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Abstract: The Checkerboard conformal field theory is an interesting representative of a
large class of non-unitary, logarithmic Fishnet CFTs (FCFT) in arbitrary dimension which
have been intensively studied in the last years. Its planar Feynman graphs have the structure
of a regular square lattice with checkerboard colouring. Such graphs are integrable since each
coloured cell of the lattice is equal to an R-matrix in the principal series representations of
the conformal group. We compute perturbatively and numerically the anomalous dimension
of the shortest single-trace operator in two reductions of the Checkerboard CFT: the first one
corresponds to the Fishnet limit of the twisted ABJM theory in 3D, whereas the spectrum in
the second, 2D reduction contains the energy of the BFKL Pomeron. We derive an analytic
expression for the Checkerboard analogues of Basso-Dixon 4-point functions, as well as for
the class of Diamond-type 4-point graphs with disc topology. The properties of the latter are
studied in terms of OPE for operators with open indices. We prove that the spectrum of
the theory receives corrections only at even orders in the loop expansion and we conjecture
such a modification of Checkerboard CFT where quantum corrections occur only with a
given periodicity in the loop order.
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1 Introduction

Conformal quantum field theories are ubiquitous in modern high energy physics and statistical
mechanics where they describe many important physical phenomena. There exists a multitude
of CFTs in spacetime dimensions d < 4. For d ⩾ 4, however, the list of known CFTs is very
short (see e.g. [1] for the Banks-Zaks critical point), unless supersymmetry enters the game.

– 1 –



J
H
E
P
0
1
(
2
0
2
5
)
0
1
5

Nevertheless, if we drop the unitarity requirement and allow for non-unitary, logarithmic
CFTs [2], an ample class of integrable theories in d = 4 has been discovered in [3] as a
special double-scaling limit of N = 4 super Yang-Mills theory (weak coupling combined with
strong imaginary γ-deformation). The definition of these theories has later been extended
to any d dimensions in [4]. In the planar ’t Hooft limit, the perturbation theory of such
CFTs is dominated by a very limited number of Feynman diagrams of a specific shape:
in the simplest of these theories they are represented by the regular square lattice. As
was shown by A. Zamolodchikov [5], the square lattice graphs are integrable, because they
are equivalent to partition functions in a certain integrable statistical mechanical model of
continuous spin variables, which are the coordinates of the vertices of the graph. These
graphs are called fishnets owing to their shape, and the CFTs that are dominated by them
are dubbed Fishnet CFTs (FCFTs).

Apart from the FCFTs stemming from the double-scaling limit of γ-deformed N = 4
super Yang-Mills theory, a vast class of so-called Loom FCFTs was proposed in [6]. It is
based on Zamolodchikov’s construction of integrable Feynman graphs of a more general type,
featuring arbitrary valency of the vertices, any dimension d, and diverse types of propagators.
This construction relies on the existence, for each such diagram, of an associated Baxter
lattice — a collection of straight lines parallel to M directions that we dub slopes. The scaling
powers of the propagators, which are the Boltzmann weights in the stat-mech picture, are
proportional to the angles between the lattice lines (see [5, 6] for the details).

The graphs stemming from the Loom construction are, to our knowledge, the most general
integrable Feynman diagrams. Many of them present practical interest for the perturbative
computations in various realistic CFTs. Consequently, they spurred the development of many
computational tools such as the Yangian symmetry [7–10], spin chain transfer matrix [11–13],
separation of variables [14–21] or quantum spectral curve [22]. Among the multitude of FCFTs
originating from the Loom construction, some particular cases are more relevant than others.
They include the CFTs obtained as the fishnet limits of the ABJM model [11], featuring
Feynman graphs of the shape of regular triangular lattice, or of the N = 4 SYM theory [3].

In this paper we study a class of Loom FCFTs with M = 4 slopes that feature only
quartic scalar vertices. We name this model the Checkerboard CFT because all of its planar
graphs are dual to a Baxter lattice with only rectangular faces that can be bi-coloured in
checkerboard style, as seen in figure 1. These planar Feynman graphs also have the shape of
a square lattice, with the powers of the propagators alternating along both rows and columns.
The theory has two coupling constants and four complex adjoint SU(N) matrix fields Zj ,
j = 1, 2, 3, 4, with the Lagrangian (2.1) (see the detailed definition of the theory in section 2).
Unlike the bi-scalar FCFT [3] and its d-dimensional anisotropic generalisation [4], each square
face of a graph of Checkerboard CFT is equal to the R-matrix operator acting on unitary
irreducible representations of the conformal group SO(1, d+1) both in auxiliary and quantum
space [23] and depending on 3 parameters, namely the scaling dimensions that define the
physical and auxiliary space representations, and the spectral parameter u. The integrability
for such graphs is therefore explicit since they are equal to a product of conformal transfer
matrices. It follows that the computation of correlation functions in Checkerboard CFT is
reduced to the standard integrability methods for quantum spin-chains.1 In particular, the

1In this case, one has to deal with spins in principal series representations of the conformal group, for
which the formalism is not as developed as for finite-dimensional or highest-weight representations.
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correlation functions of two single-trace, non-local operators discussed in section 3 represent,
in the spin-chain picture, the statistical-mechanical system of interacting conformal spins on
the regular square lattice of cylindrical topology and alternating Boltzmann weights along
both rows and columns. In section 3.2 we present the all-loop computation of the simplest
such correlator following the methods of [4, 13, 24]. From this four-point function one can
extract the scaling dimensions of the shortest length, L = 2 operators exchanged in its OPE
s-channel, in terms of certain infinite double sums.

The richness of the parameter space of Checkerboard CFT allows for various interesting
reductions, which we consider in section 4. For specific choices of the scaling dimensions
∆j of the fields, this theory reduces to the strongly twisted 3D ABJM FCFT [11] or to
a 2D logarithmic CFT that captures the spectrum of Lipatov’s reggeized gluons [25–28],
describing the famous BFKL limit of high-energy QCD. We will apply our general results
for Checkerboard CFT for the four-point functions and the anomalous dimension of L = 2
exchange operators to study these quantities in more detail (perturbatively and numerically)
for these two reductions.

The sections 5, 6, and 7 are devoted to the study of some Feynman diagrams that can
be drawn on the disc, and completely describe the vacuum expectation value of single-trace
nonlocal operators in the Checkerboard CFT, ie. single-trace multi-point correlators. We
concentrate on four-point diagrams, obtained by cutting out a rectangular piece of the square
lattice and then identifying some of the coordinates of the external legs. We distinguish
two classes of such correlators: for the first class the edges of the rectangle are parallel
to the lattice lines, whereas they are parallel to the lattice diagonals for the second class
(the so-called diamond graphs).

The first class of these four-point correlators and the related Feynman integrals are
studied in section 5. They generalise the 4D result of Basso and Dixon [29] for the case of
bi-scalar FCFT, and in [30] for the 2D bi-scalar FCFT. In section 5.1.1 (with the details
of the computations in appendix D) we compute, using the separation of variables method
of [15, 16, 23, 31–33], the general expression for the four-point functions of such type, emerging
in the full Checkerboard CFT, for d = 2 and d = 4.

The diamond correlators, which will be studied in section 6, can themselves be divided
into four types according to their boundary conditions. Such correlators feature drastically
different properties from the “Basso-Dixon” class. First of all, in the simplest bi-scalar
FCFT these are highly divergent objects, and it is not completely clear how to give them a
physical interpretation in terms of CFT correlators. Otherwise, for general parameters ∆k

such graphs are finite, and many of them evaluate either to zero or to a tree-level-like product
of propagators (while being quantities defined at loop level). This fact can be checked by
simple computations based on the star-triangle identity. We will examine such correlators
via their operator product expansions in section 6.

We end this section with a proof by induction that the spectrum of anomalous dimensions
in Checkerboard CFTs is protected at any odd order of perturbation theory. On the other
hand, when the bare dimensions of the fields satisfy additional constraints, e.g. ∆1 +∆3 =
∆2 + ∆4 = d/2, the spectrum gets corrected at every order of perturbation theory. The
different regimes, namely interaction at any-loop order vs protected odd-loop contributions,
is also apparent in the analytic structure of poles in the SoV representation of four-point
Ladder integrals from section 5.1.2.

– 3 –
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Moreover, the Checkerboard model can be generalised for a higher number of slopes
M > 4 to a theory of M1M2 complex scalar fields, with M1 +M2 = M as proposed in
section 7. In this case, the square-lattice graphs have a general periodicity (M1,M2) along
rows and columns. We conjecture that the spectrum of anomalous dimensions gets corrections
only at loop orders k such that kmod(M1) = 0 or kmod (M2) = 0.

The concluding section 8 is devoted to the discussion of our results. Contextually, we
will list there many unsolved problems concerning the Fishnet CFTs.

2 Definition of Checkerboard CFT

The Checkerboard Fishnet CFT studied in this paper is a theory of four complex matrix
scalars fields Zj of N ×N components in any space-time dimension d. The Lagrangian of
the theory features in general non-local kinetic terms and two quartic interactions,

L(CB) =N Tr

 4∑
j=1

Z̄j(−∂µ∂µ)wjZj − ξ2
1 Z̄1Z̄2Z3Z4 − ξ2

2 Z1Z2Z̄3Z̄4

 . (2.1)

We impose the constraint w1+w2+w3+w4 = d in order to work with dimensionless couplings
ξ2

1 , ξ
2
2 . We shall often switch from the parameters wj to another set of labels, commonly

used in the SO(1, d + 1) spin-chain formalism [34], namely

w1 = u+ d−∆+ , w2 = −u+∆− , w3 = u+∆+ , w4 = −u−∆− , (2.2)

where ∆± and the spectral parameter u are generic. It follows from (2.1) that the scaling
dimensions of the fields Z̄j , Zj are ∆j = d

2 − wj .
We are generally interested in the planar (or multi-colour) limit of the theory, N → ∞.

While for generic wj ’s the Lagrangian is UV complete and the theory is finite, there are special
values when double-trace correlators of length-2 operators are divergent and a corresponding
counter-term must be added to (2.1). This is the case when a couple of neighbouring fields
in the interaction vertices features a pair of conjugate dimensions, i.e.

∆1 +∆2 = d

2 = ∆3 +∆4 or ∆1 +∆4 = d

2 = ∆2 +∆3 . (2.3)

For instance, whenever the first equation is verified, the double-trace counter-terms

L(CB)
dt = α(ξ1, ξ2) Tr

(
Z̄1Z̄2

)
Tr(Z3Z4) + ᾱ(ξ1, ξ2) Tr(Z1Z2) Tr

(
Z̄3Z̄4

)
(2.4)

should be added to the Lagrangian (2.1), with the couplings α(ξ1, ξ2) adjusted to their critical
values in order to preserve conformal symmetry. The propagators of the adjoint fields Zk are

Di(x) = ⟨Zi(x)Z̄i(0)⟩ =
Γ
(
d
2 − wi

)
4wiπ

d
2 Γ(wi)

1
(x2) d

2−wi
, (2.5)

where the indices i and j enumerate the fields. Here we neglected the SU(N) matrix indices
of the fields since in the multi-colour limit we are interested in we simply have to restrict
ourselves to planar graphs.

– 4 –
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Figure 1. The M = 4 Checkerboard Loom Baxter lattice and the associated Feynman diagram
(in red). The diagram features quartic vertices emitting propagators (2.5). Their scaling power is
determined by the angle of Baxter lattice through which they pass.

Such a simple content of Feynman diagrams of the theory is a consequence of the
non-Hermiticity, i.e. the chirality, of the interaction featured by (2.1), because

Tr
[
Z̄1Z̄2Z3Z4

]†
= Tr

[
Z̄4Z̄3Z2Z1

]
(2.6)

are not allowed vertices in the theory.
Let us note that the Checkerboard CFT can be viewed as a reduction of the Loom

FCFT(4) with M = 4 slopes proposed in [6] (see section 3.3 therein) if we keep only the
couplings for two vertices of valence 4, namely

Tr [v1X3Y2ū1] and Tr
[
u1v̄1X̄3Ȳ2

]
, (2.7)

and set the remaining 131 − 2 = 129 couplings to zero. Then the fields X1, X2, X4 and
Y1 and the dual fields u2, u3, u4 and v1 are effectively decoupled from the theory, while
only the fields X3 and Y2 and the dual fields u1 and v1 have interactions. The latter are
identified with fields in (2.1) as follows

u1 = Z1 , v̄1 = Z2 , X3 = Z3 and Y2 = Z4 . (2.8)

In this respect, we must point out that the number of slopes featured by the Baxter lattice in fig-
ure 1 is reduced from four to three (or two) when either (or both) of the conditions (2.3) is met.

In the particular case d = 4 and w1 = w2 = w3 = w4 = 1, the Checkerboard CFT
has the “standard” local Lagrangian

L(CB) = N Tr

 4∑
j=1

∂µZ̄j∂
µZj + ξ2

1Z̄1Z̄2Z3Z4 + ξ2
2Z1Z2Z̄3Z̄4

+ double-traces . (2.9)

Of course it is still a non-unitary, logarithmic FCFT. This case is potentially very useful since
this FCFT is dominated by standard scalar Feynman graphs which might be computable

– 5 –
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by integrability methods. Importantly, this “isotropic” point for the checkerboard is the
case when the Baxter lattice features two slopes that — in addition — are perpendicular.
In this case, among the double-traces terms we must include the counter-terms of the type
α′(ξ1, ξ2)Tr(ZiZ̄i+2)Tr(Z̄iZi+2); the critical values of such double-trace couplings are more
involved to compute (as it is for the simplest bi-scalar Fishnet CFTs, see [13, 22]), though
the existence is guaranteed beyond perturbation theory.

In the next sections, we will explore the properties of the Checkerboard theory and
compute certain of its correlators. We will realise that its typical planar Feynman graphs,
depicted in figure 1, have the shape of the regular square lattice, similar to the bi-scalar
FCFT [3] with the Lagrangian (4.1). However, in the Checkerboard CFT each square face of
the Feynman graph in figure 1 appears to be given by the R-matrix introduced in [34] (see
next section for explicit definition) acting in both spaces on principal series representations
of conformal group and explicitly depending on spectral parameter u. Thus, the integrability
is contained in an explicit and familiar way in the Checkerboard CFT.

3 Correlators of single-trace operators: spin-chain picture and L = 2 case

Among many physical quantities, a special role is played by correlators of single-trace operators
— typical quantities to study in the planar limit. Correlators of one, non-local, single-trace
operator will be considered in sections 5 and 6 for example. In this section, we work out
some correlators between two, non-local, single-trace operators.

3.1 Integrability of the correlators

We will consider a class of 2L-point functions obtained by complete point-split inside the
two traces. Its perturbative weak-coupling expansion can be presented in terms of Feynman
diagrams with cylindrical topology and with the Checkerboard structure, one at each loop
order, described in the previous section. Let us define a concrete instance of such correlator,

⟨O(x1, . . . , xL)Õ(x′1, . . . , x′L)⟩ , (3.1)

where the notation for single-trace, point-split operators is

O(x1, . . . , xL) = Tr[(Z1Z2)(x1) (Z1Z2)(x2) . . . (Z1Z2)(xL)] ,

Õ(x′1, . . . , x′L) = Tr
[
(Z̄4Z̄3)(x′1) (Z̄4Z̄3)(x′2) . . . (Z̄4Z̄3)(x′L)

]
.

(3.2)

Its perturbation theory can be re-summed to a finite coupling expression via the Bethe-
Salpeter (BS) method. We will identify this BS kernel with the transfer matrix of an integrable
non-compact spin chain with SO(1, d+ 1) symmetry. Quantum corrections in perturbation
theory for weak couplings (and in the planar limit) consist of L Feynman diagrams at each
order (ξ2

2)(n+1)L(ξ2
1)nL where the loop order n ⩾ 0 is an integer. In particular, this correlators

are zero in free theory.
The Feynman diagrams for a given n can be expressed as a power of a certain integral

“graph-building” operator T̂ , acting on functions of L variables, say x1, . . . , xL, in Rd. In

– 6 –
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Figure 2. The weak coupling expansion of K(x1, x2|x3, x4) up to order ξ12
2 ξ8

1 in terms of the Feynman
diagrams a.k.a. integral kernels Tn(x1, x2|x3, x4) for n = 1, 2, 3. Arrows on top of propagators are
oriented from Zk to Z̄k. Black dots are integrated vertices. Each pair of blue dots in a column denotes
the same integrated vertex, since the graphs are wrapped on a cylinder.

practice, one of the L diagrams is expressed as the kernel of T̂ n, namely

Tn(x1, . . . , xL|x′1, . . . , x′L) =

=
∫ L∏

i=1
ddyi Tn−1(x1, . . . , xL|y1, . . . , yL)T (y1, . . . , yL|x′1, . . . , x′L) , (3.3)

and the others are obtained by any cyclic shift of points xk → xk+j with 1 ⩽ j ⩽ L − 1.
Hence, the correlator at finite-coupling results from the BS resummation, namely

⟨O(x1, . . . , xL)Õ(x′1, . . . , x′L)⟩ =
L−1∑
j=0

K(x1+j , x2+j , . . . , xL+j |x′1, . . . , x′L) , (3.4)

with

K(x1, . . . , xL|x′1, . . . , x′L) = ξ2L
2

+∞∑
n=0

(ξ2
1ξ

2
2)nL Tn+1(x1, . . . , xL|x′1, . . . , x′L) . (3.5)

The operator T̂ is the transfer matrix of a non-compact, homogeneous spin chain with
SO(1, d+1) symmetry and periodic boundary conditions. Each of the L sites carries the infinite-
dimensional representation of a scalar field with scaling dimension ∆1 +∆2. The operator
T̂ is the trace over the auxiliary space (infinite-dimensional representation of dimension
∆0 = ∆1 +∆4) of a product of L solutions R̂0k of the Yang-Baxter equation [34], that is

T̂ = Tr0
[
R̂01R̂02 . . . R̂0L

]
. (3.6)

Each of the operators R̂0k, for k = 1, 2, . . . , L, is an integral operator acting on functions of
xk in physical space as well as on functions of x0 in auxiliary space. Its kernel for k = 1 reads

R(x1, x0|x1′ , x0′) =
c

(x2
10)−u−

d
2 +∆+(x2

01′)u+ d
2 +∆−(x2

1′0′)−u+ d
2−∆+(x2

0′1)u+ d
2−∆−

, (3.7)

where ∆± = (∆0 ± (∆1 + ∆2))/2, and

c =
4∏
j=1

Γ
(
d
2 − wj

)
4wjπ

d
2 Γ(wj)

=

=
Γ
(
−u− d

2 +∆+
)
Γ
(
u+ d

2 +∆−
)
Γ
(
−u+ d

2 −∆+
)
Γ
(
u+ d

2 −∆−
)

(2π)2d Γ(u+ d−∆+) Γ(−u−∆−) Γ(u+∆+) Γ(−u+∆−)
. (3.8)

– 7 –
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Figure 3. Illustration of the formula (3.6) for the case L = 3. Black dots are integrated vertices.
The pair of blue dots in a column denotes the same integrated vertex, since the graphs are wrapped
on a cylinder, which corresponds to taking trace in auxiliary space.

The infinite-dimensional trace in (3.6) is the iterative convolution of R-operators with respect
to the auxiliary-space variable x0, x

′
0, . . . , assuming periodic boundary L + 1 ≡ 1. This

construction is depicted in figure 3. The Yang-Baxter property for R̂ guarantees that the
operators R̂ and T̂ satisfy the RTT equation [34]. According to standard argument, this
property ensures the existence of a complete set of commuting operators acting on x1, . . . , xL,
hence the quantum integrability of the spin chain of length L.

Notice that in the Checkerboard CFT the spectral parameter u is naturally incorporated
into the structure of the Feynman graphs due to the identification (2.2). This feature is
proper to the whole construction of the Loom FCFTs [6].

The main implication of formula (3.5) is that the calculation of the correlation func-
tions (3.1) boils down to finding a basis of eigenfunctions and of the corresponding eigenvalues
for the integrable transfer matrix (3.6). Here, quantum integrability guarantees the existence
of a non-perturbative, exact approach to the study of the Checkerboard CFT.

3.2 Anomalous dimensions for L = 2

In this section, we derive the exact expression for the shortest four-point correlator of
the type (3.1) in the Checkerboard CFT, and extract the anomalous dimension of lightest
single-trace operator, which dominates the OPE s-channel,

Tr[Z1Z2Z1Z2](x) . (3.9)

Another candidate for the lightest operators is Tr[Z3Z4Z3Z4]. We will assume without loss
of generality that ∆1 + ∆2 < ∆3 + ∆4, hence (3.9) is the lightest one. We shall follow
the methods of [4, 13, 24, 35], i.e. perform a conformal partial wave decomposition of the
s-channel and, from that, achieve an all-loop equation for the anomalous dimensions of the
exchanged operators. Within the choice of shortest length L = 2 and for operators of spin
S = 0 the solution of the spectral problem reduces to computing a two-loop, massless, Kite
master integral with specific powers of the propagators.

We will study this problem in two concrete realisations of the Checkerboard CFT.
First, in d = 3, for the ABJM FCFT [11] defined in the section 4.1, we compute the

– 8 –
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anomalous dimension of (3.9) up to a few orders in the weak coupling expansion, and
otherwise numerically in a large range of couplings. Second, for the d = 2 BFKL FCFT
discussed in the section 4.2 we show that the anomalous dimension of the lightest operator
matches the Pomeron spectrum in the Regge limit of QCD [26, 32, 36–38]. Let us start
within the general setting. According to what was explained above, one has2〈

Tr[(Z1Z2)(x1)(Z1Z2)(x2)] Tr
[
(Z̄4Z̄3)(x′1)(Z̄4Z̄3)(x′2)

]〉
=

= K(x1, x2|x′1, x′2) +K(x1, x2|x′2, x′1) , (3.10)

with
K(x1, x2|x′1, x′2) = ξ4

1

∞∑
n=0

(ξ2
1ξ

2
2)2n Tn+1(x1, x2|x′1, x′2) . (3.11)

According to the formulae (3.6) and (3.7), the kernel of the operator T̂ at L = 2 takes the form

T (x1, x2|x′1, x′2) = c2
∫∫ ddx0ddx0′

(x2
10)−u−

d
2 +∆+(x2

01′)u+ d
2 +∆−(x2

1′0′)−u+ d
2−∆+(x2

0′1)u+ d
2−∆−

× 1
(x2

20′)−u−
d
2 +∆+(x2

0′2′)u+ d
2 +∆−(x2

2′0)−u+ d
2−∆+(x2

02)u+ d
2−∆−

, (3.12)

where c is given in equation (3.8). We can compute (3.10) by simply adapting to our problem
the methods of [4, 13, 24]. The spectral equation reads∫∫

ddx1′ddx2′T (x1, x2|x′1, x′2)Ψν,S(x1′ , x2′ ;x3) = h(ν, S)Ψν,S(x1, x2;x3) , (3.13)

where ν ∈ R is the continuous label of principal series and S is the spin (rank of symmetric
traceless tensor). Because L = 2, the eigenfunctions of T̂ are entirely determined by its
conformal symmetry, hence Ψν,S(x1′ , x2′ ;x3) is a conformal 3-point function between two
scalars of dimension ∆+ −∆− = ∆1 +∆2, at points x1 and x2, and one symmetric traceless
tensor of spin S with dimension in the principal series ∆ = d/2 + 2iν, inserted at an
arbitrary point x3 [39–41]. For simplicity, we restrict ourselves to S = 0. The eigenfunction
Ψν ≡ Ψν,0 has the form

Ψν(x1, x2;x3) = C(ν)
(
x2

12

) d
4 +iν−∆1−∆2 (

x2
13x

2
23

)− d
4−iν

, (3.14)

where C(ν) is a normalisation constant. Let us compute the eigenvalue. First, we take the
simplifying limit x2

3 → ∞ on both sides of equation (3.13). This leads to∫∫
ddx′1ddx′2T (x1, x2|x′1, x′2)

(
x2

1′2′
) d

4 +iν−∆1−∆2 = h(ν)×
(
x2

12

) d
4 +iν−∆1−∆2

, (3.15)

2Of course, we consider a different correlator ⟨Tr [(Z1Z2)(x1)(Z1Z2)(x2)] Tr
[
(Z̄2Z̄1)(x′

1)(Z̄2Z̄1)(x′
2)
]
⟩ and

the similar one with the fields Z3 and Z4. The result is

⟨Tr [(Z1Z2)(x1)(Z1Z2)(x2)] Tr
[
(Z̄2Z̄1)(x′

1)(Z̄2Z̄1)(x′
2)
]
⟩

= ξ4
2

∫∫
ddx′′

1 ddx′′
2 D1(x1 − x′′

1 )D2(x2 − x′′
2 )(K(x′′

1 , x′′
2 |x′

1, x′
2) + K(x′′

1 , x′′
2 |x′

2, x′
1)) ,

where K(x, y|x′, y′) is given by (3.11). Therefore, for the considered correlator the problem is again equivalent
to the diagonalisation of the T-operator (3.12).
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Figure 4. T̂ operator with L = 2 acting on the 3-point function Ψν(x1, x2;x3), in grey, before (a)
and after (b) sending the point x3 to ∞.

whose left-hand side is depicted in figure 4(a). From such equation we read off the eigenvalue
in the form of an integral to be evaluated

h(ν) =
(
x2

12

)∆1+∆2− d
4−iν ∫∫

ddx′1ddx′2 T (x1, x2|x′1, x′2)
(
x2

1′2′
) d

4 +iν−∆1−∆2
. (3.16)

It is convenient to factor the eigenvalue into the product of two terms (see appendix A
for details),

h(ν) = h1(ν)h2(ν) , (3.17)

because h1(ν) and h2(ν) are in fact the same function

B(a1, a2, δ) =
(x2

00′)δ+2a1+2a2−d

42d−2a1−2a2π2d

 Γ(a1)Γ(a2)
Γ
(
d
2 − a1

)
Γ
(
d
2 − a2

)
2

×
∫∫ ddx1′ddx2′

(x2
1′2′)δ(x2

01′)a1(x2
1′0′)a2(x2

0′2′)a1(x2
2′0)a2

, (3.18)

evaluated at different values of its parameters, i.e.

h1(ν) = B

(
∆1,∆2,∆3 +∆4 −

∆
2

)
, h2(ν) = B

(
∆3,∆4,∆1 +∆2 −

∆
2

)
. (3.19)

The two factors of the eigenvalue of T̂ are schematically drawn in figure 5. The function
B(a1, a2, δ) can be computed by Mellin-space techniques [42]. In fact, such function is the
generalisation of a two-loop massless master integral to the case of propagators with complex
dimensions, see [43]. Following [42], one gets

B(a1, a2, δ) =
Γ
(
d
2 − 1

)
(I1 + I2 + I3)

42d−2a1−2a2πd Γ(d− 2)A0(a1)A0(a2)A0(2a1 + 2a2 + δ − d) , (3.20)
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Figure 5. (a), (b) integrals give respectively the factors h1(ν) and h2(ν) of the eigenvalue. (c) The
two-loop massless master integral of [42, 43].

where

A0(a) =
Γ
(
d
2 − a

)
Γ(a) (3.21)

and I1, I2, I3 are expressed as double infinite sums [42]:

I1 =
+∞∑
n,k=0

Mn
(−1)k
k!

Γ(a2 + n+ k)
Γ
(
d
2 − a2 − k

) Γ
(
d
2 + n− δ + k

)
Γ(δ − k)

Γ
(
a1 + δ − d

2 − k
)

Γ(d+ n− a1 − δ + k)

× Γ(d+ n− a1 − a2 − δ + k)
Γ
(
a1 + a2 + δ − d

2 − k
) Γ

(
d
2 − a1 − a2 − k

)
Γ(n+ a1 + a2 + k)

1
Γ
(
d
2 + n+ k

) , (3.22)

I2 =
+∞∑
n,k=0

Mn
(−1)k
k!

Γ
(
n− d

2 + a1 + a2 + δ + k
)

Γ(d− a1 − a2 − δ − k)
Γ
(
d
2 − a1 − δ − k

)
Γ(n+ a1 + δ + k)

Γ(n+ a1 + k)
Γ
(
d
2 − a1 − k

)
×

Γ
(
d
2 + n− a2 + k

)
Γ(a2 − k)

Γ(d− 2a1 − a2 − δ − k)
Γ
(
n− d

2 + 2a1 + a2 + δ + k
) 1
Γ
(
d
2 + n+ k

) , (3.23)

I3 =
+∞∑
n,k=0

Mn
(−1)k
k!

Γ
(
d
2 + n− a1 + k

)
Γ(a1 − k)

Γ
(
a1 + a2 − d

2 − k
)

Γ(d+ n− a1 − a2 + k)
Γ(d+ n− a1 − a2 − δ + k)
Γ
(
−d

2 + a1 + a2 + δ − k
)

× Γ(2a1 + a2 + δ − d− k)
Γ
(

3d
2 + n− 2a1 − a2 − δ + k

) Γ
(

3d
2 + n− 2a1 − 2a2 − δ + k

)
Γ(2a1 + 2a2 + δ − d− k)

1
Γ
(
d
2 + n+ k

) ,
(3.24)

where
Mn = Γ(n+ d− 2)

n!

(
n+ d

2 − 1
)
. (3.25)

For generic parameters, one of the two sums in each Ik can always be computed in terms
of hypergeometric functions. Further simplifications may occur for specific values of the
parameters a1, a2 and d. We will study some of those in the next section.

The insertion of a resolution of the identity in (3.11) reads

K(x1, x2|x′1, x′2) =
+∞∑
S=0

∫
dρ(ν, S)

∫
ddx3 Ψν,S(x1, x2;x3)Ψ̄ν,S(x′1, x′2;x3)

ξ4
1 h(ν, S)

1− ξ4
1ξ

4
2 h(ν, S)

,

(3.26)
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where ρ(ν, S) is the Fourier-Plancherel measure over principal series, see [39, 44]. The
integral over x3 is a conformal partial wave (CPW). Therefore, performing the integration
over ν via the residue theorem yields the CPW expansion of (3.10) in the s-channel (upon
symmetrisation x1 ↔ x2). It can be shown that the residues of the poles coming from the
measure and the CPW cancel against each other, hence only the poles in the dynamical part
of the integrand contribute. For the choice S = 0 such poles are located at the solutions of

h(ν) = 1
ξ4

1ξ
4
2
. (3.27)

In particular we are interested in the solution of (3.27) with tree-level value

2iν |ξ1=ξ2=0 = −d/2 + 2(∆1 +∆2) , (3.28)

describing the operators that dominate the OPE limit x1 → x2, that is the lightest ones.
Notice that the analogue of (3.27) for the short operator Tr[Z̄3Z̄4Z̄3Z̄4] is obtained upon the
replacement ∆1,∆2 → ∆3,∆4 in (3.19), and setting the tree-level value to −d/2+2(∆3 +∆4)
instead of (3.28). This fact is coherent with the symmetry (Zi,∆i) → (Z̄i+2,∆i+2) of (2.1).

In the next section we consider reductions of the Checkerboard CFT to some particular
cases of Fishnet theory, and study the solutions of (3.27) therein.

4 Reductions of Checkerboard CFT to familiar FCFTs

The Lagrangian (2.1) can be specified to particular cases of FCFTs already defined in the
literature. In this respect, a first example is the ABJM Fishnet theory which is obtained as
double-scaling limit of the γ-twisted ABJM theory in 3d [11]. Another interesting instance,
now in 2d, is what we dub “BFKL Fishnet Theory” which, is related, through specific physical
quantities, to the Balitsky-Fadin-Kuraev-Lipatov model for the scattering of partons in the
Regge limit of QCD and N = 4 SYM [27, 28, 45–48].

Let us note from the very beginning that the 4d bi-scalar FCFT

L(CB)
d = N Tr

[
X̄(−∂µ∂µ)−u−∆−X + Z̄(−∂µ∂µ)−u+∆−Z − ξ2XZX̄Z̄

]
, (4.1)

which originally was deduced as a particular case of the double scaling limit of N = 4 SYM
theory [3], is not contained in this Checkerboard theory.3

4.1 FCFT with regular triangular graphs and ABJM reduction

An interesting choice for the parameters of (2.1) is given by w4 = −u −∆− = 0. In that
case, as long as we study operators that do not depend on Z4, the path integral over this
field is purely Gaussian and can be performed:∫

e−
∫

Tr[Z̄4Z4−ξ2
1Z̄1Z̄2Z3Z4−ξ2

2Z1Z2Z̄3Z̄4]ddxDZ4DZ̄4 ∝ e
∫
ξ2

1ξ
2
2 Tr[Z̄3Z̄1Z̄2Z3Z1Z2]ddx (4.2)

3On the other hand, this bi-scalar model can be viewed as a reduction of the Loom FCFT with M = 4 or
even with M = 3 slopes, defined in section 3.2 of [6], to the case of M = 2 slopes. For example, we can take in
the latter theory only one non-zero coupling — for the vertex Tr

(
XuX̄ū

)
out of 4-valent vertices of eq. (15)

in [6]. The fields X and u then decouple from the rest of the interactions and we obtain the d-dimensional
anisotropic generalisation of bi-scalar FCFT of [4] (renaming u → Z) — a generalisation of (4.1).
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Figure 6. Checkerboard CFT at w4 = 0: the ultralocal gaussian integration over the field Z4 leads
to the effective shrinking of the propagator of dimension ∆4 = d/2 to a point (depicted in blue). The
Feynman graphs shaped as a regular square lattice of Checkerboard CFT reduce to the triangular
graphs describing a theory of 3 complex scalars with sextic interaction, cf. (4.3).

where the proportionality constant is independent of the fields, hence irrelevant. For the
associated Loom (Baxter) lattice this means that the angle between two types of lines (say,
blue and black lines on the figure 6) becomes zero. Accordingly, the Feynman diagrams
change shape from a square lattice to a regular triangular lattice, as illustrated in figure 6.

The Checkerboard CFT then turns into the anisotropic d-dimensional FCFT [4]

L(CB)
d = N Tr

[
Z̄1(−∂µ∂µ)u+d−∆+Z1 + Z̄2(−∂µ∂µ)−2uZ2 + Z̄3(−∂µ∂µ)u+∆+Z3

−ξ2Z̄3Z̄1Z̄2Z3Z1Z2
]
, (4.3)

where ξ2 = (ξ1ξ2)2. We regard this theory as a d-dimensional generalisation of the 3d FCFT
obtained in [11] from the ABJM theory in the double-scaling of large imaginary twist angle and
weak coupling (up to the exchange of Z3 with Z̄3). This latter theory is recovered from (4.3)
at the point d = 3, u = −1/2, and ∆+ = 3/2 or, equivalently, ∆1 = ∆2 = ∆3 = 1/2. Below
we will study the 4-point function (3.1) for L = 2 in this theory, focusing on the spectrum of
lightest single-trace, local operators exchanged in its OPE s-channel.

4.1.1 ABJM L = 2 Fishnet

Here we shall present the explicitly h(ν), i.e. h1(ν) and h2(ν) defined in equation (3.19),
for the ABJM FCFT, namely

h1(ν) = B

(1
2 ,

1
2 , 2−

∆
2

)
, h2(ν) = B

(1
2 ,

3
2 , 1−

∆
2

)
, (4.4)

where ∆ = 3/2 + 2iν for d = 3. The calculation of h2 is trivial in this particular case;
starting from the integral representation (3.18) and using the following representation of
Dirac’s δ function,

lim
a2→ d

2

Γ(a2)
Γ
(
d
2 − a2

)
x2a2

= π
d
2 δ(d)(x) , (4.5)
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one can easily see that

h2(ν) =
1

16π2 . (4.6)

We now turn our attention to h1. Computing the prefactor in front of (I1 + I2 + I3)
from equation (3.20) we obtain

h1 = I(1)
1 + I(1)

2 + I(1)
3

256
√
π sin

(
π∆
2

)
Γ
(

∆
2

)
Γ
(

∆
2 + 1

2

) , (4.7)

where we denote by the upper index (1) the sums Ij , j = 1, 2, 3, corresponding to h1.
Combining (4.6) with the prefactor from (4.7) yields

h =
2∆−13

(
I(1)

1 + I(1)
2 + I(1)

3

)
π3 sin

(
π∆
2

)
Γ(∆)

. (4.8)

The formula (4.8) suggests the convenient re-scaling of the sums I(1)
1,2,3 by a factor

Ij =
2∆−13 I(1)

j

π3 sin
(
π∆
2

)
Γ(∆)

, j = 1, 2, 3 . (4.9)

We can proceed with the calculation of the sums I1,2,3. We notice that the sums over
k in I1 and I2 are drastically simplified by k = 0 term only. This is due to the factors
Γ(d/2− a2 − k) = Γ(1− k) in the denominator of (3.22) and Γ(d/2− a1 − k) = Γ(1− k) in
the denominator of (3.23). By taking this into account, we compute the first two double
sums explicitly

I1 =
cot π∆

2
1024π3(∆− 1)(∆− 2)

1
Γ
(

∆
2

) +∞∑
n=0

Γ
(
n+ ∆

2

)
n+ ∆

2 − 1
2

1
n! (4.10)

=
cos π∆

2 Γ
(

∆
2 − 1

2

)
1024π 5

2 (∆− 1)(∆− 2) sin2 π∆
2 Γ

(
∆
2

)
I2 = 1

1024π3(∆− 1)(∆− 2) sin π∆
2

1
Γ
(

∆
2

) +∞∑
n=0

n!(
3
2 − ∆

2 + n
)
Γ
(
2− ∆

2 + n
) (4.11)

= 1
256π4(∆− 1)(∆− 2)2(∆− 3) 3F2

(
1, 1, 32 − ∆

2 ; 2− ∆
2 ,

5
2 − ∆

2 ; 1
)
.

The last sum I(1)
3 (3.24) is more complicated, as no truncation of infinite sums occurs there.

However, after performing the sum in k, the summand in n can be also presented in terms
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of hyper-geometric functions. We obtain

I3 = 2∆−13

π4Γ(∆)

+∞∑
k=0

1
k!

Γ
(

∆
2 + k

)
(

1
2 + k

) (
∆
2 − 1

2 + k
) +∞∑
n=0

(
1
2 + n

)
Γ
(

∆
2 + 1

2 + k + n
)

(1 + k + n)
(

∆
2 + k + n

)
Γ
(

3
2 + k + n

)
(4.12)

= 2∆−12

π4(∆− 2)Γ(∆)

+∞∑
k=0

1
k!

Γ
(

∆
2 + 1

2 + k
)

Γ
(

3
2 + k

)
×

 1(
1
2 + k

) (
∆
2 + k

) 3F2

(
1, ∆2 + k,

∆
2 + 1

2 + k; ∆2 + 1 + k,
3
2 + k; 1

)

− 1
(1 + k)

(
∆
2 − 1

2 + k
) 3F2

(
1, 1 + k,

∆
2 + 1

2 + k; 2 + k,
3
2 + k; 1

) .

The equation for the spectrum now reads

h = I1 + I2 + I3 = 1
ζ
, ζ = (ξ1ξ2)2. (4.13)

In the following subsection, we will analyse these formulae in the limit of weak coupling ζ.
We will also present the numerical plot ∆(ζ) stemming from (4.13).

4.1.2 Perturbation theory: γ-expansion for the spectrum

In order to solve (4.13) we need to expand the r.h.s. of (4.8) for small values of γ and then
invert the series. That is, one needs to expand the sums I1, I2 and I3 with ∆ = 2 + γ. The
details of the calculation are given in appendix B. We obtain

I1 + I2 + I3 = − 1
1024π2γ

+ 1
1024π4

(
π2 + π2 log 2− 21

2 ζ3

)
(4.14)

− 1
1024π4

(
π2 + π2 log 2− 21

2 ζ3 +
π4

40 + log4 2
2 + 12Li4

(1
2

))
γ +O(γ2) .

Plugging the latter expansion into formula (4.13), we find

h = −a
γ
+ b− cγ +O(γ2) , (4.15)

where

a = 1
1024π2 , (4.16)

b = 1
1024π4

(
π2 + π2 log 2− 21

2 ζ3

)
,

c = 1
1024π4

(
π2 + π2 log 2− 21

2 ζ3 +
π4

40 + log4 2
2 + 12Li4

(1
2

))
. (4.17)

We notice that this result hides features of uniform transcendentality. Indeed, if one defines
a new function

h̃ = γ(1 + γ)h , (4.18)
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then the coefficient of its expansion at small γ at order n has a fixed weight n with respect
to the basis of numbers {Lj = Lij(1/2)}, with j ∈ N. Let us first expand (4.18), that is

h̃ = −a+ (b− a)γ + (b− c)γ2 +O(γ3) (4.19)

= − 1
1024π4

(
π2 −

(
π2 log 2− 21

2 ζ3

)
γ +

(
π4

40 + log4 2
2 + 12Li4

(1
2

))
γ2 +O(γ3)

)
.

Next, we express the expansion in terms of solely Lj . Order by order, the replacement reads

log 2 = L1 , (4.20)
π2 = 12L2 + 6L2

1 ,

ζ3 = 8
7 L3 +

8
7 L2 L1 +

8
21 L3

j .

and finally the expansion reads

h̃ = − 1
1024π4

[
12L2 + 6L2

1 +
(
12L3 − 2L3

1

)
γ

+
(
12L4 +

18
5 L2

2 +
18
5 L2L

2
1 +

7
5L

4
1

)
γ2 +O(γ3)

]
, (4.21)

from which the transcendentality at each order in γ is explicit. It would be interesting to
check this feature at all orders of perturbation theory. Now, the spectral equation (3.27) reads

−a
γ
+ b− cγ +O

(
γ2
)
= 1
ζ
, (4.22)

and inverting the series we extract the anomalous dimension

γ = −aζ − abζ2 − a(b2 + ac)ζ3 +O
(
ζ4
)
. (4.23)

The leading term is straightforward to reproduce from a single Feynman diagram computations.
After a convenient redefinition of the coupling, ζ = 1024π2η, the perturbative anomalous
dimension reads:

γ = −η −
(
1 + log 2− 21ζ3

2π2

)
η2 −

2 + 3 log 2− 63ζ3
2π2 + (4.24)

+π
2

40 − log2 2 + log4 2
2π2 − 21ζ3 log 2

π2 + 441ζ2
3

4π4 +
12Li4

(
1
2

)
π2

 η3 +O
(
η4
)
.

This result (4.24) can be compared with the numerical calculations of the following section.

4.1.3 Numerics and comparison with perturbation theory

We present a numerical plot for the function γ(ζ) in figure 7, and we compare it with the
plot of its perturbative expansion at order ζ3. The two curves show good agreement for
γ < 0.7, and they start to significantly diverge around γ ∼ 1. The numerical curve features
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Figure 7. The blue line plots the numerical anomalous dimension γ = ∆− 2 as a function of the
effective coupling ζ = ξ2

1ξ
2
2 . We evaluated the r.h.s. of (4.13) at the points γ = −0.05k, k = 1, . . . , 19

and interpolated it via Interpolation in Mathematica. The orange dashed line is the plot of
perturbation theory up to order ζ3, that is (4.15). The numerical evaluation of the double sum (4.12)
has been performed after summing over n analytically, and using the WynnEpsilon attribute option
for NSum. The function γ(ζ) features two branches that meet at ζcrit ≃ 2903.03, since the curve has a
maximum at γcrit = −0.5, marked on the plot. The value ζcrit is the branch point of γ(ζ), from where
two complex conjugate dimensions emerge when ζ > ζcrit.

two real branches of the same function — hence two values of γ for a given coupling ζ.
The two branches span the intervals γ ∈ (0,−1/2) and γ ∈ (−1/2,−1), are separated at
the branch-point γcrit = −1/2 and are symmetric under reflection w.r.t. γcrit. This point
corresponds to the coupling ζcrit ≃ 2903.03. For ζ > ζcrit the real part of γ is single valued,
but the function develops two branches given by complex conjugate dimensions, γ(ζ) and
γ̄(ζ), similarly to the observations of [13, 22, 24]. The behavior of ζ(γ) for γ ∼ γcrit is

ζ ≃ ζcrit −
1
C2 (γ + 1

2)
2 ,

so that for ζ ∼ ζcrit one has γ ≃ −1
2 ± iC

√
ζ − ζcrit, where C is a numerical constant. This

complexity is a typical feature of the non-unitary, but “tT-invariant” Fishnet CFTs [6].

4.2 FCFT of BFKL type from the Checkerboard

In this section we will consider d = 2, for which the operator T̂ is the transfer matrix of an
SO(1, 3) ∼ SL(2,C) spin chain with sites in the representation of scaling dimension ∆1 +∆2.
Our purpose is to relate Fishnet theories and the BFKL model describing QCD amplitudes
in the multi-Regge kinematics. Practically, we want to define a family of two-dimensional

– 17 –



J
H
E
P
0
1
(
2
0
2
5
)
0
1
5

Checkerboard CFTs labelled by the spectral parameter u, such that FCFT correlators are
related to certain expectation values in the BFKL model. For that, we should identify the spin
chain that describes the Checkerboard lattice with the one underlying Lipatov’s Hamiltonian,
that is to set ∆1 +∆2 = 0. Furthermore, without the loss of generality we choose ∆0 = 0,
hence in eqs. (2.1), (2.2) one has ∆± = 0, and the scaling dimensions of the fields Zk read

∆1 = −1− u , ∆2 = 1 + u , ∆3 = 1− u , ∆4 = 1 + u . (4.25)

The corresponding Lagrangian reads

Ld = N Tr
[
Z̄1(−∂̄∂)u+2Z1 + Z̄2(−∂̄∂)−uZ2 + Z̄3(−∂̄∂)uZ3 + Z̄4(−∂̄∂)−uZ4

− ξ2
1Z̄1Z̄2Z3Z4 − ξ2

2Z1Z2Z̄3Z̄4
]
, (4.26)

where we made use of holomorphic/antiholomorphic coordinates (z, z̄) = (x0 ± ix1). For
the choice (4.25) of scaling dimensions, the R-matrix (3.7) introduced in [34], reduces now
to the following form

R(x1, x0|x′1, x′0) =
c

(x2
10)−u−1(x2

01′)u+1(x2
1′0′)−u+1(x2

0′1)u+1 , (4.27)

that is, in operator form

R̂BFKL
10 = Γ(−1− u)Γ(1− u)

42+2uπ2Γ(2 + u)Γ(u)P01(x2
10)u+1(p2

0)u(p2
1)u(x2

10)u−1 , (4.28)

where P01 is the permutation operator between the two spaces. As was noticed in [34], the
Taylor-expansion of R̂ around u = 0 delivers at linear order a differential operator

R̂BFKL
ab = Γ(−1− u)Γ(1− u)

42+2uπ2Γ(2 + u)Γ(u)Pab(x
2
ab)u+1(p̂2

b)u(p̂2
a)u(x2

ab)u−1 (4.29)

= Pab
16π2

(
1 + u ĥBFKL

ab +O(u2)
)
,

whose explicit form is

ĥBFKL
ab = 2 log

(
x2
ab

)
+ x2

ab log
(
p2
ap

2
b

)
x−2
ab − 4ψ(1)− 4 log 2− 2 (4.30)

= (p−2
a ) log

(
x2
ab

)
(p2
a) + (p−2

b ) log
(
x2
ab

)
(p2
b) + log

(
p2
ap

2
b

)
− 4ψ(1)− 4 log 2− 2 .

Rewriting the formula (4.30) in terms of holomorphic coordinates, we obtain

ĥBFKL
ab = hzab + hz̄ab − 2 , (4.31)

where
hzab = 2 log zab + zab log(pzapzb)z−1

ab − 2ψ(1) (4.32)

and −4 log 2 disappeared because of the relation between ordinary and holomorphic momentum
operators p2

a = 4pzapz̄a. The expression (4.32) coincides with the holomorphic part of the
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Hamiltonian density for Lipatov’s SL(2,C) chain of reggeized gluons [26, 32, 36–38, 49, 50].
Therefore, in the case of L = 2 we know the eigenvalue of the Hamiltonian

ĤBFKL =
L∑
a=1

ĥBFKL
a,a+1 , (ĥL,L+1 ≡ ĥL,1) , (4.33)

which is otherwise described as the logarithmic derivative of the operator T̂ of equation (3.6)
(with the R-matrix (4.28)) at the point u = 0,

ĤBFKL = T̂ (0)−1dT̂
du (0) . (4.34)

It would be tempting to formulate a BFKL Fishnet theory via a Lagrangian, as a
log-derivative of (4.26) around u = 0. However, such point is too singular so we simply
assume that calculating physical quantities we first use the Lagrangian (4.26) at u ̸= 0,
then extract the associated quantity in the BFKL model from the u = 0 expansion. That
is, for the practical purposes in doing the calculations in this BFKL limit, such as for the
correlators of the type (3.1), the graph-building operator formalism developed in the previous
section seems to suit better. Similar 4-point functions and related 2-dimensional integrals
were studied in [51–53].

4.2.1 Pomeron spectrum in BFKL limit of Checkerboard CFT

Here we concentrate on the BFKL FCFT defined in the subsection 4.2 and analyse in this
framework the Checkerboard 4-point correlation function (3.10), as well as the dimension
of the lightest exchanged operator.

The eigenvalue of the operator T̂ with the weights

∆1 = −1− u+∆+ , ∆2 = 1 + u ∆3 = 1− u−∆+ , ∆4 = 1 + u , (4.35)

is given by (3.17) and (3.19). When d = 2, the function B, defined in (3.18), is now equal to

B(a1, a2, δ) =
(I1 + I2 + I3)(a1, a2, δ)

44−2a1−2a2π2A2
0(a1)A2

0(a2)
, (4.36)

where I1,2,3(a1, a2, δ) are expressed in terms of generalised hypergeometric functions [42], see
appendix C, and we recall that A0(a) is defined by (3.21). Notice that we have momentarily
kept ∆+ ̸= 0 because some of the functions Ii are singular in the limit ∆+ → 0. The sum
I1 + I2 + I3 is however finite, as is shown in appendix C. We do not have an explicit formula
for it for arbitrary u but we can expand it around u = 0. The eigenvalue is then

h(∆) = lim
∆+→0

B

(
−1− u+∆+, 1 + u, 2−∆+ − ∆

2

)
B

(
1− u−∆+, 1 + u,∆+ − ∆

2

)
(4.37)

= u4

256π8(1 + u)4 lim
∆+→0

(I1 + I2 + I3)
(
−1− u+∆+, 1 + u, 2−∆+ − ∆

2

)
× lim

∆+→0
(I1 + I2 + I3)

(
1− u−∆+, 1 + u,∆+ − ∆

2

)
(4.38)

= 1
256π4

[
1 + 4u

(
−1− 2ψ(1) + ψ

(∆
2

)
+ ψ

(
1− ∆

2

))
+O

(
u2
)]

. (4.39)
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Figure 8. A closed region of disk topology carved out of a square lattice describes a Checkerboard
Feynman diagram. Crossing between the contour and the propagators define the fields inside a
single-trace correlator

〈
Tr
[
Z1(x1)Z̄4(x2)Z̄2(x3) · · ·Z4(x12)Z3(x13)

]〉
. Other Feynman diagrams that

would contribute to such correlator are subleading in the planar limit.

Writing ∆ = 1 + 2iν, the latter expression coincides with the energy of the Pomeron state,
obtained in the Regge limit of QCD or in N = 4 SYM theory by [27, 28] up to a constant
coming from the equation (4.31)

ω(ν) = 4
(
2ψ(1)− ψ

(1
2 + iν

)
− ψ

(1
2 − iν

))
. (4.40)

This establishes the direct link between the Checkerboard theory and the BFKL limit of
QCD. Various physical quantities for both models, such as the graph-building operator
appearing in the work [4] (eq. (7) at d = 2, ξ → 0), or Lipatov’s Hamiltonian (4.29) with
nearest-neighbour spin interactions, are different commuting charges of the same integrable
SL(2,C)-symmetric spin chain.

Now we can compute the anomalous dimension of the short operators (3.9). Let us
introduce an effective coupling η through

ξ1ξ2 = 4π(1− uη) , (4.41)

which we keep finite in the limit u → 0, ξ1ξ2 → 4π. We obtain from (3.27) and (4.39) in
the limit u → 0 the equation for the spectrum of conformal dimensions ∆(η) of exchange
operators in BFKL FCFT (at L = 2)

η = ψ

(∆
2

)
+ ψ

(
1− ∆

2

)
− 2ψ(1)− 1 +O(u) . (4.42)

5 Single-trace correlators

In this section we shall compute a few classes of correlators obtained by point-split of
the VEV of a single-trace local operator. We consider single-trace correlators featuring a
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number m1 +m2 + · · · +mn of external fields grouped into n coinciding positions, which
have the general form:

1
N

⟨Tr[(Φ1,1 · · ·Φ1,m1)(x1)(Φ2,1 · · ·Φ2,m2)(x2) · · · (Φn,1 · · ·Φn,mn)(xn)]⟩ . (5.1)

The fields Φn,m are chosen among Zk, Z̄k and each pair of brackets (. . . ) delimits a product
of fields located at the same point and with open SU(N) indices, e.g.

(Z1Z2Z̄3Z1Z1 · · · Z̄2)ij(x) =
∑

a1...aL

(Z1)ia1(x)(Z2)a1a2(x) · · · (Z̄2)aLj(x) . (5.2)

These type of correlators are fundamental objects in the planar limit of Fishnet theories, since
they usually get quantum corrections by at most one Feynman integral [7, 8]. In practice one
can define a single-trace planar correlator with a simple procedure, depicted in figure 8: let
us draw a closed contour on a large Checkerboard square lattice. The propagators which are
crossed by the contour define the fields inside the trace and are initially located at different
spacetime points. Now, one can check that no other Feynman diagram can contribute to the
perturbation theory of this single-trace correlator in the planar limit N → ∞.

The OPE data of local operators of type (5.2) can be extracted from the OPE of single-
trace correlators of type (5.1). The spectrum of such open-index operators in planar theory
is easier to study w.r.t. that of single-trace operators: the correlator of two single-trace
operators is affected by finite-volume effects (wrappings, spiraling, [11]), whereas a two-point
single-trace correlator receives quantum corrections by at most one Feynman diagram. In the
language of vertex models [5], the latter can be is the partition function of a Checkerboard
square-lattice with boundary conditions fixed by the coordinates of fields under trace (similar
to arbitrary fixed configuration of spins on the boundary of a 2d lattice spin system).

In this section and in the next one, we will analyse two types of single-trace 4-point
correlators. One type is the rectangular correlators, i.e. the generalisation of the Basso-Dixon
four-point Fishnets [29] to the Checkerboard square lattice. The second type is dubbed
diamond correlators and have not yet been studied even in the bi-scalar FCFT.

5.1 Rectangular Fishnets

In this section we consider four-point rectangular Fishnet diagrams in the Checkerboard theory,
see figure 9. We shall compute them using the method of separation of variables [15, 16, 19, 33].
This approach, inspired by the early work [32] for two dimensions, was applied in general
dimension d to the rectangular Fishnets of the bi-scalar theory in [19]. We will present explicit
computations in d = 2, 4 where the SoV representation is particularly well established.

For a rectangle of size 2n × 2m the corresponding correlator reads

I2n,2m = 1
N

〈
Tr
[
(Z1Z3)n(x1)(Z̄2Z̄4)m(x4)(Z̄3Z̄1)n(x3)(Z4Z2)m(x2)

]〉
, (5.3)

whereas for more generic size the expression is slightly cumbersome due to the alternating
nature of fields along the rectangle edges. For example, with reference to the case in figure 9,

I2n+1,2m = 1
N

〈
Tr
[
(Z3(Z1Z3)n)(x1)(Z̄2Z̄4)m(x4)((Z̄3Z̄1)nZ̄3)(x3)(Z2Z4)m(x2)

]〉
, (5.4)
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Figure 9. (a) A rectangular Fishnet integral corresponding to the four-point correlator I3,4 of the
Checkerboard CFT. The dimension of propagators alternates along rows/columns of the square lattice.
(b.1), (b.2) are the two cross-integrals corresponding to the two vertices of the theory. The diagram
(c) is an example of Checkerboard Ladder of length M = 4.

and the other cases are similar. In particular, we could define Ladder integrals of two
types, corresponding to N = 1 and any M , or vice-versa. The first case is depicted in
figure 9(c) for M = 2m = 4,

I1,2m = 1
N

〈
Tr
[
Z3(x1)(Z̄2Z̄4)m(x4)Z̄3(x3)(Z2Z4)m(x2)

]〉
, (5.5)

whereas for odd M = 2m + 1, the Ladder corresponds to the correlator:

I1,2m+1 = 1
N

〈
Tr
[
Z3(x1)((Z̄2Z̄4)mZ̄2)(x4)Z̄1(x3)(Z4(Z2Z4)m)(x2)

]〉
. (5.6)

The main difference between this class of Feynman integrals and the one of the bi-scalar
FCFT (4.1) is, evidently, the alternating nature of fields/propagators along rows/columns
of the Fishnet square-lattice.

5.1.1 SoV representation

We present here the SoV representations of the rectangular diagrams in the 2D and 4D
theories. Details regarding the derivation in two dimensions are given in appendix D. This
generalises (some of) the results of [32, 33] (in 2D) and [15, 16, 29] (in 4D).

The first thing to notice is that the diagrams can be built from the repeated application
of some graph-building operators. Due to the alternating nature of the lattice, two such
operators ΛN and Λ′

N are needed, where N is the height of the diagram. They are related
through the exchange of the weights ∆i of the propagators:

Λ′
N = ΛN

∣∣
(∆1,∆2)↔(∆3,∆4) . (5.7)
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The kernel of ΛN is

⟨y1, . . . , yN |ΛN |z1, . . . , zN ⟩ =

=
⌊N−1

2 ⌋∏
k=0

(y2k+1 − z2k+1)−2∆1y−2∆2
2k,2k+1

⌊N
2 ⌋∏

k=1
(y2k − z2k)−2∆3y−2∆4

2k−1,2k , (5.8)

where y0 = 0 and we use the standard notation ⟨y|z⟩ = π
d
2 δ(d)(y − z). The rectangular

diagrams we want to compute are then

IN,2L−1(y, z) = ⟨y, . . . , y|
⌊N−1

2 ⌋∏
k=0

y2∆4
2k,2k+1

⌊N
2 ⌋∏

k=1
y2∆2

2k−1,2k(Λ
′
NΛN )L |z, . . . , z⟩ , (5.9)

and

IN,2L(y, z) = ⟨y, . . . , y|
⌊N−1

2 ⌋∏
k=0

y2∆4
2k,2k+1

⌊N
2 ⌋∏

k=1
y2∆2

2k−1,2k(Λ
′
NΛN )LΛ′

N |z, . . . , z⟩ , (5.10)

where we have chosen, for brevity, to ignore the constant coefficient in the propagators (2.5),
so that they are simply Di(x) = x−2∆i .

We show in appendix D.1 how to construct orthogonal bases of left and right eigenvectors
of Λ′

NΛN . Assuming that the bases are complete, one can then compute the diagrams. For
an even number of graph-building operators, one has4

IN,2L−1(y, z) = A0(∆3)LN+⌊N−1
2 ⌋⌊N+1

2 ⌋A0(∆1)LN+⌊N−2
2 ⌋⌊N

2 ⌋

×A0(∆̃2)⌊
N
2 ⌋⌊N+2

2 ⌋A0(∆̃4)⌊
N−1

2 ⌋⌊N+1
2 ⌋ y2YN z2ZN

N !

×
+∞∑

m1,...,mN =−∞

∫
RN

N∏
k=1

P (d)
mk

(θ)fN,2L−1(r;uk)µ(d)
N (u1, . . . ,uN )du1 . . . duN ,

(5.11)
where uk = (mk, uk) ∈ N × R and the measure for the 2d case is

µ
(2)
N (u1, . . . ,uN ) =

1
(2π)N

∏
1⩽i<j⩽N

[
(ui − uj)2 + (mi −mj)2

4

]
(5.12)

and for the 4d case

µ
(4)
N (u1, . . . ,uN ) =

∏N
k=1(mk + 1)
(2π)N

∏
1⩽i<j⩽N

[
(ui − uj)2 + (mi −mj)2

4

]

×
[
(ui − uj)2 + (2 +mi +mj)2

4

]
. (5.13)

4A necessary condition for the SoV representation to be valid is that each semi-infinite series of poles in
the integrand, coming from the various Gamma functions, is either strictly above or below the real axis. This
means that Re(∆1) > |Re(∆2 − ∆4)|/2 and Re(∆3) > |Re(∆2 − ∆4)|/2.
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The summand also contains

P (2)
m (θ) = eimθ or P (4)

m (θ) = ei(m+1)θ

eiθ − e−iθ , (5.14)

and the functions

fN,2L−1(r;u) = r2iu
(
Am(ã(u))Am(b̃(u))

)L+⌊N
2 ⌋ (Am(ã′(u))Am(b̃′(u)))L+⌊N−1

2 ⌋
, (5.15)

where r and θ parameterise the cross-ratio through

r = |y|
|z|

, cos θ = y · z
|y||z|

. (5.16)

We used the notation α̃ = d/2 − α and the functions Am(α) = Γ(α̃ +m/2)/Γ(α +m/2),
as well as

a(u) = ∆̃2
2 + ∆1 −∆3

4 − iu = ∆1
2 + ∆4 −∆2

4 − iu , (5.17)

b(u) = ∆̃2
2 + ∆3 −∆1

4 + iu = ∆3
2 + ∆4 −∆2

4 + iu . (5.18)

Finally, we have also introduced the short notations

a′ = a
∣∣
(∆1,∆2)↔(∆3,∆4) , b′ = b

∣∣
(∆1,∆2)↔(∆3,∆4) , (5.19)

and

YN = −
⌊
N + 1

2

⌋(∆3
2 + ∆2 −∆4

4

)
−
⌊
N

2

⌋(∆1
2 + ∆4 −∆2

4

)
, (5.20)

ZN = −
⌊
N + 1

2

⌋(∆1
2 + ∆2 −∆4

4

)
−
⌊
N

2

⌋(∆3
2 + ∆4 −∆2

4

)
. (5.21)

The diagrams realised by an odd number of graph-building operators are given by

IN,2L(y, z) =A(∆3)
LN+

⌊
N2+3

4

⌋
A(∆1)

LN+
⌊

N2
4

⌋ (
A(∆̃2)A(∆̃4)

)⌊N2
4

⌋
y2YN z2Z′

N

N ! ×

×
N∏
k=1

+∞∑
mk=−∞

P (d)
mk

(θ)
∫
RN

FN,2L(r;u1, . . . ,uN )µ(d)
N (u1, . . . ,uN )du1 . . .duN ,

(5.22)

where

FN,2L(r;u1, . . . ,uN ) =

∏N
k=1 fN,2L−1(r;uk)×

Amk
(ã(uk)) if N is even

Amk
(ã′(uk)) if N is odd

AmN (b(uN ))AmN−1(b′(uN−1))AmN−2(b(uN−2)) · · ·
. (5.23)
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5.1.2 Ladder diagrams

In the particular case of the ladder diagrams, N = 1, the previous formulae read

I1,M (y,z)= A0(∆1)⌊
M+1

2 ⌋A0(∆3)⌊
M+2

2 ⌋

|y|∆3+ ∆24
2

z2Z1(M)
+∞∑
m=0

P (d)
m (θ)

×
∫ +∞

−∞
r2iu

 Γ
(

∆1+m
2 +∆24

4 +iu
)
Γ
(

∆1+m
2 +∆42

4 −iu
)

Γ
(

∆4+m
2 +∆31+d

4 −iu
)
Γ
(

∆2+m
2 +∆31+d

4 +iu
)
⌊

M+1
2 ⌋

×

 Γ
(

∆3+m
2 +∆24

4 −iu
)
Γ
(

∆3+m
2 +∆42

4 +iu
)

Γ
(

∆4+m
2 +∆13+d

4 +iu
)
Γ
(

∆2+m
2 +∆13+d

4 −iu
)
⌊

M+2
2 ⌋

µ
(d)
1 (u)du,

(5.24)

where ∆ij = ∆i − ∆j , the measure is simply

µ
(2)
1 (u) = 1

2π or µ
(4)
1 (u) = m+ 1

2π , (5.25)

and the exponent Z1(M) depends only on the parity of M :

2Z1(M) =

2Z1 = −∆1 + ∆4−∆2
2 if M is odd

2Z ′
1 = −∆3 + ∆2−∆4

2 if M is even
. (5.26)

From the SoV analysis of Ladders one can extract information about the dilation operator of
the theory. In the light-cone OPE limit x2

12, x
2
34 → 0, which in terms of (5.24) becomes

r → 0 , θ → −i∞ , 0 < t = reiθ <∞ , (5.27)

the Ladder diagrams are dominated by a leading UV behaviour

∼ logn(re−iθ)× FM (t) . (5.28)

For a Ladder of length M in the general Checkerboard CFT we argue that n = ⌊M/2⌋.
The OPE logs are obtained from (5.24) by taking residues at higher-order poles w.r.t. the
integration variable u. In the limit (5.27), the integration is performed by closing the contour
in the lower half of the complex plane, i.e. encircling poles with Re(iu) > 0. Hence, the
SoV integration features poles of order ⌊M/2⌋ + 1

iu = ∆1 +m

2 + ∆4 −∆2
4 + k , k ∈ N , (5.29)

which produce UV logarithms with n = ⌊M/2⌋. It features also poles of order ⌊(M + 1)/2⌋,

iu = ∆3 +m

2 + ∆2 −∆4
4 + k , k ∈ N , (5.30)

which give either poles of the same order n or of lower order n− 1, respectively for M odd
or even. On the other hand, the log-behaviour of Ladder integrals in the bi-scalar Fishnet
CFT (4.1) is that of a stronger divergence ∼ logM (reiθ) [54]. More generally, whenever a
certain condition of type (2.3) is met, the two series of poles merge into one of order M + 1,
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Figure 10. From left to right, one instance of each of the four possible “types” I-IV of Diamond
Fishnet diagrams delimited by a red rectangle. They represent four different four-point correlators.
External points that lie on one same edge of the rectangle and have the same shape (◦,△,□, ⋄) are
merged, i.e. they have the same coordinates. Their different boundaries reflect in the number and
position of legs connected to the vertices of the rectangle.

enhancing the log-divergence to order n = M . Indeed, setting ∆1 +∆4 = ∆2 +∆3, there
is a series of (M + 1)-order poles

iu = m

2 + ∆1 +∆3
4 + k , k ∈ N . (5.31)

The fact that leading-logs of ladder integrals have “halved” power w.r.t. the length M hints
that operators in the Checkerboard theory are protected at one-loop and quantum corrections
start at two-loops — unless the parameters are tuned to (2.3).

6 Diamond correlators

In this section we will consider a new class of four-point single-trace correlators which we
dub “Diamonds”. We define them on the Checkerboard square lattice for generic lengths
m,n by drawing a rectangle of size m × n with edges that cut the lattice cells along their
diagonals, crossing the lattice vertices. We depict four instances in figure 10, which cover
the four possible choices of boundary for the square lattice, modulo reflection symmetries.
In the following we will compute some Diamond four-point correlators, defined by merging
the external points that lie on one same edge of the rectangle in figure 10. In particular,
we will concentrate on type I and type II boundaries; a similar analysis can be carried out
for Diamonds of type III and IV.5 In general, we call m,n the number of entire squares
appearing in a column or in a row inside the rectangle. With reference to the figure, this is
(m,n) = (2, 3) for type I, (m,n) = (2, 2) for types II, III, and IV.

6.1 Diamond correlators of type I

In this section we will focus on the single-trace four-point functions described by Diamond
diagrams of type I. We realise the four-point correlator by labelling with xi the position
of external fields in clockwise order,

G(I)
m,n = 1

N

〈
Tr
[
(Z̄4Z1)m(x1)(Z̄1Z̄2)n(x4)(Z2Z̄3)m(x3)(Z3Z4)n(x2)

]〉
, (6.1)

5In fact, a simple proof shows that diagrams of type IV are equivalent to type I, based on a systematic
iteration of star-triangle identities.
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x1

x4

x1

x3

x3

x4 x4

x2

x1

x2

x2 x2

x3

x4

Z4 Z3

Z2Z1

Figure 11. The Diamond integral defining the correlator (6.1) for (m,n) = (1, 1) (left) and for
(m,n) = (2, 3) (right). The first one contributes at zero coupling, while the second contributes at
order (ξ2

1)3(ξ2
2)4, i.e. seven loops. We marked each propagators with the corresponding field Zk, and

the orientation of arrows goes as Z → Z̄.

and it is given by a single Feynman diagram at loop order ξ2n(m−1)
1 ξ

2m(n−1)
2 . We can regard this

diagram as the convolution of m×n copies of the R-matrix (3.7) along m rows and n columns.
Notice that (6.1) is one of the possible realisation of Diamond correlators of type I. The

other ones are related by cyclic permutation of the external fields, hence we carry on the
analysis with little loss of generality. The case m = n = 1 is purely tree-level (figure 11,
left), while for larger m,n the correlator is equal to the product of a connected component
at loop level times the m = n = 1 term

G(I)
m,n = G

(I)
1,1 × G̃(I)

m,n ,

G̃(I)
m,n = 1

N

〈
Tr
[
(Z1Z̄4)m−1(x1)(Z̄2Z̄1)n−1(x4)(Z̄3Z2)m−1(x3)(Z4Z3)n−1(x2)

]〉
,

(6.2)

where
G

(I)
1,1 = D4(x12)D3(x23)D2(x34)D1(x41) .

Let us focus on the connected integrals. First of all, these are not always well defined in
integer dimension: they are finite for general6 scaling dimensions {∆1,∆2,∆3,∆4} whereas
they develop UV divergence at any of the special points

∆i +∆(i+1) mod 4 = d

2 . (6.3)

For instance, for ∆4 +∆1 = d/2 = ∆2 +∆3 a couple of the open-index operators inside the
trace in (6.2), namely (Z1Z̄4)m−1 and (Z̄3Z2)m−1 get quantum corrections to their two-point
functions and need to be renormalised.

6Here we mean general under the constraint ∆1 + ∆2 + ∆3 + ∆4 = d which is required for dimensionless
couplings ξ1, ξ2.
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6.1.1 Digression: one-loop spectrum

Let us look at the divergence of a Diamond correlator at points (6.3) for the one-loop ξ2
2

case (m,n) = (2, 1). In fact, this case reduces to the two-point function

G̃
(I)
2,1 = 1

N

〈
Tr
[
(Z1Z̄4)(x1)(Z̄3Z2)(x3)

]〉
, (6.4)

responsible for the mixing of length-2 open-index operators

O1 = Z1Z̄4 , O2 = Z̄3Z2 . (6.5)

The matrix of Feynman integrals that mix this multiplet read
〈
Tr
[
Oi(x)O†

j(0)
]〉

=

ξ2

ξ0

ξ0

⦰
with no other contribution (recall that we deal with the planar limit of single-trace correlators).
The renormalised operators are given via the mixing matrix

O
(r)
i =

√
Zi1O1 +

√
Zi2O2 ;

√
Zij =

(
1 −ξ2

2
γ1
ϵ

0 1

)
. (6.6)

Notice that (6.6) is not diagonalisable — a signature of non-unitarity of the theory which
results in the existence of Jordan blocks in the spectrum [2]. In short, Hermitian conjugation
and renormalisation do not commute:

O†
i,r =

√
Z1iO

†
1 +

√
Z2iO

†
2 ̸= (Oi,r)†.

The matrix of renormalised 2-pts functions reads

1
N

〈
Tr
[
Oi,r(x)O†

j,r(0)
]〉

=

 1
(x2)2 −ξ2γ1

log(x2µ2)
(x2)2

0 1
(x2)2

 , (6.7)

for γ1 the coefficient of the pole 1/ϵ in the one-loop diagram.
When none of (6.3) is satisfied, the 1-loop anomalous dimension γ1 is zero, coherently

with the mismatch [O1] ̸= [O2] of bare dimensions. We can check it by direct computation:
the one-loop Feynman diagram generating γ1 is proportional to

∫ ddy
(x− y)2(∆1+∆4)y2(∆2+∆3) = πd

Γ
(
d
2 −∆2 −∆3

)
Γ
(
d
2 −∆1 −∆4

)
Γ (∆1 +∆4) Γ (∆2 +∆3)

δ(d)(x) , (6.8)

which evaluates to zero since x ̸= 0. The same arguments hold after insertion of derivatives
on the fields, that is for spinning 2-pt functions. Indeed, take

1
N

〈
Tr
[
(∂J1Z1∂

J4Z̄4)(x)(∂J3Z̄3∂
J2Z2)(0)

]〉
, (6.9)
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Figure 12. Star-Triangle computation of G(I)
2,3. From left to right: from (1) to (2): merge points

with the same coordinates on each of four boundaries and drop disconnected factor; from (2) to
(3): integrate red dot vertices by star-triangle; (4) the result given by two triangles of disconnected
propagators times a two-point one-loop integral of the type (6.8).

Figure 13. Star-Triangle computation of G(I)
2,2. The same passages as for m = 2, n = 3 lead to a

product of propagators.

where ∂ ≡ n · ∂ with generic nµ. The evaluation of the one-loop (and only) Feynman
diagram is proportional to

(n · ∂)J1+J2+J3+J4δ(d)(x) . (6.10)

All together, we conclude that the dilation operator of the planar Checkerboard theory

D = D0 + D1,0 ξ
2
1 + D0,1 ξ

2
2 + D2,0 ξ

4
1 + D1,1 ξ

2
1ξ

2
2 + . . . (6.11)

has zero one-loop components D1,0, D0,1 whenever the theory is defined on a Loom with
four arbitrary slopes. Otherwise, at any special point (6.3), the one-loop spectrum becomes
non-trivial. The action of dilations at one-loop can be described as an operator acting
on nearest-neighbour spin-chain vectors that represent consecutive fields inside the SU(N)
trace, say

|Zi, Zj⟩ ≡ (ZiZj)(0).

In this language our statements read

D1,0|Z1, Z2⟩ = δ2,w1+w2 × γ1|Z̄4, Z̄3⟩ , D0,1|Z2, Z̄3⟩ = δ2,w1+w4 × γ1|Z1, Z̄4⟩ , (6.12)

and similarly for cyclic permutations of fields Z1, Z2, Z̄3, Z̄4.

6.1.2 General formula

With the assumption to avoid (6.3) we move on to the computation of Diamonds of any size.
The procedure is exemplified in figure 12 and 13 for m = 2 and n = 3, 2 respectively.

The computation is based on the iterative use of star-triangle identities, and result
for general m,n reads

(D1(x14)D2(x34)D3(x23)D4(x12))2 ×
(
δ(d)(x24)

)θ(m−n) (
δ(d)(x13)

)θ(n−m)
, (6.13)
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Figure 14. Three instances of bare exchange operators flowing in the s-channel of G̃(I)
2,2. Green

dashed lines cut the Diamond between points x1x2 and x3x4, defining two open-index operators O
and O′.

Figure 15. The single-trace three-point functions ⟨Tr (Z4Z3)(x2)(Z1Z̄4)(x1)(Z̄3Z̄1)(x0)⟩ and
⟨Tr (Z4Z3)2(x2)(Z1Z̄4)2(x1)(Z̄3Z̄1)2(x0)⟩ receive loop-level contributions by the Feynman diagrams
depicted on the left and right respectively. Their evaluation by star-triangle identities delivers a
nonzero result.

where θ(a) = a if a > 0 and zero otherwise. Dealing with the correlator of fields inserted
at four different points in Euclidean space-time, the formula (6.13) evaluates either to zero
or, when m = n, to a product of propagators.

This result is atypical hence intriguing, and requires further explanations. First, notice
that the last formula has the typical “tree-level” form but it is a contribution to the correlator
G

(I)
m,m at loop order (ξ2

1ξ
2
2)m(m−1). The usual CFT four-point function at loop level is described

by a transcendental functions of cross-ratios of the distances x2
ij , hence it develops logarithmic

divergences in the limit of light-cone distances. This is the case, for instance, of the Ladders
in section 5.1.2. The absence of logs in (6.13) signals that a light-cone OPE decomposition of
G

(I)
m,m features only the exchange of operators with zero anomalous dimension.

Let us analyse the OPE of (6.13) in the s-channel x1 → x2, x3 → x4, and focus on the
exchange of two-point functions ⟨O(x)O′†(0)⟩ of spinless operators. All such possibilities
can be detected at glance by slicing the Diamond diagram between x1x2 and x3x4 as done
in figure 14 for m = 2. The picture is general enough as other cases are either related by
re-labelling fields or zero due to [O] ̸= [O′].

The shortest exchanged operator for any m is
1
N

〈
Tr
[
(Z1Z3)(m−1)(x)(Z̄3Z̄1)(m−1)(0)

]〉
. (6.14)
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Figure 16. The Feynman integral contributing to G̃
(I)
2,3 at loop order (ξ2

1)4(ξ2
2)3.On the left, two

choices O,O′ for a shortest exchanged operator (length 4). On the right the exchange of two operator
with nonzero two-point function though protected scaling dimension, of the type (6.16).

It has non zero tree-level but it is protected from loop corrections in the planar theory. At the
same time, these operators form single-trace three-point functions at loop order (ξ2

1ξ
2
2)

m(m−1)
2

with the external states, depicted in figure 15 for m = 2, 3. These three-point functions
for general m = L + 1 evaluate to

1
N

〈
Tr
[
(Z4Z3)L(x2)(Z1Z̄4)L(x1)(Z̄3Z̄1)L(x0)

]〉
= (6.15)

=
(
ξ2

1ξ
2
2 A(∆1 +∆4,∆2,∆3 +∆4, 2−∆4)

)L(L+1)
2

(x2
10)L∆1(x2

20)L∆3(x2
12)L∆4

,

1
N

〈
Tr
[
(Z1Z3)L(x0)(Z̄2Z̄1)L(x4)(Z̄3Z2)L(x3)

]〉
=

=
(
ξ2

1ξ
2
2 A(∆2 +∆3,∆4,∆1 +∆2, 2−∆2)

)L(L+1)
2

(x2
30)L∆3(x2

40)L∆1(x2
34)L∆2

,

where, as in equations (5.9) and (5.10), we have taken the propagators to be simply Di(x) =
x−2∆i so as to make the expressions shorter. We will do the same in all the other diagram
computations of this section.

Notice that the OPE considerations made so far hold essentially for the exchange of any
spinning operator (∂J1Z3∂

J ′
1Z1) · · · (∂Jm−1Z3∂

J ′
m−1Z1), which have the same, minimal, twist

∆− J = (m− 1)(∆1 +∆3) and thus dominate the light-cone OPE limit x2
12, x

2
34 → 0.

Let us complete the analysis for m = 2 with the other two exchanges in figure 14. One
case (right picture) involves tree-level three-point function and four-loop two-point which
evaluates to zero whenever ∆2 ̸= ∆4. The central picture is rather curious: the two-point
function for O = Z4Z3Z̄2 and O′ = Z̄2Z3Z4 is non-zero but it is not divergent either:

1
N

〈
Tr
[
O(x)O′†(0)

]〉
= ξ2

1ξ
2
2
A(∆1, 4−∆1)
(x2)∆2+∆3+∆4

. (6.16)

At the same time, it is simple to verify that the three-point functions are zero. Hence
the correlators for m = 2 can be decomposed over the exchange of (∂JZ3∂

J ′
Z1) only, plus

descendants. For clarity, let’s point out that for general m the result (6.13) does not contradict
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the exchange of operators which receive loop corrections in the normalisation without getting
anomalous dimension. The absence of these in the OPE expansion should be checked by
computing three-point functions, as we did for m = 2.

The analysis can be repeated for m ̸= n, for which the Diamond integrals evaluate to
zero. Take for instance the connected diagrams for m = 2, n = 3 in figure 16. We focus on
the shortest operators in the s-channel. For m ̸= n it is not possible to cut the diagram
along a row of lattice, and the cut must bend horizontally or vertically for some cells and
crossing propagators of type Z2 or Z4 as well. The way of bending is not unique, and there
are more options of shortest operator. For example, with reference to figure 16 (left), the
two operators of length-4 are

O = Z4Z3Z1Z3 , O
′ = Z1Z3Z4Z3 . (6.17)

These operators mix the diagram of Ladder type L2 enclosed between dashed cuts in figure 16,
which is 1/ϵ-divergent as a two-point function, as argued in section (5.1.2). Therefore
⟨Tr
[
OO′†

]
⟩ gets anomalous dimension. Nevertheless, the three-point function of O, O′ with

the external open-index states evaluate to zero. One can consider also longer operators as
those depicted on the right of figure 16,

O = Z4Z3Z̄2Z3Z1 , O
′ = Z̄2Z3Z4Z3Z1 . (6.18)

In this case the two-point function is of the type (6.16), hence non zero. Once gain, the
three-point functions vanish, in agreement with the result (6.13).

All together, since the OPE of Diamonds with m ̸= n must reproduce a zero result,
one always encounters either operators with nonzero two-point functions ⟨Tr

[
OO

′†
]
⟩ which

multiply vanishing three-point functions, or whenever the three-point functions are non-zero
(e.g. tree level) the exchanged operators have [O] ̸= [O′] for general ∆k, so they cannot mix.

6.2 Diamond correlators of type II

In this section we analyse the Diamond correlators of type II, and repeat the OPE analysis
of the previous section. The correlators are defined for any n and m as

G(II)
m,n = 1

N

〈
Tr
[
(Z3Z̄2)m(x1)(Z̄1Z̄2)n(x4)(Z2Z̄3)m(x3)(Z3Z4)n(x2)

]〉
. (6.19)

These correlators are zero in the free theory, and receive loop corrections at order
ξ

2n(m−1)
1 ξ2mn

2 due to one Fishnet diagram of the type in figure 17. For generic parameters
∆k, the open-index operators that enter the trace in (6.19) are protected and the four-point
integral is finite. Using only the star-triangle identity, one can compute the following:

• m < n: the integral evaluates to zero, G(II)
m<n = 0.

• m = n: the integral with 2m2 − m loops evaluates to a product of powers of the
distances x2

ij , similarly to Diamonds of type I:

G(II)
m,m = ξ

2m(m−1)
1 ξ2m2

2
π4m2−2mA(∆1,∆4,∆2 +∆3)m

2
A(∆1 +∆2,∆3 +∆4)

m(m−1)
2

(x2
12)m(2−∆1)(x2

14)m(2−∆4)(x2
24)m(2−∆2−∆3)(x2

23)m∆3(x2
34)m∆2

.

(6.20)
The computation technique is exemplified in figure 18 for m = n = 2.
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x1

x1

x1

x4 x4

x2 x2

x3

x3

Z2Z1

Z1

x1

x1

x1

x4

x2

x3

x3

Z4 Z3

Z4

Z3

Z3

Z2

Z2

Z3

Z2

Figure 17. The Diamond Feynman integrals of type II for m = 2, n = 1, 2.We mark with letters Zk

the propagator of Checkerboard fields. The orientation of arrows is Z → Z̄.

Figure 18. The star-triangle computation of G(II)
2,2 . From left to right: merging of external points,

followed by star-triangle integration of points marked with red dots.

• m > n: the integral can be brought into the form of a Rectangular Basso-Dixon Fishnet
of size (m− n)× n. The latter Fishnet has horizontal/vertical propagators with the
scaling dimensions ω = ∆2 +∆3 and ω̃ = d

2 − ω respectively.

G
(II)
m>n = π2mn+2n(n−1)A(∆1,∆4,∆2 +∆3)mnA(∆1 +∆2,∆3 +∆4)

n(n−1)
2 ×

× ξ
2n(m−1)
1 ξ2mn

2
(x2

12)n(2−∆1)(x2
23)n∆3(x2

34)n∆2(x2
14)n(2−∆4) × I

(BD)
m−n,n(ω;x1, x2, x3, x4) .

(6.21)

The transformation from Diamond to BD diagrams is explained in figure 19 for the
simplest case (m,n) = (2, 1) and it is otherwise more cumbersome (we checked it only
up to m = 4, n < m).

These diagrams can also be computed using SoV techniques, as explained in appendix D.3.
This is much more direct than the SoV computations of section 5 since we do not need to
construct new resolutions of the identity. However, these SoV expressions make it harder to
observe the simple behaviour of G(II)

m,n when m ⩽ n. As a consistency check, we spell out in
details the SoV expressions for (m,n) ∈ {(1, 1), (1, 2), (2, 1)} in appendix E.

Whenever m ⩽ n, Diamonds of type II show similar behaviour as Diamonds of type I.
Thus, an OPE analysis would lead to analogue considerations about protected anomalous
dimensions and/or single-trace three-point functions.
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Figure 19. Left: the Diamond G
(II)
m,n four-point integral (m,n) = (2, 1). Centre: the same integral

with merged points. Red cubic vertices are integrated by star-triangle identity. Right: the result is a
conformal cross-integral with powers ∆2 +∆3 and 2−∆2 −∆3, times disconnected terms of type
(x2

i,i+1)β .

6.2.1 From diamonds to rectangular fishnets

In the following we will focus on the case m > n. The Feynman diagrams of figure 17
always have a trivial term G

(II)
1,0 = D2(x34)D3(x23). We will concentrate on its nontrivial

connected component G̃(II)
m,n,

G(II)
m,n = 1

N
G

(II)
1,0 × G̃(II)

m,n ,

G̃(II)
m,n =

〈
Tr
[
(Z̄2Z3)n(x1)((Z4Z3)m−1Z4)(x2)(Z̄3Z2)n(x3)((Z̄1Z̄2)m−1Z̄1)(x4)

]〉
.

(6.22)

The case at hand is the first instance of Diamond integral that evaluates to a non-trivial
function of the conformal cross-ratios

I
(BD)
m−n,n(ω;x1,x2,x3,x4)=

I(BD)(ω;z, z̄)
(x2

12x
2
34)2m−n , zz̄=

x2
12x

2
34

x2
14x

2
23
, (1−z)(1−z̄)= x2

13x
2
24

x2
14x

2
23
, (6.23)

where I(BD)
m−n,m(ω; z, z̄) was solved via separation of variables in [15]. Most importantly, in

the limit z → 0, it develops a leading UV divergence

I(BD)(ω; z, z̄) ∼ (log z)(m−n)n × Φm−n,n(ω; z̄) , (6.24)

where Φa,b(ω; z̄) is an analytic function around z̄ = 0. The log-behaviour implies that
the s-channel of G(II)

m>n>0 must include the exchange of operators with non-zero anoma-
lous dimension.

Let us proceed with a qualitative OPE analysis. We have argued that the spectrum of
scaling dimensions is protected at one-loop unless ∆k satisfy (6.3). In addition, by conformal
symmetry, the maximal light-cone s-channel divergence of a correlator at n-loops is γn1,O logn z,
where γm,O is the m-loop coefficient of the anomalous dimension of an exchanged operator
O. This does not contradict (6.21); indeed, at loop order 2mn −m, namely ξ

2n(m−1)
1 ξ2mn

2 ,
the maximal divergence of a Diamond (6.24) is weaker:

(m− n)n < 2mn− n , m, n > 0 . (6.25)
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Figure 20. Projection of G̃(II)
2,1 over the exchange of O,O′ in the s-channel. The two-point function〈

Tr
[
OO′†]〉 =

〈
Tr
[
(Z1Z3Z̄2)(Z2Z̄3Z̄1)

]〉
is 1/ϵ-divergent OPE limit of a Ladder diagram L2. It

multiplies finite three-point functions at order ξ2
1 (left) and tree-level (right) computed in (6.27).

Figure 21. The two-point function
〈
Tr
[
OO′†]〉 = 〈Tr[(Z4Z3Z̄2Z3Z̄2)(Z2Z̄3Z̄4Z̄3Z2)

]〉
is given by

a finite integral at loop level ξ2
1ξ

2
2 , of the type (6.16). Though, it multiplies a vanishing three-point

function at order ξ2
1 (on the right), hence it cannot appear in the OPE.

More in detail, let us consider the three-loop integral for m = 2, n = 1 in figure 17. It
lacks both the leading-logarithm ∼ log3 z, and the first sub-leading one ∼ log2 z, which
could multiply, respectively, γ3

1,O or a combination of γ1,Oγ2,O and γ2
1,O. Let us denote by

C
(k)
O the k-th loop order correction to structure constants in the OPE. Coherently with

our result, the maximal log that appears (also) in the terms that do not include γ1,O, such
as C(1)

O γ2,O or C(0)
O γ3,O.

The analysis can be pushed a little further. The rigid square-lattice structure of planar
Checkerboard diagrams allows to read at glance all possible operators that flow in the s-
channel. The shortest scalar two-point function exchanged in the s-channel, according to
the illustration in figure 20, reads

1
N

〈
Tr
[
(Z1Z3Z̄2)(x)(Z2Z̄3Z̄1)(0)

]〉
= ξ2

1ξ
2
2 lim
x1→x2, x3→x4

I1,2(x1, x2, x3, x4) , (6.26)

where we refer to the notation for Ladders (5.5). This diagram is 1/ϵ-divergent in dimensional
regularisation, hence it generates anomalous dimension at two-loops γ2,O ̸= 0. One can check
that this (plus spinning counterpart and descendants) is the only non-protected two-point
function flowing in the s-channel of (6.22) with n = 2,m = 1, and it accounts for the UV
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behaviour ∼ log z. The three-point functions involved in the OPE for the spinless operator,
also depicted in figure 20, are given by:

1
N

〈
Tr
[
Z4(x2)(Z3Z̄2Z3Z̄2)(x1)(Z2Z̄3Z̄1)(x0)

]〉
= (6.27)

= ξ2
1 A(∆2 +∆3,∆1,∆4)

(x2
10)2−∆4+∆2+∆3(x2

20)2−∆2−∆3(x2
12)2−∆1

,

1
N

〈
Tr
[
(Z̄2Z3Z1)(x0)Z̄1(x4)(Z̄3Z̄2)(x3)

]〉
= 1

(x2
30)∆2+∆3(x2

40)∆1
.

6.2.2 Spectrum and logarithmic multiplets

The lightest two-point function (6.26) pairs two different operators O and O′, hence it is
just a component of a larger multiplet. There are three open-index operators that can be
mixed by (2.1) in the planar limit, that is

Oh ∈ {Z1Z3Z̄2 , Z1Z̄4Z1 , Z̄2Z3Z1} . (6.28)

We draw the explicit Feynman diagrams which mix these operators to form a multiplet:

The matrix is not diagonalisable, and the multiplet is logarithmic. The diagrams of order
ξ2
i actually vanish for generic ∆k, so the mixing matrix

√
Zij reads

√
Zij =

1 0 −γ2
2ϵ

0 1 0
0 0 1

 , (6.29)

where γ2 is the residue at pole 1/ϵ of the aforementioned Ladder integral at ξ2
1ξ

2
2 . Thus,

we get a log-multiplet of rank two which mixes Z̄2Z3Z1 and Z1Z3Z̄2, whereas Z1Z̄4Z1 stays
protected. The two-point functions of renormalised operators follows from (6.29). If we
denote ∆ = ∆1 + ∆2 + ∆3 they read

1
N

〈
Tr
[
O

(r)
1 O

(r)†
1

]〉
= 1

(x2)∆ ,
1
N

〈
Tr
[
O

(r)
1 O

(r)†
2

]〉
= ξ2

1ξ
2
2
log
(
x2µ2)

(x2)∆ ,

1
N

〈
Tr
[
O

(r)
2 O

(r)†
1

]〉
= 0 , 1

N

〈
Tr
[
O

(r)
2 O

(r)†
2

]〉
= 1

(x2)∆ .

(6.30)

Let us conclude the section with a look at the multiplet (6.28) at the special point ∆2 +
∆3 = ∆1 +∆4 = 2, when the one-loop spectrum of Checkerboard CFT becomes non-trivial.
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The Feynman integrals at order ξ2
i develop 1/ϵ-divergence, whereas the integral at order ξ2

1ξ
2
2

gets a stronger leading term 1/ϵ2. The mixing matrix evaluates to

√
Zij =

1 −γ1
2ϵ −γ2

2ϵ −
γ2

1
4ϵ2

0 1 −γ1
2ϵ

0 0 1

 , (6.31)

and consequently, the two-point functions of renormalised operators form a log-multiplet
of rank three:

1
N

〈
Tr
[
O

(r)
i (x)O(r)†

j (0)
]〉

= 1
(x2)∆1+∆2+∆3

×

1 ξ2
1 log

(
x2µ2) ξ2

1ξ
2
2 log2(x2µ2)

0 1 ξ2
2 log

(
x2µ2)

0 0 1

 . (6.32)

Notice that special points of this type include all theories where ∆1 = ∆3 and ∆2 = ∆4,
when the quartic vertices feature two orthogonal pairs of propagators with dimensions
∆,∆′ = 2 − ∆ as in anisotropic bi-scalar FCFT [4].

6.2.3 Parity of the all-loop spectrum

The OPE analysis of this section hints that the spectrum of anomalous dimensions in a
Checkerboard CFT with four slopes is zero at odd orders in the loop expansion. Hence, for
any local operator O in the theory its anomalous dimension expands as

γO(ξ1, ξ2) =
∞∑
n=1

n∑
r=0

ξ2r
1 ξ

4n−2r
2 γ

(r,2n−r)
O . (6.33)

The last statement can be proved by induction. Since the discussion of Ladders in section 5.1.2
we found that γ(1)

O = 0 by looking at the analytic structure of the cross-integral L1. More
trivially, this statement follows from conformal symmetry: the only one-loop diagram is a
quartic Checkerboard vertex between two couples of fields with mismatching bare dimensions.

Next, the Ladder integral L2 is log-divergent in the OPE limit for general ∆k. This
is enough to guarantee that γ(2)

O ̸= 0. Coherently, the two-point function obtained in this
limit involves two operators with the same bare dimension.

Let us formulate the induction. Suppose that for a given m-loop Checkerboard Fishnet
it is possible to group external legs into two operators O1, O2 such that [O1] = [O2]. Then,
adding one vertex to the diagram increases the total scaling dimension of external legs by
n1∆1 + n2∆2 + n3∆3 + n4∆4 with nk = ±1. We distinguish three cases:

• Add three legs on the external point of a leg of type Zj or Z̄j and make it a vertex:
nj = −1, nk ̸=j = 1;

• Merge two legs in one external point and add two legs on top, making the point into a
vertex: nj = nj+1 = −1, nj+2 = nj+3 = 1;

• Merge three legs in one external point and add one leg on top: nj = 1, nk ̸=j = −1;
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Figure 22. Starting from the vertex of the theory, i.e. a cross-integral at one-loop, we generate
higher-loop Checkerboard Fishnets by adding a vertex in various ways. We connect with a blue dashed
lines group of points that, once merged, form a two-point functions of open-index operators with the
same bare dimension. In the text we argue that this can happen only at even loop order.

1

1

1

1

2
4 2 4 3

3

4

4

2

2

Figure 23. There are only two four-loop two-point diagrams (modulo cyclic permutations of fields) that
correct the spectrum of the theory. Both appear at order ξ4

1ξ
4
2 . The first (left) is obtained identifying

a pair of points in the Ladder L4, the second is the result of the same identification in the Rectangular
Fishnet I2,2. Both diagrams have a leading divergence ∼ 1/ϵ2 in dimensional regularisation.

In order to see if the external fields of the Checkerboard at m + 1 loops can be grouped
in two new operators O′

1, O
′
2 with [O′

1] = [O′
2] we can also re-distribute pk fields of type Zk

or Z̄k among O1, O2. All together we can write

[O′
1] = [O1] +

∑
k

nk∆k −
∑
k

pk∆k , [O′
2] = [O2] +

∑
k

pk∆k , pk ∈ Z (6.34)
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Imposing that bare dimensions are equal and the constraint ∑k∆k = 4, one gets the equation

8p4 + 2
3∑

k=1
(pk − p4)∆k = 4n4 +

3∑
k=1

(nk − n4)∆k . (6.35)

We want a solution valid for any choice of ∆k=1,2,3 hence we can differentiate (6.35) getting
three equations

2(pk − p4) = nk − n4 . (6.36)

Imposing (6.36) into (6.35) one gets n4 = 2p4, which contradicts nh = ±1. On the other
hand, any way of adding two vertices, ie. two loops, to a Checkerboard diagram requires
nh = 0,±2. Therefore, there is always a solution ph = nh/2 ∈ Z that describes a way of
grouping fields into operators of matching classical dimensions at m+ 2 loops.

All together, if there is a non-zero two-point function in Checkerboard theory at m loops,
there cannot be one at m+ 1 loops, but there certainly is one at m+ 2 loops. This inductive
step together with γ

(1)
O = 0 and γ

(2)
O ̸= 0 is the proof of (6.33). Of course, equation (6.35)

admits solutions even at m+ 1 loops with respect to ∆k, such as (6.3). For example, setting
p1 = p2 = p4 = 0, p3 = 1, n4 = −1 and nk = 1, the solution is

∆3 +∆4 = ∆1 +∆2 . (6.37)

Two remarks are due. First, our derivation holds for two-point functions with disk topology
(ie. single-trace) with any structure of SU(N) indices in the open-index operators. Indeed,
we never assumed that Ok or O′

k are made with consecutive fields inside the trace. Second,
our conclusion holds true also for multi-trace two-point functions (for instance, the two-point
function of single trace operators). Indeed, a multi-trace correlator can be cut and opened
onto the disk. If a cut crosses ℓ propagators, 2ℓ new external legs are generated, adding a total
scaling dimension 2∑ℓ

h=1 ∆k(h) = 2∑4
k=1 qk∆k. Equation (6.36) holds after the redefinition

pk → pk − qk, hence the cutting has no “net effect” on our derivation.
We conclude by saying that since D1,0 = D0,1 = 0, the spectral problem is described at

weak-coupling (two-loops) by a next-to-nearest-neighbour spin-chain Hamiltonian.

7 Checkerboard lattice with higher periods

In this section we are going to fully exploit the Loom construction [6] in order to define
a more general Checkerboard Lagrangian. Recall that the Checkerboard theory (2.1) is
defined for M = 4 slopes in the Loom, which allows to select two quartic vertices featuring
four different fields

Tr
[
Z̄1Z̄2Z3Z4

]
, Tr

[
Z1Z2Z̄3Z̄4

]
. (7.1)

The planar Checkerboard diagrams have the shape of a Fishnet square-lattice where these
two vertices alternate along rows/columns. We shall say that it is a Fishnet lattice with
periods (2, 2) as opposed to the (1, 1)-periodicity square lattice of the bi-scalar FCFT (4.1).

The observations of previous sections about anomalous dimensions being protected at
odd-loop order can be regarded as a signature of the Fishnet periodicity. Accordingly, the
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Figure 24. A Baxter lattice made of a number M1 = 2 (left) or M1 = 3 (right) alternating vertical
slopes and M2 = 3 alternating horizontal slopes. The dual Fishnet diagrams are drawn in red (specific
diagrams are further highlighted in yellow) and they form a square lattice where the propagators
alternate with periodicity M1 and M2 along rows/columns. The case M1 =M2 = 2 would belong to
the Checkerboard CFTs.

dilation operator in the weak coupling approximation should be described by a next-to-
nearest-neighbour spin-chain Hamiltonian. Notice that also for M = 4 slopes there are
other Checkerboard theories than (2.1), obtained with a different choice of non-vanishing
couplings in the full Loom FCFT(4).

(1, 1) Tr
[
Z1Z2Z̄1Z̄2

]
(1, 2) Tr

[
Z̄1Z̄2Z1Z4

]
, Tr

[
Z1Z2Z̄1Z̄4

]
(2, 1) Tr

[
Z̄1Z̄2Z3Z2

]
, Tr

[
Z1Z2Z̄3Z̄2

]
(2, 2) Tr

[
Z̄1Z̄2Z3Z4

]
, Tr

[
Z1Z2Z̄3Z̄4

]
(7.2)

Clearly, the bi-scalar theory (1, 1) is also obtained from a Loom with 2 or 3 slopes, and the
(1, 2) and (2, 1) theories both require only 3 slopes to be defined from a Loom. Logically, if
one starts from a Loom with M slopes, it is possible to define a Checkerboard CFT with
periodicity (M1,M2) whenever M ⩾ M1 +M2.

Let us consider the two examples in figure 24 in order to learn about the general features of
these theories. In the first case we increase the number of slopes of the original Checkerboard
theory by one slope, (M1,M2) = (2, 3) and obtain a Fishnet square lattice with periods (2, 3)
formed by 2 × 3 chiral vertices built with twelve matrix fields

Z1, Z2, . . . , Z6, Z
′
1, Z

′
2, . . . Z

′
6 , (7.3)

together with their hermitian conjugates. Here fields Zk and Z ′
k have scaling dimensions

related by ∆k = d/2−∆′
k, i.e. their propagators cross the same vertices of the Baxter lattice,

but across supplementary angles. The Lagrangian for the Checkerboard CFT(M1,M2) is a
special reduction of the Loom FCFT(M1+M2) theory. We can read the interaction vertices
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for (M1,M2) = (2, 3) from the diagram in figure 24,

Tr
[
Z1Z2Z̄3Z̄4

]
, Tr

[
Z6Z

′
1Z̄

′
4Z̄5

]
, Tr

[
Z ′

2Z
′
6Z̄

′
5Z̄

′
3

]
,

Tr
[
Z3Z5Z̄6Z̄2

]
, Tr

[
Z ′

4Z
′
3Z̄

′
2Z̄

′
1

]
, Tr

[
Z ′

5Z4Z̄1Z̄
′
6

]
.

(7.4)

As for the spectrum of anomalous dimensions, it is protected at one-loop (and none of
the interactions (7.4) generates double-trace counter-terms in the action). On the other
hand, the anomalous dimensions are, in general, non-trivial at two-loops. Take the length-2
ladder, highlighted with thick red propagators in the left picture of figure 24, and which
describes the four-point correlator

⟨Tr
[
Z ′

6(x1)(Z̄ ′
5Z̄

′
2)(x2)Z̄ ′

1(x3)(Z̄ ′
4Z

′
2)(x4)

]
⟩ .

Its OPE channel x1 → x2, x3 → x4, features the exchange of operators with non-trivial
anomalous dimension. Take the lightest one

⟨Tr
[
(Z ′

6Z̄
′
5Z̄

′
2)(x2)(Z̄ ′

1Z
′
4Z

′
2)(x4)

]
⟩ .

First, the two operators have equal bare dimensions by virtue of ∆′
5 +∆′

6 = ∆′
1 +∆′

4, as
it follows from the scale-invariance of the second vertex in (7.4). Indeed, this two-point
function has a pole 1/ϵ in dimensional regularisation.

We also depicted in figure 24 the Checkerboard theory corresponding to Fishnet integrals
with the shape of a square lattice with periods (3, 3), hence formed by 3× 3 chiral vertices,
built with sixteen matrix fields

Z1, Z2, . . . , Z8, Z
′
1, Z

′
2, . . . Z

′
8 , (7.5)

together with their hermitian conjugates. The Lagrangian for this theory is a reduction, with
all but 9 couplings switched to zero, of the Loom FCFTs(6) theory. The interaction vertices
of the theory can be read from the diagram in figure 24,

Tr
[
Z1Z2Z̄3Z̄4

]
, Tr

[
Z5Z6Z̄

′
2Z̄

′
1

]
, Tr

[
Z ′

4Z
′
3Z̄

′
6Z̄

′
5

]
,

Tr
[
Z7Z

′
1Z̄

′
4Z̄8

]
, Tr

[
Z9Z

′
5Z̄1Z̄

′
7

]
, Tr

[
Z ′

8Z4Z̄5Z̄
′
9

]
,

Tr
[
Z ′

2Z
′
7Z̄

′
8Z̄

′
3

]
, Tr

[
Z ′

6Z
′
9Z̄7Z̄2

]
, Tr

[
Z3Z8Z̄9Z̄6

]
.

(7.6)

It should be clear at this point that one-loop anomalous dimensions are zero in this theory.
Take the length-2 and length-3 ladders from the portion of diagram with thicker (red, yellow)
propagators in the picture on the right of figure 24. Take respectively the two-point functions
featuring the lightest operators exchanged in the OPE limit x1 → x2, x3 → x4, for the
two- and three-loops ladders:

⟨Tr
[
(Z2Z̄3Z̄5)(x2)(Z̄ ′

9Z
′
8Z1)(x4)

]
⟩ ,

and
⟨Tr

[
(Z2Z̄3Z̄5Z̄7)(x2)(Z̄2Z

′
6Z

′
8Z1)(x4)

]
⟩ .
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The first involves operators with different bare dimensions, sine the condition ∆2 + ∆3 +
∆5 = ∆1 +∆′

8 +∆′
9 is never satisfied for general slopes. Hence, this Feynman integral is

actually zero (i.e. evaluates to ∝ δ(x2
24)). In the second correlator, on the contrary, the two

operators share the same bare dimension by virtue of

∆3 +∆5 +∆7 = ∆1 +∆′
8 +∆′

9.

The two-point integral is divergent as 1/ε in dim. reg. thus the spectrum of anomalous
dimensions is non-trivial starting at three-loops in the theory.

The argument made here can be extended into the following general statement: the
spectrum of anomalous dimensions in the Checkerboard theory with periods (M1,M2 is
protected until order ℓ = min(M1,M2) in the weak coupling expansion. The dilation operator
at order ℓ can be realised as a spin-chain Hamiltonian acting on a state of L ⩾ ℓ sites as
a (next-to)ℓ−1-nearest-neighbour Hamiltonian.

8 Discussion

The Checkerboard Fishnet CFT (2.1) introduced and studied in this paper is one representative
of a huge family of generalised, Loom FCFTs [6] of arbitrary dimension, inspired by the
observations of [5]. A remarkable property of the Checkerboard CFT is that the typical
planar graphs are represented (at least in the bulk, the boundary conditions depend on the
particular physical quantities one is looking at) by an integrable statistical mechanical system
of conformal spins with nearest-neighbour interactions on the square lattice. Each row of
the lattice is a spectral-parameter-dependent transfer matrix (or monodromy matrix, if the
boundary is open) with generic conformal representations in both quantum and auxiliary
spaces, i.e. it automatically encodes all the conservation laws. This integrability opens great
opportunities in doing non-perturbative analysis of physical quantities of this FCFT in the
planar limit, as well as to push the analytic computations of the underlying planar graphs
to high (and sometimes arbitrary) loop orders.

The action of the Checkerboard CFT (2.1) has a few interesting reductions. In 4D and
with all wi = 1, it has a local action of four complex scalars with chiral quartic, interactions.
In 3D at w1 = w2 = w3 = 1, w4 = 0 it also has a local action with one sextic chiral interaction
of three complex fields (a fishnet reduction of ABJM model). For a particular reduction in
2D the graph-building operator for planar Feynman graphs is equal to Lipatov’s Hamiltonian
of interacting reggeized gluons (BFKL limit).

We presented a few analytic calculations of non-trivial physical quantities based on
integrability and conformality of the Checkerboard CFT. Using the methods of the papers [13,
24] we computed certain four-point correlation functions and extracted from them the
anomalous dimension of the shortest operator exchanged in their OPE. It would be good to
compute the dimensions of other operators, in particular those with non-zero spin, as well as
to extract from the 4-point function the related structure constants. Our results are based on
the kite integral (3.18) computed in terms of certain, rather complicated double sums [42, 43].
The computations are more involved than for the cases considered in [13, 55], so our results
are not as explicit. Nevertheless, we managed to obtain for the dimension of this operator
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a few orders of perturbation theory in the 3D ABJM reduction of Checkerboard CFT. We
observed certain transcendentality properties of the perturbative results, not directly for
the anomalous dimension but rather after a certain functional transformation. It would be
interesting to understand these properties in depth.

We also showed that the graph-building operator in 2D, at a certain limit of the spectral
parameter, reduces to Lipatov’s Hamiltonian for reggeized gluons. In the particular case
of the aforementioned shortest operator, the dimension coincides with the BFKL pomeron
eigenvalue [27, 28]. Hence this limit of Checkerboard CFT may be very useful for the
understanding of BFKL physics and for the computations of related physical quantities.
An interesting question here is related to the question of positiveness of spectrum in this
BFKL. As was noticed in [6], the FCFTs have certain properties of positivity of spectrum of
anomalous dimensions: they can be only real or appear complex conjugate pairs. Do these
complex conjugate pairs appear in the BFKL limit Checkerboard CFT, as we observed for
the ABJM reduction in section (4.1.3)? What does it mean for the BFKL physics?

There are still many interesting questions related to the Checkerboard CFT:

• What is the generalisation of fishchain picture of [56–58] to the Checkerboard case?

• Can we compute the wheel-type graphs and the related conformal dimensions in the
Checkerboard CFT? Using the techniques of quantum integrability one could try to
compute these correlation functions exactly at any L, at all orders. In practice, this
task is already complicated for the usual bi-scalar fishnet, even at small values of L
(see the results of such a calculation for L = 3 in [22]). More generally, one would
need a systematic quantum integrability formalism for computations of spectra and of
eigenfunctions of non-compact spin chains in principal series representations. So far,
only the SL(2,C) case, related to the BFKL model, is relatively well studied [32, 38].

• It would be interesting to obtain the sigma-model representation for the Checkerboard
fishnets with cyllindric topology, analogously to [59, 60], and to establish the related
TBA equations.

• Could one find a useful application of Yangian symmetry [7, 8, 10] for Checkerboard
graphs?

• Can we find among 2D Checkerboard graphs those which generalise the Calabi-Yau
invariants of [61, 62]?

• Can we generalise the results of [63, 64] regarding the thermodynamic limit of the
Basso-Dixon correlators to their Checkerboard analogues computed in section 5?

• Can we understand the integrability structure behind the SoV approach developed in
section 5 and appendix D? Because of the alternating pattern in the Checkerboard
diagrams, we have had to introduce two non-commuting graph-building operators. It
would be interesting to understand these operators in terms of (open) non-compact
spin chains. It also seems natural to try to apply this SoV formalism to the calculation
of the wheel diagrams.

– 43 –



J
H
E
P
0
1
(
2
0
2
5
)
0
1
5

• It is possible that Checkerboard graphs feature the “arctic circle” phenomenon [65].
For the traditional spin models, like the 6-vertex model, the arctic circle means in fact
an oval-shaped area inside the finite rectangular lattice outside of which the spins are
almost frozen. The methods of [66] could in principle allow to study this phenomenon
in the Checkerboard CFT (if it is present there).

A few questions can be posed also in the context of stydy of diamond fishnet diagrams
of the sections 6, 7:

• To complete the classification of diamond graphs and of their properties for all types of
boundary shapes.

• To try to compute the cylindrical diamond configurations and the related anomalous
dimensions of the Checkerboard CFT.
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A Factorisation of the eigenvalue of T̂

In this section we are to transform the eigenvalue of the T̂ -operator (3.16). Let us rearrange
the order of integration in that formula:

h(∆) = (x2
12)∆1+∆2−∆

2

∫ ddx0ddx0′

(x2
10)∆1(x2

0′1)∆2(x2
20′)∆1(x2

02)∆2

×
∫ ddx1′ddx2′

(x2
1′2′)∆1+∆2−∆

2 (x2
01′)∆4(x2

1′0′)∆3(x2
0′2′)∆4(x2

2′0)∆3
. (A.1)

The second integral in the formula above is exactly a Kite integral:∫ ddx1′ddx2′

(x2
1′2′)∆1+∆2−∆

2 (x2
01′)∆4(x2

1′0′)∆3(x2
0′2′)∆4(x2

2′0)∆3
=
B
(
∆3,∆4,∆1+∆2−∆

2

)
(x2

00′)∆3+∆4−∆
2

. (A.2)

Substituting (A.2) into (A.1), and noticing that the remaining integral is of the same form,
we obtain

h(∆) = B

(
∆3,∆4,∆1 +∆2 −

∆
2

)
(x2

12)∆1+∆2−∆
2

×
∫ ddx0ddx0′

(x2
00′)∆3+∆4−∆

2 (x2
10)∆1(x2

0′1)∆2(x2
20′)∆1(x2

02)∆2
(A.3)

= B

(
∆3,∆4,∆1 +∆2 −

∆
2

)
B

(
∆1,∆2,∆3 +∆4 −

∆
2

)
. (A.4)
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B Small γ expansion of the eigenvalue of T̂

Let us analyse the small γ of the sum I1 + I2 + I3 given by (4.10), (4.11) and (4.12). We
will use it in the form of double series

I1+I2+I3 =
+∞∑
n=0

+∞∑
k=0

 cot π∆
2

1024π3(∆−1)(∆−2)
1

Γ
(

∆
2

) Γ
(
n+∆

2

)
n+∆

2 − 1
2

1
n!δk,0+ (B.1)

+ 1
1024π3(∆−1)(∆−2)sin π∆

2

1
Γ
(

∆
2

) n!(
3
2−

∆
2 +n

)
Γ
(
2−∆

2 +n
)δk,0+

+2∆−13

π4
1

Γ(∆)
1
k!

Γ
(

∆
2 +k

)
(

1
2+k

)(
∆
2 − 1

2+k
)

(
1
2+n

)
Γ
(

∆
2 + 1

2+k+n
)

(1+k+n)
(

∆
2 +k+n

)
Γ
(

3
2+k+n

)
 .

Expanding in the first two orders around the point ∆ = 2 + γ, we obtain the following
series at the orders γ−1 and γ0

I1+I2+I3 =
+∞∑
n=0

+∞∑
k=0

(
− 1
128π4(2n+1)2γ

δk,0+
( 2−γE
256π4(2n+1)2− (B.2)

− ψ(n+1)
256π4(2n+1)2 +

ψ′(n+1)
1024π4(2n+1)

)
δk,0+

2n+1
1024π4(2k+1)2(n+k+1)2 +O(γ)

)
.

After taking the summation over k in (B.2) we get the following result

I1 + I2 + I3 =
+∞∑
n=0

(
− 1
128π4(2n+ 1)2γ

+ 1− γE − log 2
128π4(2n+ 1)2 − ψ(n+ 1)

128π4(2n+ 1)2+ (B.3)

− ψ′(n+ 1)
512π4(2n+ 1) +O(γ)

)
.

The last two sums from (B.3) can be found in [67], which leads us to the following formula

I1 + I2 + I3 = − 1
1024π2γ

+ 1
1024π4

(
π2 + π2 log 2− 21

2 ζ3

)
+O(γ) . (B.4)

Now we turn to the calculation of the term of the order γ1. To do this let us write
down the corresponding term of the small γ expansion of (B.1), but before that we make
some change in our summation variables. Namely, we replace the variable k by m = n+ k.
After this the summation in (B.1) is changed to

+∞∑
n=0

+∞∑
k=0

→
+∞∑
n=0

+∞∑
m=n

. (B.5)
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It appears that the sum over m can be taken, which leads to the following sum

1
2048π4

+∞∑
n=0

 1(
n+ 1

2

)3 +
24−4γE+π2−8log2

4(n+1)
(
n+ 1

2

) − 1(
n+ 1

2

)4 +
−2+γE+2log2

(n+1)2 + (B.6)

+−48+24γE−12γ2
E+π2−24γE log2−12log2 2+24log2

6
(
n+ 1

2

)2 −
ψ2
(
n+ 1

2

)
2(n+1)2 −

−ψ2(n+1)(
n+ 1

2

)2 −
ψ′
(
n+ 1

2

)
2(n+1)

(
n+ 1

2

)+
 1(

n+ 1
2

)2 −
3

(n+1)
(
n+ 1

2

)+(4−γE−2log2)
2(n+1)2

×

×ψ
(
n+1

2

)
+1
4

ψ
(
n+ 1

2

)
n+1 −ψ(n+1)

n+ 1
2

+(−4+3γE+2log2)ψ′(n+1)
2
(
n+ 1

2

) +

+(4−3γE−2log2)ψ(n+1)(
n+ 1

2

)2 −
ψ
(
n+ 1

2

)
ψ′
(
n+ 1

2

)
2(n+1) +ψ(n+1)ψ′(n+1)

n+ 1
2

 .

All the sums in (B.6) can be found in the literature (see [67] and the references therein)
except for the last two ones. In what follows we are going to find these sums using the
formula (C.52) derived in [67]

+∞∑
n=1

 1(
n+ 1

2

)2 + 1
(n+ 1)2

 n∑
m=1

ψ
(
m+ 1

2

)
m+ 1

2
=
(
7ψ
(1
2

)
+ 7 log 2

)
ζ3+ (B.7)

+
((

log 2− 4
4

)
ψ

(1
2

)
− 8

3 log 2 + 1
3 log2 2

)
π2 − 1

3 log4 2 + 79
360π

4 − 8Li4
(1
2

)
.

Then, by changing the summation order on the left hand side

+∞∑
n=1

 1(
n+ 1

2

)2 + 1
(n+ 1)2

 n∑
m=1

ψ(m+ 1)
m+ 1

2
=

+∞∑
m=1

ψ(m+ 1)
m+ 1

2

+∞∑
n=m

 1(
n+ 1

2

)2+ (B.8)

+ 1
(n+ 1)2

)
=

+∞∑
m=1

ψ(m+ 1)
m+ 1

2

(
ψ′
(
m+ 1

2

)
+ ψ′(m+ 1)

)
=

=
+∞∑
l=1

ψ(l + 1)ψ′
(
l + 1

2

)
l + 1

2
+ ψ(l + 1)ψ′(l + 1)

l + 1
2


and adding one term to the sum there, we obtain

+∞∑
l=0

ψ(l + 1)ψ′
(
l + 1

2

)
l + 1

2
+ ψ(l + 1)ψ′(l + 1)

l + 1
2

 =

79
360π

4 − 1
3 log4 2−−1

3π
2 log 2 (3γE + 5 log 2)− 8Li4

(1
2

)
− 7(γE + log 2)ζ3 . (B.9)
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One can see that the left hand side of (B.9) already contains one of the sums to be found.
Let us transform the first sum on the left hand side of (B.9)

+∞∑
l=0

ψ(l + 1)ψ′
(
l + 1

2

)
l + 1

2
=

+∞∑
n=0

1(
n+ 1

2

)2

n∑
m=0

ψ(m+ 1)
m+ 1

2
, (B.10)

where we again changed the order of summation over n and m. Then we apply a slightly
modified formula (23) from [67]

n∑
m=0

ψ(m+ 1)
m+ 1

2
= −

n∑
m=0

ψ
(
m+ 1

2

)
m+ 1 + ψ(n+ 2)ψ

(
n+ 3

2

)
+ 2ψ(n+ 2)− 2ψ

(
n+ 3

2

)
−

− ψ(1)ψ
(1
2

)
− 2ψ(1) + 2ψ

(1
2

)
, (B.11)

which leads to the following identity

+∞∑
l=0

ψ(l+1)ψ′
(
l+ 1

2

)
l+ 1

2
=−

+∞∑
l=0

ψ
(
l+ 1

2

)
ψ′
(
l+ 1

2

)
l+1 + 49

180π
4+8γE log2+ (B.12)

+16(−1+log2) log2− 2
3 log

4 2+1
3π

2(−3γE+2(1+(−6+log2) log2))

−16Li4
(1
2

)
−−7

2(−4+3γE+6log2)ζ3 .

Our strategy is to derive a second, independent equation for the sums above and solve
them as a system of linear equations. To achieve this we will use the formula similar to
(C.50) from [67] but with the different sign factor

+∞∑
m=1

+∞∑
l=1

(−1)m ψ(l +m)
lm(l +m) = − 17

1440π
4 + 5

8γEζ3 . (B.13)

Our next step is the following: we split the summation over m in (B.13) into the summation
over odd and even m, namely

+∞∑
m=1

+∞∑
l=1

(−1)l ψ(l +m)
lm(l +m) =

+∞∑
j=1

(
1

2j − 1

+∞∑
l=1

(−1)lψ(l + 2j − 1)
l(l + 2j − 1) + 1

2j

+∞∑
l=1

(−1)lψ(l + 2j)
l(l + 2j)

)
.

(B.14)
Thanks to the formulae (C.47) and (C.48) from [67] we can perform the sums over l in the
right hand sides of (B.14). After conducting some intermediate summations over j with the
usage of the sums from [67], we obtain the following equation

+∞∑
l=0

ψ
(
l + 1

2

)
ψ′
(
l + 1

2

)
l + 1 + ψ(l + 1)ψ′(l + 1)

l + 3
2

 =

11
360π

4 + 1
3π

4(2 + log 2(−12 + 5 log 2)) + 1
2γE(16 + π2(−2 + 2 log 2)− 21ζ3)+

+ 1
3

(
−48 + 24 log2 2 + log4 2 + 24Li4

(1
2

)
− 21(−3 + 2 log 2)ζ3

)
. (B.15)
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The second sum on the left hand side of (B.15) contains exactly one of the sums to be found,
whereas the denominator of the second one is l+3/2 instead of l+1/2. This can be overcome
by using the properties of polygamma functions and we are able to express

+∞∑
l=0

ψ(l + 1)ψ′(l + 1)
l + 3

2
=

+∞∑
l=0

ψ(l + 1)ψ′(l + 1)
l + 1

2
− 16 + 8γE + 16 log 2− (B.16)

− 8γE log 2− 8 log2 2 + 7ζ3 .

Substitution of the identities (B.12) and (B.16) into (B.9) and (B.15) respectively gives
us the following system of equations

+∞∑
l=0

(
−ψ(l+ 1

2)ψ′(l+ 1
2)

l+1 + ψ(l+1)ψ′(l+1)
l+ 1

2

)
= − 19

360π
4 + 8Li4

(
1
2

)
+

+7
2(γE − 4 + 4 log 2)ζ3 + 1

3 log
4 2− 16 log2 2 + 16 log 2−

−8γE log 2− 1
3π

2(2 + γE(3 log 2− 3) + log 2(7 log 2− 12)) ,
+∞∑
l=0

(
ψ(l+ 1

2)ψ′(l+ 1
2)

l+1 + ψ(l+1)ψ′(l+1)
l+ 1

2

)
= 11

360π
4 + 8Li4

(
1
2

)
−

−7
2(3γE − 4 + 4 log 2ζ3 + 1

3 log
4 2 + 16 log2 2 + 8γE log 2− 16 log 2+

+1
3π

2(2 + 3γE(log 2− 1) + log 2(5 log 2− 12)) .

(B.17)

Solving the system of equations (B.17), we find the answer

+∞∑
l=0

ψ(l + 1)ψ′(l + 1)
l + 1

2
= −π

4

90 − π2 log2 2
3 + log4 2

3 + 8Li4
(1
2

)
− 7

2γEζ3 , (B.18)

+∞∑
l=0

ψ
(
l + 1

2

)
ψ′
(
l + 1

2

)
l + 1 = π4

24 + 2π2 log2 2 + π2γE log 2− 14 log 2ζ3 − 7γEζ3 − 4π2 log 2−

− π2γE + 14ζ3 +
2π2

3 + 16 log2 2 + 8γE log 2− 16 log 2 .

To sum up, substituting the result (B.18) into (B.6) we derive the coefficient in front of
γ1 in the small γ expansion of (B.1)

− 1
1024π4

(
π2 + π2 log 2− 21

2 ζ3 +
π4

40 + log4 2
2 + 12Li4

(1
2

))
. (B.19)

C Computation of double sums in the BFKL limit of Checkerboard CFT

The particular case of double sums from [42] for d = 2 and α1 = α3 = a1 and α2 = α4 = a2
is decribed by the expressions

I1(a1, a2, δ) = A2
0(a1)A0(a2)A0(2− a12)A0(a2 + δ)A0(2− a12 − δ)× (C.1)

× [3F2(δ, 1− a1,−1 + a12 + δ, 2− a12, a2 + δ; 1)]2 ,
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I2(a1, a2, δ) = A2
0(a2)A0(δ)A0(−1 + a12 + δ)A0(2− a2 − δ)A0(3− a1 − 2a2 − δ)×

× [3F2(a1, 2− a12 − δ, 1− a2, 2− a2 − δ, 3− a1 − 2a2 − δ; 1)]2 ,

I3(a1, a2, δ) = A0(a1)A0(δ)A0(3− 2a12 − δ)A0(2− a12 − δ)A0(−1 + a1 + 2a2 + δ)
×A0(a12) [3F2(a2,−2 + 2a12 + δ,−1 + a12 + δ, a12,−1 + a1 + 2a2 + δ; 1)]2 ,

where a12 = a1 + a2. We are to analyse the sum (I1 + I2 + I3)(a1, a2, δ) in two cases (we
exchanged a1 and a2 as (I1 + I2 + I3)(a1, a2, δ) does not depend on it)

a1 = 1 + u , a2 = −1− u+∆+ , δ = 2−∆+ − ∆
2 , (C.2)

and
a1 = 1 + u , a2 = 1− u−∆+ , δ = ∆+ − ∆

2 . (C.3)

Let us first focus on the first case, and prove that the limit

lim
∆+→0

(I1 + I2 + I3)
(
−1− u+∆+, 1 + u, 2−∆+ − ∆

2

)
(C.4)

is finite for arbitrary u. The singularities in ∆+ come from the prefactor of I1 and from the
hypergeometric function in I3. Namely, we obtain for I1

I1

(
−1−u+∆+,1+u,2−∆+−∆

2

)
=

(1+u)2

∆+

Γ(−u)
Γ(1+u)

Γ
(
u+∆

2

)
Γ
(
1−u−∆

2

) Γ
(
1−∆

2

)
Γ
(

∆
2

) (
3F2

(
−u,1−∆

2 ,2−
∆
2 ;2,1−u−∆

2 ;1
))2

+O(∆0
+) .

(C.5)

To get the small ∆+ expansion of I3 we need the expansion of the hypergeometric function
in it, which is

3F2

(
1− ∆

2 ,−1− u+∆+,−
∆
2 +∆+; ∆+,−u− ∆

2 +∆+; 1
)

= ∆
2∆+

(∆
2 − 1

)
u+ 1
u+ ∆

2
3F2

(
−u, 1− ∆

2 , 2−
∆
2 ; 2, 1− u− ∆

2 ; 1
)
+O(∆0

+) . (C.6)

Substituting into the formula for I3 gives us

I3

(
−1−u+∆+,1+u,2−∆+−∆

2

)
=− (1+u)2

∆+

Γ(−u)
Γ(1+u)

Γ
(
u+ ∆

2
)

Γ
(
1−u− ∆

2
)

×
Γ
(
1− ∆

2
)

Γ
(∆

2
) (

3F2

(
−u,1−∆

2 ,2−
∆
2 ;2,1−u−∆

2 ;1
))2

+O(∆0
+) .

(C.7)

Hence the singularities in (C.5) and (C.7) cancel each other and we see that

(I1 + I2 + I3)
(
−1− u+∆+, 1 + u, 2−∆+ − ∆

2

)
= O(∆0

+) . (C.8)
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A similar analysis applies to the second choice of parameters (a1, a2, δ), see (C.3). The
singularity in I1 now comes from the hypergeometric function, whereas the singularity in I3
comes from the prefactor. Following the same steps as for (C.8), one can check that

lim
∆+→0

(I1 + I2 + I3)
(
1− u−∆+, 1 + u,∆+ − ∆

2

)
= O(∆0

+) . (C.9)

Taking into account that the limits (C.8) and (C.9) are finite for any u, we can now
address the question of the small u expansion of these quantities. This procedure yields

(I1 + I2 + I3)
(
−1− u, 1 + u, 2− ∆

2

)
= (C.10)

= 1
u2 + 2

u

(
ψ

(∆
2

)
+ ψ

(
1− ∆

2

)
− 2ψ(1)

)
+O(u0) ,

(I1 + I2 + I3)
(
1− u, 1 + u,−∆

2

)
= (C.11)

= 1
u2 + 2

u

(
ψ

(∆
2

)
+ ψ

(
1− ∆

2

)
− 2ψ(1)

)
+O(u0) .

D SoV representation of Feynman diagrams

D.1 2D rectangular Fishnets

We present in this appendix some of the details of the derivation of (5.11) and (5.22) in
two dimensions. For brevity, we will state several results without presenting their proofs,
which can be easily adapted from those of [23, 32, 33]. Once the 2D case is understood, it is
relatively straightforward to treat the 4D case in a similar fashion, following [15, 16].

We work in a slightly more general setting than what was presented in section 5 where the
four fields have a spin. This means that for each field i, we now have two complex numbers
∆i and ∆̄i whose difference is an integer: they encode the scaling dimension ∆i + ∆̄i ∈ C
and the spin ∆i − ∆̄i ∈ Z of the field. The scalar propagators are replaced by the spinning
ones according to

|z|−2∆i −→ [z]−∆i = |z|−∆i−∆̄i ei(∆̄i−∆i)θ where z = |z|eiθ . (D.1)

Thus, the kernel of the graph-building operator is now

⟨y1, . . . , yN |ΛN |z1, . . . , zN ⟩ =
⌊N−1

2 ⌋∏
k=0

[y2k+1 − z2k+1]−2∆1 [y2k,2k+1]−2∆2

×
⌊N

2 ⌋∏
k=1

[y2k − z2k]−2∆3 [y2k−1,2k]−2∆4 , (D.2)

where y0 = 0. The simpler case ∆1 = ∆3 = ∆̃2 = ∆̃4 was treated in [32]. The main subtlety
in our setting is that we can only diagonalise the product Λ′

NΛN , see equations (D.22)
and (D.23) below, but we are still able to find vectors that transform nicely under the action
of ΛN alone, cf. (D.10) for instance.
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For future convenience, we have to introduce some notation: for γ ∈ C, we set γ̃ = 1− γ.
For γ and γ̄ two complex numbers whose difference is an integer, we also define

A(γ) = Γ(1− γ̄)
Γ(γ) . (D.3)

This function satisfies A(γ)A(γ̃) = (−1)γ−γ̄ = [−1]γ . Then, for F a function (or an operator)
depending on (∆1,∆2,∆3,∆4), we define

F ′ = F
∣∣
(∆1,∆2)↔(∆3,∆4) , and

◦
F = F

∣∣
(∆1,∆3)↔(∆̃2,∆̃4) . (D.4)

For (u, ū) = (m2 +iu,−m
2 +iu) with m integer7 and u real, we define the following two functions:

a(u) = ∆̃2
2 + ∆1 −∆3

4 − u = ∆1
2 + ∆4 −∆2

4 − u , (D.5)

b(u) = ∆̃2
2 + ∆3 −∆1

4 + u = ∆3
2 + ∆4 −∆2

4 + u . (D.6)

These functions satisfy the following properties:

a+ b+∆2 = a′ + b′ +∆4 = a+ b′ + ∆̃1 = a′ + b+ ∆̃3 = 1 , (D.7)

and
(◦a,

◦
b) = (a, b′) . (D.8)

The eigenvectors of ΛNΛ′
N and Λ′

NΛN are built iteratively using some “layer” operators
ΠN (u) (as well as the variants Π′

N (u),
◦
ΠN (u),

◦
Π′
N (u)). These are defined for N ⩾ 2 by

⟨y1, . . . , yN |ΠN (u) |z1, . . . , zN−1⟩

= [y01]−b̃
′(u)

⌊N
2 ⌋∏

k=1

A(ã(u))A(b̃(u))
[y2k−1,2k]∆2 [z2k−1 − y2k−1]b(u)[y2k − z2k−1]a(u)

×
⌊N−1

2 ⌋∏
k=1

A(ã′(u))A(b̃′(u))
[y2k,2k+1]∆4 [z2k − y2k]b′(u)[y2k+1 − z2k]a′(u) , (D.9)

where the normalisation ensures that

ΠN+1(u1)
◦
ΠN (u2) = ΠN+1(u2)

◦
ΠN (u1) . (D.10)

Moreover, it holds that

ΛNΠN (u) = λN (u)Π′
N (u)

◦
ΛN−1 (D.11)

with

λN (u) =
(
A(∆3)
A(∆̃2)

)⌊N
2 ⌋(A(∆1)

A(∆̃4)

)⌊N−1
2 ⌋

A(∆1)
A(b′(u)) ×

[−1]∆1+∆3A(ã′(u)) if N is even
A(ã(u)) if N is odd

.

(D.12)
7To be precise, m ∈ Z + σ

4 , where σ ∈ {0, 1, 2, 3} is (fixed and) such that a − ā ∈ Z and b − b̄ ∈ Z. For
simplicity, we shall assume that the parameters ∆1, ∆2, ∆3, and ∆4 are such that σ = 0.
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We also need to construct left eigenvectors. To that end, we introduce the following
conjugate “layer” operators for N ⩾ 2:

⟨y1, . . . , yN−1|ΞN (u) |z1, . . . , zN ⟩

= [z01]−b(u)
⌊N

2 ⌋∏
k=1

[−1]∆4A(a′(u))A(b′(u))
[z2k−1,2k]−∆4 [y2k−1 − z2k−1]b̃′(u)[z2k − y2k−1]ã′(u)

×
⌊N−1

2 ⌋∏
k=1

[−1]∆2A(a(u))A(b(u))
[z2k,2k+1]−∆2 [y2k − z2k]b̃(u)[z2k+1 − y2k]ã(u)

. (D.13)

We have

ΞN (u1)
◦
ΞN+1(u2) = ΞN (u2)

◦
ΞN+1(u1) , (D.14)

and
ΞN (u)ΛN = λN (u)

◦
ΛN−1Ξ′

N (u) . (D.15)

Moreover, assuming u ̸= v and N ⩾ 3, it holds that

ΞN (u)Π′
N (v) =

1
(u − v)(v̄ − ū)

◦
Π′
N−1(v)

◦
ΞN−1(u) . (D.16)

Let ⟨u| and |u⟩ be the left and right eigenvectors for N = 1, they are

⟨u|y⟩ = 1
[y01]b′(u) and ⟨y|u⟩ = 1

[y01]b̃′(u)
. (D.17)

We have

⟨u1|Ξ2(u2) = ⟨u2|Ξ2(u1) , Π2(u2)
◦

|u1⟩ = Π2(u1)
◦

|u2⟩ , (D.18)

and, assuming u ̸= v,

Ξ2(u)Π′
2(v) =

1
(u − v)(v̄ − ū) |v⟩ ⟨u| . (D.19)

For N ⩾ 2, we define

⟨u1, . . . ,uN |′ =

⟨u1|Ξ2(u2) · · ·
◦
ΞN−1(uN−1)ΞN (uN ) if N is even

◦
⟨u1|

◦
Ξ2(u2) · · ·

◦
ΞN−1(uN−1)ΞN (uN ) if N is odd

, (D.20)

and

|u1, . . . ,uN ⟩ =

ΠN (uN )
◦
ΠN−1(uN−1) · · ·Π2(u2)

◦
|u1⟩ if N is even

ΠN (uN )
◦
ΠN−1(uN−1) · · ·

◦
Π2(u2) |u1⟩ if N is odd

. (D.21)

Using the properties of the “layer” operators stated above, it is straightforward to show that
these functions are completely symmetric under permutation of the parameters u1, . . . ,uN .
And that they are eigenvectors of Λ′

NΛN :

Λ′
NΛN |u1, . . . ,uN ⟩ =

N∏
k=1

ρ(uk) |u1, . . . ,uN ⟩ (D.22)
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and

⟨u1, . . . ,uN |Λ′
NΛN =

N∏
k=1

ρ(uk) ⟨u1, . . . ,uN | , (D.23)

where
ρ = A(∆1)A(∆3)

A(ã)A(ã′)
A(b)A(b′) . (D.24)

They also satisfy the following orthogonality relations:

⟨u1, . . . ,uN |v1, . . . ,vN ⟩ = µ
(2)
N (u1, . . . ,uN )−1 ∑

σ∈SN

N∏
k=1

δ(uk − vσ(k)) , (D.25)

where uk = mk
2 + iuk, vk = nk

2 + ivk,

δ(u − v) = δm,nδ(u− v) , (D.26)

and the measure is

µ
(2)
N (u1, . . . ,uN ) = (2π)−N

∏
1⩽i<j⩽N

[
(ui − uj)2 + (mi −mj)2

4

]
. (D.27)

From this, we conjecture the resolution of the identity

1
N !

+∞∑
m1,...,mN =−∞

∫
RN

µ
(2)
N (u1, . . . ,uN ) |u1, . . . ,uN ⟩ ⟨u1, . . . ,uN | du1 . . . duN = Id . (D.28)

The analogous resolution of the identity for the usual SL(2,C) spin chain (relevant for the
Basso-Dixon diagrams computed in [33]) was proved in [68]. This was done using techniques
that were first applied in [69] to the SL(2,R) chain. We expect that these techniques can
be adapted to the present situation, but we have not done it and we will content ourselves
with assuming that the statement holds, as was originally done in [23, 32, 33].

Finally, we need the reduction of the eigenvectors when all the external points coincide:

⟨u1, . . . ,uN |z, . . . , z⟩ = A(∆̃2)
1
2⌊N

2 ⌋⌊N+2
2 ⌋ (A(∆̃4)A(∆3)

) 1
2⌊N−1

2 ⌋⌊N+1
2 ⌋

×A(∆1)
1
2⌊N−2

2 ⌋⌊N
2 ⌋[z0 − z]−b′N−bN−1−b′N−2−bN−3−... , (D.29)

and

⟨y, . . . , y|
⌊N−1

2 ⌋∏
k=0

[y2k,2k+1]∆4

⌊N
2 ⌋∏

k=1
[y2k−1,2k]∆2 |u1, . . . ,uN ⟩ =

= [z0 − y]−a′N−aN−1−a′N−2−aN−3−...×

×A(∆̃2)
1
2⌊N

2 ⌋⌊N+2
2 ⌋ (A(∆̃4)A(∆3)

) 1
2⌊N−1

2 ⌋⌊N+1
2 ⌋

A(∆1)
1
2⌊N−2

2 ⌋⌊N
2 ⌋

× [−1]N⌊
N−1

2 ⌋(∆1+∆4)
N∏
k=1

(
A(ã(uk))
A(b(uk))

)⌊N
2 ⌋ (A(ã′(uk))

A(b′(uk))

)⌊N−1
2 ⌋

. (D.30)
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Combining the previous results, one obtains

IN,2L−1(y, z) = (D.31)

= A(∆̃2)⌊
N
2 ⌋⌊N+2

2 ⌋ (A(∆̃4)A(∆3)
)⌊N−1

2 ⌋⌊N+1
2 ⌋

A(∆1)⌊
N−2

2 ⌋⌊N
2 ⌋ [z0 − y]YN [z0 − z]ZN

N ! ×

× [−1]N⌊
N−1

2 ⌋(∆1+∆4)
+∞∑

m1,...,mN =−∞

∫
RN

µN (u1, . . . ,uN )
N∏
k=1

fN,2L−1(η;uk)du1 . . . duN ,

where η = (y − z0)/(z − z0),

YN = −
⌊
N + 1

2

⌋(∆3
2 + ∆2 −∆4

4

)
−
⌊
N

2

⌋(∆1
2 + ∆4 −∆2

4

)
, (D.32)

ZN = −
⌊
N + 1

2

⌋(∆1
2 + ∆2 −∆4

4

)
−
⌊
N

2

⌋(∆3
2 + ∆4 −∆2

4

)
, (D.33)

and

fN,2L−1(η;u) = [η]u ρ(u)L
(
A(ã(u))
A(b(u))

)⌊N
2 ⌋ (A(ã′(u))

A(b′(u))

)⌊N−1
2 ⌋

. (D.34)

This can also be expressed as a determinant:

IN,2L−1(y, z) = (D.35)

= A(∆̃2)⌊
N
2 ⌋⌊N+2

2 ⌋ (A(∆̃4)A(∆3)
)⌊N−1

2 ⌋⌊N+1
2 ⌋

A(∆1)⌊
N−2

2 ⌋⌊N
2 ⌋[z0 − y]YN [z0 − z]ZN×

× [−1]N⌊
N−1

2 ⌋(∆1+∆4) det
1⩽i,j⩽N

( +∞∑
m=−∞

∫ (
m

2 + iu
)i−1 (m

2 − iu
)j−1

fN,2L−1(η;u)
du
2π

)
.

We presented the formula for IN,2L, but the previous results also imply

IN,2L(y, z) = (D.36)

= A(∆3)
⌊

N2+3
4

⌋ (
A(∆1)A(∆̃2)A(∆̃4)

)⌊N2
4

⌋
[z0 − y]YN [z0 − z]Z′

N

N ! [−1]⌊
N
2 ⌋(∆1+∆3)×

× [−1]N⌊
N−1

2 ⌋(∆1+∆4)
+∞∑

m1,...,mN =−∞

∫
RN

µN (u1, . . . ,uN )FN,2L(η;u1, . . . ,uN )du1 . . . duN ,

where

FN,2L(η;u1, . . . ,uN ) =

∏N
k=1 fN,2L−1(η;uk)×

A(ã(uk)) if N is even
A(ã′(uk)) if N is odd

A(b(uN ))A(b′(uN−1))A(b(uN−2)) · · ·
. (D.37)

D.2 Remark on the 4D formula

It is unclear whether (5.11) can be further simplified. In 2D, one can write it as a determinant,
see (D.35). In 4D, we focus, for clarity, on the particular case ∆2 = ∆4 = 1 where

fN,2L(r;u) =
r2iu(

(u− iγ)2 + (m+1)2

4

)L+⌊N
2 ⌋ ((u+ iγ)2 + (m+1)2

4

)L+⌊N−1
2 ⌋ , (D.38)
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with γ = 1−∆1
2 = ∆3−1

2 . For convergence of the various integrals, we have to assume that
|Re(γ)| < 1/2. Following the procedure of [63], we can then recast the integral in the
following form:

IN,2L(y, z) = A0(∆3)⌊
N−1

2 ⌋⌊N+1
2 ⌋−⌊N−2

2 ⌋⌊N
2 ⌋ y

2YN z2ZN

(−4i)NN !

×
∫
RN

det(A)∏N
k=1 sinh

(
xk−iθ

2

)
sinh

(
xk+iθ

2

)dx1 . . . dxN , (D.39)

where A is a 2N × 2N matrix whose elements are

Ai,2k−1 = A+
i (xk) , Ai,2k = A−

i (xk) , (D.40)

with
A±
i (x) =

∫
R±iϵ

ξi−1eiξ(σ±x)

(ξ − iγ)L+⌊N
2 ⌋(ξ + iγ)L+⌊N−1

2 ⌋
dξ
2iπ (D.41)

for any ϵ > |Re(γ)|, and we introduced σ = ln r. Clearly,

A±
i (x) ∝ θ(∓σ − x) (D.42)

so that the integrals over the variables x1, . . . , xN are actually restricted to xk < −|σ|.
However, we cannot go much further in the computation because det(A) seems difficult to
evaluate, even though the functions A±

i are easy to compute.

D.3 Diamond correlators

We consider a graph made of N ×L R-matrices; they correspond to the diagrams of figure 17
where, using a conformal transformation, we send x1 to infinity and x3 to 0. We call them
BN,L and they are related to G

(II)
N,L through

BN,L(y, z) = lim
x2

1→+∞

[
x

2L(∆2+∆3)
1 G

(II)
N,L(x1, z, 0, y)

]
(D.43)

and

G
(II)
N,L(x1, x2, x3, x4) =

BN,L
(
x41
x2

41
− x31

x2
31
, x21
x2

21
− x31

x2
31

)
x

2N(∆3+∆4)
21 x

2L(∆2+∆3)
31 x

2N(∆1+∆2)
41

. (D.44)

The computation is very close to that of [33], the main difference being that the graph-building
operator is now made of R-matrices and not just “half” of them, i.e. the triangles. The
eigenvectors are unchanged but the reduction is not the same: now both left and right
eigenvectors are directly evaluated at coinciding points. In dimension d = 2 or d = 4,
the result is

BN,L(y,z)=
A0(∆1)NLA0(∆4)NL|y|−N(∆1+∆2)|z|−N(∆3+∆4)

N !
[∏ d

2
k=1(∆1+∆2−k)(∆3+∆4−k)

]N(N−1)
2

×
+∞∑

m1,...,mN =−∞

N∏
k=1

P (d)
mk

(θ)
∫
RN

µ
(d)
N (u1, . . . ,uN )

N∏
k=1

r2iukgLmk
(uk)duk , (D.45)

where
gm(u) = Am

(
d

2 + ∆2 −∆1
2 + iu

)
Am

(
d

2 + ∆3 −∆4
2 − iu

)
. (D.46)
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E Particular cases of BN,L in 4 dimensions

Some of the integrals BN,L can be trivially computed using the star-triangle relation, as ex-
plained in section 6.2. We verify here on the two simplest examples that the SoV representation
does reproduce the correct result. We will also compute the simplest non-trivial integral.

We will be computing the integrals over the separated variables using the residue theorem.
Assuming, for instance, that

Re(∆1) > Re(∆2) , Re(∆4) > Re(∆3) , and r > 1 (E.1)

means that we can deform the contours in the upper half-plane, and that the relevant poles
only come from one of the Gamma functions.

E.1 L = 1, N = 1

The simplest integral is straightforward to compute. The sum over residues gives

B1,1(y, z) =

= A0(∆1)A0(∆4)
y2(2−∆3)z2∆3

+∞∑
l,n=0

r−l−2nC
(1)
l (cos θ)(l + 1) (−1)nΓ(∆1 +∆4 − 2 + l + n)

n! Γ(l + n+ 2)Γ(4−∆1 −∆4 − n)

= A0(∆1)A0(∆4)A0(4−∆1 −∆4)
y2(2−∆3)z2∆3

+∞∑
m=0

r−m
⌊m

2 ⌋∑
n=0

(m+ 1− 2n)

× (∆1 +∆4 − 2)m−n(∆1 +∆4 − 3)n
n! Γ(m− n+ 2) C

(1)
m−2n(cos θ)

= A0(∆1)A0(∆4)A0(4−∆1 −∆4)
y2(2−∆3)z2∆3

+∞∑
m=0

r−mC(∆1+∆4−2)
m (cos θ)

= A0(∆1)A0(∆4)A0(4−∆1 −∆4)
y2∆2z2∆3(y − z)2(∆1+∆4−2) ,

where C(λ)
l are the Gegenbauer polynomials. This result coincides with a simple application

of the chain relation.

E.2 L = 1, N = 2

Let us try to evaluate B1,2 from the SoV representation (D.45). We first compute the
integrals using the residue theorem:

B1,2(y, z) ∝
+∞∑

l1,l2,n1,n2=0
(n2 − n1)(l1 − l2 + n1 − n2)(l1 + 1 + n1 − n2)

× (l2 + 1 + n2 − n1)λ̃l1,n1(r, θ)λ̃l2,n2(r, θ) , (E.2)

where
λ̃l,n(r, θ) = (ei(l+1)θ − e−i(l+1)θ)r−l−2n (−1)n(l + 1)Γ (κ+ l + n)

n! Γ (l + n+ 2)Γ (2− κ− n) , (E.3)
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where κ = ∆1 + ∆4 − 2 = 2 − ∆3 − ∆2. Collecting the terms with the same powers of
r and eiθ, one may write

B1,2(y, z) ∝
+∞∑

M,P=0
cM,P r

−M
(
eiPθ + e−iPθ

)
. (E.4)

First, it is easy to see that cM,P = 0 unless M − P ∈ 2N, since there is simply no such term
in the expansion (E.2). However, because a simple application of the star-triangle relation
shows that B1,2(y, z) = 0 when y ̸= z, we actually expect all the coefficients cM,P to vanish.
This seems non-trivial from the representation as a sum over residues.

One may easily verify that cP,P = 0 and that

cP+2,P = −2
Γ(2− κ)Γ(−κ)

[
Γ(κ)Γ(κ+ P )

Γ(P − 1) +
P−2∑
l=0

(P − 2l)(l − 1)Γ(κ+ P − l)Γ(κ+ l)
(P − l)Γ(l + 1)Γ(P − 1− l)

]
(E.5)

= −2
Γ(2− κ)Γ(−κ)

P−2∑
l=2

(P − 2l)(l − 1)Γ(κ+ P − l)Γ(κ+ l)
(P − l)Γ(l + 1)Γ(P − 1− l) = 0 , (E.6)

for instance. However, some of the other coefficients are more involved: one has

c2M,0 =
M∑
l=0

l∑
n=0

(−1)l(M + 1− l)2(l − 2n)2(M + 1− 2n)(M + 1 + 2l − 2n)
n! (l − n)! Γ(M − l + n+ 2)Γ(M − n+ 2)

× Γ(κ+M + n− l)Γ(κ+M − n)
Γ(2− κ− n)Γ(2− κ+ n− l) . (E.7)

We checked, using Mathematica, that c2M,0 = 0 for M ⩽ 20.

E.3 L = 2, N = 1

This integral is non-trivial. On the one hand, using the star-triangle relation, we can
express it as

B2,1(y, z) =
[A0(∆1)A0(∆4)A0(2− κ)]2

y2∆2z2∆3

∫
π−2d4w

w2(2−κ)(w − y)2κ(w − z)2κ , (E.8)

with κ = ∆1 + ∆4 − 2 = 2 − ∆3 − ∆2.
On the other hand, from the SoV representation, we obtain

B2,1(y, z) =
[A0(∆1)A0(∆4)]2

y2(2−∆3)z2∆3

+∞∑
l,n=0

r−l−2nC
(1)
l (cos θ) (l + 1)Γ2(κ+ l + n)

[n! Γ(l + n+ 2)Γ(2− κ− n)]2

× [ln r + ψ(n+ 1) + ψ(l + n+ 2)− ψ(2− κ− n)− ψ(κ+ l + n)] . (E.9)
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