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Abstract 33 

The classical view of the speech and language neural system is that of a hierarchy of 34 

interdependent modules, enabling the progressive transformation of a continuous 35 

acoustic stream into an articulated series of concepts. This modular and hierarchical 36 
view follows from the combination of lesion studies (double dissociations) and 37 

hypothesis-based factorial designs in which only a few sensory or cognitive factors are 38 
varied at a time. In the last ten years, however, data-driven explorations of large 39 

neuroimaging datasets have allowed for a more agnostic approach, and led to a 40 
whole new view where segregated hierarchically organized modules seem to give way 41 

to continuous multidimensional representations, with e.g. a distributed semantic 42 
system. While both approaches have brought about significant contributions to 43 

speech and language neuroscience, making coherent sense of them represents a 44 
substantial challenge. In this review article, we synthesize methodological and 45 

experimental findings from the speech and language neuroscience literature, 46 

dissecting strength and pitfalls of each approach and suggesting ways in which 47 
approaches could be integrated.  48 
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Main 49 

Verification of testable hypotheses serves as the fundamental underpinning of the 50 
scientific method. Traditionally, cognitive neuroscience relies on a deductive approach, 51 
wherein theoretical models are tested through controlled experiments. However, 52 
deductive reasoning alone is often insufficient to make discoveries as the conclusions are 53 
implicitly contained in, or restricted to, the hypotheses. In contrast, inductive reasoning 54 
involves detecting regularities among observations to infer rules and propose new 55 
models. Over the past decade, inductive reasoning relying on the advent of big data and 56 
the possibility to train algorithms has increasingly influenced cognitive neuroscience, 57 
leading to the discovery of latent structures in the data such as multidimensional and 58 
spatially distributed representations. However, data-driven analyses alone do not provide 59 
a compelling understanding of how these representations relate to cognitive processes, 60 
and in particular of how causal they are to behavior. In this article, we outline a 61 
methodological taxonomy designed to facilitate the interpretation of results in speech 62 
and language neuroscience and foster the integration of the various statistical 63 
approaches.  64 

Overcoming Challenges in Integrating Hypothesis-Based and Data-Driven 65 
Approaches 66 

Traditionally, the hypothesis-based approach in neuroscience consists in relating neural 67 
responses to controlled stimuli or behaviors, assuming that only the changes in neural 68 
activity associated with one or more pre-specified variables can reliably be interpreted. 69 
This approach, based on explicit – mostly univariate – tests of cognitive or psychological 70 
models, is often criticized for being constrained to the controlled manipulation of artificial 71 
stimuli and conditions with limited generalizability. Yet, it has confirmed the notion that 72 
speech-related cognitive operations emerge from modular processing hierarchies where 73 
each step has its own computational specificity (Chevillet et al., 2011; Dewitt & 74 
Rauschecker, 2012; Formisano et al., 2003; Morillon & Baillet, 2017; Sheng et al., 2018). 75 
In the speech and language domain (hereafter referred to as speech), a modular and 76 
hierarchically organized neural system enables human speakers to learn the mapping 77 
between strings of sounds and meanings, and to combine lexical-level representations in 78 
infinite ways to convey new ideas or concepts (Friederici, 2011; Hickok & Poeppel, 2007; 79 
Rauschecker & Scott, 2009; Scott & Johnsrude, 2003). 80 

In contrast, the data-driven approach makes fewer assumptions about the nature of the 81 
system involved, and uses methods that allow the data to be more freely analyzed. Rather 82 
than constraining analyses by theoretical knowledge, relationships between features are 83 
derived from the data itself. This approach is compatible with more naturalistic stimuli, 84 
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and enables exploration of brain responses to language ‘as it is used’ (Hamilton & Huth, 85 
2018). However, the use of unsupervised exploration methods and less controlled stimuli 86 
considerably obstruct the interpretation of the findings. 87 

Reconciling the two approaches seems possible as long as we consider the underlying 88 
methods on a continuum, from pure hypothesis-based to fully unsupervised data-driven 89 
approaches (Brunton & Beyeler, 2019), rather than as mutually exclusive categories. 90 
Likewise, it requires agreeing to provisionally revisit the modular and hierarchical view of 91 
speech processing.  92 

In what follows, we outline a taxonomy crafted to streamline the integration and 93 
interpretation of results yielded by different approaches (Figure 1). The taxonomy 94 
discerns four statistical approaches: (1) Perturbation studies reveal causal relationships 95 
between neural activity and behavior outcomes, and specify the gross functional 96 
granularity of speech processing. (2) Univariate models decompose global neural activity 97 
into its elementary components, such as phonemic, syllabic, and semantic features. By 98 
paralleling pre-established theories, for instance, those derived from lesion studies, these 99 
models probe the hierarchical organization of neural processing. (3) Multivariable 100 
models1 explore the convergence and redundancy of the aforementioned modules, 101 
potentially revealing multiple feature co-processing within the hierarchy. (4) Multivariate 102 
models can be used to examine the interactions between elementary components of the 103 
processing hierarchy, thereby identifying the spatio-temporal dynamics that underpins 104 
the functional connectivity pattern – an analytical step that specifies how neural elements 105 
work together as a system. 106 

Drawing on these distinct paradigms, we then highlight the instrumental role of recurrent 107 
models. Eschewing a compartmentalized perspective, recurrent models stand out for 108 
their capability to identify common elements among the models outlined in our 109 
taxonomy. This synthesized-oriented approach aims to harmonize these various 110 
approaches, ultimately resulting in a unified model for speech processing.  111 

 
1 There is often confusion between the terms multivariable and multivariate (Grant et al., 2019; Hidalgo 
& Goodman, 2013). Multivariate models refer to the relationship between several dependent variables 
and one or several independent variables, while multivariable models focus on several independent 
variables (i.e., multiple features of a stimulus) being regressed onto a single dependent variable (i.e., 
the neural activity). Thus, multivariable and multivariate models can be used for different purposes. 
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 112 

Figure 1. A taxonomy of the methods used in speech and language neuroscience to integrate 113 
interpretations derived from various statistical approaches. This interpretative guide outlines the 114 
potential benefits of using (1) perturbation models to identify causal links between neural activity and 115 
behavior and to specify gross functional granularity; (2) univariate models to decompose global neural 116 
activity into elementary components and to specify the hierarchical organization; (3) multivariable 117 
models to track the convergence and redundancy of functional modules and to specify coordinated 118 
processing of multiple features; and finally (4) multivariate models to probe interactions between 119 
individual modules and to characterize the underlying spatio-temporal dynamics. Situating each study 120 
within this taxonomy should assist in limiting conclusions to the inferential possibilities of the method 121 
used. 122 

1. Perturbation models to address gross functional granularity  123 
Exploring how brain lesions impact behavior stands as one of the most well-established 124 
and influential methodologies in the field of speech neuroscience. Dating back to the 19th 125 
century, case studies involving patients with focal brain damage demonstrated that 126 
specific language processes are contingent upon distinct brain regions (Broca, 1861; 127 
Wernicke, 1874) (Figure 2A). Over time, lesion-symptom mapping studies, as well as 128 
intervention and perturbation studies, further refined our knowledge of the functional 129 
neuroanatomy of language processes (Dronkers et al., 2017; Penfield & Roberts, 1959) 130 
(Figure 2B). Today, these approaches enable researchers to derive robust observations 131 
on the underlying causal relationships between neural mechanisms and their associated 132 
functions in speech processing (Peters et al., 2017; Weichwald & Jonas, 2021). Crucially, 133 
studies where perturbations are deliberately induced to provoke neural changes are key 134 
to addressing the therapeutic value of an intervention. 135 
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Perturbation studies can take advantage of chronic or acute disorders such as 136 
neurodegenerative atrophy (Chapman et al., 2023; Rogalski et al., 2011) or ischemic 137 
stroke (Bouton et al., 2018), alongside clinical interventions such as surgical lesions 138 
(Fridriksson et al., 2018; Halai et al., 2018; Hamilton et al., 2021), electrophysiological 139 
stimulation (Cardenas et al., 2020; Devlin & Watkins, 2007; Marchesotti et al., 2020; Silva 140 
et al., 2022), and cooling (Banerjee et al., 2021; Long et al., 2016). These methods, 141 
whether relying on permanent damage or temporary disruptions of neural activity, 142 
provide a direct estimate of a specific brain region's role in speech behavior (Fridriksson 143 
et al., 2018; Sperber, 2020; Vaidya et al., 2019). Importantly, the clear interpretability of 144 
their results is invaluable, especially given the complexities associated with neural 145 
processing in speech. 146 

In particular, intervention studies have played a pivotal role in elucidating the functional 147 
granularity of the speech hierarchy, reconciling inconsistencies arising from correlation 148 
studies alone. A noteworthy example pertains to the ongoing debate regarding the 149 
functional segregation of lexico-semantic and syntactic processing across different brain 150 
modules. While early studies suggest distinct functional modules for syntax and semantics 151 
(Hickok & Poeppel, 2007; Matchin & Hickok, 2020), more recent ones highlight the 152 
concurrent involvement of a shared brain regions set (Fedorenko et al., 2020). Lesion-153 
behavior mapping has served to reconcile these seemingly incongruous findings by 154 
revealing region-specific functional effects (Figure 2C): disorders of syntactic and 155 
semantic comprehension manifest subsequent to damages within distinct subparts of the 156 
posterior middle temporal gyrus (pMTG) (Matchin et al., 2022).  157 

At each functional granularity level, perturbations, whether spontaneous or provoked, 158 
allow establishing a causal link between neural processing and behavioral outcomes. 159 
While this approach yields clear-cut results, it is, however, hampered by the difficulty of 160 
finding pure double dissociation cases that generalize to any new behavioral task, 161 
especially for modules higher up the speech hierarchy (Van Orden et al., 2001). Such 162 
constraints underscore the potential merit of alternative, data-driven approaches, which 163 
do not necessarily hypothesize a strict modular and sequential organization for speech 164 
processing but are poised to capture the intricacies of complex neural interactions more 165 
effectively. 166 
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 167 

Figure 2. Leveraging perturbation studies for refined causal granularity of speech and language 168 
processing. (A) Perturbation studies directly probe the impact of local neural activity on a given 169 
behavior. e.g. damage to either the posterior superior temporal gyrus (pSTG) or the inferior frontal 170 
gyrus (IFG) can impair picture naming in different ways: a lesion in the pSTG can lead to fluent but 171 
nonsensical speech, where patients might say a word unrelated to the picture or even create non-172 
existent words (top); a lesion in the pSTG can lead to non-fluent speech where participants might 173 
struggle to produce the name of the object in the picture, even if they know what it is (bottom).  (B) A 174 
crossover double dissociation strengthens the level of evidence, by demonstrating that if damage to 175 
region A causes loss of function X but not Y, and damage to B causes loss of function in Y but not X, X 176 
and Y functions are underpinned by distinct brain modules. (C) Perturbation studies can provide fine-177 
grained insights into functional modularity within networks of interconnected regions, e.g. by 178 
identifying and describing causal factors operating at different spatial scales within the neural network.  179 

2. Univariate models to probe functional specialization of hierarchical modules 180 

A first alternative for more systematic testing of speech functional modules is to relate 181 
changes in neural response to variations in a controlled stimulus, assuming that any 182 
change in the dependent variable (the neural response) is primarily explained by a 183 
controlled manipulation of the independent variable (e.g., the stimulus, the task, the 184 
context) (Figure 3A). The univariate approach is well suited to test predefined hypotheses 185 
about the relationship between specific components of cognitive and psychological 186 
models and the underlying functional neuroanatomy (Figure 3B), as well as about the 187 
functional specificity of each stage in a processing hierarchy (Figure 3C). 188 

Univariate encoding models have been widely used to characterize auditory systems, and 189 
provided evidence that information processing proceeds sequentially across 190 
hierarchically organized areas with representations being gradually abstracted along the 191 
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speech processing hierarchy. As a result, multiple gradients (e.g., tonotopy) and 192 
processing levels (core, belt and parabelt) have been identified in the human auditory 193 
cortex (Chevillet et al., 2011; Formisano et al., 2003; Talavage et al., 2000). Notably, 194 
representations of increasingly complex speech features are organized along an antero-195 
lateral gradient in the temporal cortex, ranging from simple tones and noise bursts to 196 
pseudowords and words (Binder, 2000; Dewitt & Rauschecker, 2012). From there, both a 197 
ventral and a dorsal stream emerge, providing inputs to the inferior frontal gyrus and 198 
reflecting different methods of processing and combining speech units (Friederici, 2011; 199 
Hickok & Poeppel, 2007; Rauschecker & Scott, 2009; Scott & Johnsrude, 2003).  200 

Univariate encoding models have also enabled a detailed characterisation of the time 201 
scales involved in the speech processing hierarchy (Brennan et al., 2012; Friederici, 2012; 202 
Scott, 2000). A time-constrained univariate analysis provided precise temporal neural 203 
mapping of multiscale processing during a phonemic categorization task (Bouton et al., 204 
2018). Neural activity associated with low-level perceptual processing was disentangled 205 
from higher-level phonemic identification, and selective activity in temporal regions for 206 
low-level acoustic features was found 50ms before higher-order decision activity in the 207 
left inferior frontal region. In this specific case, the use of univariate time-resolved models 208 
allowed for a stepwise spatio-temporal examination of the different computational stages 209 
that constitute the speech processing hierarchy, paving the way for a comprehensive 210 
understanding of the process. 211 

While the hypothesis-based approach, where only one feature varies at a time, enables 212 
straightforward interpretation of the results, univariate outcomes from single experiments 213 
are insufficient to capture the multi-stream, distributed nature of language processing. 214 
They also fall short in untangling the simultaneous contributions of different speech 215 
features to the examined neural activity. To achieve a more comprehensive picture of the 216 
multi-layered speech processing system, the use of methods adapted to its intrinsic 217 
complexity is necessary. This includes multivariable models, which can probe the 218 
relationships between multiple variables simultaneously. 219 
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 220 

Figure 3. Probing speech and language processing hierarchies using univariate models. (A) Univariate, 221 
or mass-univariate, models establish a stimulus-response function relating neural activity to a stimulus 222 
variable, such as an articulatory feature. This hypothesis-based approach uses a few pre-specified 223 
stimulus features or behavioral variables that can be regressed in or of no interest (regressed out). (B) 224 
Univariate models imply assumptions about the relevant variables and assume functional modularity in 225 
the brain. In this view, each region or network of regions primarily encodes specific, well-specified 226 
variables. Historically, the approach derives from the study of sensory systems but is somewhat less 227 
well adapted for characterizing high-level or endogenous functions. (C) Univariate (mass-univariate) 228 
models reveal a neuronal organization, in which low-level information (i.e., spectro-temporal cues), is 229 
transformed along the cortical hierarchy to incrementally build abstract linguistic structures (Figure 230 
adapted from Hickok & Poeppel, 2007). 231 

3. Multivariable models to explore multiple feature co-processing  232 

Multivariable models have become more prevalent in speech neuroscience research due 233 
to the growing use of naturalistic speech stimuli comprising nested features such as 234 
sentences, words, or syllables, all jointly contributing to a single neural measure. 235 
Multivariable models can disentangle these simultaneous effects by fitting a function that 236 
describes how a set of particular stimulus features contributes to neural responses (Crosse 237 
et al., 2016; Di Liberto et al., 2021) (Figure 4A). Features can be imported from a priori 238 
linguistic assumptions or extracted from data-driven methods such as dimensionality 239 
reduction or large language models fitted to speech data (Caucheteux et al., 2022; 240 
Sainburg et al., 2020; Schrimpf et al., 2021). This approach has confirmed that speech 241 
comprehension relies on hierarchically organized representations, spanning from the 242 
acoustic in primary auditory areas, to phonetic, semantic and higher-level (syntactic) 243 
linguistic representations when moving away from Heschl’s gyrus (Caucheteux et al., 244 



9 

2021; de Heer et al., 2017) to prefrontal regions via the double dorsal and ventral stream, 245 
a result consistent with previous findings from univariate models.  246 

In particular, multivariable models further helped uncover the spatio-temporal 247 
specificities of neural activity in the processing hierarchy (Hamilton et al., 2021; Hullett et 248 
al., 2016; Palmeri et al., 2017; Pasley et al., 2012; Santoro et al., 2014), as they 249 
accommodate the notion that there is an optimal spatio-temporal processing scale at 250 
each step considered (Gross et al., 2013; Panzeri et al., 2010; Walker et al., 2011). For 251 
example, while a spectro-temporal receptive field (STRF) is the best organization for 252 
neural activity in the auditory cortex, an STRF further tuned to phonological cues proves 253 
to be a more efficient implementation in the auditory association cortex (Santoro et al., 254 
2017; Venezia et al., 2019). The transformation of the best model throughout the 255 
hierarchy reflects the progression from fine temporal resolution in low-level acoustic 256 
processing regions, to associative regions of the STG and STS where syllabic and word-257 
level processing regions require integration of longer sequences, and higher-level brain 258 
regions (e.g. in the anterior temporal cortex) where semantic representations likely 259 
become atemporal (Giraud, 2020), coded with sparse spatial coding (Chang et al., 2010; 260 
Deneux et al., 2016; Van Wassenhove, 2009; Q. Zhang et al., 2019). These results 261 
highlight the importance of taking into account the hierarchical heterogeneity of 262 
functional organization, and of using functionally-informed multivariable models (Figure 263 
4B). This description level holds promise for neuroengineering applications, such as 264 
developing speech decoders that use neural activity at a particular level of speech 265 
processing to decipher distinct components corresponding to specific neural activations 266 
(Moses et al., 2019; Tang et al., 2023). 267 

More importantly, by enabling direct estimation of concomitant neuronal processing, 268 
multivariable models allow for a precise specification of the combined representations of 269 
stimulus features at several levels of the hierarchy: mixtures of spectral and articulatory 270 
features in the superior temporal gyrus, mixtures of articulatory and semantic features in 271 
the superior temporal sulcus (Caucheteux & King, 2022; de Heer et al., 2017), etc. Here, 272 
the choice of regressed features is critical as it determines the nature of the information 273 
being integrated. For instance, when the multiple variables to be regressed with neural 274 
data come from the fitting of a deep neural network (DNN) to behavior, the variables 275 
contain implicit information about the architecture and granularity of the hierarchical 276 
organization, i.e., N (inter)connected layers (Figure 4C). The number of layers in a DNN 277 
is a design choice reflecting the complexity of the task being modeled rather than any 278 
biological plausibility. There is hence a risk of smoothing out or missing anatomical 279 
(cytoarchitectonic) separations between functionally distinct brain regions when choosing 280 
the number of layers, thus creating spurious intermediate stages of processing and 281 
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representation. Although DNNs draw inspiration from biological neural networks, they 282 
are not direct replicas of biological systems, but rather extreme simplifications (Saxe et 283 
al., 2021). Fitting human behavior with DNNs may thus imply adding extra layers that 284 
have no equivalent in the brain. When seeking to map DNN layers to actual brain activity, 285 
it is therefore necessary to take into account the actual functional granularity of the 286 
cortical hierarchy. 287 

 288 

Figure 4. Neural processing involves concomitant neural processing and combined representations. 289 
(A) Multivariable models use multiple independent variables (stimulus features) to predict a single 290 
dependent variable, the neural response. (B) The multivariable model approach implies a priori 291 
assumptions about the spatial and temporal implementation of neural representations. These 292 
assumptions can be functionally informed by the specific computations performed at each level of the 293 
hierarchy. The versatility of these models allows them to address higher-order cognitive operations, so 294 
long as the inherent spatio-temporal characteristics of the associated encoding models are considered. 295 
(C) Mapping deep neural networks (DNNs) to neural data assumes concomitant processing of multiple 296 
features, revealing combined representations. The depth and complexity of DNNs are pivotal in 297 
representing linguistic complexity and abstraction. When inferring about brain-based language 298 
processing, the chosen architecture and layer count of the DNNs should be carefully considered.  299 

4. Multivariate models to probe cross-module spatio-temporal dynamics  300 

While multivariable models enable the simultaneous analysis of different speech (voice 301 
vs. speech content) and/or linguistic features (phonetic, phonological, lexical etc; see 302 
analysis-by-synthesis, (Poeppel & Monahan, 2011; Pulvermüller & Fadiga, 2010), 303 
identifying multi-network representations of speech requires consideration of processes 304 
distributed across brain regions and neuronal populations (Chalas et al., 2022; Correia et 305 
al., 2015; Lee et al., 2012). These patterns of distributed correlations cannot be revealed 306 
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with univariate or multivariable models (Ufer & Blank, 2023). In contrast, multivariate 307 
models, which relate one or several stimulus features to the activity of multiple 308 
simultaneous neural responses (Figure 5A), offer evidence that distributed patterns of 309 
neural activity contain discriminative information (Bishop & Nasrabadi, 2006; King et al., 310 
2020).  311 

Using multivariate models to show that (spatial) patterns of neural activity contain 312 
discriminative information proceeds from a different scientific approach than using them 313 
in neuroengineering to decode neuronal activity (Hebart & Baker, 2018; Weichwald et al., 314 
2015). Decoding multivariate models aim to reconstruct stimuli from neural activity (K. 315 
Friston et al., 2008; Holdgraf et al., 2017; S. Martin et al., 2014) to help palliate deficient 316 
functions in patients with, for example, peripheral motor or cortical language diseases 317 
(Anumanchipalli et al., 2019; Moses et al., 2021; Willett et al., 2021, 2023). The use of 318 
decoding multivariate models in cognitive neuroscience requires a cautious approach to 319 
prevent misinterpretation of results, as the fitted decoding weights are not directly 320 
interpretable as brain activations, but depend on both the signal of interest and the 321 
nature of the noise (e.g. neural processing redundancy) present in the signal (Bouton et 322 
al., 2018; Haufe et al., 2014; Hebart & Baker, 2018; Kia et al., 2017). 323 

Specific methods have been developed to overcome this difficulty. In the linear case, a 324 
valuable approach involves inverting fitted multivariate weights to estimate the encoding 325 
weights, enabling a direct interpretation of the resulting neural representation of the 326 
signal (Haufe et al., 2014). Applied to brain activity during natural speech listening, this 327 
method reveals that neural tracking of the speaker’s voice pitch is concurrently influenced 328 
by acoustic and linguistic features (Kegler et al., 2022). This finding highlights the intricate 329 
interactions occurring during the elementary processing steps of speech perception. 330 
Another effective solution for interpreting multivariate models is to define regions of 331 
interest to spatially constrain the analysis (Çelik et al., 2019). Reliable information on the 332 
interactions between levels of elementary processing can be recovered as long as 333 
multivariate neural responses are combined at a common spatial resolution (Weichwald 334 
et al., 2015). For example, by examining the multivariate fitting performance using all 335 
voxels within each brain region of interest, low-level acoustic feature representations were 336 
shown to vary depending on whether the subject is engaged in a linguistic or a 337 
paralinguistic task (Rutten et al., 2019). This crucial finding aligns with interactive accounts 338 
of speech processing and opens up opportunities to further comprehend its dynamics. 339 

Alternative approaches aim to improve the interpretability of multivariate analysis in the 340 
temporal domain. One such approach seeks to identify the distribution of available 341 
information at each point in time. This method can reveal neural reuse, wherein the same 342 
brain region’s activity is involved sequentially for different purposes. In speech and 343 
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language processing, such neural reuse might play a crucial role in accumulating sensory 344 
evidence, for example during a dialogue until a response is triggered (Anderson, 2016; 345 
Skipper, 2014). While the use of multivariate methods is critical to ensure that neural reuse 346 
is not missed, recurrent activity is rarely causal to behavior but rather reflects downstream 347 
associations. For instance, spectro-temporal representations can be first activated during 348 
automatic acoustic processing, then used for discriminating one phoneme from another, 349 
and reused to discriminate phonological neighbors (e.g., /bear/-/pear/) (Figure 5B). 350 
Likewise, using multivariate models, letter reading was associated with a distributed 351 
network of successive and overlapping neural activities, implying sequential processing, 352 
maintaining and broadcasting increasingly rich representations across brain regions 353 
(Gwilliams & King, 2020). 354 

Finally, at the very end of the hypothesis-based vs data-driven continuum, distributed 355 
speech components can be uncovered using completely unsupervised methods that rely 356 
on a priori measures of interest, such as neural variance, without any relation to sensory 357 
or cognitive features. Dimensionality reduction methods, such as principal component 358 
analysis, can be applied directly to neural data (Bondanelli et al., 2021; Cunningham & 359 
Yu, 2014). These methods reveal low-dimensional spaces of correlated neural activity, 360 
also known as manifolds, that account for a large part of neural variance during speech 361 
tasks. They might provide new insights about how neural activity, specific to each speech 362 
feature and distributed across several brain regions, is integrated into a common 363 
representation (Gallego et al., 2017; Perdikis et al., 2011; Stephen et al., 2023) (Figure 364 
5C). Nevertheless a significant drawback of these methods remains the difficulty of 365 
interpreting the reduced dimensions in functionally meaningful terms.  366 

 367 

Figure 5. Speech and language processing involve distributed components that can be described 368 
through population dynamics. (A) Multivariate models rely on multiple independent variables to predict 369 
a set of dependent variables, including all possible relevant features of the stimulus. Feature selection 370 
can be achieved using methods such as correlation analyses or dimensionality reduction. (B) Being 371 



13 

non-selective, multivariate models can uncover processes of neural reuse. They can also identify 372 
distributed networks of sequentially organized neuronal activities. (C) Unsupervised dimensionality 373 
reduction method can help reveal underlying population dynamics (left). Projected features can be 374 
used to classify neural activity within the speech network (right). 375 

5. Integrating hypothesis-based and data-driven methods 376 

Used in isolation, the analytic methods presented so far enable the identification of 377 
distinct speech encoding modes and the characterization of their spatio-temporal 378 
distributions. However, these approaches can lead to contradictory conclusions about the 379 
functional architecture of speech processing. By combining these models, their individual 380 
advantages can be leveraged to get a more unified understanding of speech processing 381 
in the brain. In what follows, we highlight the complementary nature of these two 382 
approaches, but also how their respective results can inform each other to reveal new 383 
principles of neural organization, and finally how these approaches can be integrated 384 
together to provide a unified and detailed understanding of speech processing as it 385 
unfolds in natural situations. 386 

Complementarity of statistical approaches 387 

Understanding the functional granularity of the speech processing network poses 388 
significant challenges when relying on univariate causal models. Complex interactions 389 
among interconnected brain regions complicate these efforts (Dronkers et al., 2017; 390 
Rahimpour et al., 2019). Indeed, similar speech-deficit symptoms can stem from non-391 
overlapping lesions in different patients (Na et al., 2022), as lesions can not only disrupt 392 
local gray-matter regions but also communication between network nodes by damaging 393 
white-matter tracts (Geschwind, 1965). Multivariate methods applied to lesion-behavior 394 
mapping help overcome these difficulties by taking into account the complex functional 395 
interactions between brain regions (Boes et al., 2015; Ivanova et al., 2021; Sperber, 2020; 396 
Y. Zhang et al., 2014) (Figure 6A). Lesion network mapping is particularly useful in 397 
understanding overall intervention’s impact on the neural system by aligning brain lesions 398 
with multivariate functional networks (Boes et al., 2015; Fox, 2018; Siddiqi et al., 2022). 399 
Crucially, simultaneously introducing lesions and structural connectivity matrices as 400 
multivariable regressors can show how functional and structural networks predict 401 
behavioral scores. This method has been pivotal in identifying causal network connections 402 
and hubs, such as the temporo-parietal junction, a key region for speech fluency, auditory 403 
comprehension, speech repetition and oral naming (Yourganov et al., 2016).  404 

Leveraging Hypothesis-Based and Data-Driven Approaches 405 
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Interpreting the functional relevance of data-driven reduced dimensions benefits greatly 406 
from hypothesis-based methods. This process entails an initial step of pinpointing neural 407 
activity associated with specific speech levels, followed by dimensionality reduction to 408 
unveil the core spatio-temporal patterns supporting these dynamics (Bouchard et al., 409 
2013; Keshishian et al., 2023; Orepic et al., 2023). Recently this method was applied to 410 
demonstrate that the anterior STG simultaneously encodes phonetic and semantic 411 
features during natural speech perception, positioning the anterior STG as a promising 412 
hub for integrating these two levels of the speech processing hierarchy (Orepic et al., 413 
2023). The synergy of hypothesis-based and data-driven approaches also becomes 414 
evident when hypothesis-based findings from controlled experiments are validated using 415 
data-driven methods on new datasets collected under varying experimental conditions 416 
or during natural conversations (Castellucci et al., 2022; Orepic et al., 2023) (Figure 6B). 417 
Relying primarily on hypothesis-based methods, Castellucci et al. identified a speech 418 
planning network in controlled experiments. Subsequently, they applied unsupervised 419 
dimensionality reduction tools to recover this network in natural conversations, 420 
demonstrating its consistency across different conditions.  421 

Integration via recurrent models 422 

To achieve a unified representation of the speech processing system, it is essential to 423 
integrate the levels identified (Lupyan & Clark, 2015). This integration must transcend the 424 
mere amalgam of speech features and brain regions through causal, multivariable, and 425 
multivariate models. Instead, it calls for consideration of how recurrent processes facilitate 426 
integration of speech signals over time (Gwilliams et al., 2022; Pulvermüller, 2018; Yi et 427 
al., 2019) . This integration requires turning to the concepts of recurrent and dynamical 428 
models, where past neural activity shapes future neural dynamics (K. J. Friston et al., 2003; 429 
Truccolo et al., 2004; Vyas et al., 2020). Recurrent models make it possible to examine 430 
multiple variables at once, and how different brain regions and speech features influence 431 
neural activity, while preserving causality, interpretability, and testability (Figure 6C). 432 
When applied to auditory cortex neural activity, recurrent models reveal how different 433 
auditory contents are represented in the brain by exposing hidden low-dimensional, 434 
dynamical structures (Bondanelli et al., 2021). Dynamic recurrent models have the 435 
intriguing feature of allowing the definition of distinct time constants for various sub-436 
processes, thus forming a hierarchy of time scales that effectively integrates the distinct 437 
stages of the speech processing hierarchy (A. E. Martin, 2020; Perdikis et al., 2011; Pillai 438 
& Jirsa, 2017). More generally, this framework has the potential to characterize neural 439 
activity during tasks beyond speech, such as word writing or similar dynamic tasks 440 
(Perdikis et al., 2011).        441 
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 442 

Figure 6. Speech processing involves integrating representations through recurrent activations. (A) 443 
Multivariable lesion symptom mapping, which consists of introducing multiple lesioned voxels or 444 
connectivity measurements as independent variables, allows for the consideration of the effect of the 445 
lesioned speech network on behavioral deficits. Multivariable lesion symptom mapping does not 446 
require patients to be grouped by either lesion site or behavioral cutoff, but instead makes use of 447 
continuous behavioral and lesion information. (B) Two-steps analysis helps in interpreting distributed 448 
neural patterns obtained after applying dimensionality reduction: first, an encoding multivariable 449 
model is applied to identify which neural activity relates to which speech features across the whole 450 
recording, and secondly, the resulting dimensionality is reduced to ease interpretation. (C) Recurrent 451 
models allow for setting dynamics at different time scales that integrate speech features across levels 452 
of the hierarchy. 453 

Conclusion 454 

We propose that the speech and language function in the human brain can be fully 455 
characterized by five cardinal approaches. These complementary approaches illustrate 456 
the strengths and limitations of hypothesis-based and data-driven methods. While 457 
perturbation models demonstrate causal links between neural processes and behavior, 458 
providing a clear understanding of the speech processing modularity, univariate models 459 
allow global neural activity to be broken down into elementary components or modules, 460 
improving our understanding of the hierarchical organization of neural processing. 461 
Multivariable models complement this approach by tracking multiple feature 462 
convergences and identifying edges with shared representations within the hierarchy. 463 
Multivariate models can reveal spatially and temporally distributed components and their 464 
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dynamics. Finally, recurrent models give an account of how different speech features are 465 
integrated over time within the speech hierarchy. 466 
 467 
This article stresses the need to integrate the exploratory power of data-driven methods 468 
with the hypothetico-deductive approach. Indeed, data-driven research is constantly 469 
navigating between the extraordinary possibilities it offers for new discoveries and the 470 
pitfalls of random-walk science. Attention to past research and theoretical concerns can 471 
help prevent this random walk from getting lost in a vast, ultimately uninteresting space. 472 
This tension between deductive and inductive approaches is far from new in science. Two 473 
decades ago, science-fiction writer Ted Chiang wrote a premonitory article in Nature that 474 
purported to celebrate the 25th anniversary of the last human scientific publication 475 
(Chiang, 2000). In this provocative futuristic short-story, science is exclusively conducted 476 
by genetically improved humans, called “metahumans”, and all that remains for human 477 
scientists is the interpretation of meta-human data. It is tempting to think of metahuman 478 
science as the outcome of data-/AI-driven methods, whose inner functioning lies 479 
sometimes beyond the reach of our understanding. But data are rarely, if ever, self-480 
explanatory. They make sense to the extent that they validate or falsify theoretically 481 
informed predictions. "Human researchers", Chiang says somewhat presciently, "may 482 
indeed discern applications overlooked by metahumans, whose advantages tend to make 483 
them unaware of our concerns". 484 
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