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1.  Introduction
Carbon plays a vital role at the Earth's surface in biological and atmospheric processes, but the role of carbon in 
the deep Earth is less well understood. Carbon and other volatiles in the lower mantle are thought to be remnants 
of an early magma ocean (Labrosse et al., 2007) or to derive from subducting slabs (Plank & Manning, 2019). 
However, reports vary on the carbon content of the Earth (Javoy, 1997; McDonough & Sun, 1995), the distribu-
tion of carbon between core and mantle (Dasgupta & Walker, 2008; Wood et al., 2013), the phase relations of 
carbon-bearing phases at depth (Merlini et al., 2012; Oganov et al., 2008), and the reactivity of carbon-bearing 
phases with the surrounding core and mantle. The existence and role of carbonates in the lower mantle are highly 
contested. Multiple studies show that carbonates undergo melting (Li et al., 2017), reduce to diamond or iron 
carbide (Rohrbach & Schmidt, 2011), or decarbonate (Drewitt et al., 2019) before they reach the lower mantle 
in subducting slabs. However, the stability of carbonate phases depends on a host of thermodynamic varia-
bles, including pressure, temperature, and oxygen fugacity. Reports of carbonate melt inclusions in deep Earth 
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metal melt system, we simulate endmember, binary, and ternary melt mixtures and study how their Gibbs 
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lower-mantle pressures. Extending this analysis to the core-mantle boundary, we suggest three miscible melt 
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pressures, and that mixing in the carbonate-silicate-iron melt system increases with pressure. Additionally, 
we find that certain melt mixtures have densities at the core-mantle boundary that make them candidate 
compositions to explain ultra-low velocity zones. Finally, we find that carbon has an affinity for iron that leads 
to the formation of carbide-like structures that may have allowed carbon to become sequestered in the Earth's 
core during core formation.
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diamonds (Korsakov & Hermann, 2006) as well as petrologic experiments on 
solid carbonates in lower mantle phase assemblages (Dorfman et al., 2018; 
Lv et al., 2021) indicate that carbonates and carbonate melts may be stable 
and present in the lower mantle, plausibly even in the core-mantle boundary 
region. However, few studies have examined carbonate melt interactions in 
the lower mantle.

Previous ab initio studies have examined carbonate melts (Koura et al., 1996; 
Li et  al.,  2017; Xu et  al.,  2020), carbon-bearing silicate melts (Bajgain & 
Mookherjee, 2021; Ghosh & Karki, 2017; Ghosh et al., 2017), carbon and 
iron-bearing silicate melts (Karki et al., 2020; Solomatova & Caracas, 2021; 
Solomatova et al., 2019, 2020), and carbon partitioning between silicate and 
iron melts (Zhang & Yin, 2012). This work and Davis et al. (2022) represent 
the first ab initio studies with subequal amounts of carbon, silicon, and metal 
in a melt composition. In this study, we simulate seven total endmember, 
binary, and ternary melt compositions (Table 1) at pressures between 0 and 

200 GPa and at a temperature of 4000 K to estimate melt miscibility, structure, and density. With these results, we 
determine the degree of mixing in the carbonate-silicate-iron ternary system, the buoyancy of the melts that form, 
and the chemical species that exist within the melt. We evaluate the viability of carbonate-silicate-metal melt 
compositions as contributors to ultra-low velocity zones (ULVZs) and the implications for carbon sequestration 
and distribution throughout the Earth's mantle and core.

2.  Methods
Ab initio molecular dynamics simulations using the projector-augmented wave method (Kresse & 
Furthmuller, 1996) of density functional theory were performed with the Vienna ab initio simulation package 
(Blochl, 1994). We used the generalized gradient approximation in the Perdew-Burke-Ernzerhof form (Perdew 
et al., 1996) to treat electron exchange and correlation. The kinetic energy cutoffs for the plane-wave expan-
sion of the wavefunctions were set to 600  eV. We used the canonical ensemble (NVT) with a Nosé-Hoover 
thermostat (Hoover,  1985; Nosé,  1984) with a time step of 1–2  fs for 18–80  ps, depending on the density. 
The Brillouin zone was sampled at the gamma point. The calculations were spin-polarized at all pressures. A 
Hubbard Ueff (U − J) parameter of 4 eV was applied, which enhances the magnetic moment of the Fe atoms and 
corrects for their volume and coordination environment. The mean-square displacement as a function of time 
shows a ballistic regime below approximately 1,000 fs, after which the atoms reach a diffusive regime. For the 
carbonate-silicate-metal melt composition, calculations were run with a minimum of two starting configurations, 
and the results were averaged. We employ the Universal Molecular Dynamics package for the analysis of the 
results (Caracas et al., 2021).

We work with seven melts representing endmember (MgCO3, MgSiO3, and Fe), binary (Mg(C,Si)O3, MgCO3 + Fe, 
MgSiO3 + Fe), and ternary (Mg(C,Si)O3 + Fe) melt compositions (Table 1), with supercells ranging from 108 to 
133 atoms. Simulations span a pressure range of 0–200 GPa, and all calculations are performed at 4000 K. Bond 
distances were determined from the pair distribution functions. The first peak in the pair distribution function 
marks the radius of the first coordination sphere for the reference atom, and the first minimum translates to the 
maximum acceptable bond distance for a bonding pair. The fitted minimum values were used in the speciation 
analysis to determine carbon clusters.

3.  Melt Miscibilities
The Gibbs free energy of mixing, ΔGmix, determines whether a given solution of melt components will mix or 
unmix. Negative ΔGmix values indicate that a mixture is energetically favorable and therefore miscible. Positive 
ΔGmix values indicate that a mixture is energetically unfavorable and therefore immiscible. The Gibbs free energy 
of mixing was estimated using the following equation:

Δ𝐺𝐺mix = Δ𝐻𝐻mix − 𝑇𝑇Δ𝑆𝑆mix + ∫ 𝑃𝑃Δ𝑉𝑉mix� (1)

Melt Mg Si C O Fe Total

MgCO3 24 0 24 72 0 120

MgSiO3 24 24 0 72 0 120

Fe 0 0 0 0 108 108

Mg(C,Si)O3 24 12 12 72 0 120

MgCO3 + Fe 24 0 24 72 13 133

MgSiO3 + Fe 24 24 0 72 13 133

Mg(C,Si)O3 + Fe 24 12 12 72 13 133

Note. The numbers refer to the number of atoms included in the simulation.

Table 1 
Melt Compositions Simulated
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where ΔHmix is the enthalpy of mixing, T is the temperature, ΔSmix is the entropy of mixing, P is the pressure, 
and ΔVmix is the mixing volume. An example of the contribution of each term to ΔGmix on the carbonate-silicate 
binary is shown in Figure S1 of the Supporting Information S1. We describe the calculation of each term in the 
equation in the following sections.

3.1.  Enthalpy of Mixing

To calculate the enthalpy of mixing, we use the equation:

Δ𝐻𝐻mix =

∑

𝑖𝑖≠𝑗𝑗
𝛽𝛽𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗� (2)

where βij represents the binary parameter along the i − j binary, and Xi and Xj represent the mole fractions of the 
i and j components, respectively. Along each of the three binaries calculated in this study, Xi and Xj are known, 
but β is unknown and is dependent on the chemistry of the mixture. ΔHmix values for these compositions are 
hard to find, making it difficult to select the correct value of β along each binary. Solubility numbers, however, 
are easier to find in the literature, and can be directly compared to numbers extracted from our calculated ΔGmix 
curves (see Section 3.4). Thus, we employ an iterative guess and check method to determine which value of β 
best matches the solubility along a given binary under specific pressure and temperature conditions that can be 
compared to data from the literature or from our simulations. The selected β value is then used to calculate ΔHmix 
(Equation 2), and this ΔHmix value is used in all further calculations of ΔGmix (Equation 1) under different pres-
sure and temperature conditions. To find appropriate values for β, we plot ΔGmix at 0 GPa and 4000 K along each 
binary and select β values that match the expected degree of mixing (Figure S2 in Supporting Information S1). At 
0 GPa, the mixing volume term of the ΔGmix equation goes to zero, and the entropy term at 4000 K is the same 
along all three compositional binaries studied (see Section 3.2). Thus, at 0 GPa and 4000 K, ΔGmix across all 
three binaries is influenced exclusively by the enthalpy term, and by changing the β value of ΔHmix, we directly 
change the degree of mixing along a given binary. Reasonable degrees of mixing are determined by examining 
solubility experiments on binary systems in addition to our own simulation results at 0 GPa. A study of orthopy-
roxene solubility in carbonate melts reports that carbonate melts contain 4 atomic percent silicate at 2 GPa and 
1273 K (Kamenetsky & Yaxley, 2015). We select a value of 95 kJ for β on the carbonate-silicate join, which 
leads to silicate solubility of 8 atomic percent in carbonate melts at 4000 K. Silicate-metal melts are immiscible 
at 0 GPa (Fichtner et al., 2021), and our simulations show groupings of silicon and iron atoms that is suggestive 
of immiscibility. Thus, we select a β parameter of 135 kJ, which leads to limited miscibility (2 atomic percent Fe 
in silicate melt) at 0 GPa and 4000 K. Experimental reports of carbonate solubility in iron melt are lacking, but 
our carbonate-metal simulation indicates less miscibility than the carbonate-silicate simulation and more misci-
bility than the silicate-metal simulation at 0 GPa. We select a value of 115 kJ for the β parameter, which leads 
to 4 atomic percent Fe in the carbonate melt. ΔGmix values calculated with the chosen β parameters at 0 GPa are 
plotted in Figure S4 of the Supporting Information S1.

3.2.  Entropy of Mixing

To calculate the entropy of mixing, we use the ideal entropy of mixing

Δ𝑆𝑆mix = −𝑅𝑅(𝑋𝑋𝑖𝑖 ln𝑋𝑋𝑖𝑖 +𝑋𝑋𝑗𝑗 ln𝑋𝑋𝑗𝑗 +𝑋𝑋𝑘𝑘 ln𝑋𝑋𝑘𝑘)� (3)

where R is the gas constant and Xi, Xj, and Xk are the mole fractions of the i, j, and k components, respectively.

3.3.  Mixing Volumes

Mixing volumes were calculated by taking weighted averages of molar volumes of individual melt components. 
To calculate molar volumes, we first fit either second- or third-order Birch-Murnaghan equations of state for 
our simulated melt compositions (Figure 1a). We also included the pyrolite and pyrolite + 8CO compositions 
from Solomatova et al. (2019) for comparison. The equations of state fit parameters are reported in Table S8 
of the Supporting Information S1. The fit parameters reveal that melts with a carbonate component are highly 
compressible, which is in agreement with previous studies of carbon-bearing melts (Ghosh & Karki,  2017; 
Ghosh et al., 2007; Sakamaki et al., 2011). There is a significant covariance between K0’, K0, and V0 values for 
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all melts, which is common in finite strain equations of state. One contin-
uous equation of state was fit across multiple structural transitions, which 
stem from gradual coordination changes in the melt. However, the majority 
of coordination changes occur between 0 and 20 GPa, below the pressure 
regime of interest. In the pressure regime of the lower mantle, the fits closely 
match the data. Using the Birch-Murnaghan equation of state fits, we calcu-
late molar volumes of the melts at pressures from 0 to 200 GPa (Figure 1b). 
Due to the non-stoichiometric nature of the melt mixtures, we calculate 
volumes per mole of atoms instead of per formula unit, allowing the molar 
volumes to be directly compared. Iron and iron-bearing melts have the larg-
est molar volumes, while pyrolite melts have the smallest. The densities and 
molar volumes of each melt composition are reported in Tables S1–S7 of the 
Supporting Information S1.

To calculate the mixing volumes, we compared the molar volume of our 
simulated mixture with the weighted average of the molar volumes of the 
mixture components. The magnitude of the mixing volume indicates the 
nonideality of a melt mixture and the degree of interaction between melt 
components. As the pressure derivative of ΔGmix, the mixing volume is the 
tendency of the mixture to become more or less energetically favorable with 
changing pressure. Thus, the sign of the mixing volume is suggestive of 
miscibility in multicomponent mixtures. This is especially true at high pres-
sures, where the mixing volume term dominates the contribution to ΔGmix. 
For instance, a composition that is 50% MgSiO3 and 50% Fe has a ΔGmix 
value of 58 kJ at 136 GPa and 4000 K (see Figure 3). Of the 58 kJ, 47 kJ is 
from the mixing volume component, accounting for 82% of the contribution 
to ΔGmix. Mixtures with positive mixing volumes become larger upon mixing 
and become less stable with increasing pressure, enforcing immiscibility. The 
mixing volumes for the four multicomponent melts in this study were plotted 
as a function of pressure in Figure 1c. Over the range of the lower mantle, 
Mg(C,Si)O3 and MgCO3 + Fe have negative mixing volumes. MgSiO3 + Fe 
and Mg(C,Si)O3 + Fe have positive mixing volumes.

To expand our analysis to any composition in the MgCO3−MgSiO3−Fe 
ternary system, the mixing volume data are fit to the following power series 
multicomponent mixing model (Ganguly, 2001; Wohl, 1946, 1953):

Δ𝑉𝑉mix =

∑

𝑖𝑖≠𝑗𝑗
𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗

(

𝑊𝑊
𝐺𝐺

𝑖𝑖𝑖𝑖
𝑋𝑋𝑗𝑗𝑗𝑗 +𝑊𝑊

𝐺𝐺

𝑗𝑗𝑗𝑗
𝑋𝑋𝑖𝑖𝑖𝑖

)

+

∑

𝑖𝑖≠𝑗𝑗𝑗≠𝑘𝑘
𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗𝑋𝑋𝑘𝑘𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖� (4)

where ΔVmix is the mixing volume, the W G’s are the binary interaction param-
eters, and Cijk is the ternary interaction term. Xi, Xj, and Xk are the mole fractions 
of the i, j, and k components, and Xji and Xij are the projected mole fractions 
of the i and j components in the binary join i − j. Xij is given analytically by 

𝐴𝐴
1

2
 (1 + Xi − Xj). Similar to our calculation of molar volumes, in this analysis, 

we set the mole fractions by counting the number of atoms of each component 
rather than the number of formula units. Thus, each iron atom in the model 
is compared to an average atom of either MgCO3 or MgSiO3. For example, 
in our simulated ternary melt composition (12MgSiO3 + 12MgCO3 + 13Fe), 
the mole fractions are XFe = 0.1, XMgCO3 = 0.45, and XMgSiO3 = 0.45, which 
are derived from the number of atoms of each component. Given the limited 
number of simulations, in this model, we assume that mixing along the bina-
ries is symmetric, and thus W Gij = W Gji.

Figures  2a–2c display mixing volumes along the binary joins 
MgCO3 − MgSiO3, MgCO3 − Fe, and MgSiO3 − Fe at 24, 50, and 136 GPa, 

Figure 1.  Density, molar volume, and mixing volume data for all simulated 
melt compositions are plotted as a function of pressure. (a) Melt densities 
are fit to second- or third-order Birch-Murnaghan equations of state. (b) 
Molar volumes. Due to the non-stoichiometric nature of the ternary melt 
composition, we report volumes for all melt compositions per mole of atoms. 
(c) Mixing volumes for all binary and ternary melt compositions over the 
pressure range of the Earth's lower mantle.
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all at the temperature of 4000 K, calculated using the fit parameters reported in Table S9 of the Supporting 
Information S1. Along the carbonate-silicate join, mixing volumes are negative at all lower mantle conditions 
and become more negative with increasing pressure, suggesting continuous solubility. Along the silicate-metal 
join, mixing volumes are positive across all lower mantle pressure conditions, and decrease with pressure. At 
pressures beyond those of the Earth's mantle, we would expect silicate and metal melt to become miscible. Along 
the carbonate-metal join, mixing volumes are always negative but become less negative with increasing pressure, 
suggesting potential immiscibility beyond the core-mantle boundary pressure. Additionally, the magnitude of 
the mixing volumes represents the degree of interaction between the melts. Generally, silicate-metal melts have 
the most interaction, followed by carbonate-metal melts, and carbonate-silicate melts. Carbonate-silicate melt 
interaction terms are very small, even at their most negative point at 136 GPa, indicating that this mixture is close 
to ideal.

Figures  2d–2f show the calculated mixing volumes for ternary compositions. Note that the mixing model 
was fit using four data points (three binary compositions and one ternary composition), which are labeled in 
Figures  2d–2f. At 24  GPa, melts with greater than 50% carbonate have negative mixing volumes. For melts 
less than 50% carbonate, mixing volumes are more negative with increasing iron percentage and more positive 
with increasing silicate percentage. With increasing pressure, the negative mixing volume regime shrinks and 
the positive mixing volume regime grows to cover more iron- and carbonate-rich parts of the ternary plot. By 
136 GPa, only compositions that are greater than 70% carbonate and compositions close to the carbonate-metal 
and carbonate-silicate binaries have negative mixing volumes. Additionally, mixing volume magnitudes decrease 
with increasing pressure, indicating that these melts tend to become more ideal with increasing pressure. This 
conclusion is supported by the trends in the binary and ternary interaction parameters (Figure S3 and Table S9 in 

Figure 2.  Mixing volumes for all binary and ternary melts are plotted as a function of melt composition. (a–c) Mixing volumes for binary solutions of (a) MgCO3 
and MgSiO3; (b) MgSiO3 and Fe; and (c) MgCO3 and Fe at 24, 50, and 136 GPa. Simulated compositions are marked by data points, and lines are fits to the 
multicomponent mixing model. Both the MgCO3 and MgSiO3 binary and the MgCO3 and Fe binary have negative mixing volumes at lower mantle pressures, 
suggesting miscibility. The MgSiO3 and Fe binary has positive mixing volumes across all lower mantle pressures, suggesting immiscibility. (d–f) Mixing volumes for 
ternary solutions of MgCO3, MgSiO3, and Fe at (d) 24 GPa; (e) 50 GPa; and (f) 136 GPa. Positive mixing volumes are shaded red and negative mixing volumes are 
shaded blue. The simulation compositions used to fit the mixing model are marked by the data points, and the ternary composition always lies within the immiscible 
region of the plot.
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Supporting Information S1). With increasing pressure, the interaction parameters trend toward 0, indicating that 
the interaction between melt components becomes increasingly less important with depth.

3.4.  Gibbs Free Energy of Mixing

With the equations and approximations describing ΔHmix, ΔSmix, and ΔVmix, we determine how ΔGmix evolves 
along binary and ternary joins. ΔGmix is plotted along the carbonate-silicate, carbonate-metal, and silicate-metal 
binaries in Figures 3a–3c. MgCO3 and MgSiO3 melts demonstrate limited miscibility at all lower mantle pres-
sures, with a large miscibility gap. Note that although ΔGmix is negative for many mixture compositions plotted 
along the MgCO3 − MgSiO3 binary, not all mixture compositions are miscible (see Figure 4 for the translation 
of the Gibbs free energy curve to a binary phase diagram). In the immiscible region, two melt compositions 
coexist, and these compositions are determined by the common tangent of the ΔGmix curves. These tangents are 
quasi-horizontal and have support points that are very close to the minima of the free energy. The shared tangents 
of the curves are plotted in Figure 4 and are at ∼9 and ∼91 mol percent MgCO3 at all pressures examined for 
the carbonate-silicate binary. ΔGmix decreases with pressure, suggesting eventual closing of the miscibility gap 
at higher pressures than those reached by the Earth's mantle. MgSiO3 and Fe are immiscible at all lower mantle 
pressures. The metallic character of the pure Fe melt makes it incompatible with the insulating character of the 
molten silicate melts, and any iron that is dissolved in the silicate is always incorporated as an ionic phase, FeO 
or Fe2O3. Similar to the MgSiO3 and MgCO3 binary, the MgCO3 and Fe binary also has a miscibility gap that 
begins to close with increasing pressure. At 24 GPa, the two coexisting melt compositions are at 6 and 94 mol 
percent MgCO3, but by 136 GPa, the two coexisting melt compositions are at 38 and 62 MgCO3 mole percentage 
(Figure 4).

Figure 3.  ΔGmix for all binary and ternary melts are plotted as a function of melt composition. (a–c) ΔGmix for binary solutions of (a) MgCO3 and MgSiO3; (b) MgSiO3 
and Fe; and (c) MgCO3 and Fe at 24, 50, and 136 GPa. MgCO3 and MgSiO3 have limited miscibility near the endmembers that increases with pressure, and MgSiO3 
and Fe are immiscible at all pressures studied. MgCO3 and Fe have limited miscibility at 24 GPa, and the miscibility gap closes with increasing pressure. (d–f) ΔGmix 
for ternary solutions of MgCO3, MgSiO3, and Fe at (d) 24 GPa; (e) 50 GPa; and (f) 136 GPa. Positive values of ΔGmix are shaded red and negative values are shaded 
blue. Solid gold lines outline miscible melt compositions, two coexisting melt regions, and three coexisting melt regions, labeled with 1, 2, or 3, respectively, and are 
estimated from the ΔGmix values on the binaries. Dashed gold lines are tie lines in the two melt regions. Data points represent compositions simulated in this study.
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The ternary diagrams (Figures 3d–3f) show a range of miscibilities that expand with increasing pressure. As in the 
case of the binary phase diagrams, the miscibility fields for the ternary mixture compositions are set by the shared 
tangent in the ΔGmix curves, and not solely by where ΔGmix is calculated to be negative. These miscible melt fields, 
outlined by solid gold lines, are extended from ΔGmix values along each of the binaries. There are three miscibil-
ity fields, and each is located near an endmember composition. As the carbonate-metal and the  carbonate-silicate 
miscibility gaps close with pressure, the miscibility fields grow to accommodate more mixing. In between the misci-
bility fields are two-melt regions, and compositions that fall in these regions will exsolve two immiscible  melts. 
Dashed gold lines represent example tie lines in these regions. The central triangle is the three-melt region, and 
compositions that fall in this region will exsolve three immiscible melt compositions. With increasing pressure, 
the two-melt regions grow and the three-melt region shrinks, indicating the overall increase of miscibility in this 
system at high pressure. It is important to note that the chosen value for ΔHmix affects the miscibilities of the melt 
mixtures. We estimate values for ΔHmix based on chemical speciation and literature experiments, but without addi-
tional constraints, there is some ambiguity in the selected value. The blue regions of the plot indicate compositions 
with negative ΔGmix values, and thus, show a possible range of miscible compositions that are available under 
smaller ΔHmix values. Nonetheless, the results based on these reasonable estimates of ΔHmix illustrate the plausi-
bility of reduced immiscibility with increasing pressure in the carbonate-silicate-metal system, such that an Fe-rich 
carbonate melt and a carbon-rich Fe melt would be expected to segregate from other phases at the base of the mantle.

4.  Carbon-Bearing Clusters
As evidenced by Figures 3d–3f, many carbonate-silicate-iron melt compositions are immiscible at lower mantle 
conditions, even at the high-pressure conditions of the core-mantle boundary. Although ab initio molecular 
dynamics cannot model phase separation because of size effects, the clustering of species observed in our simu-
lations is suggestive of the process of melt separation. In this section, we identify the species that segregate in 
an example ternary melt mixture through speciation analysis and determine individual cluster densities to under-
stand how elements distribute through the lower mantle.

The example melt composition is the ternary melt composition simulated for this study (10% Fe, 45% MgCO3, 
45% MgSiO3). A more complete speciation analysis of this melt composition is reported by Davis et al. (2022). In 

Figure 4.  Phase diagram of binary melt mixtures. The central region inside each of the pairs of lines is the miscibility gap, 
where it is more energetically favorable to form two melt immiscible melt compositions. The miscibility gap closes with 
increasing pressure for carbonate-metal mixtures and widens for silicate-metal mixtures. Although the carbonate-silicate 
miscibility gap remains mostly constant at lower-mantle conditions, a decreasing ΔGmix suggests the eventual closing of the 
miscibility gap at higher pressures.
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general, large increases in C-Fe and C-C bonding with pressure at the expense of C-O bonding are observed. No 
evidence of Fe-Si bonding is found at any pressure. These tendencies are in good agreement with the predicted 
miscibilities for binary solutions (Figures 3a–3c). In the melt, large carbon-carbon clusters and, at higher pres-
sures, carbon-iron clusters form and have limited interaction with the silicate melt network, indicating the types of 
carbon-bearing melt species we might expect to segregate from a silicate melt. However, the extent of carbon-iron 
interaction is difficult to quantify. Carbon-iron clusters often consist of iron atoms surrounding a polymerized 
carbon core, which could be classified as either a diamond seed nucleus or an iron carbide cluster. Previous 
simulations (Davis et al., 2022; Karki et al., 2020; Solomatova et al., 2019) show that we would expect carbon to 
bond to O, Fe, C, and Si. For each carbon atom, we would expect 12% (13/108) of the bonds to be C-Fe bonds as 
there are 13 iron atoms from available 108 coordinating anions for carbon (12 silicon, 72 oxygen, 11 out of the 
12 carbon, and 13 iron). Additionally, we anticipate that 67% (72/108) of carbon bonds are to oxygen. Starting 
from these estimates based on the statistical sampling, we classify the carbon-based clusters in the melt. Bond 
abundances greater than the abundances predicted from statistical sampling indicate that there is a chemical pref-
erence for the bonding element. In our cluster analysis, we classify carbon clusters with C-O bond abundances 
greater than 67% as carbonates and carbon clusters with C-Fe bond abundances greater than 12% as carbides. 
Clusters with less C-O and C-Fe abundances than expected from statistical sampling are classified as carbon 
polymers. The abundances of the different types of clusters at 1, 74, and 148 GPa are plotted in Figure 5d. At 
all three pressures, clusters of each type are formed, but the relative abundances of the cluster types evolve with 
pressure. Carbonates are the most abundant cluster type at 1 GPa and account for 49% of the total clusters, but 
that number drops to 31% at 74 GPa and 30% at 148 GPa. Carbides almost match the number of carbonate clusters 

Figure 5.  Examples of types of carbon-bearing clusters and their abundances. (a–c) Examples of isolated carbon-iron-oxygen 
clusters classified as carbonate, carbide, and polymer from 74 GPa to 4000 K. (d) Abundances of carbonate, carbide, and 
polymer clusters with increasing pressure.
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at 1 GPa, at 48% of the total, and are the most abundant cluster type at 74 and 148 GPa, at 55% and 64% of the 
total, respectively. Polymers are always the least abundant cluster type. They increase in abundance from 3% to 
14% from 1 to 74 GPa, and then decrease in abundance to 5% at 148 GPa. In Davis et al. (2022), we noticed that 
the majority of changes in C-O and C-C bond abundances occur in the first 25 GPa. Thus, we expect diamond 
formation to peak around 25 GPa, and this expectation is reflected in the relative increase in polymer formation 
between 1 and 74 GPa. Similarly, we expect carbonate cluster abundance to decrease rapidly in the first 25 GPa 
before plateauing, and this result is also observed. Finally, the large and linearly increasing number of carbide 
clusters matches the speciation results in both Davis et al.  (2022) and Solomatova et al.  (2019), which report 
linear increases in C-Fe bond abundances with increasing pressure.

The composition and the volume of the carbon clusters determine their relative density within the mantle. Using 
the Bader charge analysis algorithm (Henkelman et  al.,  2006; Sanville et  al.,  2007; Tang et  al.,  2009; Yu & 
Trinkle, 2011), we calculate the volumes of individual atoms within carbon clusters to determine cluster densi-
ties. The densities of example carbon clusters isolated at 74 and 148 GPa are plotted in Figure 6. The selected 
clusters are grouped according to their classification as a carbonate, carbide, or polymer. We directly compare 
the density of the cluster to the calculated density of MgSiO3 melt under the same conditions. Carbide clusters 
are much denser than MgSiO3 melt, and with enough time and aggregation, we expect these clusters to segregate 
from the multicomponent melt and sink to the core. Similarly, polymers are slightly denser than MgSiO3 melt. 
Carbonate clusters are lighter than MgSiO3 melt, and we expect these clusters to be buoyant within the mantle.

5.  Implications
From the miscibility analysis, we found three miscible melt compositional fields: carbonate-rich, silicate-rich, and 
iron-rich melts (Figures 3d–3f). We consider the densities of these melt compositions to determine their buoyancy in 
the lower mantle and to evaluate their implications for carbon distribution and sequestration in the lower mantle and 
core. Densities of liquids calculated from molecular dynamics methods have been shown to systematically deviate from 
experimental values depending on the approximation used for the exchange correlation functional (Zhang et al., 2013; 
Zhao et al., 2014). However, relative comparisons of density between calculated melts are useful, provided the same 
approximations are made. As an example, density differences from MgSiO3 melt at the core-mantle boundary are 
plotted in Figure 7. Here, miscible melt compositions could be formed from a deep Earth carbonatite melt interacting 
with iron melt at the core-mantle boundary. Compositions are shaded in red, white, and blue to represent buoyant, 
neutrally buoyant, and dense compositions, respectively, as compared to the density of MgSiO3 melt, which is used as 
a proxy for the lower mantle composition. Three groups of miscible compositions emerge. Compositions outlined in 
red are iron-rich and denser than MgSiO3. We expect these compositions to sink into the outer core, dragging carbon 
and silicon out of the mantle and enriching the outer core with light elements over time. Compositions outlined 
in blue are carbonate-rich and buoyant. These compositions are anticipated to rise through the mantle and return 

Figure 6.  Carbon clusters identified from three separate snapshots at (a) 74 GPa and (b) 148 GPa and plotted by the fraction of bonds that are C-O and the fraction of 
bonds that are C-Fe. Points circled with a dotted line correspond to carbonates, with a solid line correspond to carbide, and with a dashed line correspond to polymers. 
Data points are colored by the density of the cluster. Clusters denser than MgSiO3 (blue) will sink and clusters less dense than MgSiO3 (red) will float.
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carbon to shallower depths. Finally, the green compositions are neutrally buoyant and thus gravitationally stable at 
the core-mantle boundary. These compositions could serve as possible contributors to ULVZs. ULVZs have multiple 
proposed explanations, including FeSi formed through core-mantle reactions (Mergner et al., 2021), hydrous phases 
such as (Al,Fe)OOH (Thompson et al., 2021), Fe-rich post perovskite (Garnero & McNamara, 2008), Fe-rich (Mg,Fe)
O (Solomatova et al., 2016; Wicks et al., 2010), and patches of partial melt (Williams & Garnero, 1996). Partial melt 
is a likely explanation for ULVZs due to the 3:1 ratio of S-to-P wave velocity reduction (Garnero & McNamara, 2008; 
Williams & Garnero, 1996). Therefore, buoyantly neutral melt compositions, such as the carbonate-silicate-metal 
melt compositions calculated in this study, could serve as one possible explanation and contribute to the ULVZs.

Within the immiscible melt compositions, carbon, carbon-iron, and carbon-oxygen clusters form (Figure 5). Given 
enough time and aggregation, we expect the carbon and carbon-iron clusters to exsolve from the melt, as has been 
previously suggested (Dasgupta & Hirschmann, 2010; Karki et al., 2020; Mysen et al., 2011; Stagno et al., 2013). 
In our example ternary melt composition, the majority of the clusters formed at 148 GPa are carbide (64%), and 
the propensity for carbon to bond with iron indicates the high siderophility of carbon under these thermodynamic 
conditions. Carbide clusters are denser than the surrounding mantle (Figure 6). Thus, a significant amount of 
Earth’s carbon contained in the lower mantle may bond with iron and sink to the core, matching previous ab 
initio predictions of carbon's fate under reduced conditions in the lower mantle (Karki et al., 2020; Rohrbach & 
Schmidt, 2011). This not only prevents carbon from being recycled back to the Earth's surface but also changes the 
evolution of the core composition. An increasingly carbon-rich core composition would evolve to have density, 
sound velocities, and electrical and thermal conductivity more similar to the carbon-rich alloys Fe3C and Fe7C3 
(Fiquet et al., 2009; Ghosh & Karki, 2017; Wood et al., 2013). Moreover, given the chemical preference of carbon 
to be bonded to iron, we propose that during core formation, iron droplets that segregate from the magma ocean 
and fall downwards would constitute strong attraction basins for carbon. In this way, the magma ocean would be 
leached of its carbon. After the Moon-forming impact, metal and silicate melt would be well-mixed, and sidero-
phile elements, such as carbon, would be segregated with iron into the core, supporting the  idea that carbon is a 
candidate element to explain the density deficit in the core (Prescher et al., 2015; Solomatova et al., 2019).

In addition to carbide clusters, we observed the formation of carbon polymers in our simulated ternary melt compo-
sition, which could be precursors for diamonds. Our simulations reveal a possible mechanism for diamond forma-
tion, where carbon polymers exsolve from a silicate melt. Previously, this formation mechanism was observed in 

Figure 7.  Densities of ternary melt compositions at 136 GPa compared to the density of MgSiO3 melt. Melts denser than 
MgSiO3 and less dense than pure Fe are colored blue, and would sink in the mantle. Melts less dense than MgSiO3 are 
colored red, and would float. Miscible melt compositions that would sink, float, and be neutrally buoyant are outlined with 
blue, red, and green lines, respectively.
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oxygen-deficient carbon-bearing silicate melts (Ghosh et al., 2017), and the addition of iron in our simulations 
may actually increase carbon polymerization (Belonoshko et al., 2015). Our previous speciation analysis of this 
melt composition (Davis et al., 2022) indicates that carbon-carbon bond formation reaches a peak around 25 GPa, 
beyond which it plateaus. C-Fe bonding, however, increases linearly and with increasing depth, the percentage of 
polymers decreases as carbide clusters are preferentially formed. Thus, our analysis indicates a diamond forma-
tion zone around 25 GPa. This depth in the Earth matches reports of diamonds with a deep Earth origin, which 
are returned from either the transition zone or the top of the lower mantle (Smith et al., 2016; Stachel et al., 2005). 
Ultradeep diamonds are thought to crystallize from a carbon-rich melt composition (Haggerty,  1999), which 
matches the formation mechanism outlined by our speciation analysis. Additionally, this formation mechanism is 
thought to play a role in eclogitic (E-type) diamonds (Gao et al., 2017; Haggerty, 1999). E-type diamonds crys-
tallize within an eclogitic source rock, and have been reported to form at depths ranging from 150 to >660 km 
(Kirkley et al., 1991; Meyer, 1985; Moore & Gurney, 1985; Shirey & Shigley, 2013). They tend to form at higher 
pressure and temperature conditions than peridotitic (P-type) diamonds (Deines et  al.,  1993, 2000; Shirey & 
Shigley, 2013). E-type diamonds tend to have a wide range of δ 13C values and are a good match for the carbon 
isotopic values of diamonds returned from the transition zone (Shirey & Shigley, 2013). Thus, the crystallization 
of a melt composition similar to our studied carbonate-silicate-metal melt, which forms abundant carbon poly-
mers around the depth of the transition zone, may be a formation mechanism for ultradeep E-type diamonds. 
Our cluster analysis (Figure 5) also indicates that polymers are formed even at the core-mantle boundary, and 
if these polymers aggregate to form diamonds, these diamonds may be brought to the surface by deep mantle 
plumes. Diamonds with a lowermost mantle origin may be identified through compositional analysis of fluid 
inclusions. Diamonds containing silicate-poor metal-rich carbonate melt compositions that fall into the miscible 
melt regions indicated in Figure 3f would indicate a core-mantle boundary origin and would provide evidence for 
carbonate-silicate-metal melt reactions in the lowermost mantle.

Finally, we examine the carbon distribution at pressure and temperature conditions of the core-mantle bound-
ary to provide some insight into possible carbon distributions between core and mantle phases. We examine an 
equimolar composition (i.e., 1/3 Fe, 1/3 MgCO3, and 1/3 MgSiO3), which falls into the three-melt region at the 
center of the ternary plot (Figure 3f). Of the three melts that exsolve from this composition, 31% is a carbonate-
rich melt, 37% is an iron-rich melt, and 32% is a silicate-rich melt, where the melt compositions that exsolve 
are given by the corners of the miscible melt fields in Figure 3f. From mass balance calculations, we deter-
mine that for this case, 90% of the carbon is contained in outer-core compositions (carbonate-rich and iron-rich 
melts) and 10% is contained in a potential ULVZ composition (silicate-rich melt). In fact, carbon is distributed 
to varying degrees between outer-core and ULVZ-type compositions for the majority of compositions in this 
ternary system, and buoyant carbonate-rich melt phases only form when there is less than ∼5% Fe in the system. 
At the core-mantle  boundary where iron melt is abundant, we anticipate that carbon is preferentially stored in 
the lower-mantle and core phases, indicating that the ultimate fate of Earth's carbon may be storage in the deep 
interior.

6.  Conclusions
Carbonates are important compounds in the crust and upper mantle and may play a role in the lower mantle 
as well. Carbonate melts in the deep Earth may react with silicates and metals, especially at the core-mantle 
boundary where these phases are abundant. The chemical and physical properties of the melts that form from 
these reactions have important consequences for the distribution and storage of carbon in the deep Earth. Ab 
initio molecular dynamics simulations of carbonate-silicate-iron melt compositions allow for the examination 
of melt miscibilities, densities, and speciation. We find that carbonate-silicate and carbonate-iron melts have 
miscibility gaps that close with increasing pressure, and that carbonate-iron melts have the highest affinity 
for mixing. Silicate-iron melts are immiscible at all lower mantle pressures. By expanding our analysis to the 
ternary carbonate-silicate-iron system, we find that three miscible melt fields exist near each of the endmem-
ber compositions (Fe-rich, carbonate-rich, and silicate-rich melts). Iron-rich melts are dense and sink into the 
core, providing a mechanism to enrich the outer core with light elements, such as carbon, oxygen, and silicon. 
Silicate-rich melts are neutrally buoyant and sit at the core-mantle boundary, providing one possible explana-
tion for the existence of ULVZs. Carbonate-rich melts, depending on their iron content, may sink into the core, 
remain at the core-mantle boundary, or rise through the mantle. Thus, depending on the composition that forms 
through the reaction of carbonate, silicate, and iron phases, carbon may be stored in the deep Earth in core- or 
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ULVZ-type compositions or may return to shallower depths. The majority of melt compositions have densities 
that classify them as core- or ULVZ-type compositions, indicating that the fate of carbon may be to be stored in 
the Earth's deep interior. Finally, the speciation of carbonate-silicate-iron melts indicates that carbon polymers, 
iron carbides, and carbonate clusters are formed in the melt, and the relative proportions of these clusters at 
various pressures indicate carbon's changing affinity for the other elements. Iron carbides, which are favora-
bly formed at higher pressures, indicate carbon's increasingly siderophile nature with depth. Carbon polymers, 
when aggregated, could form diamonds and are abundant at transition zone pressures, indicating a propensity for 
diamond formation in and around the transition zone. The distribution of carbon throughout the Earth's interior is 
a complicated topic, affected by many thermodynamic variables, including pressure, temperature, composition, 
and oxygen fugacity. More experimental and computational studies of carbonate melts and their interactions 
with other phases at lower-mantle and especially core-mantle boundary conditions will help elucidate the role of 
carbon in the Earth's deep interior.
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