TAL)u ](x) = [L(Hu) ](x) , x ∈ A . (C.8)

Lemma C.2. Fix a subset A ( B ( V , and a function u : A→ R. Then,

(HTBL u) (x) = (HL u) (x) , x ∈ B .

This result asserts that the L-harmonic extension of u to V coincides on the
set B with the (TBL)-harmonic extension of u to B. More precisely, denote by
v = HLu the L-harmonic extension of u to V and by vB : B → R its restriction
to B, defined as vB(x) = v(x), x ∈ B. Lemma C.2 states that the function vB is
the (TBL)-harmonic extension of u to B. In other words, that vB solves equation
(C.5) with B, TBL replacing V , L, respectively.

Proof of Lemma C.2. Denote by XB
t the trace of the Markov chain Xt on B and

by HA(XB) its hitting time of the set A. Clearly, starting from x ∈ B, XB
HA(XB)

=

XHA
almost surely, so that

Ex[u(XB
HA(XB)) ] = Ex[u(XHA

) ]
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for all x ∈ B. By (C.7), the left-hand side of this equation is (HTBL u) (x), and the
right-hand side is (HL u) (x). This completes the proof of the lemma. �

Enumerate the set V \A as {x1, . . . , xp}, and let A0 = V , Ak = V \{x1, . . . , xk},
1 ≤ k ≤ p, so that A = Ap. Fix u : A → (0,∞), and denote by v its L-harmonic
extension to V , given by (C.5). Let vk : Ak → (0,∞) be the restriction of v to Ak,
1 ≤ k ≤ p, and v0 = v.

Corollary C.3. For all 1 ≤ k ≤ p,

[ (TAk−1
L) vk−1 ] (y) = 0 , y ∈ Ak−1 \A .

In particular, vk−1 is the (TAk−1
L)-harmonic extension of vj for k ≤ j ≤ p.

Proof. Fix 1 ≤ k ≤ p. By Lemma C.2, vk−1 is the (TAk−1
L)-harmonic extension

of u to Ak−1. Hence, for all y ∈ Ak−1 \ A, [ (TAk−1
L) vk−1 ] (y) = 0, as claimed.

By definition, for k ≤ j ≤ p, vk−1 and vj coincide on Aj , which proves the second
assertion of the corollary. �

Tilted dynamics. Fix v : V → (0,∞), and recall the definition of the jump rates
Rv introduced in (C.4). Denote by λv(x), λ(x) the holding times at x associated
to the rates Rv( · , · ), R( · , · ), respectively. Assume that (Lv)(x) = 0. Then,

λv(x) = λ(x) (C.9)

Indeed, since (Lv)(x) = 0,∑
y∈V

R(x, y) v(y) =
∑
y∈V

R(x, y) v(x) .

Hence,

λv(x) =
1

v(x)

∑
y∈V

R(x, y) v(y) =
1

v(x)

∑
y∈V

R(x, y) v(x) = λ(x) ,

as claimed.

Lemma C.4. Fix u : A→ (0,∞). Let v : V → (0,∞) be its harmonic extension to
V defined by (C.5). Then,

TA (MvL) = Mu (TAL) .

Proof. We first prove the lemma for A = V \ {x0}. Recall that we denote by
Rv(x, y) the jump rates of the tilted generator MvL. Denote by Rv,A(x, y) the
jump rates of the trace generator TAMvL. By (C.2), for all x 6= y ∈ A,

Rv,A(x, y) = Rv(x, y) +
1

λv(x0)
Rv(x, x0)Rv(x0, y) ,

where, recall, λv(x0) stands for the holding time at x0 associated to the rates
Rv(x, y). Since v is harmonic at x0, by (C.9) and the definition of Rv, the previous
expression is equal to

v(y)

v(x)

{
R(x, y) +

1

λ(x0)
R(x, x0)R(x0, y)

}
.
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Since v and u coincide on A, we may replace v(x), v(y) by u(x), u(y), respectively.
Representing by RA(z, w) the jump rates associated to the generator TAL, by (C.2)
once more, the previous expression is equal to

u(y)

u(x)
RA(x, y) ,

which proves the lemma in the case where V \A is a singleton.
We extend the result to arbitrary sets A. Fix a set A, and recall the notation

introduced above Corollary C.3. Fix 1 ≤ j ≤ p. By Corollary C.3, vk−1 is the
(TAk−1

L)-harmonic extension of vk. Thus, by the first part of the proof applied to
the generator TAk−1

L,

TAk Mvk−1
TAk−1

L = Mvk TAk TAk−1
L = Mvk TAk L (C.10)

because TAk TAk−1
L = TAk L.

Since A0 = V , TA0 L = L, and (C.10) for k = 1 states that

TA1
Mv0 L = Mv1 TA1

L .

Applying TA2
on both sides of this identity and then (C.10) yields that

TA2
Mv0 L = Mv2 TA2

L .

Iterating this procedure completes the proof of the lemma as v0 = v, vp = u,
A0 = V , Ap = A. �

Proof of Proposition C.1. By [2, Proposition 6.1], the Markov chain induced
by the trace generator TA L is irreducible. Hence, since µ(x) > 0 for all x ∈ A, by
Lemma A.3, there exists u : A→ (0,∞) such that

IT
A(µ) = −

∫
A

(TAL)u

u
dµ .

Denote by v the harmonic extension of u to V given by the solution of (C.5). By
(C.8), (Lv)(x) = [ (TAL)u ](x) for all x ∈ A. Hence, the right-hand side of the
previous displayed equation is equal to

−
∫
A

L v

v
dµ = −

∫
V

L v

v
dµ ≤ I(µ) .

The identity follows from the fact that A is the support of µ (or from the fact that
v is harmonic in Ac), and the inequality from the definition of the functional I.

We turn to the converse assertion. By definition of u, v and [5, Lemma A.1],

IT
A(µ) = −

∫
A

(TAL)u

u
dµ = −

∫
A

L v

v
dµ .

Recall that ν represents the stationary state of the tilted generator MvL. By [2,
Proposition 6.3], the measure ν conditioned to A is the stationary state of the
trace (the Markov chain induced by the generator TAMvL). Since, by Lemma
C.4, TAMvL = MuTAL, ν conditioned to A is the stationary state of the chain
associated to MuTAL. By Lemma A.1, µ is stationary for MuTAL as well. Since
the chain Xt is irreducible, so is the trace and the tilted trace. Thus, by uniqueness,
µ( · ) = ν( · )/ν(A), and the right-hand side of the previous displayed equation can
be written as

− 1

ν(A)

∫
A

L v

v
dν = − 1

ν(A)

∫
V

L v

v
dν
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because v is harmonic on V \A. Since ν is stationary for the tilted generator MvL,
by Lemma A.2, the right-hand side is equal to ν(A)−1I(ν). This completes the
proof of the lemma. �
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