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Abstract 15 

Marine microorganisms form complex communities of interacting organisms that influence central 16 
ecosystem functions in the ocean such as primary production and nutrient cycling. Identifying the 17 
mechanisms controlling their assembly and activities is a major challenge in microbial ecology. 18 
Here, we integrated Tara Oceans meta-omics data to predict genome-scale community interactions 19 
within prokaryotic assemblages in the euphotic ocean. A global genome-resolved co-activity 20 
network revealed a significant number of inter-lineage associations across large phylogenetic 21 
distances. Identified co-active communities included species displaying smaller genomes but 22 
encoding a higher potential for quorum sensing, biofilm formation, and secondary metabolism. 23 
Community metabolic modelling revealed a higher potential for interaction within co-active 24 
communities and pointed towards conserved metabolic cross-feedings, in particular of specific 25 
amino acids and group B vitamins. Our integrated ecological and metabolic modelling approach 26 
indicates genome streamlining and metabolic auxotrophies as central joint mechanisms shaping 27 
bacterioplankton community assembly in the surface global ocean. 28 

Main 29 

Marine microbes constantly interact among each other and with their environment, forming 30 
complex and dynamic networks. These communities and their interactions play crucial ecological 31 
and biogeochemical roles on our planet, forming the basis of the marine food web, sustaining 32 
biogeochemical cycles in the ocean, and regulating climate1. Complex networks of trophic 33 
interactions, mediated through metabolic cross-feeding and ecological successions, can influence 34 
the nature of microbial interactions (e.g., mutualism or competition), in space and time, and thus 35 
significantly shape microbial community assembly2. Expanding our understanding of microbial 36 
trophic interactions is fundamental given their capacity to modulate ecological niches3, constrain 37 
microbial biogeography4, drive microbial diversification5, and modulate the eco-evolutionary 38 
dynamics of microbial communities6. Because most microbes are difficult to isolate and cultivate in 39 
lab-controlled environments7, and given the large diversity of molecules that can be excreted into 40 
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the environment (e.g., waste metabolites, secondary metabolites, exoenzymes, siderophores), we are 41 
just starting to grasp the complexity and diversity of microbial interactions and cross-feeding 42 
relationships existing in nature8. In particular, we lack a mechanistic understanding of metabolic 43 
auxotrophy and its role in constraining marine microbial community composition and assembly9.  44 

While species co-occurrence networks are useful tools to model the large-scale structure of 45 
microbial communities10 and to resolve biome-specific ecological associations11, these approaches 46 
are inherently limited since correlation metrics do not provide evidence for direct biotic 47 
interactions, and do not allow to disentangle true biotic interactions from environmental preferences 48 
(niche overlap)12. Thus, we still lack a comprehensive and mechanistic understanding of biotic and 49 
abiotic interactions shaping community assembly of microbial communities. Ecosystem modelling 50 
approaches are therefore needed to capture and predict emergent properties resulting from complex 51 
interactions within microbial communities, such as resilience, niche space, and biogeography, that 52 
shape microbial communities and ecosystems13. Recent experimental work has demonstrated the 53 
significant impact of underlying cross-feeding metabolic networks in shaping community 54 
assembly14 and ecological successions15 in synthetic microbial communities. Using microbial 55 
community assembly experiments in soil, coupled with a simple resource-partitioning model, 56 
functional convergence was shown to be mainly driven by emergent metabolic self-organization, 57 
while taxonomic divergence seemed to arise from multi-stability in population dynamics14. In 58 
another system, coculture experiments of a marine microbial community able to degrade chitin 59 
demonstrated the hierarchical preferences for specific substrates, underlining the sequential 60 
colonization of metabolically distinct groups, and identifying hierarchical cross-feedings shaping 61 
the dynamics of community assembly15. 62 

Recent large-scale environmental surveys of marine microbial ecosystems (e.g., Tara Oceans16, 63 
Malaspina17, Bio-GO-SHIP18, BioGEOTRACES19) have generated large volumes of metagenomics 64 
data that enable the reconstruction of genomes from uncultivated species referred to as 65 
Metagenome-Assembled Genomes (MAGs)20,21. Together with whole genome sequences (WGS) 66 
from cultured organisms and single amplified genomes (SAGs) from single cell isolates, these 67 
resources have been used to expand our knowledge of microbial diversity in the ocean, but have 68 
also demonstrated that a large fraction of the diversity remains to be explored22,23. In this context, 69 
genome-resolved metagenomics provides an opportunity to enrich co-occurrence signals with 70 
genetic information from genomes and functional information from genome-scale metabolic 71 
models. Integrating this knowledge into association networks can inform us about the functional 72 
self-organisation of microbial communities24, contribute to our understanding of species 73 
interactions mechanics, and identify general ecological laws that structure microbial communities. 74 
While community metabolic modelling approaches have recently been applied to study the self-75 
organisation of microbial ecosystems25 and to gain insights into molecular mechanisms of 76 
interactions in soil26, wastewater27, and gut microbiome communities28, few studies so far have 77 
focused on the modelling of marine plankton ecosystems15,29, and were limited to specific single 78 
communities. 79 

Here, we describe an integrated ecological and metabolic modelling approach with the goal to 80 
delineate metabolically cohesive consortia underlying genes-to-community assembly and ecosystem 81 
functioning at global scale30. We combined co-activity ecological information inferred from meta-82 
omics with community metabolic simulations using genome-scale metabolic models to uncover 83 
putative biotic interactions mediated by metabolic cross-feedings among marine prokaryotic 84 
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genomes. Through a multi-omic approach integrating Tara Oceans metagenomic and 85 
metatranscriptomic datasets, we inferred a global ocean genome-resolved ecological network from 86 
whole-genome transcriptomic activities. We used general genomic scaling laws31 as a framework to 87 
characterise the functional content of co-active environmental genomes, and identified functional 88 
gene categories likely driving metabolic dependencies. We then reconstructed genome-scale 89 
metabolic models and uncovered putative cross-feeding interactions within co-active consortia 90 
through the use of community-level metabolic modelling.  91 

Results and discussion 92 

Genomic scaling laws reveal features of uncultivated marine prokaryotic genomes 93 
To build a comprehensive catalogue of marine prokaryotic genomes, we collected and assembled 94 
public whole-genome sequences (WGS) from marine prokaryote isolates32, single-amplified 95 
genomes22 (SAGs), as well as previously reconstructed MAGs21. This novel integrated marine 96 
prokaryotic genome database counted 7,658 non-redundant species-level representative genomes 97 
(delineated by a 95% ANI threshold over 60% of genome length, see methods). Herein, we only 98 
considered genomes meeting sufficient quality standards (n=5,678) as defined by the Genomic 99 
Standards Consortium33, that is High-Quality (HQ) MAGs (>90% complete with less than 5% 100 
contamination) as well as Medium-High-Quality (MHQ) MAGs (>75% complete with less than 101 
10% contamination). HQ and MHQ MAGs were not significantly different from WGS genomes in 102 
terms of gene density (Supplementary Table 1). A phylogeny of these genomes was established 103 
using domain-specific marker genes of the Genome Taxonomy Database (GTDB)34, highlighting a 104 
total of 107 phyla (with unclassified) including highly represented phyla in marine environments, 105 
such as Proteobacteria, Bacteroidetes, Actinobacteria, and Cyanobacteria35 (Fig. 1a).  106 

Within prokaryotic genomes, the number of genes in most high-level functional categories has been 107 
shown to scale as a power-law to the total number of genes in a genome36. A potential explanation 108 
for these observed scaling laws among microbial genomes is a conserved average duplication rates 109 
for the evolutionary process within each functional category. In addition, these genomic scaling 110 
laws have been shown to be conserved across microbial clades and lifestyles, supporting the 111 
observation that they are universally shared by all prokaryotes31. However, these genomic scaling 112 
laws have never been investigated within uncultured genomes so far. Here, we thus revisited this 113 
universal law for environmental marine genomes (MAGs and SAGs). To ensure a sound and fair 114 
comparison between WGS and environmental genomes, we limited our analysis to HQ and MHQ 115 
genomes, which were of equivalently high-quality and also having a similar gene density as 116 
compared to WGS (Extended Data Fig. 1b). We showed that HQ and MHQ genomes did actually 117 
fit the same law as WGS genomes (Fig. 1b). This analysis also revealed that HQ/MHQ MAGs and 118 
were systematically smaller in genome size and number of predicted CDS as compared with WGS 119 
genomes. This observation is coherent with the assumption that naturally occurring marine genomes 120 
have likely adapted to oligotrophic surface ocean specific lifestyles through genome streamlining37. 121 
Investigating the genomic scaling laws for high-level functional categories (see methods), we 122 
showed that this adaptation has differentially impacted specific functions within uncultivated 123 
genomes (MAGs and SAGs), with an increase potential for xenobiotic degradation, terpenoid and 124 
polyketide metabolism, as well as lipid metabolism, but a decrease potential to synthesize cofactors 125 
and vitamins (Extended Data Fig. 2 and Supplementary Table 2). This decreased metabolic 126 
potential for cofactors and vitamins in environmental genomes likely reflects the importance of 127 
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syntrophic metabolism, such as metabolism of essential enzyme cofactors38, and associated 128 
bacterial traits for microbial interactions39, to sustain microbial life in the surface ocean that is 129 
largely depleted in B vitamins40. 130 

 131 

  132 

Figure 1: A database of marine bacterial and archaeal genomes from isolates and 133 
uncultivated genomes reconstructed from marine metagenomes. a, Phylogenetic tree of the 134 
database of marine genomes (N=7,658) dereplicated at species level (95% Average Nucleotide 135 
Identity or ANI). Reference genomes (WGS) were obtained from MarRef, MarDB, and aquatic 136 
progenomes, while Metagenome-Assembled Genomes (MAGs) and Single-Amplified Genomes 137 
(SAGs) were also obtained from different studies (see methods). A total of 107 phyla (including 138 
unclassified) were detected (the top 20 most represented phyla are highlighted). b, A comparison of 139 
genome size and number of predicted CDS revealed that a genome scaling law is conserved for 140 
High and Medium-High Quality (HQ and MHQ) genomes (completeness ≥ 75% and contamination 141 
≤ 5%), and that MAGs overall displayed significantly smaller genomes (P=8.14 x 10-289, Mann 142 
Whitney U test on log-transformed distributions).  143 

Abiotic factors shaping genome community composition and activity 144 

Next, we mapped Tara Oceans metagenomics and metatranscriptomics sequencing reads from 145 
surface (SRF) and deep chlorophyl maximum (DCM) samples (N=118) onto our genome collection 146 
(see methods) to generate a comprehensive global ocean abundance and expression profiling of 147 
microbial communities in relationship with abiotic environmental factors (see Supplementary 148 
Table 3). Average mapping rates were 16.0% and 12.3% for metagenomes and metatranscriptomes, 149 
respectively (Fig. 2a and Extended Data Fig. 3). Using the same Tara Oceans dataset, gene and 150 
transcript abundances have previously been shown to be highly correlated41. Here, we observed an 151 
overall relatively good concordance between genome-wide abundance and expression (Spearman 152 
rho=0.68, P=0)), albeit a number of genomes displayed lower genome-wide expression levels (Fig. 153 
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2b), highlighting the complementary information brought by genome expression signals computed 154 
here. Thus, this observation prompted us to compute genome-wide activities, integrating abundance 155 
and expression levels at the genome scale (see methods). Principal Coordinates Analyses (Fig. 2c) 156 
did not reveal a clear structuration of community genome assemblages and activities by ocean 157 
basin, but allowed us to identify abiotic factors driving community composition and activity. 158 
Genome community composition was mainly driven by temperature, pH, and Photosynthetically 159 
Available Radiation (PAR), while genome community activity was mainly driven by temperature, 160 
phosphate (PO4) and iron concentrations (see methods and Supplementary Table 4).  161 

Temperature has previously been shown to be one of the main factors constraining epipelagic 162 
bacterioplankton community composition35, which is confirmed here for both genome-wide 163 
community abundance and activity. The effect of (small) pH changes on marine microbial 164 
communities has mainly been shown experimentally42,43, but often not considering the natural 165 
variability of pH in the surface ocean44. Other studies have reported minor effects of acidification 166 
on the productivity of natural picocyanobacteria assemblages45. Here, the observed association 167 
between genome community composition and pH could partly be explained by seasonal variability 168 
encountered during global sampling. While genome community activity was principally associated 169 
to temperature, distinct environmental factors, namely PO4 and iron concentrations, were also 170 
significantly associated to community activity. This observation emphasises the major role of 171 
nutrients and/or cofactors (co-)limitations in structuring global ocean microbial activity46,47. 172 

 173 
Figure 2: Genome-wide abundance and activity profiling of marine prokaryotic genomes in 174 
the global surface ocean. a, World map of Tara Oceans sampling stations (N=81) for which 175 
euphotic (SRF and DCM) metatranscriptomes are available for a prokaryote-enriched size fraction 176 
(0.22-3 μm). The percentage of mapped RNA reads are depicted for each euphotic sample (N=118). 177 
b, Genome-wide abundance and expression were significantly associated (Spearman rho=0.68, 178 
P=0), albeit a number of genomes display lower expression levels. c, Principal Coordinates 179 
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Analyses (PCoA) for genome community abundances and activities. Genome community 180 
abundance and activity (PCo1) are significantly associated with temperature. Community 181 
abundance (PCo2) is also associated with pH and Photosynthetically Available Radiation (PAR), 182 
while community activity is associated with PO4 and iron concentrations. 183 

Biotic drivers of genome activity community structure 184 
While abiotic factors are known to be significant drivers of microbial community structures in the 185 
ocean, biotic factors (such as competition, parasitism, or mutualism) are expected to play an equally 186 
important role48, though the latter are more difficult to study in natural communities. Microbial 187 
association networks are useful abstractions that represent potential biotic interactions and capture 188 
emergent properties (e.g., connectivity, functional redundancy) that result from these putative 189 
interactions49. But so far, most studies have been limited to the organismal level by predicting these 190 
ecological associations using taxonomic marker genes (e.g., 16S and 18S rRNA genes). Integrating 191 
genomic information into association networks can be particularly useful to draw and test 192 
hypotheses about the functional self-organisation of microbial communities24. Here, we went 193 
beyond by inferring a global ocean association network from genome activities that were inferred 194 
by integrating genome-wide abundance and transcript levels (here activity refers to a genome-wide 195 
ratio between transcript and genomic vertical coverages, see methods for details). We make the 196 
general assumption that a co-activity signal is a better proxy to capture biotic interactions as 197 
compared to co-abundance, given the latter is an integration of all past metabolic activities that 198 
cannot identify microbial cells that were actually transcriptionally active at sampling time. In other 199 
words, we expect genome-wide co-activity (integrating abundance and transcript levels) to be more 200 
sensitive as it inherently has a better time-resolution when looking for microbial interactions.  201 

We inferred a genome-resolved co-activity network using the dedicated probabilistic learning 202 
algorithm FlashWeave (FW, see methods) that can efficiently detect and remove undirect 203 
associations among features50. This genome-resolved co-activity network was significantly different 204 
than the corresponding genome-resolved co-abundance network, with a higher number of edges in 205 
co-activity, and only a small fraction of shared edges (3%) (Extended Data Fig. 4). This strong 206 
difference between both networks can reflect the distinct information carried out by abundance and 207 
activity profiles, but can also be partially explained by the heuristics-based inference of direct 208 
associations as implemented in FW. The co-activity network revealed a larger number of significant 209 
positive associations across large phylogenetic distances (PD), while negative associations were 210 
mainly observed between phylogenetically distant genomes (Fig. 3a). It also revealed two distinct 211 
types of positive associations: relative phylogenetically close associations (0 < PD < 1) that likely 212 
reflected niche overlap, and phylogenetically distant associations (PD >= 1) likely reflecting a 213 
higher potential for cross-feeding interactions51. As previously reported for co-existing genomes 214 
across various biomes24, co-active genomes tended to be more functionally related than expected at 215 
random (Mann-Whitney U-test with Bonferroni correction, P=1.187x10-25). This observation may 216 
reflect the impact of ecological preferences or niche overlap on evolution, that could be explained 217 
by adaptation to a same niche and/or by potential higher rates of horizontal gene transfer (HGT) in 218 
specific biomes52. Marine co-active genomes also tended to be smaller in size as compared to 219 
detected but non-co-active genomes, although displaying similar gene densities as assessed by 220 
genomic scaling laws (Extended Data Fig. 5), and despite the fact that most abundant and active 221 
genomes actually corresponded to MAGs overall smaller in size (Fig. 1). In addition, comparative 222 
genomics analyses based on scaling laws allowed us to take into account genome size (see methods) 223 
and revealed that co-active genomes displayed (in proportion) a higher metabolic potential for lipid, 224 
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carbohydrate, and amino acid metabolism (Extended Data Fig. 6 and Supplementary Table 5), 225 
but also for terpenoids and polyketides, quorum-sensing and biofilm formation, as well as for 226 
secondary metabolite biosynthesis (Fig. 3b-d). Overall, these enriched genomic potentials in co-227 
active genomes point towards key metabolic functions for energy harvest and storage (i.e., lipid, 228 
carbohydrate and amino-acids metabolism), likely key in nutrient-limited regions of the global 229 
ocean47. But they also underline key genomic enriched potential (i.e., antimicrobials and quorum-230 
sensing) of marine genomes likely prone to a wide diversity of biotic interactions39.  231 

 232 
Figure 3: A genome-resolved co-activity network reveals biotic factors shaping marine 233 
prokaryotic community structure. a, A genome-resolved co-activity network was inferred from 234 
genome-wide activities in euphotic samples, and revealed a larger number of significant positive 235 
associations between genomes across large phylogenetic distances. Based on gene presence/absence 236 
using Jaccard distances between genomes as a proxy for functional distance (using KEGG or 237 
eggNOG functional hierarchies), co-active genomes were functionally closer than expected at 238 
random (P=1.187x10-25). b, Scaling laws in the functional content of genomes highlighted large 239 
metabolic categories enriched in co-active genomes versus genomes detected as active in samples. 240 
Notably, co-active genomes displayed a higher functional potential for terpenoid and polyketide 241 
metabolism (P=1.46x10-7), for cellular community metabolism (quorum-sensing and biofilm 242 
formation, P=4.00x10-4), and for the biosynthesis of other secondary metabolites (P=4.73x10-9). See 243 
Supplementary Table 5 for a complete list of functions enriched in co-active genomes. 244 

Higher metabolic interaction potential in co-active bacterioplankton communities  245 
To go beyond correlation-based and enrichment analyses and move towards a mechanistic 246 
understanding of marine microbial community functioning, we sought to model the community 247 
metabolism of co-active marine microbial genomes. To do this, we first reconstructed genome-scale 248 
metabolic models for each MHQ and HQ genome (WGS or MAGs) using CarveMe53 and quality 249 
checked them using MEMOTE54 (Supplementary Materials). We then used Species Metabolic 250 
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Coupling Analysis (SMETANA); a constraint-based technique commonly applied for modelling 251 
interspecies dependencies in microbial communities55. Here, SMETANA was used to compute 252 
several interaction scores (global or local) to predict metabolic interaction potential and reveal 253 
metabolic exchanges and cross-feedings within delineated communities of co-active genomes. 254 
Notably, the Metabolic Resource Overlap (MRO) quantified how much species in a given 255 
community compete for the same metabolites, and the Metabolic Interaction Potential (MIP) 256 
quantified how many metabolites community species can share to decrease their dependency on 257 
external resources. Here, we analysed co-active genome communities identified by clustering the 258 
global co-activity network using the Markov clustering algorithm (see methods).  259 

Overall, we observed a negative association between the MRO score and the mean community 260 
phylogenetic distance (Pearson R2=0.31, P=4.16x10-8, Extended Data Fig. 7), showing that, as 261 
expected, phylogenetically closer co-active genome communities tended to display a higher 262 
metabolic resource overlap, and thus a higher potential for competition. Co-active genome 263 
communities also displayed an overall lower MIP score as compared with random communities 264 
(Mann-Whitney U test, P=1.45x10-17, Extended Data Fig. 8a). Nevertheless, both global (MIP) 265 
and detailed (SMETANA sum) scores of metabolic interactions are significantly driven by the size 266 
of communities under consideration (Extended Data Fig. 8b), which we thus normalised by 267 
community size, as previously done and reported55. Following this normalisation and despite 268 
overall higher MRO scores and mean community phylogenetic distance, co-active genome 269 
communities displayed a higher potential for metabolic interactions as compared with randomly 270 
assembled communities (Fig. 4a). These results show that metabolic cross-feeding interactions can 271 
occur across a large spectrum of phylogenetic and functional distances, suggesting that metabolic 272 
dissimilarity is one among other factors determining the establishment of cross-feeding interactions 273 
among bacteria51.  274 

Given the large phylogenetic distances observed among co-active genomes (Fig. 3a) and 275 
communities (Extended Data Fig. 7), we sought to delineate distinct community types of co-active 276 
genomes in a non-supervised fashion (see methods). Using this approach, we distinguished four 277 
types of co-active genome communities: randomly-assembled communities, largely composed of 278 
genome communities with a high mean phylogenetic distance (PD) and a low metabolic cross-279 
feeding potential (CP) score (HPD and LCP), which we used as a reference to define three other 280 
community types corresponding to two communities with a Low-PD (LPD) and High- or Low-CP 281 
(H/LCP), and a third community with High-PD (HPD) and High-CP (HCP) (Fig. 4b). These four 282 
co-active genome community types displayed distinct taxonomic compositions, with LPD-HCP 283 
communities mainly composed of Gamma- and Alphaproteobacteria, while HPD-HCP were more 284 
diverse including genomes from classes Nitrososphaeria, Marinisomatia, Dehalococcoidia, 285 
Alphaproteobacteria, and Acidimicrobiia (Extended Data Fig. 9). As anticipated, both HPD 286 
communities (orange and pink) were more dissimilar to respective LPD communities (blue and 287 
green) with regards to their encoded metabolism proxied by their functional Gini coefficient from 288 
KO genes occurrence profiles (Fig. 4c). Here, we hypothesised that these four community types 289 
displayed distinct signatures of metabolic exchanges and cross-feedings, which we analysed in 290 
details below.  291 
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 292 
Figure 4: Community-wide metabolic modelling reveals a higher metabolic interaction 293 
potential within marine prokaryotic communities. a, Microbial communities were delineated on 294 
the global co-active genome network using the MCL graph clustering algorithm (see methods). 295 
Community metabolic modelling was performed using SMETANA on these communities (dark 296 
grey, frequencies as bars and proportions as dashed line) and compared to random communities 297 
(light grey). Co-active communities (dark grey) overall displayed a significantly higher metabolic 298 
interaction potential (SMETANA) score as compared with random communities (Mann-Whitney U 299 
test two-sided, P=1.09x10-3). b, Distinct metabolic interactions community types were identified 300 
within co-active marine prokaryotic communities (black points) and differentiated from random 301 
communities (grey points), the latter largely displaying an overall higher mean phylogenetic 302 
distance and lower metabolic cross-feeding potential score (HPD-LCP, orange quadrant): i) 303 
Communities with overall low mean phylogenetic distance and low metabolic cross-feeding 304 
potential score (LPD-LCP, blue quadrant), ii) communities with overall low mean phylogenetic 305 
distance and high metabolic cross-feeding potential score (LPD-HCP, green quadrant), and iii) 306 
communities with overall high mean phylogenetic distance and high metabolic cross-feeding 307 
potential score (HPD-HCP, pink quadrant). c, HPD communities (orange and pink) were more 308 
dissimilar to respective LPD communities (blue and green) according to their functional Gini 309 
coefficient inferred from KEGG metabolism KO genes occurrence profiles (Mann-Whitney U test 310 
two-sided with Benjamini-Hochberg correction, LPD-LCP vs. LPD-HCP P=4.88x10-2, LPD-HCP 311 
vs. HPD-LCP P=2.77x10-3, HPD-LCP vs. HPD–HCP P= 4.89x10-2, LPD-LCP vs. HPD-LCP 312 
P=1.30x10-3). 313 

Key metabolic cross-feedings driving bacterioplankton community assembly 314 
To further explore and identify molecular mechanisms driving these global patterns of predicted 315 
metabolic interactions, we analysed predicted metabolic exchanges within the four co-active 316 
genome community types delineated above. Both HPD-HCP and LPD-HCP communities were 317 
predicted to have a higher potential exchange in specific metabolites as revealed by a NMDS 318 
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analysis of large metabolic categories (see methods) preferentially exchanged within each 319 
community type (Fig. 5a). Here, the first two dimensions of co-variation (Dim1 and Dim2) 320 
highlighted amino acids (AAs), B-vitamins, organo-sulfur compounds, aliphatic amines, n-alkanals, 321 
and aromatics as metabolic categories most preferentially exchanged within HPD-HCP and LPD-322 
HCP co-active genomes community types (Fig. 5b). Despite large differences in mean PD within 323 
these communities, preferentially exchanged metabolic categories appeared to be conserved in 324 
HPD-HCP and LPD-HCP community types, suggesting these predicted metabolic exchanges are 325 
ancient and evolutionarily conserved13. This observation raises a key question regarding which 326 
evolutionary mechanisms can actually stabilize metabolic cross-feedings within natural microbial 327 
communities56. Although little is known about the coevolutionary consequences of cooperative 328 
cross-feeding, stable coevolution is expected to increase productivity in cross-feeding communities, 329 
which was corroborated by experimental evidence57. Zooming on large metabolic categories, we 330 
identified specific metabolites predicted to be preferentially exchanged within all four community 331 
types (Fig. 5c). When considering inorganic compounds for community metabolic modelling, most 332 
preferentially exchanged compounds among all community types were phosphate and iron cations 333 
(Extended Data Fig. 10), likely due to the essential uptake of these limiting nutrient and co-factors 334 
in the ocean46. Thus, in order to focus on actual biotic metabolic exchanges predicted, we did not 335 
consider inorganic compounds as previously done in other studies25. 336 

Considering detailed predicted metabolic exchanges (using SMETANA sum scores) we identified 337 
compounds that were preferentially exchanged within each community type (Fig. 5c and 338 
Supplementary Table 6). In particular, acetaldehyde, benzoate, thiamine (vitamin B1), ethanol, and 339 
L-glutamate exchanges were enriched in LPD-HCP communities, while in HPD-HCP communities 340 
preferential exchanges of benzoate, thiamine, L-arginine, as well as D-glucose and D-ribose were 341 
predicted (Supplementary Table 7). The relative importance of predicted AA exchanges, and in 342 
particular biosynthetically costly AAs (e.g., methionine, lysine, leucine, arginine), likely reflects the 343 
key role of syntrophic interactions enabling cooperative growth in scarce environments56. Such 344 
division of metabolic labour for AAs can promote a growth advantage for cross-feeding species, as 345 
the fitness cost of overproducing AA has been experimentally shown to be less than the benefit of 346 
not having to produce them when they were provided by their partner58. Considering predicted L-347 
glutamate exchanges, glutamic acids have been reported as potential auxophores (i.e., a compound 348 
that is required for growth by an auxotroph) in aquatic environments59. Notably, arginine and 349 
glutamate are linked in Cyanobacteria60 and plants61 through the metabolism of glutamate that 350 
involves the glutamate dehydrogenase for arginine synthesis, and which is an important network of 351 
nitrogen-metabolizing pathways for nitrogen assimilation. In marine microorganisms, nitrogen (N) 352 
cost minimization is an important adaptive strategy under global N limitation in the surface ocean, 353 
acting as a strong selective pressure on protein atomic composition62 and the structure of the genetic 354 
code63. Given that arginine plays an important role in the N cycle because it has the highest ratio of 355 
N to carbon among all AAs, the combined selective pressure at genomic level and for biosynthetic 356 
(N) cost minimization may explain the recurrent cross-feeding predictions of glutamate and arginine 357 
observed herein. Overall, these results support amino acid auxotrophy as a potential evolutionary 358 
optimizing strategy to reduce biosynthetic burden under nutrient (in particular N) limitation while 359 
promoting cooperative interactions56,64. 360 

B-vitamins, which are essential micronutrients for marine plankton65, are predicted here to 361 
significantly structure bacterioplankton community activity, which supports the hypothesis that B-362 
vitamin mediated metabolic interdependencies contribute to shaping natural microbial 363 
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communities66. A recent environmental genomes survey in estuarine, marine, and freshwater 364 
environments has revealed that most naturally occurring bacterioplankton are B1 (thiamine) 365 
auxotrophs67. Vitamin interdependencies and auxotrophies, in particular for thiamine, have been 366 
recently predicted through a metagenomics-based association network in a soil microbial 367 
community, and confirmed in microcosm experiments68. Another comparative genomics assessment 368 
of vitamin B12 (cobalamin) dependence and biosynthetic potential in >40,000 bacterial genomes 369 
predicted that 86% of them require the cofactor, while only 37% encode a complete biosynthetic 370 
potential, the others being split into partial producers and salvagers69. In addition to thiamine, the 371 
joint importance in the metabolite exchanges of ornithine, glutamate and methionine, which are all 372 
products of enzymes dependent on vitamin B1270, confirms that access to vitamin B12 plays a 373 
significant role in structuring microbial community interactions. Furthermore, acetaldehydes are 374 
known intermediates supporting prokaryotic growth after breaking down substrates such as 375 
ethanolamine and propanediol using metabolic pathways involving vitamin B12-dependent 376 
enzymes71. Taken together, our results thus support the prevalent reliance of bacterioplankton on 377 
exogenous B1 and B12 precursors/products and on the bioavailability of micronutrients as important 378 
factors influencing bacterioplankton growth and community assembly.  379 

Given the identification of amino acids, B vitamins and associated product exchanges as key 380 
metabolic mediators driving bacterioplankton community assemblies, we investigated their graph 381 
centrality within the co-activity network of bacterioplankton communities using the closeness 382 
centrality metric. The closeness centrality measures nodes centrality in a network by calculating the 383 
reciprocal of the sum of the length of the shortest paths between the node and all other nodes in the 384 
graph. The more central a node is, the closer it is to all other nodes. Overall, this revealed that 385 
genome donors, in particular for amino acids and B vitamins, displayed significantly higher 386 
closeness centrality than non-donor genomes (Extended Data Fig. 11). This observation supports 387 
the hypothesis that donor genomes influence community assembly via cross-feeding interactions 388 
through more central positions or hubs in the ecological network. Given that metabolic 389 
interdependencies predicted here are mainly observed among co-active genomes that are overall 390 
smaller in size (Extended Data Fig. 5), we also compared the genome sizes of donor vs. non-donor 391 
genomes, which revealed that non-donor genomes tended to be significantly smaller in size as 392 
compared to donor genomes (Extended Data Fig. 11). This observation actually supports the Black 393 
Queen Hypothesis (BQH)72,73, stating that species can gain a fitness advantage through genome 394 
streamlining, which is often observed (including herein) within marine bacterioplankton genomes74. 395 
Genome streamlining can reduce the nutrient requirements associated with the maintenance of more 396 
genetic material and limits energetically costly metabolic activities. Although our prediction results 397 
underline the key role of metabolic cross-feeding supporting positive interactions between 398 
microbes, many microorganisms in nature are prototrophic and are able to grow on simple 399 
substrates without the help of others75. Trade-off mechanisms such as resource allocation, design 400 
constraints, and information processing, can concomitantly shape microbial traits in the wild and 401 
lead to different biological adaptations leading to generalist or specialist lifestyles76. However, 402 
recent experimental work recently demonstrated that obligate cross-feeding can significantly 403 
expand the metabolic niche space of interacting bacterial populations3, thus potentially positively 404 
selecting cross-feeding bacterial populations. 405 

The metabolic cross-feedings and interdependencies predicted here can be extremely useful to draw 406 
hypotheses for testing in the laboratory, for example through co-culture experiments. Focusing on 407 
one of the most abundant photosynthetic organisms on Earth, the marine cyanobacteria 408 
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Prochlorococcus sp., we further analysed predicted exchanges within a small community of six 409 
genomes (‘coact-MHQ-014’, see Supplementary Table 6) including one genome of 410 
Prochlorococcus marinus, three genomes of Pelagibacteraceae (two Pelagibacter sp. and one 411 
MED-G40 sp.), one genome of order Rhodospirillales (family UBA3470), and one genome of 412 
phylum Dadabacteria (TMED58 sp.). The community biogeography of this consortium revealed a 413 
globally distributed activity in both SRF and DCM, but restrained to mainly Westerlies (temperate) 414 
stations between 30° to 60° in absolute latitude (mean 33.8°N/27.4°S in SRF, mean 34.3°N/21.7°S 415 
in DCM) (Extended Data Fig. 12). Most robustly predicted exchanges within this community 416 
included the exchanges of several amino acids (L-arginine, L-homoserine, L-lysine, and L-417 
phenylalanine), of vitamin B1 provided by a Pelagibacter sp. to two other genomes (MED-G40 sp. 418 
and family UBA3470), but also of D-ribose provided by the Rhodospirillales genome (family 419 
UBA3470) to Prochlorococcus marinus. The latter prediction provides a putative mechanism by 420 
which heterotrophic bacteria (such as from the order Rhodospirillales) can facilitate the growth of 421 
Prochlorococcus marinus77. While these metabolic exchanges remain predictions, they readily 422 
allow to formulate novel hypotheses to be further validated in the lab through co-culture 423 
experiments. 424 
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 425 
Figure 5: Community metabolic modelling predicts specific metabolic cross-feedings within 426 
co-active marine prokaryotic communities. a, A NMDS analysis revealed that HPD-HCP and 427 
LPD-HCP communities are predicted to have a higher potential exchange in specific metabolic 428 
categories. b, Overall, the higher potential for exchanges in HPD-HCP and LPD-HCP communities 429 
is driven by specific metabolic categories (NMDS Dim1 and Dim2), in particular amino acids, B 430 
vitamins, organo-sulfur compounds, and aliphatic amines. c, Within these large metabolic 431 
categories, specific metabolite exchanges are identified within each co-active genome community 432 
type. In particular, exchanges of acetaldehyde, benzoate, thiamin (vitamin B1), ethanol, and L-433 
glutamate are predicted in LPD-HCP, while in HPD-HCP exchanges of benzoate, thiamin, L-434 
arginine, as well as D-glucose and D-ribose are predicted. 435 

Conclusion 436 

In sum, these results underline the global-scale importance of trophic interactions influencing the 437 
co-activity, assembly, and resulting community structure of marine bacterioplankton communities2. 438 
Our computational predictions support in particular amino acids and B vitamin auxotrophies29,67 as 439 
important mechanisms driving bacterioplankton community assembly in the surface ocean. Given 440 
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that these metabolic interdependencies are mainly observed among co-active genomes that are 441 
overall smaller in size, these results also support the Black Queen Hypothesis72 as an important 442 
mechanism shaping bacterioplankton community assembly in the global euphotic ocean. The 443 
integrated ecological and metabolic modelling framework developed herein has revealed the 444 
genomic underpinnings of predicted metabolic interdependencies shaping bacterioplankton 445 
community activity and assembly in the global surface ocean. It also revealed putative trophic 446 
metabolic interactions occurring among the most abundant bacterioplankton cells in the ocean (i.e., 447 
Prochlorococcus and Pelagibacter). Ultimately, these in silico predictions will have to be validated 448 
experimentally, through (high-throughput) co-culturing78. Finally, the computational framework 449 
developed here can readily be applied to the study of other microbiomes, in which mechanistic 450 
predictions of biotic interactions may also serve for generating novel hypotheses for co-culturing, 451 
with the goal to better capture the vast uncultivated microbial majority across microbial ecosystems. 452 
Overall, this framework integrating ecosystem-scale meta-omics information through ecological 453 
and metabolic modelling paves the way towards an improved functional and mechanistic 454 
understanding of microbial interactions driving ecosystem functions in situ. 455 

  456 
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Methods 457 

A database of species-level marine prokaryotic genomes 458 
A database of genomes from marine prokaryotes was assembled using several specialised databases 459 
as well as genomes reconstructed within specific studies. These databases included whole-genome 460 
sequences from marine prokaryote isolates (WGS), single-amplified genomes (SAGs), and 461 
metagenomic-assembled genomes (MAGs). The main database source for our genome collection 462 
was the Marine Metagenomic Portal79 through the use of the databases MarRef v4.0 (N=943, 463 
mostly high-quality WGS)79, MarDB v4.0 (N=12,963)79, and aquatic representative genomes from 464 
the ProGenomes database v1.032 (N=566). This collection of well-documented genomes was 465 
complemented by 5,319 MAGs assembled from four distinct studies, namely: Parks et al. 201780 466 
(N=1,765; downloaded from EBI), Tully et al. 201781/201820 (N=2,597; downloaded from EBI), 467 
and Delmont et al. 201821 (N=957; downloaded from FIGSHARE). The Parks et al. study contained 468 
genomes reconstructed from non-marine biomes. Thus, a selection of 1,765 genomes was extracted 469 
by searching for specific keywords: “tara, marine, sea, ocean, mediterranean” (case insensitive). 470 
Note that depending on their study of origin, included MAGs may have been reconstructed using 471 
different assembling and binning methods. Details about included genomes and their origins are 472 
reported in Supplementary Table 1. Overall, our marine genomes catalogue contained 19,791 473 
highly redundant genomes (WGS, MAGs and SAGs). Genomes from this non-dereplicated 474 
catalogue were further filtered and quality-controlled before their inclusion in our study. We used 475 
CheckM v1.0.1882 to estimate the quality of the 19,791 genomes in our marine genomes catalogue 476 
(see SnakeCheckM in ecosysmic repository). Through the annotation and counting of single-copy 477 
marker genes (SCGs), CheckM estimates the level of completeness, contamination, and strain 478 
heterogeneity of individual genomes. We used those metrics to classify our genomes into three 479 
categories: high-quality (HQ) for ≥90% completeness ≤5% contamination (N=8,736), medium-to-480 
high-quality (MHQ) for ≥75% completeness ≤10% contamination (N=4,547), and medium-quality 481 
(MQ) for ≥50% completeness ≤25% contamination (N=5,381). Genomes that did not meet at least 482 
the MQ threshold were tagged as low-quality (LQ) and discarded from the database (N=1,127). 483 
Quality estimates were used in the de-replication process that was performed using dRep v2.2.383 484 
(see dReplication in ecosysmic repository). dRep uses average nucleotide identity (ANI) and filters 485 
out redundant genomes via a 2-step clustering strategy: a fast coarse-grained clustering by 486 
MASH ANI (threshold used: 90% ANI over 60% of the genomes), followed by a slow fine-grained 487 
clustering through NUCMER ANI in clusters identified in the previous step only (threshold used: 488 
95% ANI over 60% of the genomes). This process yielded 7,658 non-redundant species-level 489 
genomes with an average nucleotide identity below 95%, a threshold previously reported to 490 
delineate species level for prokaryotes84. These genomes were assigned taxonomic information 491 
using GTDB-TK v0.3.285 (see SnakeGTDBTk in ecosysmic repository), which also allowed us to 492 
place our genomes within a phylogenetic tree using iTOL v586. Since GTDB-Tk reconstructs two 493 
independent trees for Archaea and Bacteria, we linked them at the root using a distance of 0.12287, 494 
as recommended by the authors and tool maintainers 495 
(https://github.com/Ecogenomics/GTDBTk/issues/209). 496 

Functional annotations and reconstruction of genome-scale metabolic 497 
models  498 

Coding DNA sequences (CDS) and proteins were inferred using Prodigal v2.6.388 and annotated 499 
using eggnog-mapper v1.0 on the eggNOG v5.089 orthology resource (see GeneAnnotation in 500 
ecosysmic repository). The sets of annotated genes were processed using CarveMe v1.5.153 to 501 
reconstruct individual metabolic networks using the generic command "carve --output --universe --502 
nogapfill --fbc2 --verbose " (see SnakeCarveMe in ecosysmic repository). The template used for 503 
each top-down reconstruction (referred to as “universe” in the original CarveMe paper) was 504 
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selected for each genome using the GTDB-Tk taxonomic assignments as either cyanobacteria, 505 
bacteria, or archaea. CarveMe was run without gap filling with the solver IBM CPLEX v12.10. 506 

Genomic scaling laws analysis 507 
We used scaling laws as a framework to characterise the functional content of our genomic database 508 
(WGS, SAGs, MAGs). These genomic scaling laws were also used as a tool to properly identify 509 
enriched or depleted functional and metabolic potentials within specific groups of genomes (e.g., 510 
origin, co-active or not) by taking into account genome size and identifying enriched/depleted 511 
potential in proportion of the observed genome size. EggNOG provides 25 high-level categories and 512 
a KEGG Orthology (KO) equivalent for each Cluster of Orthologous Group (COG) annotation. The 513 
KO database also provides a 4-level hierarchy of (unnamed) functional categories. We were able to 514 
group our 23,224 KO identified in our catalogue into 54 high-level categories (level 2 in the 515 
hierarchy that presented for us the best compromise between specificity and tractability of the 516 
metabolic functions). For each high-level KO or COG category, we fitted a linear law on the log-517 
transformed variables using the function scipy.stats.linregress v1.7.3 (parameter 518 
alternative=“greater”). Functional categories with a R2 below 0.3 were discarded, and the 519 
distribution of residuals were compared (in log-scale) using the Mann-Whitney U test using the 520 
function scipy.stats.mannwhitneyu v1.7.3 (parameter alternative=“two-sided”). P-values from all 521 
tests were corrected using Bonferroni and Benjamini-Hochberg multiple-testing corrections (see 522 
Supplementary Table 2 and 4) using the function stats.multitest.multipletests from the statsmodels 523 
Python package (v0.13.2). 524 

Functional Gini coefficient 525 
In order to quantify how the functional potential of each community was shared between genomes, 526 
we used a proxy of the well-established Gini index. In Economics, the Gini index “measures the 527 
extent to which the distribution of income (or, in some cases, consumption expenditure) among 528 
individuals or households within an economy deviates from a perfectly equal distribution”. Inside 529 
each predicted co-active consortium, we defined a "functional capital" for each member as the sum 530 
of occurring KO that were present inside the genome, and computed the Gini index on this value. A 531 
Gini index of 0 can be interpreted as a perfect overlap between the functions of all members of the 532 
consortium, while a Gini index of 1 would be the extreme situation where a single member of the 533 
consortium displays all the detected KO functions. Intermediate values represent varying degree of 534 
metabolic evenness between the members of the community, a measure that we tried to use to 535 
separate niche overlap from potential metabolic complementarity. 536 

Meta-omics profiling and associated environmental contextual data 537 
We leveraged metagenomics and metatranscriptomics data from samples of the Tara Oceans 538 
expeditions (2009–2013)90. We focused on samples from prokaryotic-enriched size fractions (0.2-539 
1.6 μm and 0.22-3 μm) in the euphotic zone, including surface (SUR) and deep-chlorophyll 540 
maximum layer (DCM) samples. This yielded 107 samples across 64 stations for metagenomics 541 
data, 118 samples across 81 stations for metatranscriptomics data, and 71 samples across 45 stations 542 
for which we had both. Sequencing reads were previously quality-controlled using methods 543 
described in 90. We then mapped quality-controlled reads onto our 7,658 non-redundant marine 544 
prokaryotic genomes using Bowtie 2 v2.3.4.391 (see ReadMapping in ecosysmic repository) using 545 
the command "bowtie2 -p --no-unal -x -1 -2 -S" with no extra parameter. Reads that successfully 546 
mapped were subsequently filtered using Samtools v1.992 and pySAM v0.15.2 using MAPQ ≥ 20 547 
and a nucleotide identity ≥ 95% to avoid non-specific mappings. The identity score ignores 548 
ambiguous bases (N) on the reference but takes gaps into account. The formula used is (NM - XN) / 549 
L with NM the edit distance; that is, the minimal number of one-nucleotide edits (substitutions, 550 
insertions and deletions) needed to transform the read string into the reference string, XN the 551 
number of ambiguous (N) bases in the reference, and L the length of the read. Overall, this ensured 552 
that the conserved reads were mapped to the target genome with a high-specificity. We estimated 553 
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depth of coverage (i.e., vertical coverage) by dividing the total mapping of a genome by its size, and 554 
breadth of coverage (i.e., horizontal coverage) by dividing the number of mapped bases (at least one 555 
time) by the genome size (see CoverageEstimation in ecosysmic repository). 556 

Co-abundance and co-activity networks inference 557 

Co-abundance and co-activity networks were reconstructed using FlashWeave (FW) v0.18.050. FW 558 
relies on a local-to-global learning framework and infers direct associations by searching for 559 
conditional dependencies between features. Several heuristics are then applied to connect these 560 
local dependencies and infer a network. We defined the abundance of a genome in a sample by its 561 
overall metagenomic vertical coverage (also called depth) per 1M base pairs, while its activity was 562 
given by the ratio of its overall metatranscriptomic coverage depth per 1M base pairs over its 563 
abundance. Note that this can only be computed at stations and depths for which we have both 564 
metagenomic and metatranscriptomic signals. A given genome was defined as observed (i.e., 565 
present and/or active) within a sample when at least 30% of its genome was horizontally covered 566 
(also called breadth). 567 
Overall, we were able to compute abundances for 107 samples, and activities for only 71 samples. 568 
To lower spurious correlations, abundance and activity data points for unobserved genomes were 569 
discarded and genomes with less than 10 observations across our samples were removed. This was 570 
done independently for abundance (N=1,232 genomes observed in at least 10/71 samples) and 571 
activity (N=902 genomes observed in at least 10/71 samples). Finally, the inherent compositional 572 
nature of the sequencing datasets was taken into account using centred log-ratio (CLR) 573 
transformation and the adaptive pseudo-count implemented in FlashWeave. Both abundance and 574 
activity matrices were used as input to FlashWeave using parameters “normalize=true, 575 
“n_obs_min=10, max_k=3, heterogenous=true” (see the FlashWeave documentation for more 576 
information about these parameters). Genome graph centralities were computed with the networkx 577 
python library v3.1 using the closeness_centrality function on the co-activity community networks 578 
for which metabolic exchanges were predicted using SMETANA (see below).  579 

Community metabolic modelling and cross-feeding interaction predictions 580 

We identified co-active genome communities in the reconstructed co-activity network using the 581 
Markov clustering algorithm93 (MCL) through the use of run_mcl function with an inflation 582 
parameter of 1.5 available in Python markov_clustering library V.0.0.2. We also generated 583 
randomly-assembled communities by randomly sampling genomes from the pool of genomes used 584 
for network reconstruction (genomes occurring at least 10 times within the considered samples). 585 
These communities were quality-filtered for MHQ+HQ genomes and analysed using SMETANA 586 
1.2.055 to predict putative metabolic cross-feeding interactions (see SnakeMETANA in ecosysmic 587 
repository). SMETANA does not use any biological objective functions and is formulated as a 588 
mixed linear integer problem (MILP) that enumerates the set of essential metabolic exchanges 589 
within a community with non-zero growth of all community species subject to mass balance 590 
constraints. We limited the community metabolic analyses to MHQ+HQ genomes in order to lower 591 
the risk of predicting spurious interactions in communities of lower-quality genomes and metabolic 592 
models. SMETANA was run in both global and detailed modes with the solver IBM CPLEX 593 
v12.10, using in each mode the default media provided by the package (which is a complete media 594 
for global analysis, and a community-specific minimal media for detailed analysis). A set of 595 
inorganic compounds were excluded from the analysis as explicitly recommended by one of the 596 
package author (https://github.com/cdanielmachado/smetana/issues/20#issuecomment-827389107). 597 
Other parameters used were “--flavor bigg --solver CPLEX --molweight”. 598 
The “community smetana score” reported in the main text is obtained by summing all smetana 599 
scores predicted for a given community. In order to compare communities of different sizes, this 600 
score was normalised by dividing the “smetana score” by the total number of potential genome-601 
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genome interactions, i.e.  N x (N-1) / 2 (with N the size of the community). We referred to this new 602 
score in the main text as “normalised smetana score”. 603 
In order to classify the different metabolites in the SMETANA database into metabolite categories 604 
(e.g., amino acids, carboxylates), we first mapped the metabolite identifiers to the MetaNetX 605 
database (available at: https://www.metanetx.org/cgi-bin/mnxget/mnxref/chem_xref.tsv). From this 606 
mapping, we extracted MetaCyc identifiers to subsequently obtain their ontologies (available at: 607 
https://metacyc.org/groups/export?id=biocyc14-14708-3818508891&tsv-type=FRAMES). 608 

Statistical analyses 609 

All statistical tests and analyses were performed using scipy.stats Python module v1.7.3. All figures 610 
were generated using Python v3.7.12 and R v4.2.2. We used statannotations v0.4.4 611 
(https://github.com/trevismd/statannotations) to append statistical significance to all boxplots. Stars 612 
are used to define significance level as follow: **** for P ≤ 10-4, *** for 10-4 < P ≤ 10-3, ** for 10-3 613 
< P ≤ 10-2, * for 10-2 < P ≤ 5x10-2, and finally ns for P > 5x10-2. All data analysis sub-packages 614 
were installed in the same environment using Conda v22.11.1, the versions of which are detailed in 615 
the yaml file located in each repository cited above. 616 

Data availability 617 
All data associated with this study are available in the main text, the supplementary materials, and 618 
at zenodo: https://zenodo.org/record/7853699#.ZEQ8ahVBx0Q.  619 

Code availability 620 
All code repositories cited below are available within https://gitlab.univ-nantes.fr/ecosysmic. 621 
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Extended Data 901 

 902 

Extended Data Figure 1: Genomics scaling laws for isolates and uncultivated prokaryotic 903 
genomes reconstructed from marine metagenomes.  904 
Comparison of genome size and number of predicted CDS for Medium Quality (MQ, completeness 905 
≥ 50% and contamination ≤ 25%) dereplicated (95% ANI) genomes. We tested for significant 906 
deviations from the common scaling law by a) genome type (WGS, SAG, MAG), b) genome 907 
quality, c) source of genome, and d) presence in co-activity network (Mann–Whitney U on 908 
residuals with Bonferroni correction, best fit parameters and p-values are described in 909 
Supplementary Table 2). 910 
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 912 
Extended Data Figure 2: Scaling laws in the functional content of genomes for isolates and 913 
uncultivated prokaryotic genomes reconstructed from marine metagenomes. 914 
Abundance of annotated genes (KEGG database) coding for the metabolism of a) xenobiotics 915 
biodegradation, b) terpenoids and polyketides, c) cofactors and vitamins, and d) lipids, as a 916 
function of the number of CDS for Medium-High Quality and High Quality (MHQ+HQ, 917 
completeness ≥ 75% and contamination ≤ 10%) dereplicated (95% ANI) genomes. We tested for 918 
significant deviations from the common scaling law by genome type (Mann–Whitney U on 919 
residuals with Bonferroni correction, best fit parameters and p-values are described in 920 
Supplementary Table 2). 921 
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 923 
Extended Data Figure 3: Mapped and Total reads for Metagenomics and 924 
Metatranscriptomics across Tara Oceans samples. 925 
Mapping results on the dRep95 catalogue for the metagenomics and metatranscriptomics euphotic 926 
samples from Tara Oceans expeditions (2009–2013). Black and grey bars are the number of 927 
mapped and total reads, respectively. Average mapping rates were 16.0% for metagenomes and 928 
12.3% for metatranscriptomes. We used samples with both metagenomics and metatranscriptomics 929 
available to compute genome-wide co-activity.  930 
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Extended Data Figure 4: Comparison of genome-resolved co-abundance and co-activity 932 
networks.  933 
a, Venn diagram representing the number of shared and unique edges in the global genome-934 
resolved co-abundance and co-activity networks. Only 71 associations were common to both 935 
networks, while 1,134 associations are specific to the co-activity network and 969 to the co-936 
abundance network. b, Distributions of network weights (inferred by FlashWeave) in both 937 
networks. The co-activity network displayed significantly higher weights for positive associations 938 
as compared to the co-abundance network (Mann-Whitney U test, P < 0.001). 939 
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 941 
Extended Data Figure 5: Genomic scaling laws for active and co-active genomes. 942 
Comparison of genome size and number of predicted CDS for Medium-High Quality and High 943 
Quality (MHQ+HQ, completeness ≥ 75% and contamination ≤ 10%) dereplicated (95% ANI) 944 
genomes. We tested for significant deviations from the represented log-log linear law by a) 945 
presence in the co-activity network, and b) below-median or above-median connectivity degree in 946 
the co-activity network (Mann–Whitney U on residuals with Bonferroni correction, best fit 947 
parameters and p-values are described in Supplementary Table 2). Genomes in photic samples are 948 
genomes that were detected active in at least one sample (see Methods). Genomes in the co-activity 949 
network are significantly smaller both in size and number of CDS (Mann–Whitney U test, p-value = 950 
1.84 x 10-45 and 3.22 x 10-46 respectively). 951 
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 953 
Extended Data Figure 6: Scaling laws in the functional content of genomes for active and co-954 
active genomes. 955 
Abundance of annotated genes (KEGG database) coding for the metabolism of a) lipids, b) 956 
carbohydrates, c) amino acids, and d) other amino acids, as a function of the number of CDS for 957 
Medium-High Quality and High Quality (MHQ+HQ, completeness ≥ 75% and contamination ≤ 958 
10%) dereplicated (95% ANI) genomes. We tested for significant deviations from the common 959 
scaling law by category of genome (Mann–Whitney U on residuals with Bonferroni correction, best 960 
fit parameters and p-values are described in Supplementary Table 5). 961 
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 963 
Extended Data Figure 7: Metabolic resource overlap as a function of phylogenetic distance 964 
within communities of co-active genomes. 965 
Comparison of Metabolic Resource Overlap (SMETANA global score) and Mean Pairwise 966 
Phylogenetic Distance for co-active and randomly-assembled genome communities (see methods). 967 
Dashed-red line is the best linear fit and shows a significant negative relationship (slope=-0.091; 968 
intercept=0.49; r2=0.31; p-value=4.17 x 10-18). 969 
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 971 

 972 
Extended Data Figure 8: Community-wide metabolic modelling within marine prokaryotic 973 
communities.  974 
a, Comparison between Metabolic Interaction Potential (MIP) and Metabolic Resource Overlap 975 
(MRO) for co-active and randomly-assembled genome communities. A lower MIP score and a 976 
higher MRO score was observed for co-active genome communities as compared with randomly-977 
assembled genome communities. b, Effect of community size on MIP and SMETANA scores for 978 
co-active and random communities. Both scores were significantly driven by community size (MIP 979 
R2=0.82, p-value=1.03x10-77; SMETANA R2=0.59, p-value=7.28x10-41). 980 
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Extended Data Figure 9: Taxonomic composition of co-active genome community types at the 982 
organismal class level.  983 
The taxonomic composition of the four co-active genome community types is presented as relative 984 
proportion at the class-level. The four co-active genome community types displayed distinct 985 
taxonomic compositions, with LPD-HCP communities mainly composed of Gamma- and 986 
Alphaproteobacteria, while HPD-HCP were more diverse including genomes from classes 987 
Nitrososphaeria, Marinisomatia, Dehalococcoidia, Alphaproteobacteria, and Acidimicrobiia. 988 
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 990 
Extended Data Figure 10: Detailed community metabolic modeling without considering 991 
inorganic compounds. 992 
a, NMDS analysis of the co-active genome communities in the space of putative metabolic 993 
exchanges (normalized smetana score) for each community type (defined in Fig. 4a). b, 994 
Contribution of high-level categories of metabolic compounds to the first two dimensions of the 995 
NMDS. c, Mean normalized smetana score for each high-level category of metabolic compounds in 996 
each community type. Stars denote a significant difference between categories (Mann-Whitney U, 997 
Benjamini-Hochberg correction, corrected p-value ≤ 0.05, all test results are available in 998 
Supplementary Table 7). 999 
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 1001 
Extended Data Figure 11. Co-active network closeness centrality and genome size for amino 1002 
acids donors, B vitamins donors, other compounds donors, and non-donors.  1003 
a, Closeness centrality estimates how fast the flow of information would be through a given node to 1004 
other nodes. All categories of donors had a significantly higher closeness centrality index as 1005 
compared to non-donors in the co-activity network (Mann-Whitney U test, Benjamini-Hochberg 1006 
correction). b, Similarly, all categories of donors had significantly higher genome size as compared 1007 
to non-donors (Mann-Whitney U test, Benjamini-Hochberg correction). 1008 
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Extended Data Figure 12. Zooming on a specific co-active genome community including a 1010 
Prochlorococcus marinus genome: Predicted metabolic exchanges and biogeography.  1011 
a, Graph representing predicted metabolic exchanges (SMETANA score >= 0.5) between genomes 1012 
of community ‘coact-MHQ-014’. This community included one genome of Prochlorococcus 1013 
marinus (brown), three genomes of Pelagibacteraceae (two Pelagibacter sp. and one MED-G40 sp.; 1014 
red, gold and pink), one genome of order Rhodospirillales (family UBA3470; green), and one 1015 
genome of phylum Dadabacteria (TMED58 sp.; blue). Exchanges of several amino acids, B1 1016 
vitamin, and D-Ribose were predicted between these genomes. b, Biogeography of the respective 1017 
community ‘coact-MHQ-014’ and corresponding genome relative abundances at SRF and DCM 1018 
Tara Oceans stations. The community was considered active if there were at least two genomes and 1019 
one Pelagibacter detected at each station. The biogeography of this community revealed a globally 1020 
distributed activity in both SRF and DCM, but restrained to mainly Westerlies (temperate) stations 1021 
between 30°-60°N/S latitude (mean 33.8°N/27.4°S in SRF, mean 34.3°N/21.7°S in DCM).  1022 
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