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LARGE DEVIATIONS FOR DIFFUSIONS:

DONSKER-VARADHAN MEET FREIDLIN-WENTZELL

L. BERTINI, D. GABRIELLI, AND C. LANDIM

To Errico Presutti for his constant help and encouragement

Abstract. We consider a diffusion process on Rn and prove a large deviation
principle for the empirical process in the joint limit in which the time window

diverges and the noise vanishes. The corresponding rate function is given by

the expectation of the Freidlin-Wentzell functional per unit of time. As an
application of this result, we obtain a variational representation of the rate

function for the Gallavotti-Cohen observable in the small noise and large time

limits.

1. Introduction

A diffusion processes on Rn can be realized as the solution to the stochastic
differential equation {

dξεt = b(ξεt )dt+
√

2ε σ(ξεt )dwt

ξε0 = x
(1.1)

where b is a smooth vector field, w is a standard m-dimensional Brownian, σ is
a n × m matrix field, and the parameter ε > 0, that can be interpreted as the
temperature of the environment, will eventually vanish. We shall impose conditions
on b and σ which ensure the ergodicity of the process ξε.

An additive functional {AT }T≥0 of ξε is a real-valued, progressively measurable,
functional of ξε vanishing at T = 0 and such that AT+S = AT + AS ◦ θT , where
θT denotes the translation by T . Readily, functions of the occupation measure, i.e.
functional of the form

AT =

∫ T

0

dt f(ξεt ), f : Rn → R, (1.2)

are examples of additive functionals. The basic question that we here address is the
behavior of additive functionals in the joint limit in which the time window [0, T ]
diverges and the noise ε vanishes. More precisely, we establish a large deviation
principle in such joint limit.

According to the Donsker-Varadhan ideology [11], rather than focusing on a
single additive functional, the large deviation principle is better formulated for a
whole family of additive functionals. This is formally realized by analyzing the
asymptotics of the empirical process and the corresponding large deviations are
usually called at level three. Of course, the rate function for a specific additive
functional can then be obtained by projecting the level three rate function.
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To purse the joint limit T →∞ and ε→ 0 there are two simple alternatives. (i)
By taking first the limit ε→ 0 the large deviations of the empirical process can be
obtained by lifting the Freidlin-Wentzell asymptotic [12] to the set of translation
invariant probabilities on the path space. The limit as T → ∞ is then achieved
by analyzing the variational convergence of the corresponding, T -dependent, rate
function. (ii) By taking first the limit T →∞ the large deviations of the empirical
process are directly given by the level three Donsker-Varadhan asymptotic [11].
The limit as ε → 0 is then achieved by analyzing the variational convergence of
the corresponding, ε-dependent, rate function. We here follow both these alterna-
tive and show they lead to the same conclusion, the resulting rate function being
particularly simple to describe: it is the expectation of the Freidlin-Wentzell rate
function per unit of time.

In the context of non-equilibrium statistical mechanics, a relevant additive func-
tional not of the form (1.2) is the Gallavotti-Cohen observable [13,18,21,22]. As we
here discuss, its large deviations in joint limit in which the time window diverges
and the noise vanishes can be obtained by projection.

The analysis here performed shares common features with the one carried out
in [4] for the weakly asymmetric exclusion process in the hydrodynamic scaling
limit. The present setting avoids the technicalities involved in hydrodynamic limits
and the core of the argument is more transparent. On the other hand, the non-
compactness of the state space requires additional estimates.

2. Notation and main result

We denote by · the canonical inner product in Rn and by | · | the corresponding
Euclidean norm. For ε > 0 we consider the diffusion process on Rn with generator
Lε defined on C2 functions on Rn with compact support by

Lεf = εTr(aD2f) + b · ∇f (2.1)

whereD2f , respectively∇f , denotes the Hessian, respectively the gradient, of f and
a = {ai,j(·), i, j = 1, . . . , n

}
, respectively b = {bi(·), i = 1, . . . , n

}
, are the diffusion

matrix and the drift. We suppose that the vector field b admits the decomposition

b = −a∇V + c. (2.2)

Hereafter, we assume without further mention that a, V, c meet the following con-
ditions in which we denote by Mn the set of symmetric n× n matrices.

Assumption 2.1.

(i) V belongs to C2(Rn), V ≥ 0, lim
|x|→∞

∇V (x) · x
|x|

= +∞, and there exists

ε0 > 0 such that lim
|x|→∞

[
∇V (x) · a(x)∇V (x)− ε0 Tr

(
a(x)D2V (x)

)]
= +∞;

(ii) c belongs to C1(Rn;Rn) and it is bounded with bounded derivatives;
(iii) a belongs to C2(Rn;Mn), it is bounded with bounded derivatives, and it is

uniformly elliptic, i.e., there is constant C > 0 such that v ·a(x)v ≥ C−1|v|2
for any x, v ∈ Rn.

The process generated by Lε and initial condition x ∈ Rn can be realized as the
solution to the stochastic differential equation (1.1) choosing σ a globally Lipschitz
matrix field satisfying a = σσ†. In the present context, the vector field b is not
necessary globally Lipschitz; however Assumption 2.1 implies there exists a unique
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strong solution to (1.1), see e.g. [17, Thm. 3.5]. We shall denote the law of ξε by
Pεx that, given T > 0, we regard as a probability on C([0, T ];Rn).

We denote by D(R;Rn) the space of càdlàg paths with values on Rn that we
consider endowed with the Skorokhod topology on bounded intervals and the asso-
ciated Borel σ-algebra. Given T > 0 and a path X ∈ C([0, T ];Rn) we denote by
XT ∈ D(R;Rn) its T -periodization, i.e.,

(XT )t := Xt−bt/TcT , t ∈ R.

Observe that XT is T -periodic and continuous except at the times kT , k ∈ Z where
it has the jump of size X0−XT . For t ∈ R we denote by θt : D(R;Rn)→ D(R;Rn)
the translation by t namely, (θtX)s := Xs−t, s ∈ R. We finally denote by Pθ the set
of translation invariant probabilities on D(R;Rn), i.e. the set of Borel probabilities
P satisfying P ◦θ−1

t = P for any t ∈ R. We consider Pθ endowed with the topology
induced by weak convergence and the associated Borel σ-algebra.

Given T > 0, the empirical process is the map RT : C([0, T ];Rn) → Pθ defined
by

RT (X) :=
1

T

∫ T

0

dt δθtXT . (2.3)

Note indeed that, by the T -periodicity of XT , the right hand side defines a trans-
lation invariant probability on D(R;Rn).

Our main result establishes the large deviation principle for the family of prob-
abilities on Pθ given by

{
Pεx ◦ R−1

T

}
in the joint limit ε → 0 and T → ∞. Let

us first recall the Freidlin-Wentzell functional associated to (1.1). Given T > 0,
denote by H1([0, T ]) the set of absolutely continuous paths X : [0, T ] → Rn such

that
∫ T

0
dt |Ẋt|2 < +∞ and let I[0,T ] : C([0, T ];Rn) → [0,+∞] be the functional

defined by

I[0,T ](X) :=


1

4

∫ T

0

dt
[
Ẋt − b(Xt)

]
· a−1(Xt)

[
Ẋt − b(Xt)

]
if X ∈ H1([0, T ]),

+∞ otherwise.

(2.4)

We regard I[0,T ] also as a functional on D(R;Rn) understating that I[0,T ](X) is
infinite if the restriction of X to [0, T ] does not belong to C([0, T ];Rn). We then
let I : Pθ → [0,+∞] be the functional defined by

I(P ) :=

∫
dP (X) I[0,1](X). (2.5)

Observe that I is affine and, by the translation invariance of P , if I(P ) < +∞ then
P -a.s. t 7→ Xt is absolutely continuous. In the next statement we use the shorthand
notation limT,ε for either limε→0 limT→∞ or limT→∞ limε→0. Analogously, limT,ε

stands for either limε→0 limT→∞ or limT→∞ limε→0.

Theorem 2.2. As ε → 0 and T → ∞, the family
{
Pεx ◦ R−1

T , T > 0, ε > 0
}

satisfies, uniformly for x in compacts, a large deviation principle with speed ε−1T
and rate function I. Namely, for each compact set K ⊂⊂ Rn, each closed set
C ⊂ Pθ, and each open set A ⊂ Pθ

lim
T,ε

sup
x∈K

ε

T
logPεx

(
RT ∈ C

)
≤ − inf

P∈C
I(P ) ,

lim
T,ε

inf
x∈K

ε

T
logPεx

(
RT ∈ A

)
≥ − inf

P∈A
I(P ) .
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Moreover, the functional I is good and affine.

Referring to Section 5 for an application of this result to the asymptotics of the
Gallavotti-Cohen observable, we next mention some of its possible developments.
While Theorem 2.2 suggests that the large deviations hold whenever (ε, T ) →
(0,+∞), the proof relies in computing first the limit as T →∞ and then ε→ 0 or
the converse. It thus appears that a truly joint limit requires new methods. In the
case in which the limiting deterministic dynamical system obtained by setting ε = 0
in (1.1) has more than a single stationary probability, as it is the case for metastable
processes, the zero level set of the functional I is not a singleton. In the spirit of
the so-called development by Γ-convergence, see e.g. [7, § 1.10], it is then possible
to investigate higher order large deviations asymptotics. In the case of reversible
diffusions, this development for the Fisher information, i.e. the Donsker-Varadhan
level two rate function for the occupation measure, has been achieved in [10]. The
corresponding analysis for finite state Markov chains has been carried out in [5,20].
We emphasize that the limits as T →∞ and ε→ 0 do not commute for the higher
order large deviations. While the present analysis is carried out for non-degenerate
diffusion processes, the problem of computing the small noise limit of the level three
Donsker-Varadhan functional can be formulated for general Markov processes.

3. Large time limit after small noise limit

Recalling (2.4), for T > 0 and x ∈ Rn let Ix[0,T ] : C([0, T ];Rn) → [0,+∞] be the

functional defined by

Ix[0,T ](X) :=

{
I[0,T ](X) if X0 = x,

+∞ otherwise.
(3.1)

Let also Ix[0,T ] : Pθ → [0,+∞] be defined by

Ix[0,T ](P ) := inf
{
Ix[0,T ](X), RT (X) = P

}
, (3.2)

where we adopt the standard convention that the infimum over the empty set is
+∞. Note that, for X ∈ C([0, T ];Rn), if X(0) 6= X(T ) or if X(0) = X(T ) = x, then
Ix[0,T ](P ) = Ix[0,T ](X). In contrast, if X(0) = X(T ) and X(0) 6= x, Ix[0,T ](X) = +∞
and Ix[0,T ](P ) may be finite if X(t) = x for some 0 ≤ t ≤ T . In view of the continuity

of the map C([0, T ];Rn) 3 X 7→ RT (X) ∈ Pθ, the following statement follows
directly, by the contraction principle, from the Freidlin-Wentzell asymptotics [12].
The present case of an unbounded vector field b is covered by [1, Thm. III.2.13].

Lemma 3.1. Fix T > 0. As ε→ 0 the family
{
Pεx◦R−1

T , ε > 0
}

satisfies, uniformly

for x in compacts, a large deviation principle with speed ε−1 and good rate function
Ix[0,T ]. Namely, for each x ∈ Rn, each sequence xε → x, each closed set C ⊂ Pθ,

and each open set A ⊂ Pθ

lim
ε→0

ε logPεxε
(
RT ∈ C

)
≤ − inf

P∈C
Ix[0,T ](P )

lim
ε→0

ε logPεxε
(
RT ∈ A

)
≥ − inf

P∈A
Ix[0,T ](P ).

In order to achieve the proof of Theorem 2.2 we next analyze the variational
convergence of the family of functionals

{
T−1 Ix[0,T ]

}
as T → ∞. With respect to

the standard framework of Γ-convergence, see e.g. [7], in the present setting there
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is the additional dependence on the parameter x, for which we need uniformity on
compacts.

Theorem 3.2. Fix a compact set K ⊂⊂ Rn.

(i) If a sequence {PT } ⊂ Pθ satisfies limT T
−1 IxT[0,T ](PT ) < +∞ for some

{xT } ⊂ K then {PT } has a pre-compact sub-sequence.
(ii) For any P ∈ Pθ, any sequence {xT } ⊂ K, and any sequence PT → P

lim
T→∞

1

T
IxT[0,T ](PT ) ≥ I(P ).

(iii) For any P ∈ Pθ and any sequence {xT } ⊂ K there exists a sequence PT →
P such that

lim
T→∞

1

T
IxT[0,T ](PT ) ≤ I(P ).

Assuming the above result, we first show that it implies the large deviations of
the empirical process in the limit in which first the noise vanishes and then the
time interval diverges.

Proof of Theorem 2.2 (T →∞ after ε→ 0). We start by showing the goodness of
the rate function. Since I[0,T ] is lower semi-continuous, by Portmanteau theorem,
I is also lower semi-continuous. It thus suffices to show that I has pre-compact
sublevel sets. In view of the conditions in Assumption 2.1, by expanding the square
in (2.4) we deduce there are constants γ,C > 0 depending only on V, c, a such that
for any X ∈ C([0, T ];Rn)

I[0,T ](X) ≥ 1

2

[
V (XT )− V (X0)

]
+ γ

∫ T

0

dt
[
|Ẋt|2 + |∇V (Xt)|2

]
− CT. (3.3)

Take expectation with respect to P . The translation invariance of P and the bound
I[0,T+S](X) ≤ I[0,T ](X)+I[0,S](θ−TX) yields that for each bounded interval [T1, T2]∫

dP (X)

[
|∇V (X0)|2 +

1

T2 − T1

∫ T2

T1

dt |Ẋt|2
]
≤ C

[
1 + I(P )

]
(3.4)

for a new constant C. By the assumptions on V and standard criterion, see e.g. [6,
Thm. 8.2], I has pre-compact sublevel sets, as claimed.

To prove the upper bound, we first observe that the Feller property of the semi-
group generated by Lε and the continuity of RT imply that for each closed set
C ⊂ Pθ the map x 7→ Pεx(RT ∈ C) is upper semi-continuous. Therefore, given a
compact set K ⊂⊂ Rn, there exists a sequence {xT,ε} ⊂ K such that

sup
x∈K

Pεx(RT ∈ C) = PεxT,ε(RT ∈ C).

By passing to a not relabeled sub-sequence we may assume that the sequence
{xT,ε}ε>0 converges to some xT ∈ K. From Lemma 3.1 we then deduce

lim
ε→0

sup
x∈K

ε logPεx
(
RT ∈ C

)
≤ − inf

P∈C
IxT[0,T ](P )

so that

lim
T→∞

lim
ε→0

sup
x∈K

ε

T
logPεx

(
RT ∈ C

)
≤ − lim

T→∞
inf
P∈C

1

T
IxT[0,T ](P ).
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If limT infP∈C T
−1IxT[0,T ](P ) = +∞ the right-hand side above is trivially bounded

above by − infP∈C I(P ). If conversely limT infP∈C T
−1IxT[0,T ](P ) < +∞, there exist

sequences Tk →∞ and {Pk} ⊂ C such that

lim
T→∞

inf
P∈C

1

T
IxT[0,T ](P ) = lim

k→∞

1

Tk
I
xTk
[0,Tk](Pk) .

By item (i) in Theorem 3.2, there exists P ∗ and a further sub-sequence, still denoted
by {Pk} ⊂ C, converging to P ∗. By the goodness of the rate function Ix[0,T ], P

∗ ∈ C,

and, by item (ii) in Theorem 3.2,

lim
k→∞

1

Tk
I
xTk
[0,Tk](Pk) ≥ I(P ∗) ≥ inf

P∈C
I(P )

which concludes the proof of the upper bound.
To prove the lower bound, observe that, again by the Feller property of the

semigroup generated by Lε and the continuity of RT , for each open set A ⊂ Pθ the
map x 7→ Pεx(RT ∈ A) is lower semi-continuous. Therefore, given a compact set
K ⊂⊂ Rn, there exists a sequence {xT,ε} ⊂ K such that

inf
x∈K

Pεx(RT ∈ A) = PεxT,ε(RT ∈ A).

By passing to a not relabeled sub-sequence we may assume that the sequence
{xT,ε}ε>0 converges to some xT ∈ K. From Lemma 3.1 we then deduce

lim
ε→0

inf
x∈K

ε logPεx
(
RT ∈ A

)
≥ − inf

P∈A
IxT[0,T ](P ).

If infP∈A I(P ) = +∞, the right-hand side is bounded below by − infP∈A I(P ), and
the lower bound of Theorem 2.2 is proved. Conversely, assume that infP∈A I(P ) <
+∞. In this case, given δ > 0, let P ∗ ∈ A be such that infP∈A I(P ) ≥ I(P ∗) − δ.
By item (iii) in Theorem 3.2, for {xT } ⊂ K as above there exists a sequence
{PT } converging to P ∗ and such that limT T

−1IxT[0,T ](PT ) ≤ I(P ∗). Since P ∗ ∈ A,

PT → P ∗ and A is an open set, PT ∈ A for T large enough. Therefore,

lim
T→∞

lim
ε→0

inf
x∈K

ε

T
logPεx

(
RT ∈ A

)
≥ − lim

T→∞

1

T
inf
P∈A

IxT[0,T ](P )

≥ − lim
T→∞

1

T
IxT[0,T ](PT ) ≥ −I(P ∗) ≥ − inf

P∈A
I(P )− δ,

which, by taking the limit δ → 0, concludes the proof. �

To prove Theorem 3.2, we premise a density result on set of translation invariant
probability measures on D(R;Rn). An element P in Pθ is said to be S-holonomic
if there exists a S-periodic path Y ∈ C(R;Rn) such that

P =
1

S

∫ S

0

dt δθtY , (3.5)

where we emphasize that we require Y to satisfy YS = Y0. An element of Pθ is
holonomic if it is S-holonomic for some S > 0; it is smooth holonomic when the
path Y in (3.5) belongs to C1(R;Rn).

Lemma 3.3. Fix P ∈ Pθ satisfying I(P ) < +∞. There exist a triangular array
{αni , n ∈ N, i = 1, . . . , n} with αni ≥ 0,

∑
i α

n
i = 1 and a triangular array {Pni , n ∈

N, i = 1, . . . , n} of smooth holonomic probability measures such that by setting Pn :=∑
i α

n
i P

n
i we have Pn → P and I(Pn)→ I(P ).
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Proof. We follow the argument in [4, Thm. 4.10], see also [2] for similar results.
The proof is achieved, by a diagonal argument, from the following claims. Recall

that P ∈ Pθ is ergodic when the tail σ-algebra is P -trivial.

Claim 1. Let P ∈ Pθ be such that I(P ) < +∞. There exist a triangular array
{αni , n ∈ N, i = 1, . . . , n} with αni ≥ 0,

∑n
i=1 α

n
i = 1 and a triangular array

{Pni , n ∈ N, i = 1, . . . , n} of ergodic probability measures such that
∑n
i=1 α

n
i P

n
i →

P and
∑n
i=1 α

n
i I(P

n
i )→ I(P ).

This follows directly from the fact that the ergodic probabilities are extremal in
Pθ and I is affine.

Claim 2. Let P ∈ Pθ be ergodic and such that I(P ) < +∞. Then there exists a
sequence Pn → P such that I(Pn) → I(P ) and for each n the probability Pn is
holonomic.

Recalling (2.3), to construct the required sequence set

AP :=
{
X ∈ D(R;Rn) : lim

T→∞
RT (X) = P, and lim

T→∞

1

T
I[0,T ](X) = I(P )

}
.

Since I(P ) < +∞ then I[0,1] ∈ L1(dP ). The Birkhoff’s ergodic theorem then
implies P (AP ) = 1. Pick an element Y ∈ AP . By definition, the T -holonomic
probability associated to the T -periodization of Y converges to P but, in general,
its rate function does not since when T -periodizing paths we may insert jumps.
This issue is easily solved by modifying the path Y in the time interval [T − 1, T ]
in such a way that YT = Y0 and T−1I[T−1,T ](Y )→ 0.

Claim 3. Let P ∈ Pθ be holonomic and such that I(P ) < +∞. Then there exists
a sequence of C1 holonomic probability measures Pn ∈ Pθ such that Pn → P and
I(Pn)→ I(P ).

The required sequence is constructed by taking the convolution ın ∗X where ın
is a smooth approximation of the identity and X is the continuous periodic path
associated to the measure P . �

Proof of Theorem 3.2.
Item (i). By assumption, there exist a finite constant C0 and sequences Tj → ∞,

xj ∈ K, and Pj ∈ Pθ such that I
xj
[0,Tj ]

(Pj) ≤ C0Tj . Fix j. By definition of I
xj
[0,Tj ]

(Pj),

there exists Y ∈ C([0, Tj ];Rn) satisfying RTj (Y ) = Pj , I
xj
[0,Tj ]

(Y ) ≤ I
xj
[0,Tj ]

(Pj) + 1.

As the rate function is finite, Y (0) = xj . By (3.3) and since V ≥ 0,∫
dPj(X) |∇V (X0)|2 =

1

Tj

∫ Tj

0

dt|∇V (Xt)|2

≤ 1

2Tj
V (xj) +

1

γ

[
C +

1

Tj
I
xj
[0,Tj ]

(Pj)
]
.

(3.6)

Since I
xj
[0,Tj ]

(Y ) ≤ I
xj
[0,Tj ]

(Pj) + 1 and xj belongs to a compact, the right-hand side

is bounded by a finite constant, uniformly in j.
The bound on the continuity modulus is somewhat more delicate as the T -

periodization introduces, in general, jumps. On the other hand, given T1 < T2 and
P = RT (Y ) for some Y ∈ C([0, T ];Rn), the P probability of observing a jump
in the time window [T1, T2] is at most (T2 − T1)/T . For δ > 0, T1 < T2, and
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X ∈ D(R;Rn), introduce the continuity modulus

ωδ[T1,T2](X) := sup
t,s∈[T1,T2]
|t−s|<δ

|Xt −Xs|.

By Cauchy-Schwarz, if the restriction of X to [T1, T2] belongs to H1([T1, T2]) then

ωδ[T1,T2](X)2 ≤ δ
∫ T2

T1

dt |Ẋ|2.

By the previous observations, if P = RT (Y ) for some Y satisfying Ix[0,T ](Y ) < +∞
for some x ∈ K, from Chebyshev inequality we deduce that for each ζ > 0

P
(
ωδ[T1,T2] > ζ

)
≤ T2 − T1

T
+

(T2 − T1)δ

ζ2

1

T

∫ T

0

dt |Ẏ |2

≤ T2 − T1

T
+

(T2 − T1)δ

γζ2

[ 1

2T
sup
y∈K

V (y) + C +
1

T
Ix[0,T ](P )

]
.

where we used (3.3) in the second step.
By standard criterion on the tightness of probability measures on D(R;Rn),

see e.g. [6, Thm. 15.5], the previous displayed bound together with (3.6) yield the
statement.

Item (ii). If Ix[0,T ](P ) < +∞ then there exists Y ∈ C([0, T ];Rn) such that P =

RT (Y ) and for T ≥ 1

Ix[0,T ](P ) = Ix[0,T ](Y ) ≥ I[0,T ](Y ) ≥
∫ T−1

0

dt I[0,1](θ−tY )

= (T − 1)

∫
dP̃ (X) I[0,1](X)

where we used (3.1) in the second step and we have set

P̃ :=
1

T − 1

∫ T−1

0

dt δθtY T =
T

T − 1
P − 1

T − 1

∫ T

T−1

dt δθtY T . (3.7)

Consider now P ∈ Pθ and sequences {xT }, PT → P as in the statement. By
passing to a not relabeled sub-sequence we may assume that PT = RT (Y ) for some

Y = Y (T ) ∈ C([0, T ];Rn). Letting P̃T be defined as in (3.7) we then have P̃T → P
and

lim
T→∞

1

T
IxT[0,T ](PT ) ≥ lim

T→∞

T − 1

T

∫
dP̃T (X) I[0,1](X) ≥

∫
dP (X) I[0,1](X) = I(P )

where we have used the lower semi-continuity of I[0,1].

Item (iii). In view of Lemma 3.3, it suffices to consider the case in which P is

smooth holonomic, i.e. P = S−1
∫ S

0
ds δθsY for some S > 0 and some S-periodic

path Y ∈ C1(R,Rn). In particular, I(P ) = S−1I[0,S](Y ).

Given x, y ∈ Rn let Ȳ x,y ∈ C([0, 1];Rn) be the affine interpolation between x
and y, i.e. Ȳ x,yt = x(1 − t) + yt, t ∈ [0, 1]. By a direct computation there exist
C(|x|, |y|) > 0 depending on V, c, a such that

I[0,1](Ȳ
x,y) ≤ C(|x|, |y|).
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For T > 0 and a sequence {xT } ⊂ K as in the statement, let Ỹ ∈ C([0,+∞);Rn)
be the path defined by

Ỹt :=

{
Ȳ xT ,Y0

t if t ∈ [0, 1],

Yt−1 if t > 1,

and set PT := RT (Ỹ ). Then PT → P and for T ≥ 1

IxT[0,T ](PT ) = IxT[0,T ](Ỹ ) = I[0,1]

(
Ȳ xT ,Y0

)
+ I[0,T−1](Y )

so that

lim
T→∞

1

T
IxT[0,T ](PT ) ≤ lim

T→∞

[ 1

T
sup
x∈K

C(|x|, |Y0|) +
1

T
I[0,T−1](Y )

]
= I(P )

by the S-periodicity of Y . �

4. Small noise limit after large time limit

By Assumption 2.1 and standard criteria, see e.g. [17, Thm. 3.7 and Cor. 4.4],
for each ε > 0 the process ξε that solves (1.1) admits a unique invariant probability
πε. We denote by Pεπε the corresponding stationary process, that we regard as a
probability on D(R;Rn). For fixed ε > 0, the Donsker-Varadhan theorem [9,11,26]
states the large deviation principle as T → ∞ for the family {Pεx ◦ R−1

T }T>0 with
rate function given by the relative entropy per unit of time with respect to Pεπε .

We first introduce such rate function by a variational representation. For T > 0,
let Hε(T, ·) : Pθ → [0,+∞] be the functional defined by

Hε(T, P ) := sup
Φ

∫
dP (X)

[
Φ(X)− logEεX0

(
eΦ
)]
, (4.1)

where Eεx denotes the expectation with respect to Pεx, x ∈ Rn and the supremum
is carried over the bounded and continuous functions Φ on D(R,Rn) that are mea-
surable with respect to σ{Xs, s ∈ [0, T ]

}
. Let then Hε : Pθ → [0,+∞] be the

functional defined by

Hε(P ) := sup
T>0

1

T
Hε(T, P ) = lim

T→∞

1

T
Hε(T, P ), (4.2)

where the second identity follows from the inequality before [26, Thm. 10.9]. By [26,
Thm.s 10.6 and 10.8], the functional Hε is good and affine.

We next characterize Hε as the relative entropy per unit of time with respect
Pεπε . Given T1 < T2, denote by ıT1,T2

: D(R,Rn) → D([T1, T2],Rn) the canonical
projection. Given two probability measures P 1, P 2 on D(R,Rn), let H[T1,T2](·|·) be

the relative entropy of the marginal of P 2 on the time interval [T1, T2] with respect
to the marginal of P 1 on the same interval, i.e.,

H[T1,T2](P
2|P 1) = Ent

(
P 2

[T1,T2]

∣∣P 1
[T1,T2]

)
:=

∫
dP 2

[T1,T2] log
dP 2

[T1,T2]

dP 1
[T1,T2]

(4.3)

where P j[T1,T2] = P j ◦ ı−1
T1,T2

, j = 1, 2. By [9, Thm. 5.4.27], for each P ∈ Pθ

Hε(P ) = lim
T→∞

1

T
H[0,T ]

(
P
∣∣Pεπε) = sup

T>0

1

T
H[0,T ]

(
P
∣∣Pεπε), (4.4)

where the second identity follows by a super-additivity argument which stems from
[26, Lemma 10.3].
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Recalling that ε0 > 0 is the constant appearing in item (i) of Assumption 2.1,
the large deviation principle in the limit T →∞ is then stated as follows.

Lemma 4.1. Fix ε ∈ (0, ε0). As T → ∞ the family
{
Pεx ◦ R−1

T , T > 0
}

satisfies,
uniformly for x in compacts, a large deviation principle with speed T and good affine
rate function Hε. Namely, for each compact set K ⊂⊂ Rn, each closed set C ⊂ Pθ,
and each open set A ⊂ Pθ

lim
T→∞

1

T
sup
x∈K

logPεx
(
RT ∈ C

)
≤ − inf

P∈C
Hε(P )

lim
T→∞

1

T
inf
x∈K

logPεx
(
RT ∈ A

)
≥ − inf

P∈A
Hε(P ).

Proof. The statement follows from [26, Thm.s 11.6 and 12.5], we only need to check
that the hypotheses of those theorems are met.

Regarding the upper bound, given γ ∈ (0, 1) set

uε(x) := exp
{γ
ε
V (x)

}
, x ∈ Rn. (4.5)

We claim that Assumption 2.1 implies that uε meets conditions (1)–(5) in [26,
Pag. 34] for any ε ∈ (0, ε0) and a suitable γ ∈ (0, 1). Indeed, uε ≥ 1 and uε is
bounded on compacts. Moreover, by a direct computation,

Wε := −Lεu
u

=
γ

ε

[
(1− γ)∇V · a∇V − c · ∇V − εTr(aD2V )

]
(4.6)

satisfies infxWε(x) > −∞ and lim|x|→∞Wε(x) = +∞ for γ small enough. Even if
uε does not really belong to the domain of the generator Lε, it is straightforward to
introduce a cutoff function φn : Rn → (0,+∞) such that uε,n := uε φn belongs to
the domain of Lε for each n ∈ N and the sequence {uε,n, n ∈ N} satisfies conditions
(1)–(5) in [26, Pag. 34].

Regarding the lower bound, denote by pε(t, x, ·), t ≥ 0, x ∈ Rn the transition
probability of the Markov process ξε and by α the Lebesgue measure on Rn. By
standard parabolic regularity, pε(1, x, ·) satisfies conditions I–II in [26, Pag. 34]. �

In view of the argument presented in the previous section, the proof of The-
orem 2.2 is completed by the variational convergence of εHε to I. As the x-
dependence has disappeared in the limit T →∞, the following statement amounts
to the standard Γ-convergence of the sequence {εHε}, see e.g. [7], together with
the pre-compactness of sequences {Pε} with equi-bounded rate function.

Theorem 4.2.

(i) If a sequence {Pε} ⊂ Pθ satisfies limε εH
ε(Pε) < +∞ then it has a pre-

compact sub-sequence.
(ii) For any P ∈ Pθ and any sequence Pε → P

lim
ε→0

εHε(Pε) ≥ I(P ).

(iii) For any P ∈ Pθ there exists a sequence Pε → P such that

lim
ε→0

εHε(Pε) ≤ I(P ).

We next prove separately the three statements, each one having a preliminary
lemma.
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Lemma 4.3. The sequence {Pεπε} ⊂ Pθ is exponentially tight, i.e., there exists a
sequence of compact sets K` ⊂⊂ D(R,Rn) such that

lim
`→∞

lim
ε→0

ε logPεπε
(
Kc
`

)
= −∞.

Proof. We first show that {πε} is an exponentially tight family of probabilities on

Rn. Observe that, by ergodicity, πε = limT→∞ T−1
∫ T

0
dtPε0(Xt ∈ ·). Recalling

(4.5), for R > 0 let uRε : Rn → [1,+∞) be a smooth function such that

uRε (x) :=

{
uε(x) if |x| ≥ R+ 1,

1 if |x| ≤ R.

In view of Assumption 2.1 and (4.6), there are R,α > 0 such that for any ε small
enough Lεu

R
ε ≤ −αuRε so that

Eε0
(
uRε (Xt)

)
≤ 1− α

∫ t

0

dsEε0
(
uRε (Xs)

)
.

Whence, by Gronwall’s lemma, supt Eε0
(
uRε (t)

)
≤ 1. By changing the value of the

parameter γ ∈ (0, 1) in (4.5), this bound provides the uniform integrability of uRε
with respect to

{
T−1

∫ T
0
dtPε0(Xt ∈ ·)

}
T>0

. Therefore, by ergodicity,∫
dπε(x)uRε (x) = lim

T→∞

1

T

∫ T

0

dtEε0
(
uRε (Xt)

)
≤ 1

which, by Chebyshev inequality, yields the exponential tightness of {πε}.
We now observe that the Freidlin-Wentzell asymptotics implies that for each

T > 0 the family {Pεx}ε>0 is exponentially tight on C([0, T ];Rn) uniformly for x in
compacts. Since Pεπε =

∫
dπε(x)Pεx, the statement follows. �

Proof of Theorem 4.2, item (i). Fix T1 < T2. By the basic entropy inequality, see
e.g. [16, Prop. A1.8.2], and (4.4), for any P ∈ Pθ and any event B on D([T1, T2];Rn)

P (B) ≤ log 2 + (T2 − T1)Hε(P )

log
(

1 +
[
Pεπε(B)

]−1
) .

The statement now follows from Lemma 4.3. �

As just proven, sequences {Pε} with equi-bounded rate function admit cluster
points. We next show they enjoy some regularity.

Lemma 4.4. There is a constant C > 0 depending on V, c, a such that the following
holds. If {Pε} ⊂ Pθ is a sequence converging to P then for any T1 < T2∫

dP (X)

[∣∣∇V (X0)
∣∣2 +

1

T2 − T1

∫ T2

T1

dt |Ẋt|2
]
≤ C

[
1 + lim

ε→0
εHε(Pε)

]
.

Proof. In order to obtain the estimate on
∫
dP (X) |∇V (X0)|2, we first prove the

following bound. There are constants γ,C > 0 such that for any T > 0

lim
ε→0

ε logEεπε
(

exp
{γ
ε

∫ T

0

dt∇V (Xt) · a(Xt)∇V (Xt)
})
≤ C(1 + T ). (4.7)

For λ ∈ (0, 1) to be chosen later, let Mλ be the Pεx martingale given by

Mλ
t :=

λ

ε

∫ t

0

∇V (Xs) ·
(
dXs − b(Xs)ds

)
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where we understand the Itô integral. Its quadratic variation is

〈Mλ〉t :=
2λ2

ε

∫ t

0

ds∇V (Xs) · a(Xs)∇V (Xs).

Setting ΦλT := Mλ
T − (1/2)〈Mλ〉T and recalling that b = −a∇V + c, from Itô’s

formula we get

ΦλT =
λ

ε

{
V (XT )− V (X0) +

∫ T

0

dt
[
(1− λ)∇V (Xt) · a(Xt)∇V (Xt)

− εTr
(
a(Xt)D

2V (Xt)
)
−∇V (Xt) · c(Xt)

]}
Assumption 2.1 implies that for each σ ∈ (0, 1−λ) there is a constant Cσ such that
for any ε small enough

ΦλT ≥
λ

ε

{
− V (X0)− CσT + (1− λ− σ)

∫ T

0

dt∇V (Xt) · a(Xt)∇V (Xt)
}
.

Hence, setting γ := λ (1− λ− σ)/2,

γ

ε

∫ T

0

dt∇V (Xt) · a(Xt)∇V (Xt) ≤
1

2
ΦλT +

λ

2ε

[
CσT + V (X0)

]
so that, by Cauchy-Schwarz,[

Eεπε
(
e
γ
ε

∫ T
0
dt∇V (Xt)·a(Xt)∇V (Xt)

)]2
≤ e

λCσT
ε Eεπε

(
eΦλT

) ∫
dπε e

λ
ε V .

We deduce the bound (4.7) by observing that Eεπε
(
eΦλT

)
= 1 and, as follows from

the proof of Lemma 4.3, that there exists λ ∈ (0, 1) for which

lim
ε→0

ε log

∫
dπε e

λ
ε V < +∞.

By the variational characterization of the relative entropy, for any Pε ∈ Pθ∫
dPε(X)

∫ T

0

dt∇V (Xt) · a(Xt)∇V (Xt)

≤ ε

γ
logEεπε

(
e
γ
ε

∫ T
0
dt∇V (Xt)·a(Xt)∇V (Xt)

)
+
ε

γ
H[0,T ]

(
Pε
∣∣Pεπε).

If Pε → P , by the translation invariance of P , Fatou’s lemma, the previous bound,
(4.4) and (4.7),∫

dP (X)∇V (X0) · a(X0)∇V (X0) =

∫
dP (X)

1

T

∫ T

0

dt∇V (Xt) · a(Xt)∇V (Xt)

≤ lim
ε→0

∫
dPε(X)

1

T

∫ T

0

dt∇V (Xt) · a(Xt)∇V (Xt)

≤ C

γ

(
1 +

1

T

)
+

1

γ
lim
ε→0

εHε(Pε) .

As the left-hand side does not depend on ε, we may choose at the beginning a
sequence εk which achieves the lim inf on the right-hand side. Since a is uniformly
elliptic, the first assertion of the Lemma is proved.
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In order to obtain the estimate on the derivative, we next prove the following
bound. There are constants γ1, γ2, C > 0 such that for any T > 0 and any v ∈
C1([0, T ];Rn) with support in (0, T )

lim
ε→0

ε logEεπε
(

exp
{γ1

ε

∫ T

0

dt
[
v̇t ·Xt − γ2|vt|2

]})
≤ C(1 + T ). (4.8)

For λ > 0 to be chosen later, let Mλ be the Pεx martingale given by

Mλ
t := −2λ

ε

∫ t

0

vs ·
(
dXs − b(Xs)ds

)
whose quadratic variation is

〈Mλ〉t :=
8λ2

ε

∫ t

0

ds vs · a(Xs)vs.

Set ΦλT := Mλ
T − (1/2)〈Mλ〉T and recall v0 = vT = 0. Integrating by parts and

using Assumption 2.1 we deduce there are constants γ2, C > 0 such that

λ

ε

∫ T

0

dt
[
v̇t ·Xt − γ2|vt|2

]
≤ 1

2
ΦλT +

Cλ

2ε

{
T +

∫ T

0

dt∇V (Xt) · a(Xt)∇V (Xt)
}
.

By choosing λ small enough and using Eεπε
(
eΦλT

)
= 1 together with (4.7) we thus

achieve the proof of (4.8) by Cauchy-Schwarz.
Pick a family {vk} of paths in C1((0, T );Rn) with compact support and dense

in L2((0, T );Rn). Assume that v1 = 0. In view of (4.8), the variational character-
ization of the relative entropy, and a classical argument which allows to bound a
maximum over a finite set in exponential estimates, there exists a constant C > 0
such that for any N ∈ N,

lim
ε→0

∫
dPε(X) max

k∈{1,...,N}

∫ T

0

dt
[
v̇kt ·Xt − γ2

∣∣vkt ∣∣2] ≤ C(1 + T )
[
1 + lim

ε→0
εHε(Pε)

]
.

Since Pε → P and v1 = 0, from Fatou’s lemma we deduce∫
dP (X) max

k∈{1,...,N}

∫ T

0

dt
[
v̇kt ·Xt − γ2

∣∣vkt ∣∣2] ≤ C(1 + T )
[
1 + lim

ε→0
εHε(Pε)

]
whence, by monotone convergence,∫

dP (X) sup
k∈N

∫ T

0

dt
[
v̇kt ·Xt − γ2

∣∣vkt ∣∣2] ≤ C0(1 + T )
[
1 + lim

ε→0
εHε(Pε)

]
.

Since the family {vk} is dense in L2((0, T );Rn) this estimate implies that P -a.s.
X belongs to H1([0, T ]) and, by the translation invariance of P , the second part of
the bound in the statement. �

Proof of Theorem 4.2, item (ii). For δ > 0 let ıδ be a smooth probability density
on R with support contained in (0, δ). For X ∈ D(R;Rn) let ıδ ∗X ∈ C∞(R;Rn)
be defined by

(ıδ ∗X)t :=

∫
ds ıδ(t− s)Xs,

where, by the support property of ıδ, we can restrict the integral to (t − δ, t). In
particular, d

dt ıδ ∗X = ı′δ ∗X. Given w ∈ C
(
Rn × Rn;Rn) bounded, let Wδ be the

Rn-valued function on R×D(R;Rn) defined by

Wδ(t,X) := χδ(t)w
(
(ıδ ∗X)t, (ı

′
δ ∗X)t

)
,
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where χδ : R → [0, 1] is a smooth function satisfying χδ(t) = 0 for t ≤ δ and
χδ(t) = 1 for t ≥ 2δ. Note that, by construction, Wδ(t, ·) is continuous, bounded,
and measurable with respect to the σ-algebra generated by {Xs, s ∈ [0, t]}.

Consider now the Pεx–martingale Mδ,ε defined by

Mδ,ε
t :=

1

ε

∫ t

0

Wδ(s,X) ·
(
dXs − b(Xs)ds

)
whose quadratic variation is

〈M δ,ε〉t =
2

ε

∫ t

0

dsWδ(s,X) · a(Xs)Wδ(s,X).

Let finally Φδ,ε : D(R;Rn)→ R be the σ{Xs, s ∈ [0, 1]}measurable function defined
by

Φδ,ε := M δ,ε
1 − 1

2
〈M δ,ε〉1

and observe that Eεx
(
eΦδ,ε

)
= 1, x ∈ Rn.

Even if Φδ,ε is neither continuous nor bounded, by a truncation procedure whose
details are omitted, see e.g. [26, Lemma 6.2] for a similar argument, we can take Φ =
Φδ,ε in the variational representation (4.1). If {Pε} ⊂ Pθ is a sequence converging
to P , by (4.2) and the regularity of P in Lemma 4.4 we deduce that

lim
ε→0

εHε(Pε) ≥
∫
dP (X)

∫ 1

0

dt
[
Wδ(t,X) ·

(
Ẋt− b(Xt)

)
−Wδ(t,X) ·a(Xt)Wδ(t,X)

]
.

In view of Lemma 4.4 and dominated convergence, we can take the limit as δ → 0
inside the integrals on the right hand side above. We thus infer that for any bounded
w ∈ C(Rn × Rn;Rn)

lim
ε→0

εHε(Pε) ≥
∫
dP (X)

∫ 1

0

dt
[
w(Xt, Ẋt)·

(
Ẋt−b(Xt)

)
−w(Xt, Ẋt)·a(Xt)w(Xt, Ẋt)

]
.

Recalling (2.4) and (2.5) we conclude, using again Lemma 4.4 and dominated con-
vergence, by considering a suitable sequence {wn} with wn bounded for each n and
converging pointwise to w∗ with w∗(x, y) = (1/2) a(x)−1[y − b(x)]. �

In view of density result proven in Lemma 3.3, in order to construct the recovery
sequence in item (iii) of Theorem 3.2 it suffices to consider the case in which P is

smooth holonomic, i.e. P = S−1
∫ S

0
ds δθsY for some S > 0 and some S-periodic path

Y ∈ C1(R,Rn). To construct the sequence {Pε} for such P , pick first U : Rn → R
such that: U ∈ C2(Rn), the minimum of U is uniquely attained at x = 0, the
Hessian D2U(0) is strictly positive definite, and U = V outside some compact set
K ⊂⊂ Rn. Consider now the non-autonomous stochastic differential equation{

dηεt = b̃ε(t, η
ε
t )dt+

√
2ε σ(ηεt − Yt)dwt

ηε0 = x
(4.9)

where

b̃ε(t, x) := −a(x− Yt)∇U
(
x− Yt

)
+ ε∇ · a(x− Yt) + Ẏt, (t, x) ∈ [0,+∞)× Rn

(4.10)
in which ∇·a is the vector field given by the divergence of a, i.e. (∇·a)i =

∑
j ∂jaj,i.

Note that b̃ε is S-periodic in the first variable. Denote the law of ηε by Qεx and
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let µε be the probability on Rn whose density is proportional to exp{−U/ε}. Set
finally νε := µε(Y0 + ·) and Qενε :=

∫
dνε(x)Qεx.

Lemma 4.5. The probability Qενε is invariant with respect to θS. Furthermore
Qενε → δY as ε→ 0 and for each ε ∈ (0, ε0) there exist a constant Cε such that for
any n ∈ N and s ∈ [0, S]

ε

n
Hε

[0,nS]

(
Qενε ◦ θ−1

s

)
≤ Cε

n

+
1

4

∫
dQενε(X)

∫ S

0

dt
[
b̃ε(t,Xt)− b(Xt)

]
· a−1(Xt)

[
b̃ε(t,Xt)− b(Xt)

]
.

Proof. By direct computation Qενε is the law of Y + ζε where ζε is the stationary
process associated to the autonomous stochastic differential equation

dζεt =
[
− a(ζεt )∇U

(
ζεt
)

+ ε∇ · a(ζεt )
]
dt+

√
2ε σ(ζεt )dwt.

Observe indeed that ζε is reversible with respect to µε. Since Y is S-periodic and
the law of ζε is translation invariant we deduce that Qενε is invariant with respect to
θS . By the properties of U , we readily conclude that ζε converges to 0 in probability
and therefore that Qενε → δY .

For notation simplicity, we prove the entropy bound only when s = 0. Let Mε

be the Pεx martingale given by

Mε
t :=

1

2ε

∫ t

0

a−1(Xs)
[
b̃ε(s,Xs)− b(Xs)

]
·
(
dXs − b(Xs)ds

)
whose quadratic variation is

〈Mε〉t :=
1

2ε

∫ t

0

ds
[
b̃ε(s,Xs)− b(Xs)

]
· a−1(Xs)

[
b̃ε(s,Xs)− b(Xs)

]
.

By Girsanov formula, for each T > 0

d
(
Qεx
)

[0,T ]

d
(
Pεx
)

[0,T ]

= exp
{
Mε
T −

1

2
〈Mε〉T

}
.

Using [24, Thm. VIII.1.7] we deduce

Ent
((

Qεx
)

[0,T ]

∣∣(Pεx)[0,T ]

)
=

∫
dQεx

[
Mε
T −

1

2
〈Mε〉T

]
=

1

2

∫
dQεx 〈Mε〉T

which yields

Hε
[0,T ]

(
Qενε

)
= Ent(νε|πε) +

1

2

∫
dQενε 〈Mε〉T .

In view of the θS invariance of Qενε , setting Cε := Ent(νε|πε), the stated bound
follows once we show that Cε is finite. To this end, we first obtain a lower bound
on the tail of πε. Denote by ρε the density of πε with respect to the Lebesgue
measure, dπε = ρε dx. By Assumption 2.1 and standard results, ρε is smooth,
strictly positive, and solves the stationary Fokker-Planck equation

ε

n∑
i,j=1

∂i∂j
(
ai,jρ

ε
)
−

n∑
i=1

∂i
(
biρ

ε
)

= 0 .

Set vε := ρε exp{γV/ε} for some γ > 0 to be chosen later; by direct computation
it solves

Aεv
ε + hvε = 0
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where Aε is the elliptic operator defined by

Aεv := εTr(aD2v)−
(
b+ 2γa∇V − 2ε∇ · a

)
· ∇v

and

h :=
γ

ε

[
b · ∇V + γ∇V · a∇V

]
− γ Tr(aD2V )− 2γ(∇ · a) · ∇V −∇ · b+ ε∂i∂jai,j .

As follows from Assumption 2.1, for each ε ∈ (0, ε0) there exist γ,R > 0 such that
h(x) ≥ 0 for all x ∈ Rn such that |x| ≥ R. Let now mε := inf{vε(x), |x| = R} > 0
and set uε = mε − vε. Then uε(x) ≤ 0 for |x| = R and, by the positivity of vε, we
have uε(x) ≤ mε for any x ∈ R. Finally, by the choices of γ and R, for |x| > R the
function uε solves

Aεu
ε = Aε(mε − vε) = −Aεvε = hvε ≥ 0.

From the Phragmèn-Lindelhöf maximum principle, see [23, Thm. 2.19], we then de-
duce uε(x) ≤ 0, for all x ∈ Rn such that |x| > R. Hence ρε(x) ≥ mε exp{−γV (x)/ε}
for |x| ≥ R. As νε(dx) = Z−1

ε exp{−U(x− Y0)/ε}dx with Zε the appropriate nor-
malization, we get

Ent(νε|πε) =

∫
dνε(x) log

e−U(x−Y0)/ε

Zερε(x)

≤
∫
|x|≤R

dνε(x) log
e−U(x−Y0)/ε

Zερε(x)

+

∫
|x|>R

dνε(x)
[

log
1

Zεmε
− 1

ε
U(x− Y0) +

γ

ε
V (x)

]
which is bounded as V has super-linear growth as |x| → ∞ and U = V outside a
compact. �

Proof of Theorem 4.2, item (iii). By Lemma 3.3 it suffices to consider the case in
which P is smooth holonomic. For P and Qενε as introduced before Lemma 4.5, set

Pε :=
1

S

∫ S

0

dsQενε ◦ θ−1
s

that is translation invariant by the θS invariance of Qενε . By Lemma 4.5, the
sequence {Pε} converges to P . Moreover, using also (4.4) and the convexity of the
relative entropy,

εHε(Pε) ≤
1

4S

∫ S

0

dt

∫
dQενε(X)

[
b̃ε(t,Xt)− b(Xt)

]
· a−1(Xt)

[
b̃ε(t,Xt)− b(Xt)

]
.

Recalling (4.10), since Qενε → δY then b̃ε(t, ·) converges in Qενε-probability to Ẏt.
As the marginal at time t of Qενε is equal to νεt := µε(Yt + ·) and U = V outside
some compact, we obtain the needed uniform integrability to infer

lim
ε→0

εHε(Pε) ≤
1

4S

∫ S

0

dt
[
Ẏt − b(Yt)

]
· a−1(Yt)

[
Ẏt − b(Yt)

]
= I(P ) ,

which concludes the proof. �
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5. Large deviations of the Gallavotti-Cohen observable

The Gallavotti-Cohen observable has been originally introduced in the context
of chaotic deterministic dynamical systems as the expansion rate of the phase-space
volume and it has been shown to satisfy the so-called fluctuation theorem [13]. The
definition of this observable for stochastic dynamics has been originally discussed
in [18] and in more generality in [21,22]; we refer to [14] for a review and to [8] for
an experimental check of the fluctuation theorem.

In the present context of non-degenerate diffusion processes, introduce the time
inversion as the involution Θ: C(R;Rn) → C(R;Rn) given by (ΘX)t := X−t.
Recalling that Pεπε denotes the stationary process associated to (1.1), the Gallavotti-
Cohen observable can then be seen as an empirical estimator for the relative entropy
per unit of time of Pεπε with respect to Pεπε ◦Θ−1, namely

Ŵ ε
[0,T ] :=

ε

T
log

d
(
Pεπε
)

[0,T ]

d
(
Pεπε ◦Θ−1

)
[0,T ]

where the subscript [0, T ] denotes the restriction of the probability to that time
interval. The factor ε has been inserted for notation convenience when discussing

the small noise limit ε → 0. Note indeed that Eεπε
(
Ŵ ε

[0,T ]

)
≥ 0 and it is in fact

proportional to the relative entropy per unit of time of Pεπε with respect to Pεπε◦Θ−1.
The content of the fluctuation theorem is the following. Assume that the family of

real random variables {Ŵ ε
[0,T ]}T>0 satisfies a large deviation principle as T → ∞

and denote by sε : R→ [0,+∞] the rate function. Then the odd part of sε is linear,
sε(q)−sε(−q) = −q/ε, where the factor ε is due to the choice of the normalization.
The physical interpretation of the fluctuation theorem is that the ratio between

the probability of the events {Ŵ ε
[0,T ] ≈ q} and {Ŵ ε

[0,T ] ≈ −q} becomes fixed,

independently of the model, in the large time limit.
An informal computation based on the Girsanov formula shows that

Ŵ ε
[0,T ](X) =

1

T

∫ T

0

a(Xt)
−1b(Xt) ◦ dXt −

ε

T
log

ρε(XT )

ρε(X0)
(5.1)

where ◦ denotes the Stratonovich integral and ρε is the density of the invariant
measure πε. In the case of a compact state space, the standard route to obtain the

large deviation principle for the family {Ŵ ε
[0,T ]}T>0 is the following [21]. Neglect

the second term on the right hand side of (5.1), which becomes irrelevant in the
limit T → ∞, and prove, by using Girsanov and Fenyman-Kac formulae together
with the Perron-Frobenious theorem, that the limit

Λε(λ) := lim
T→∞

1

T
logEεπε

(
exp

{ λ
T

∫ T

0

a(Xt)
−1b(Xt) ◦ dXt

})
, λ ∈ R (5.2)

exists and it can be expressed as the maximal eigenvalue of a perturbed generator.
An application of the Gartner-Ellis theorem then yields the large deviation principle
while the fluctuation theorem follows from the symmetry Λε(λ) = Λε(−ε−1 − λ).

As detailed in [15], the route sketched above in general fails in the present case
of non-compact space state: it is neither possible to neglect the second term on
the right hand side of (5.1) nor to prove the existence of the limit in (5.2) for any
λ ∈ R. Following [3, 25, 27] and recalling the decomposition (2.2), we here define
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the Gallavotti-Cohen observable by

W[0,T ](X) :=
1

T

∫ T

0

a(Xt)
−1c(Xt) ◦ dXt, (5.3)

namely as the work done, in the metric defined by the diffusion matrix, by the
non-conservative part of the drift. As shown in [3,25,27], for each ε > 0 the family
of probabilities on R given by {Pεπε ◦ (W[0,T ])

−1}T>0 satisfies a large deviation
principle and the corresponding rate function sε satisfies the fluctuation theorem.
The present purpose is to obtain a variational representation of this rate function in
the small noise limit ε→ 0. This problem has been originally addressed heuristically
in [19]. A mathematical analysis has been carried out in [3] when the limit ε → 0
is taken before the limit T → ∞ and the limiting rate function is then expressed
in terms of the Freidlin-Wentzell rate functional. The analysis when the limits are
taken in the converse order has been carried out in [25] by using tools from semi-
classical analysis. It is a byproduct of the current analysis that the limiting rate
function is, surprisingly, actually independent of the limiting procedure.

Before discussing the Gallavotti-Cohen observable, we note that the fluctuation
theorem is already present at the level of the empirical process, i.e. for the rate
functional I in (2.5).

Proposition 5.1. For any P ∈ Pθ such that I(P ) < +∞

I
(
P ◦Θ−1

)
− I
(
P
)

=

∫
dP (X)W[0,1](X) =

∫
dP (X)

∫ 1

0

dt a(Xt)
−1c(Xt) · Ẋt.

Proof. Recalling (3.4), that provides the needed integrability conditions, the proof
is simply achieved by using the decomposition (2.2) and expanding the square in
(2.4). Note indeed that the boundary term vanishes by translation invariance. �

In the next statement we employ the same convention on limε,T and limε,T as
the one used in Theorem 2.2.

Theorem 5.2. Assume that |x| ≤ C
(
1 +

∣∣∇V (x)
∣∣2), x ∈ Rn, for some constant

C > 0. Then, as ε → 0 and T → ∞, the family of probabilities on R given by{
Pεx ◦ (W[0,T ])

−1, T > 0, ε > 0
}

satisfies, uniformly for x in compact sets, a large

deviation principle with speed ε−1T and rate function s : R→ [0,+∞] given by

s(q) = inf
{
I(P ),

∫
dP (X)

∫ 1

0

dt a(Xt)
−1c(Xt) · Ẋt = q

}
.

Namely, for each compact set K ⊂⊂ Rn, each closed set C ⊂ R, and each open set
A ⊂ R

lim
T,ε

sup
x∈K

ε

T
logPεx

(
W[0,T ] ∈ C

)
≤ − inf

q∈C
s(q)

lim
T,ε

inf
x∈K

ε

T
logPεx

(
W[0,T ] ∈ A

)
≥ − inf

q∈A
s(q).

Moreover, the function s is good, convex, and satisfies the fluctuation theorem
s(−q)− s(q) = q.

Since, as proven in Lemma 3.3, the family of probabilities {πε}ε>0 is exponen-
tially tight, the previous statement also holds when Pεx is replaced by the stationary
process Pεπε .
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Proof. It is convenient to rewrite W[0,T ] in (5.3) in terms of the Itô integral,

W[0,T ](X) = W̃[0,T ](X) + εZ1
T (X)

where

W̃[0,T ](X) :=
1

T

∫ T

0

a(Xt)
−1c(Xt) · dXt

and, by Assumption 2.1, Z1
T (X) is bounded uniformly in T and X and therefore

irrelevant for the large deviations. Recalling the definition of the empirical process
in (2.3) we next observe that∫

dRT (X) W̃[0,1](X) = W̃[0,T ](X) +
1

T
Z2
T (X) (5.4)

where Z2
T takes into account the jump inserted by the T -periodization,

Z2
T (X) = a−1(XT ) c(XT ) · [X0 −XT ].

As we assumed |x| ≤ C(1+|∇V (x)|2
)
, the bounds provided by (3.4) and Lemma 4.4

imply that also T−1Z2
T (X) is irrelevant for the large deviations. Therefore (5.4)

expresses the Gallavotti-Cohen observable as a function of the empirical process.

However, as W̃[0,1] involves the Itô integral, this function is not continuous. By a
truncation procedure that it is not detailed, see [26, Lemma 6.2] for a similar argu-
ment, we can however construct a continuous, exponentially good approximation of

W̃[0,1] and deduce the large deviation principle for W̃[0,T ] by contraction principle
from Theorem 2.2.

The convexity of the rate function s readily follows from its definition while the
fluctuation theorem is a corollary of Proposition 5.1. �

Acknowledgments. We thank G. Di Gesù and M. Mariani for useful discussions.
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