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Deformation theory is classically understood to be the study of variations of an object X, to infinitesimally nearby objects X . One of the most salient examples, dating back to the 50's, are the works of Kodaira-Spencer [START_REF] Kodaira | On deformations of complex analytic structures[END_REF][START_REF] Kodaira | On deformations of complex analytic structures. III. Stability theorems for complex structures[END_REF] and Fröhlicher-Nijenhuis [START_REF] Frölicher | A theorem on stability of complex structures[END_REF] on the deformation theory of complex manifolds and algebraic varieties where it is shown that "first-order" deformations of an algebraic variety are related to the tangent cohomology. The approach to deformation theory by Grothendieck, Mumford, Schlessinger (see [START_REF] Artin | Lectures on Deformations of Singularities[END_REF]) consists of associating to a deformation problem, a deformation functor

F : Parametrizations → Sets Infinitesimal → {X }
It turns out that in characteristic zero one can often associate to a deformation problem a di erential graded (dg) Lie algebra g encoding the problem in the sense that the associated deformation functor takes the form This observation led Deligne, Drinfeld and Quillen to formulate the following informal slogan:

Any deformation problem over a field k of characteristic zero is controlled by a dg Lie k-algebra.

To exemplify, let us consider a very classical algebraic situation: E 0.1. Let A be an associative algebra. A first-order deformation of A is given by a map µ : A ⊗ A → A, such that the formula, a • b = ab + µ(a, b) , defines an -linear associative product on A[ ]/( 2 ). The dg Lie algebra encoding this deformation problem is the Hochschild Lie algebra given in degree n by g n = Hom(A ⊗n+1 , A) (with appropriate di erential and bracket). A deformation can be given precisely as the degree 1 elements satisfying the Maurer-Cartan equation dµ + 1 2 [µ, µ] = 0, involving only dg Lie algebraic data. This slogan was fruitfully used in works of Kontsevich [START_REF] Kontsevich | Deformation quantization of Poisson manifolds[END_REF], Hinich [START_REF] Hinich | DG coalgebras as formal stacks[END_REF], , Manetti [START_REF] Manetti | Extended deformation functors[END_REF]. In fact, the principle that dg Lie algebras control deformation problems should be interpreted in an appropriate homotopical sense: quasi-isomorphic dg Lie algebras encode the same deformation problem. A formalisation of this principle was only achieved in the 2010's by the works of Lurie [START_REF] Lurie | Derived algebraic geometry x: Formal moduli problems[END_REF] and Pridham [START_REF] Pridham | Unifying derived deformation theories[END_REF] who made it into a theorem in the form of an equivalence of ∞-categories, in which one of the equivalences is, informally speaking, given by the assignment (1). In the other direction, the equivalence is given by the tangent complex functor T whose dg Lie algebra structure can be quite unexplicit.

Q

. This leads us to the central questions that we wish to address: (1) Given a deformation problem, how to obtain the dg Lie algebra encoding it? (2) Which deformations are "equivalent"? (3) What is the structure of the moduli space of deformations up to equivalence?

The notion of equivalence tends to come naturally associated to the problem. For instance, take two deformations X and X of a complex manifold or more generally a k-scheme, X. Then they are called equivalent if there is an isomorphism (or more generally a weak equivalence) that reduces to the identity on X (up to homotopy). In the case of associative algebras, two deformations are equivalent if there is an isomorphism intertwining µ and µ .

The main purpose of this text is to present how the theory of algebraic operads gives us very e cient tools to address these questions. Let us consider again the illustrative example of deforming associative algebras. An object of interest is the set (ideally a "space") of associative algebra structures on a vector space, or more generally a cochain complex, A. These are precisely all possible structures of left modules on A (with respect to a monoidal product •) over the operad Ass of associative algebras Ass • A → A.

Crucially, the symmetric monoidal category of cochain complexes is closed which allows us to see A as a representation of the operad Ass: There is an endomorphisms operad of A, End A , such that the set of associative algebra structures on A is Hom Operads (Ass, End A ).

Using the model structure on operads, this Hom-set can be naturally upgraded to a mapping space. This involves choosing a cofibrant replacement of Ass and Koszul duality presents us explicitly the minimal one. Furthermore, this procedure expresses the mapping space naturally as the Maurer-Cartan space of a dg Lie algebra g, which in this case is exactly the Hochschild Lie algebra of Example 0.1. This survey splits into three chapters. In the first one, we review the theory of algebraic operads, with the goal of understanding Koszul duality and the structure of the model category of operads and of algebras over a fixed operad.

In the second chapter we focus on the tools to treat deformation problems associated to a given dg Lie algebra, namely the Deligne groupoid associated to a Lie algebra and the more general problem of integrating homotopy Lie algebras. We review ∞-algebras and ∞-morphisms under this perspective as well as the homotopy transfer theorem. All along, we show how these methods apply to specific problems, such as Kontsevich's formality theorem or applications to rational homotopy theory. In the final chapter we address the more (derived) geometrical approach to deformation theory, namely the notion of formal moduli problems and the formalization of the deformation slogan, under the algebraic operadist perspective.

We will review the construction of the (co)tangent complex and understand problems that can be infinitesimally deformed along non-commutative algebras. At the very end, we will review recent developments, that fall outside of the framework of this such as deformation theory in positive characteristic.
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Conventions. Throughout the text, unless otherwise specified we work over a field k of characteristic zero. We always work over cochain complexes and use cohomological conventions, regardless of whether a subscript or a superscript is used for the degrees. For example, both Hochschild homology and cohomology arise from a complex whose di erential has degree +1.

All algebraic objects are considered di erential graded by assumption and we will thus not use the prefix "dg". For instance, what we will call an associative algebra is what is more commonly called a di erential graded algebra elsewhere. The few instances we will work with non-dg objects, we will explicitly use the phrasing "graded" to mean that there is no di erential and "concentrated in degree 0" for objects such as vector spaces, having nothing in non-zero degree. In particular, k-module and cochain complex are synonyms.

Whenever applicable, we distinguish the internal Hom from the Hom set by using Hom(V, W ) for the first and Hom(V, W ) for the latter.

A list of notations is present at the end.

A O T

The goal of this section is to introduce the important elements of the theory of symmetric operads. In Section 1.1, we introduce the definitions of symmetric operads, cooperads and the main examples of (co)operads we are going to use in this review. In Section 1.2, we discuss the notion of algebra and coalgebra over operads and cooperads. We also give the construction of the (co)free (co)algebra adjunctions. In Section 1.3 we describe the convolution operad, the bar-cobar constructions and the notion of twisting morphisms. These three sections are meant to be a shortcut for the reader to the content of [START_REF] Loday | Algebraic operads[END_REF] up to Section 6, which is generally the reference we recommend for details. Finally, Sections 1.4, 1.5 and 1.6 are devoted to model categorical aspects of operad theory, describing the model structure on operads and on algebras over an operad. We also discuss the notion of Koszul duality as a means to obtain simple cofibrant replacements of operads.

1.1. Algebraic Operads and Cooperads.

Let us start with a motivating example. An associative algebra is a cochain complex (A, d) together with a bilinear product • such that for all a, b, c

∈ A (1) (a • b) • c = a • (b • c) (associativity), (2) d(a • b) = da • b + (-1
) deg a a • db (compatibility with the di erential). The operadic approach consists in removing the spotlight from the elements a, b, c (which are arbitrary) and rater focus on the multiplication operation itself. One could instead define an associative algebra structure on a cochain complex A to be a map µ : A ⊗ A → A, such that µ(µ, id A ) = µ(id A , µ). Notice that this is an equality of maps A ⊗ A ⊗ A → A. An immediate advantage of this perspective is that we no longer need to encode property (2). Indeed, it is hidden in the assumption that µ : A ⊗ A → A is a map of complexes. For instance, it also follows immediately from applying the homology functor that H(A) is an associative algebra.

Even if we start with an operation taking two inputs, by composing it, we can write identities that take place in End A (n) := Hom(A ⊗n , A). We call these, the arity n endomorphisms of A. We could have considered instead unital associative algebras, which would amount to furthermore choosing an arity 0 endomorphism 1 : k → A, such that µ(1, id A ) = µ(id A , 1) = id A : A → A.

An operad P will be the kind of object such that its representations, i.e. maps of operads P → End A , correspond precisely to P-algebra structures on A. The important properties to retain are the existence of an arity, representing the number of inputs of the operation, as well as a way to compose operations. Furthermore, a way to encode symmetries is necessary: If we want to consider commutative algebras this amounts to require µ : A⊗A → A to factor through the Σ 2 -coinvariants of the source. Or in a Lie algebra, even ignoring the antisymmetry of the bracket, if we wish to encode the Jacobi identity, we need to permute the inputs of [a, [b, c]].

The objects encoding the collection of n-ary operations of an operad will be taken in a fixed category. We will use the category Mod k of cochain complexes over k in this survey, although much of what is discussed can be extended to any symmetric monoidal Cartesian closed model category such as the category of simplicial sets sSet or A-modules Mod A for example. The first thing we define is a category whose objects are given by collections of n-ary operations.

De nition 1.1. A symmetric sequence is a collection of elements in Mod k , M := {M (n)} n≥0 together with right actions of the symmetric groups M (n)

Σ n for all n ≥ 0. A morphism f : M → N between symmetric sequences is the data of a collection of maps in Mod k , f n : M (n) → N (n) that are invariant with respect to the actions of Σ n on M (n) and N (n). The category of symmetric sequences is denoted Seq Σ .

It is possible to take a more categorical perspective, which is convenient for generalisations, but also to show some monoidality properties, or to endow symmetric sequences with a model structure. On the other hand, explicit formulas become less evident. In this text we try to balance the two approaches. R 1.2. Let N ∼ denote the category with objects the sets {1, . . . , n} for all n ∈ N and morphisms given by the permutations of these sets. The category of symmetric sequences in Mod k is isomorphic to the category of functors, Fun (N ∼ , Mod k ), that is, we have an equivalence 1 of categories:

Seq Σ Fun (N ∼ , Mod k ) .

R 1.3. The most common variations on the previous definition is to consider:

• N o ⊂ N ∼ the sub-category with the same objects but with only identities as morphisms. • Given a set S, denote N S the category whose objects are k-tuples of elements on S for all k ∈ N, and whose morphisms are given by all permutations of these tuples, (a

1 , • • • , a k ) → (a σ 1 , • • • , a σ k ).
We can use the functorial construction with these alternative categories, we obtain:

• For N o , the notion of non-symmetric operads (with no action of Σ n ).

• For N S , the notion of colored operad. R 1.4. We think of the cochain complex M (n) as the space of all n-ary operations of our operads. An operation m ∈ M (n) will be depicted by a rooted planar tree as follows:

1 Sending a functor F to the collection (F (n)) n∈N and the permutation of {1, • • • , n} are the morphisms in N ∼ that induce the action of Σn on F (n).

(2) m . . .

2 1 n -1 n
The action of Σ n is the action that permutes the n leaves of the tree and sends m to an other operation σ.m.

The idea behind algebraic operads is that these trees correspond to operations with n entries and 1 exit. We will need to make sense of how to compose these trees by concatenating them as depicted by the following graph:

M (i 1 ) ∈ M (i k ) • • • 1 k 1 i 1 1 i k • • • • • •
To make sense of having the set of all k-tuples of trees that we want as input for an other k-ary tree, we define a symmetric tensor product on Seq Σ . In the tree above, the upper level should be interpreted as an arity

i 1 + • • • + i k element of M (i 1 ) ⊗ • • • ⊗ M (i k ).
De nition 1.5. Given D, a V -enriched category and V , a closed symmetric monoidal category with small limits and colimits. Then the Day convolution of two functors F, G : D → V is defined by the coend construction (see [Lor15, Proposition 6.2.1]):

F ⊗ Day G(-) := (c,c )∈D×D D(c ⊗ D c , -) ⊗ V F (c) ⊗ V G(c )
Will will now describe the Day convolution using concrete formulas in the context we are interested in, that is when D = N ∼ and V = Mod k .

We then have the following formula for ⊗ Day which can equally been taken as a definition for the reader less confortable with coend calculus. Proposition 1.6. For D = N ∼ and V = Mod k , we obtain:

F ⊗ Day G(n) = p+q=n Ind Σn Σp×Σq (F (p) ⊗ G(q)).
where Ind Σn Σp×Σq denotes the extension 1 of from Σ p × Σ q representations to Σ nrepresentations.

1 Recall that given a morphism of associative algebras f : A → B, we have an extension of scalars functor B ⊗A -: ModA → ModB, left adjoint to the restriction of scalars along f . When f arises from a group morphism, such as Σp × Σq → Σn for p + q = n, we refer to the corresponding extension as the induced representation

k[Σn] ⊗ k[Σp×Σq ] (-) = Ind Σn Σp×Σq : (Σp × Σq) -Rep → Σn-Rep.
Proof. For D = N ∼ we get 1 :

F ⊗ Day G(d) = p,q∈N
Hom(p ⊗ q, d) ⊗ F (p) ⊗ G(q)

We obtain that F ⊗ Day G(d) is equal to:

coeq   p,q∈N
Hom(p + q, d) ⊗ F (p) ⊗ G(q)

f :p→p , g:q→q

Hom(p + q, d) ⊗ F (p ) ⊗ G(q )  
Hom(p + q, d) is non-zero only if p + q = d, p = p and q = q . Therefore we get:

coeq   p+q=d k[Σ d ] ⊗ F (p) ⊗ G(q) p+q=d Σp×Σq k[Σ d ] ⊗ F (p) ⊗ G(q)   = p+q=d coeq   k[Σ d ] ⊗ F (p) ⊗ G(q) Σp×Σq k[Σ d ] ⊗ F (p) ⊗ G(q)  
We now need to relate this coequalizer to the tensor product over k

[Σ p × Σ q ].
To do that we notice that for any p, q ∈ N with p

+ q = d, N ∈ k[Σ d ] -Mod, a map Hom k[Σ d ]   coeq   k[Σ d ] ⊗ F (p) ⊗ G(q) Σp×Σq k[Σ d ] ⊗ F (p) ⊗ G(q)   , N   is exactly dgiven by a map f : k[Σ d ] ⊗ F (p) ⊗ G(q) → N such that for all (α p , α q ) ∈ Σ p × Σ q , σ ∈ Σ d , f p ∈ F (p)
and g q ∈ G(q) we have:

f (σ.(α p , α q ) ⊗ f p ⊗ g q ) = f (σ ⊗ α p .f p ⊗ α q .g q )
But this is exactly the data of a map:

Hom Mod k[Σ d ] k[Σ d ] ⊗ k[Σp×Σq] F (p) ⊗ G(q), N
This shows that:

F ⊗ Day G(d) = p+q=d (F (p) ⊗ G(q)) ⊗ k[Σp×Σq] k[Σ d ] = p+q=d Ind Σ d Σp×Σq (F (p) ⊗ G(q)) R 1.7.
Taking successive Day tensor powers of a functor leads to the following formula:

G ⊗ Day k (n) = i 1 +•••+i k =n Ind Σn Σ i 1 ו••×Σ i k (F (i 1 ) ⊗ • • • ⊗ F (i k )) 1 With p ⊗ q := p + q.
Objects of arity n in this symmetric sequence can be graphically understood as having k trees in parallel with total arity i 1 +

• • • + i k = n: . . . 1 i 1 • • • . . . 1 i k
The extension, Ind Σn

Σ i 1 ו••×Σ i k
, describes the action of Σ n on the n entries in a way that is compatible with the actions given on each individual tree,

Σ i 1 × • • • × Σ i k . This consists in adding the i 1 , . . . , i k shu es Sh(i 1 , . . . , i k ) which are canonical representatives of the cosets Σ n /Σ i 1 × • • • × Σ i k .
We want now to describe all the ways we can put k trees (elements in M ⊗ Day k ) as input for a k-ary tree so that we can compose them. This defines a new symmetric sequence described by the following non-symmetric monoidal product:

De nition 1.8. We define the composition of symmetric sequences to be the monoidal structure (see [Lor15, Section 6.3]) on Seq Σ given by:

F • G := m F (m) ⊗ G ⊗ Day m
We obtain the formula:

F • G(n) = k≥0 F (k) ⊗ k[Σ k ]   i 1 +•••+i k =n Ind Σn Σ i 1 ו••×Σ i k (G(i 1 ) ⊗ • • • ⊗ G(i n ))  
Graphically F • G corresponds to the symmetric sequence of all possible concatenation of a F -tree with k-entries with k G-trees on top on it:

(3)

F • • • 1 k G 1 G k 1 i 1 1 i k • • • • • • ∈ (F • G)(i 1 + • • • + i k )
Such concatenation will be called a 2-leveled tree. In general, a n-fold product for • will give a n-leveled tree. The unit of this monoidal product will be denoted by I and is the symmetric sequence given by I(1) = k and I(n) = 0 for n = 1. The notion of composition of an operad amounts to sending a 2-leveled tree, given by an element in F • F , to a new operation in F viewed as the "composition" of these leveled trees.

De nition 1.9. The category of operads P valued in Mod k , denoted by Op, is the category of monoid objects in Seq Σ for •. Concretely an object P ∈ Op is a symmetric sequence P together with an associative multiplication and a unit morphisms: µ : P • P → P η : I → P µ corresponds to composing the operations by sending any concatenation of trees as depicted in 3 (with G = F = P) to a new element in P. In particular for each n ∈ N and i 1 , • • • , i n ∈ N, we get the composition map:

P(n) ⊗ (P(i 1 ) ⊗ • • • ⊗ P(i k )) → P(i 1 + • • • + i k )
Which pictorially gives:

F • • • 1 k F 1 F k 1 i 1 1 i k • • • • • • → µ(F ⊗ (F 1 ⊗ • • • ⊗ F k )) 1 i 1 + • • • + i k • • •
These maps satisfy the natural associativity and unitality conditions coming from the definition of monoids. In particular this means that given a n-level tree in P •n , it is canonically sent to a tree P no matter in which order we chose to compose each levels.

De nition 1.10. Equivalently, an operadic structure can be completely described via the partial compositions. For α ∈ P(n), β ∈ P(m) and for all 1 ≤ i ≤ n we defined • i as:

α • i β = µ P (α, (I, • • • , I, β, I, • • • , I)) ∈ P(n + m -1)
where β is in the i-th position in the n-tuple (I, • • • , I, β, I, • • • , I). This can be depicted as:

α β i -1 i + 1
As a consequence of this equivalent description, one can interpret an operad structure on a symmetric sequence P, to be a rule to assign to any tree (rooted and planar, but without any leveling), with internal vertices v decorated by elements of P(valence of v -1), that is, an element of P of arity the number of entries.

C 1.11.

• Free operad: The forgetful functor Op → Seq Σ has a left adjoint T. Given a symmetric sequence E, we denote by TE the free operad generated by E.

As a symmetric sequence, TE is spanned by all possible trees whose internal vertices are decorated by elements of E of the appropriate arity and by I of arity 1 (which we interpret as having no internal vertices). The (cohomological) degree of the tree is the sum of the degrees of all internal vertices and the di erential acts vertex by vertex. The operadic structure is done by grafting as depicted in the following example:

2 1 3 • 2 2 1 3 = 1 2 3 4 5
We will denote by T (n) E ⊂ TE the subcomplex spanned by trees with exactly n internal vertices.

• Operad de ned by generators and relations: Consider an operadic ideal1 I ⊂ P. In this situation, the cofiber of the map I → P, denoted by P I , is called the quotient operad. If we consider E ∈ Seq Σ , R ⊂ TE and (R) the operadic ideal generated by R in TE. Then the operad generated by E with relations R is defined by:

P(E, R) := TE (R) .
Most of the operads we will consider are defined in terms of generators and relations. Such an operad is said to be binary if the generating symmetric sequence is concentrated in arity 2. W 1.12. Let E be a symmetric sequence such that E( = 2) = 0. While there are only two possible arity 3 trees one can write using two binary vertices, due to the symmetries, T (2) E ∼ = (E(2) ⊗ E(2)) ⊕3 . Indeed, there are exactly three (2, 1) shu es. Pictorially the three types of elements of T (2) E are: x σ(2)

2 1 3 , 2 1 3 = (12) 3 2 1 , 3 1 2 E 1.
x σ(3) - m m x σ(1) x σ(2) x σ(3)
The quotient vector space we obtain in arity 3 is therefore 6-dimensional and is isomorphic to

k[Σ 3 ]. In general, we have that Ass(n) = k[Σ n ]
together with the natural action of Σ n .

• Commutative operad: The commutative operad is defined as the operad generated by a single binary operation with relations encoding commutativity and associativity. The free operad satisfies

T (2) E = (E(2) ⊗ E(2)) ⊕3
and is therefore 3-dimensional. If we write xy for the product in E(2), T (2) E is freely generated by x(yz), (xz)y and (xy)z. So we only have to add the associativity relations x(yz) -y(zx), y(zx) -z(xy) = (zx)y -z(xy). We give a pictorial description for the first relation:

x y z = y z x = y z x
Since there are 3 generators and 2 relations, the commutative operad is therefore 1-dimensional in arity 3. In general, we have that Com(n) = k for all n ≥ 1 with the trivial action. We refer to [LV12, Section 13.1.3] for the full description of Com.

• Lie operad: The Lie operad, denoted by Lie, is also generated by a binary operation [-, -] acted upon by

Σ 2 via τ.[-, -] = -[-, -].
It satisfies the associativity relation given by the Jacobiator. We have Lie(2) = k but the description of Lie(n) for n > 2 is more complicated. We refer to [LV12, Section 13.2.3 and 13.2.4] for more details on the description of Lie.

• Endomorphism operad and algebra over an operad: Take V ∈ Mod k . We define the endomorphism operad of V , denoted End V , by:

End V (n) := Hom k V ⊗n , V
where the action of Σ n on End(n) is obtained from the natural action of Σ n on V ⊗n . The composition is naturally given by the composition for Hom defined by µ

(f, f 1 , • • • , f k ) = f • f 1 ⊗ • • • ⊗ f k with f ∈ End V (k).
A P-algebra structure on V is a morphism of operads µ V : P → End V . In particular, any m ∈ P(n) induces an n-ary operation on V given by µ V (m) : V ⊗n → V . Further details on P-algebra structures will be given in Section 1.2.

• Coendomorphism operad and coalgebras: Take V ∈ Mod k . We define the coendomorphism operad of V to be coEnd V defined by:

coEnd V (n) := Hom(V, V ⊗n )
where the action of Σ n on coEnd(n) is obtained from the natural action of Σ n on V ⊗n . The composition is naturally given by the composition for Hom given by µ

(f, f 1 , • • • , f k ) = f 1 ⊗ • • • ⊗ f k • f with f ∈ coEnd V (k).
A P-coalgebra structure on V is the same as a morphism of operads P → coEnd V . In particular, any m ∈ P(n) induces an n-ary cooperation on V , µ V (m) : V → V ⊗n . Further details on P-coalgebra structures will be given in Section 1.2. Now that we have discussed the notion of operad, which amounts to describing how to compose n-ary operations, we will describe the notion of cooperad, where instead of composing we will decompose an n-ary operation into a sum of i-leveled trees. In a similar fashion to Definition 1.8, we define the complete concatenation of symmetric sequences to be

F •G = m F (m) ⊗ G ⊗ Day m .
Proposition 1.14. For F and G in Seq Σ , then we have the following formula:

F •G(n) = k≥0   F (k) ⊗ k   i 1 +•••+i k =n Ind Σn Σ i 1 ו••Σ i k (G(i 1 ) ⊗ • • • ⊗ G(i k ))     Σ k
Compared with •, • carries some disadvantages, one of which being that it is not monoidal (since direct products do not distribute along tensor products). In order to circumvent that problem, we define another monoidal product • as the sub-symmetric sequence of m F (m) ⊗ G ⊗ Day m given by the direct sum instead. Using the formula obtained in Proposition 1.14 we can define the following monoidal product by replacing the product by a direct sum:

(4) F •G(n) = k≥0 F (k) ⊗ k i1+•••+i k =n Ind Σn Σ i 1 ו••Σ i k (G(i 1 ) ⊗ • • • ⊗ G(i k )) Σ k R 1.
15. The normalization morphism V G → V G from invariants to coinvariants induces a natural transformation • → • sending the direct sum of invariants to the direct sum of coinvariants. In characteristic 0 this is a natural isomorphism. In particular, • is indeed monoidal.

De nition 1.16. The category of cooperads in Mod k , denoted coOp is defined a the category of comonoids in Seq Σ for •. Concretely an object C ∈ coOp is a symmetric sequence C together with comultiplication and counit morphisms:

∆ : C → C •C : C → I R 1
.17. This pictorial description also involves trees for the n-ary operations in M (n). This does not change compared to operad because of the natural isomorphism of Remark 1.15. However, the di erence with cooperads is that the comonoidal structure will not compose trees but rather decompose them into a sum of concatenations of trees built via •.

For example:

→ I I I + + + • • •
Concretely, it is the data of maps:

C (n) → k≥0   C (k) ⊗   i 1 +•••+i k =n Ind Σn Σ i 1 ו••Σ i k (C (i 1 ) ⊗ • • • ⊗ C (i k ))     Σ k
together with a counit, satisfying some coassociativity and counitality conditions derived from the comonoid axioms.

Similar to the case of operads, cooperads also have a notion of partial cocomposition, which consists in cocomposing along a single edge i into two vertex trees. This is given by maps

∆ i : C (n) → C (n -k + 1) ⊗ C (k), for all n ≥ 0, i = 1, . . . , n and k ≤ n.
De nition 1.18. A cooperad C is conilpotent if for every m ∈ C (n), there exists an N such that the iteration of any choice of N partial cocomposition maps is equal to 0. The category of conilpotent cooperad will be denoted by coOp conil

All cooperads we will consider in this text will be conilpotent. Notice that any cooperad such that C (0) = 0 and C (1) = k is conilpotent (N can be taken to be n -1 for a given m ∈ C (n)).

C 1.19. • Cofree conilpotent cooperad: The cofree conilpotent cooperad associated to a symmetric sequence E is denoted T co E is the image on E via the cofree functor defined as the right adjoint of the forgetful functor F : coOp conil → Seq Σ . The underlying symmetric sequence of T co E is isomorphic to the one of TE and the cocomposition of a tree is obtained by "cutting" along an internal edge. Such a cooperad is conilpotent since a given tree with e edges can be only non-trivially partially cocomposed up to e times.

• Cooperad by generators and relations: The cooperad generated by a symmetric sequence E with corelations R ⊂ T co E, denoted C (E, R), is defined to be the smallest subcooperad of T co E containing R. In the quadratic binary case, we have

C (E, R)(2) = E and C (E, R)(3) = R.
• Dual of an operad: The linear dual of a symmetric sequence M is a symmetric sequence M ∨ defined in each arity by the linear dual M ∨ (n). For any cooperad C , C ∨ has the structure of an operad. Since • is not exactly the dual version of •, the converse is not always true. For an operad P we only get a map, P ∨ → P ∨ •P ∨ which might not factor through a comonoid P ∨ → P ∨ •P ∨ . If we further suppose that P(0) = 0 and that the pre-image of each element in P by µ P is finite then we get a cooperad structure on P ∨ (see [LV12, Section 5.8.2]).

1.2. Algebraic Structures over an Operad or Cooperad.

In this section we are going to define the notion of algebra and coalgebra both on operads and cooperads. We already gave some definitions in the case of operads in Example 1.13, but there are definitions in terms of modules and comodules over the operads viewed as monoids. Proposition 1.25 shows that both notions coincide. More generally, in this section will define several adjunctions involving the monoidal products defined earlier. This will allow us to describe free P-algebra and cofree P-coalgebra functors associated to an operad P (see Proposition 1.26). Finally we will discuss the naturality of the category of algebras with respect to morphisms of operads.

De nition 1.20. Let A ∈ Mod k and P ∈ Op.

• The structure of a P-algebra on A is the structure of a P-module:

P • A → A
The category of P-algebras is denoted by Alg P and we have1 :

Alg P := P -Mod •
• The natural way to define a P-coalgebra would give us a map A → P ∨ •A. However, as • is not monoidal, it makes no sense to ask for this map to be a comodule. As such a P-coalgebra structure on A is defined as a map of operads:

P → coEnd A
The category of P-coalgebras is denoted by coAlg P and we have:

Alg P := Hom Op (P, coEnd A )
• We will see with Lemma 1.24 that a coalgebra P → coEnd A induces a map A → P ∨ •A, assuming P is arity-wise dualizable2 and P ∨ is a cooperad.

Therefore we can define a conilpotent coalgebra as a comodule 1 :

A → P ∨ •A
The category of conilpotent P-coalgebras is denoted by coAlg conil P and we have:

coAlg conil P = P ∨ -coMod • De nition 1.21. Let A ∈ Mod k and C be a cooperad.
The structure of a C -(co)algebra on A is defined as a C ∨ -(co)algebra structure on A. We denote by Alg C and coAlg C the categories of all C -algebras and C -coalgebras respectively. We have:

Alg C := C ∨ -Mod • coAlg C := Hom Op C ∨ , coEnd A
Moreover, a conilpotent C -coalgebra can be defined as a comodule in C -coMod •. We get:

coAlg conil C := C -coMod • R 1.
22. If we replace Mod k by Mod R (with R a commutative algebra), to obtain (co)operads valued in Mod R , we obtain the notion of (co)algebra in R-modules, that is R-linear algebraic structures.

In the Example 1.13, we described the endomorphism operad, End A , and defined a P-algebra structure on A as a morphism of operad P → End A . It turns out that this coincides with the previous definition as we will explain with Proposition 1.25. We start with a fundamental Lemma expressing some adjunctions between the monoidal product and the (co)endomorphism symmetric sequences.

De nition 1.23. Given M, N ∈ Mod k , we define the following symmetric sequences:

End M N (n) = Hom k M ⊗n , N coEnd M N (n) = Hom k M, N ⊗n .
An application of some end-coend gymnastic, together with the hom-tensor adjunction, give the following lemma.

Lemma 1.24. For all P ∈ Seq Σ and for all M, N ∈ Mod k , there is an isomorphism:

Hom k (P • M, N ) ∼ = Hom Seq Σ P, End M N
Morover if P is arity-wise dualizable then we have an isomorphism:

Hom k M, P ∨ •N ∼ = Hom Seq Σ P, coEnd M N
Proposition 1.25. Given A ∈ Mod k and P ∈ Op, we have:

P -Mod • (A) ∼ = Hom Op (P, End A )
1 This comodule extends to a map A → P ∨ •A which is equivalent, thanks to Lemma 1.24, to a map of symmetric sequences P → EndA. This turns out to also be a map of operad that defines the underlying coalgebra structure (by forgetting the conilpotency).

Proof. Following Lemma 1.24 it is a straightforward verification that the condition of P • A → A being a P-module structure on A is equivalent to the map of symmetric sequences P → End A being a map of operads.

The previous results and Lemma 1.24 give us some adjunctions using the monoidal product • and the End constructions. In particular we obtain the following constructions:

Proposition 1.26.

• Given P an operad, we have the following free-forgetful adjunction:

P(-) : Mod k Alg P : (-)
The left adjoint P(-) : Mod k → Alg P is the free P-algebra functor that sends A ∈ Mod k to P(A) := P • A.

• Given C a cooperad arity-wise dualizable, we have the following adjunction:

(-) : coAlg conil C Mod k : C (-)
The right adjoint C (-) :

Mod k → coAlg conil C is the cofree conilpotent coalgebra functor that sends A ∈ Mod k to C (A) := C •A.
In particular, if P is arity-wise dualizable we get:

(-) : coAlg conil

P ∨ coAlg conil P Mod k : P ∨ (-)
this gives us the cofree P-coalgebra.

Proof. Let us consider the first adjunction. Notice that P(A) is naturally a P-algebra via the structure maps of P:

(P • P) • A → P • A.
There is an inclusion of chain complexes A = I • A → P • A induced by the unit I → P. Pulling back along this inclusion yields the "restriction to generators" map:

Hom Alg P (P(A), B) → Hom k A, B
We wish to show that this map is a bijection by constructing its inverse. Let f ∈ Hom k A, B . We consider

P • A id•f → P • B → B,
where the second map is the P-algebra structure on B. It is easy to check that this defines a map of P-algebras and establishes the inverse map. The proof of the second bullet point is dual. E 1.27. • For Ass, the free associative algebra functor is the tensor algebra functor. Indeed, given V ∈ Mod k , we have that:

Ass(V ) = n≥0 k[Σ n ] ⊗ k[Σn] V ⊗n n≥0 V ⊗n = T V
• For Com, the free commutative algebra functor is the symmetric algebra functor:

Com(V ) = n≥0 k ⊗ k[Σn] V ⊗n n≥0 (V ⊗n ) Σn = Sym k V
Proposition 1.28. Given f : P → Q a morphism of operads we obtain an adjunction:

f ! : Alg P Alg Q : f * where f * sends the Q-structure Q → End A to the composition P → Q → End A and f ! (B)
, with B ∈ Alg P , is de ned as the re exive coequalizer:

Q • P B := coeq Q • P • B Q • B µ Q •f µ B R 1.29.
The notation • P is suggestive. It is a relative version of the usual operation •. In fact for f : I → P this adjunction recovers the freeforget adjunction, we get

f * A = A and f ! V = P • I V = P • V . R
1.30. When P is an augmented operad, that is an operad together a retract P → I of the unit, we can define the trivial algebra functor given as the right adjoint Triv : Alg I = Mod k → Alg P coming from Proposition 1.28 applied to the augmentation.

A short digression on the universal enveloping algebra.

Recall that the universal enveloping algebra of a Lie algebra g is classically defined to be Ug := T (g)/[x, y] = x ⊗ y -y ⊗ x. This is exactly the induction functor along the operad morphism f : Lie → Ass,

Alg Lie Alg Ass U f *
where f * (A) is the Lie algebra structure on A given by the Lie bracket [x, y] = xy -yx.

It will be important later on to notice that there is a natural coproduct on Ug given by

∆(x) = 1 ⊗ x + x ⊗ 1 ∈ Ug ⊗ Ug, forx ∈ g,
which can be extended to the whole Ug by making ∆(xy) = ∆(x)∆(y). Defining an antipodal map S(x) = -x, it follows that the universal enveloping algebra functor extends to a functor into (cocommutative) Hopf algebras.

De nition 1.31. Given a Hopf algebra H, we say that g

∈ H \ {0} is grouplike if ∆(g) = g ⊗ g. We say that x ∈ H is primitive if ∆(x) = 1 ⊗ x + x ⊗ 1.
One can observe that for any Hopf algebra, the grouplike elements form a group, with inverse given by the antipode. As we will make precise in Section 2.2.1, when H is a universal enveloping algebra Ug, the grouplike elements can be interpreted as the exponential group of g.

It is generally di cult to explicitly describe the cochain complex (in other words provide a basis) underlying the induction f ! along an arbitrary morphism of operads f : P → Q. In this particular case f : Lie → Ass, the PBW (Poincaré-Birko -Witt) theorem gives a complete answer to this problem (in characteristic zero).

Theorem 1.32 (PBW). There is an isomorphism of coalgebras:

Ug ∼ = Sym g.

Classical Constructions for Algebraic Operads.

This section is a recollection of classical constructions and definitions on operads. We start by defining the convolution operad (Definition 1.33) and the totalization of an operad (Definition 1.35). These will be used to define the notion of (Koszul) twisting morphism (Definition 1.54), which provides a convenient alternative description for the bar-cobar constructions (Definition 1.36). The goal of this section is to give the main definitions around the bar-cobar adjunction, which will be used later in order to take good cofibrant replacements (Proposition 1.55), describe homotopy algebras (Section 2.1.1) and study deformations of algebraic structures (Section 2.2).

De nition 1.33. Given an operad P and a cooperad C , we can construct the convolution operad:

Conv(C , P)(n) := Hom k (C (n), P(n))
The symmetric sequence structure on Conv(C , P) is given, for each n ≥ 0, by the action by conjugation:

σ.f := x ∈ C (n) → σ.f (σ -1 .x).
The operadic structure is given by the map that sends

φ := f ⊗ (g 1 ⊗ • • • ⊗ g k ) ∈ Conv(C , P) • Conv(C , P)(n)
, with g l ∈ Conv(C , P)(i l ) and i 1 +• • •+i k = n, to the element in Conv(C , P) of arity n defined by the following composition:

C C •C C (k) ⊗ C (i 1 ) ⊗ • • • ⊗ C (i k ) P(k) ⊗ P(i 1 ) ⊗ • • • ⊗ P(i k ) P • P P ∆ φ µ
The object we are going to be interested in is not the convolution operad itself, be rather its totalization. The totalization of an operad is a pre-Lie algebra whose associated Lie algebra will have be important in defining twisting morphisms and describing deformations of algebraic structures.

De nition 1.34 (Pre-Lie and Permutative Operads).

• A permutative algebra is an associative algebra A with a binary operation satisfying:

x • (y • z) = x • (z • y)
We denote by Perm the quadratic operad encoding permutative algebras.

• A pre-Lie algebra is given by g ∈ Mod k with a bilinear operation such that:

(x y) z -x (y z) = (-1) |y||z| (x z) y -x (z y)
We denote by preLie the quadratic operad encoding pre-Lie algebras. Perm and preLie are related by the fact that they are Koszul dual of each other (Definition 1.61).

Pre-Lie algebras are so called since, similarly to associative algebras, the formula [p, q] = p q -q p defines a Lie algebra structure on g. Moreover, there is a map preLie → Ass so that all associative algebra are pre-Lie algebras. The most important example of a pre-Lie algebra that does not come from an associative algebra is the totalization of an operad.

De nition 1.35. Given P an operad we can produce a pre-Lie algebra called the totalization of P:

Tot(P) := n≥0 P(n) Σn ∈ Alg preLie
The pre-Lie product α β is defined as the sum of all possible ways to compose α and β. Pictorially, if α ∈ P(3) Σ 3 and β ∈ P(2) Σ 2 ,

α β = α β + α β + α β
To be precise, the incoming edges should be labeled by all possible shu es (this is similar to Warning 1.12), we refer to [LV12, Section 5.4.3] for details. For non-symmetric operads the formula is exactly the sum of partial compositions:

α β = n i=1 α • i β
De nition 1.36 ([LV12, Section 6.5.3]). There is an adjunction called the Bar-cobar adjunction: The underlying symmetric sequence of Ω(C ) depends only on the underlying symmetric sequence of C , the cooperad structure only plays a role for the differential d Ω . The di erential d Ω is defined on the generators, i.e. 1-vertex trees labeled by c ∈ C [-1], as the sum over all possible partial cocompositions of c, and then extended to an arbitrary tree by derivations, which amounts to sum this formula for all vertices. The "coassociativity" property of partial cocomposition, together with the signs produced by the degree shifts, guarantees that d Ω squares to zero (see [LV12, Section 6.5.2] for more details). Similarly, d B sums over all possible ways of contracting an edge on a tree using the partial composition of P, see [LV12, Section 6.5.1]. We will see in Sections 1.4 and 1.5 that this adjunction can provide a cofibrant replacement of an operad and will be used to define homotopy algebras.

Ω : coOp conil
An equivalent description of maps ΩC → P (of equivalently C → BP) is in term of twisting morphisms which are Maurer-Cartan elements in a certain Lie algebra. This point of view will prove to be very important when it comes to the description of the deformations of algebraic structures (see Section 2.2.1).

De nition 1.37. Given a Lie algebra g, we define its set of Maurer-Cartan elements of g to be:

MC(g) := x ∈ g 1 | dx + 1 2 [x, x] = 0
Moreover, MC defines a functor from Lie algebras to sets.

De nition 1.38 (Twisting Morphisms). The set of twisting morphisms is the set of Maurer-Cartan elements in Tot(Conv(C , P)):

Tw(C , P) := MC(Tot(Conv(C , P)))

It corresponds to the set of morphisms α : C P of symmetric sequences of degree 1 satisfying the Maurer-Cartan equation, dα + 1 2 [α, α] = 0. We will denote by Tw the full sub-category of the arrow category of Op, whose objects are given by twisting morphisms. Concretely, a morphism from α : C P to β : D Q is given by a commutative square,

C P D Q α β
Proposition 1.39. There are natural equivalences:

Hom Op (ΩC , P) Tw(C , P) Hom coOp conil (C , BP)

Proof. Take α : ΩC → P. Ignoring di erentials, this corresponds to a map from the free operad on C [-1] and is thus equivalent to having a (co)unit preserving map α : C P of degree 1 of symmetric sequences. Moreover α is compatible with the di erentials if and only if α is a Maurer-Cartan element.

Indeed, we have the following equivalences:

α(d ΩC ) = d P • α ⇔ α(d ∆ + d C ) = d P • α ⇔ (α • d ∆ + α • d C ) -d P • α = 0 ⇔ α α + ∂α = 0 ⇔ 1 2 [α, α] + ∂α = 0 R 1
.40 (A remark on augmentations). In Definition 1.36 we consider (co)operads that are (co)augmented which forces us to remove the (co)unit. Instead, we could have worked from the beginning with the equivalent categories of non-(co)unital (co)operads, but this makes the descriptions of (co)algebras, namely the free one, more complicated. While we will mostly hide such details under the rug, in practice this means that strictly speaking for propositions such as the Rosetta Stone to hold, one should require the (co)augmentation ideals the twisting morphisms to be maps compatible with the (co)augmentation, when they exist.

Model Categorical Aspects.

Given an operad P, we are interested in understanding the category of Palgebras up to homotopy, i.e. together with the notion of quasi-isomorphisms as "weak equivalences". The theory of model categories gives us a way to handle these weak equivalences. In this section we will see that algebras over operads, and operads themselves form model categories.

1.4.1. Model categories and homotopical algebra.

Model categories are a tool introduced by Quillen in [START_REF] Daniel | Homotopical algebra[END_REF] in order to study homotopy theory. The main problem is to understand objects of a category up to a notion of weak equivalences which are typically non-invertible morphisms. A naive way to proceed is to formally invert all the weak equivalences (see [Hov07, Definition 1.2.1]). For a category C with a class of weak equivalences W , this formal localization will be denoted hC :

= C [W -1 ]. But in general, descriptions of C [W -1
] are very di cult to deal with. hC can however be described via a universal property: There is a natural functor C → hC such that any functor C → D sending morphisms in W to isomorphisms in D factors uniquely through hC . This universal property characterizes hC (see [Hov07, Lemma 1.2.2]) up to category equivalence. Model structures are a tool to get simple description of hC . Indeed, we will consider C a category having all small limits and small colimits, equipped with two other classes of morphisms called brations and co brations and satisfying certain axioms making C a model category. For a detailed account we refer to [START_REF] Hovey | Model Categories. Mathematical surveys and monographs[END_REF]. Let us present the main features of model categories:

• Any morphism A → B can be factorized both as a cofibration followed by a trivial fibration or as a fibration followed by a trivial cofibration 1 :

A B B cof. triv.fib. A A B triv.cof. fib.
• An object A is called brant (resp. co brant) if the map to (resp. from) the terminal (resp. initial) object is a fibration (resp. cofibration). The factorization axioms ensure that all objects are weakly equivalent 2 to a fibrant-cofibrant object (such an object is called a fibrant-cofibrant replacement). 

A A B B f g h
there exists a lift h : B A making the diagram commute. In particular, in many cases in this survey we will describe a model structure by describing the class of weak equivalences and fibrations, knowing that cofibrations are determined by them, even though they are usually more di cult to describe.

Note that similarly, fibrations and trivial fibrations are determined by trivial cofibrations and cofibrations via the right lifting property. A priori, a weak equivalence needs not have an inverse or even a quasi-inverse 3 . This means that to define the notion of "being weak equivalent", the only sensible to do is to ask for two objects, A and B, to be weakly equivalent if there is a zig-zag of weak equivalences connecting them:

A 1 • • • A n A • • • • • • B
We denote this equivalence by A ∼ B. On the other hand, a consequence of the axioms of a model category is that a weak equivalence between objects 1 A trivial (co)fibration is (co)fibration that is also a weak equivalence.

2 Meaning there is a zig-zag of weak-equivalences between them.

3 A quasi-inverse (or homotopy inverse) is a map in the opposite direction inducing an inverse in the homotopy category.

which are both fibrant and cofibrant admits a "homotopy-inverse" which makes "being weakly equivalent" a simpler equivalence relation, and it means that we have a nicer description of the homotopy category, C cf ∼ hC ([Hov07, Theorem 1.2.10]) where C cf denote the full sub-category of C given by objects that are both fibrant and cofibrant. The most important example in this survey is the model structure on cochain complexes.

Theorem 1.41. There is a model structure on Mod R called the projective model structure such that a map is:

• a weak-equivalence if it is a quasi-isomorphism.

• a bration if it is degree-wise surjective.

• a co bration if it is a degreewise monomorphism with degreewise projective cokernel.

In Mod k , all objects are both fibrant and cofibrant (because all objects are projective) and therefore all quasi-isomorphisms are quasi-invertible. Later on, we will transfer this model structure into other categories (such as the category of algebras over an operad) which will not satisfy this property.

Although fibrant and cofibrant object have good homotopical properties, they can be quite large and complicated. For an arbitrary object in a model category, we may want to consider a class of objects that are minimal, meaning that any weak equivalence, f : A → B, between two minimal objects must be an isomorphism. For Mod k we will consider the class of objects given by the cohomologies of the complexes, that is the minimal objects are graded complexes with no di erentials.

De nition 1.42. Take C a model category and a class of minimal objects.

Then we say that an object A is formal if there is a weak equivalence between A and a minimal object Ã.

We did not make the class of minimal objects explicit in that definition since we will always wok with model categories where the class of minimal objects is clear.

Proposition 1.43. Every object in Mod k is formal. Moreover, every cochain complex has a deformation retract to its cohomology, i.e. there exists a diagram

(A, d A ) (H(A), 0) h p i such that pi = id H(A) and h is a homotopy between Id A and i • p of degree -1, meaning that Id A -ip = d A h -hd A .
Proof. Using the fact that k is a field we can non-canonically decompose A as a direct sum

A ∼ = B[1] ⊕ B ⊕ H(A) ker d A
, where the only non-zero piece of the di erential is the "identity" shift : B[1] → B. The maps p, i are defined in the obvious way and h := shift -1 .

The natural notion of morphisms between di erent model categories is the notion of Quillen adjunctions. Given C and D two model categories, a Quillen adjunction is an adjunction:

L : C D : R
such that either L preserves cofibrations and trivial cofibrations or equivalently R preserves fibrations and trivial fibrations. This condition is enough to ensure that L and R induce an adjunction between the homotopy categories. Moreover a Quillen adjunction is called a Quillen equivalence if it induces an equivalence between the homotopy categories. We refer to [Hov07, Corollary 1.3.16] for a more practical description of Quillen equivalences.

Given an ordinary adjunction:

L : C D : R
such that D (respectively C ) is a model category. We ask whether we can transfer the model structure on C (respectively D) such that the adjunction is Quillen. To do so, we define the following classes on C (respectively D):

• f is a cofibration in C if and only if L(f ) is a cofibration in D (re- spectively f is a fibration in D if and only if R(f ) is a fibration in C ). • f is a weak equivalence in C if and only if L(f ) is a weak equivalence in D (respectively f is a weak equivalence in D if and only if R(f ) is a weak equivalence in C ).
• The last class of morphisms is determined by the lifting properties if it defines a model structure (it might not always be the case), then the model structure on C is called the left transferred model structure (respectively the model structure on D is called the right transferred model structure). Note that for these choices of classes of maps, the adjunction is automatically Quillen.

Even given a Quillen adjunction L R the functors L and R might not have good homotopical properties (such as preserving preserving weak equivalences). However, the properties of a Quillen adjunction ensure that these functors can be "derived" to a new adjunction

L(L) : C D : R(R)
where L(L) is the left derived functor of L and R(R) is the right derived functor of R. These derived functors preserve weak-equivalences and are obtained by precomposing L and R by an appropriate weakly equivalent replacement. In the rest of this survey, whenever a functorial construction is "derived" or when taking a "homotopy" pullback or pushout, the reader may keep in mind that it is the classical construction applied to an appropriate replacement.

Although model structures are very convenient tools to handle weak equivalences, a model structure is not always available. In such situations, namely those coming up in Section 3, we need to use ∞-categories (see [START_REF] Lurie | Higher topos theory[END_REF]).

1.4.2. Model structures for (co)algebras.

Theorem A) naturally has a P-algebra structure. While every cochain complex is formal, we can ask whether a P-algebra is formal (Definition 1.42), that is, do we have a zig-zag of quasi-isomorphisms from A to its homology in the category of P-algebras. It turns out that the answer is no. Not all P-algebras are formal. On the other hand, we will see that the homotopy transfer theorem (Section 2.1.2) will provide a homotopy P-algebra structure on H(A), which in a way quantifies the defect of formality to be satisfied. This extended structure on H(A) will be weak equivalent to A.

The model structures on algebras over operads are compatible with change of operads in the following sense: Recall from Proposition 1.28 that a morphism of operads f : P → Q induces an adjunction: [START_REF] Hinich | Homological algebra of homotopy algebras[END_REF]Theorem 4.6.4]). The adjunction above is Quillen. Furthermore, if f : P → Q is a quasi-isomorphism, this adjunction is a Quillen equivalence.

f ! : Alg P Alg Q : f * Theorem 1.46 ([
The first assertion follows from the fact that the right adjoint preserves the underlying complex. Therefore it sends fibrations to fibrations and weak equivalences to weak equivalences. W 1.47. While the right adjoint will always preserve quasi-isomorphisms, the left adjoint has no reason to do so. Take the canonical map f : Ass → Com. The induction f ! takes an associative algebra to its abelianisation. Let A be the quasi-free1 associative algebra,

A = T k (x, y, z), dx = dy = 0, dz = xy -yx.
The algebra A is quasi-isomorphic to its own homology H(A) = Sym k (x, y).

But the (homology of the) abelianization of A is Sym k (x, y, z).

1.4.3. Model structure on operads.

In this Section, we introduce a model structure on operads. This model structure is obtained via transfer from the model structure on Seq Σ . This discussion would also extend when replacing Mod k by a "good enough" model (see [START_REF] Berger | Axiomatic homotopy theory for operads[END_REF]) category such as sSet or Mod A for example. There is no natural model structure on cooperad having weak equivalences given by all quasi-isomorphisms and making the bar-cobar adjunction Quillen. This comes from the fact that cobar does not preserve quasi-isomorphisms.

But despite this last remark, the bar-cobar adjunction is well behaved with respect to the model structure on operads.

Theorem 1.52 ([LV12, Theorem 6.6.3]). Both the unit : ΩBP → P and the counit η : C → BΩC of the bar-cobar adjunction are quasi-isomorphisms. Sketch of proof. Basis elements of ΩBP can be seen as trees whose vertices are themselves ("inner") trees whose vertices are labeled by P. Filtering by the number of inner edges we recover at the level of the associated graded only the piece of the di erential corresponding to the one from P and a second one making an inner edges into an outer edge. One can check that the associated graded retracts into P by constructing a homotopy that makes an outer edge into an inner edge. A similar argument shows that C → BΩC is a quasi-isomorphism.

Proposition 1.53 ([LV12, Proposition 6.5.3]). B preserve quasi-isomorphisms.

In general Ω will not preserve all quasi-isomorphisms. It preserves quasiisomorphisms between non-negatively graded cooperads such that C (0) = 0 and C (1) = k (see [LV12, Proposition 6.5.6]).

De nition 1.54.

• A twisting morphism (Definition 1.38) α : C P is called Koszul if the induced map ΩC → P is a quasi-isomorphism. The full subcategory of Tw generated by Koszul twisting morphisms will be denoted by Kos.

• A twisting morphism α : C P is called weakly Koszul if the in- duced map C → BP is a quasi-isomorphism.
• The counit morphism ΩBP → P is a quasi-isomorphism (see Theorem 1.52) and induces the universal twiting morphism BP → P ∈ Tw (see Section 1.6).

Since the bar construction preserves quasi-isomorphisms (see Proposition 1.53), Koszul morphisms induce a quasi-isomorphism BΩC → BP and are therefore weakly Koszul. There is also a version of the bar-cobar adjunction between (co)algebras associated to a given twisting morphism.

Proposition 1.55. If C ∈ coOp satis es C (0) = 0 and C (1) = k then ΩC is co brant. In particular, if P ∈ Op satis es the same conditions, the unit map ΩBP → P is a co brant resolution of P.

Koszul Duality.

In Theorem 1.46 we saw that from the homotopical point of view it is the same to consider algebras over an operad P or over a cofibrant Q replacement of such an operad. If P has no di erential, algebras over Q are necessarily more complicated (or at least "bigger") structure. On the other hand, algebras over cofibrant operads, especially those of the form ΩC , have very nice properties that we will discuss in the next section. One of such properties was foreshadowed in the Rosetta Stone 1.39, where we saw that maps out of ΩC amount to solving the Maurer-Cartan equation. This section is all about finding a "simple" cofibrant replacement of operads using the methods of Koszul duality, originally introduced by Ginzburg and Kapranov [START_REF] Ginzburg | Koszul duality for operads[END_REF]. We will assume in this Section that P(0) = 0 and P(1) = k so that we have a canonical cofibrant replacement thank to Proposition 1.55.

De nition 1.56. Given an operad P, we say that a cooperad C is the generalized Koszul dual cooperad of P if there is a quasi-isomorphism ΩC → P.

In particular it is given by a Koszul twisting morphism C P (Definition 1.54). R 1.57. If P(0) = 0 and P(1) = k, a generalised Koszul dual always exists since, thank to Proposition 1.55, BP is a generalized Koszul dual of P (given by the universal twisting morphism from Definition 1.54).

Morover, the generalized Koszul dual is essentially unique. Given the cofibrant resolution ΩC → P, we can always find the following sequence of quasiisomorphisms (thanks to Theorem 1.52 and Proposition 1.53):

C BΩC BP counit
The main problem is that BP is typically a very big cooperad. We will then be interested in a class of operads who admit Koszul dual cooperad which are easy to compute. This is the class of Koszul operads, and these operads are in particular quadratic operads.

De nition 1.58. An operad (respectively cooperad) is quadratic if it is of the form P(E, R) (respectively C (E, R)) with quadratic relations, that is R ∈ T (2) E (respectively R ∈ (T co ) (2) E) (see Constructions 1.11 and 1.19). R 1.59. The degree shift isomorphism T (1) E[1] → T (1) E induces a canonical twisting morphism κ : C (E[1], R[2]) P(E, R) (see [LV12, Sec- tion 7.4.1]). De nition 1.60. A quadratic operad P = P(E, R) is Koszul if ΩC (E[1], R[2]) → P is a quasi-isomorphism. In other words, if C (E[1], R[2]
) is a generalized Koszul dual of P. In that case, we define the Koszul dual cooperad of P to be

P ¡ := C (E[1], R[2]).
Classically, Koszul duality is a duality between operads and operads (rather than operads and cooperads). To recover such a duality we could in principle simply define the Koszul dual operad of a Koszul operad P to be (P ¡ ) ∨ , which is equivalent data if the generators are arity-wise finite dimensional.

In practice, since many important Koszul operads (for example Ass, Com and Lie) are binary and concentrated in degree zero, one introduces a degree shift so that their Koszul duals are also concentrated in degree zero. A way to achieve this is to tensor it in each arity with the endomorphisms operad of k[1], which has the e ect of raising the degree of the arity n piece by n -1:

Q{-n} := Q ⊗ End k[n]
This is mostly for psychological reasons, since the categories of algebras are equivalent via the map shifting the degree of the underlying vector space.

De nition 1.61. Let P = P(E, R) be a Koszul operad. The Koszul dual operad of P is:

P ! := (P ¡ ) ∨ {-1}
If P is binary, this takes the form P = P sgn ⊗ E ∨ , R ⊥ , where sgn denotes the sign representation of Σ 2 and R ⊥ denotes the orthogonal complement

R ⊥ ∼ = T (2) E R ∨ .
Proposition 1.62. We have that (P ! ) ! = P for P a Koszul operad arity-wise dualizable. Furthermore, P is Koszul if and only if P ! is Koszul.

Proof. The first part is immediate from the definition. For the second statement, if ΩP ¡ → P is a quasi-isomorphism, taking B on both sides yields a quasi-isomorphism P ¡ → BP. Dualizing and shifting gives the result.

While not all quadratic operads are Koszul, this should be taken as a very common property for all operads appearing in practice. In particular we have:

Theorem 1.63. The operads Ass, Com, Lie, preLie and Perm are Koszul. Furthermore, we have the following Koszul dualities:

Ass ! = Ass Com ! = Lie preLie ! = Perm
Notation 1. Given P a Koszul operad, we denote

P ∞ := ΩP ¡ ,
which is the minimal cofibrant resolution of P. Algebras over P ∞ are sometimes called homotopy P-algebras. For the associative, Lie and commutative operads, we will rather use the classical notations A ∞ , L ∞ and C ∞ respectively.

1.6. Bar-Cobar Adjunction for Algebras.

De nition 1.64 ([LV12, Section 11.3]). Given a twisting morphism α : C P, we can define a bar-cobar adjunction associated to α:

Ω α : coAlg conil C Alg P : B α
where Ω α is defined as the quasi-free P-algebra, given on objects by Ω α (C) = (P • C, d C + d P + d Ω ) together with the cobar di erential extending the di erential on P, on C and with d Ω the unique di erential extending the following composition:

C C • C P • C ∆ C α•id B α is the quasi-cofree C -coalgebra B α (A) = (C • A, d A + d C + d B ) with d B
the unique codi erential on C • A extending the following composition:

C • A P • A A α•id µ A E 1.65.
• For g a Lie algebra, the Bar construction associated to the canonical twisting morphism gives the Chevalley-Eilenberg chain complex up to a degree shift (which is in fact a shifted cocommutative coalgebra):

B κ g = (Sym k (g[1]) [-1], δ CE ) = CE * +1 (g)
• For A an associative algebra, we obtain the Hochschild chain complex (a shifted coassociative coalgebra):

B κ A = n≥1 A ⊗n [n -1] = CH * +1 (A) R 1.66.
There is also a notion of twisting morphism from a C -coalgebra C to a P-algebra A, given by [LV12, Definition 11.1.1]. This leads to a version of the Rosetta stone for algebras (see [START_REF] Loday | Algebraic operads[END_REF]Proposition 11.3.1]). R 1.67. The bar-cobar adjunction is natural with respect to morphisms of twisting morphism (Definition 1.38) in the following sense. Given a morphism of twisting morphisms:

C P D Q α f g β
we have the following commutative diagrams of left and right adjoint functors.

coAlg C Alg P coAlg D Alg Q Bα f ! B β g * coAlg C Alg P coAlg D Alg Q f * Ωα g ! Ω β
If we ignore the di erentials, this is just follows from the fact that the composition of adjoints is an adjoint. One can then check that the di erentials agree. See [CT20, Lemma 3.25] for a proof of the commutativity the first diagram (which is equivalent to saying that the diagram of right adjoints is also commutative).

The condition of being Koszul gives extra properties to the adjunction, in particular Theorems 11.3.3 and 11.3.4 in [START_REF] Loday | Algebraic operads[END_REF] relate the criteria of being Koszul to having a unit and counit of the bar-cobar adjunction that are quasiisomorphisms.

Proposition 1.68 ([LV12, Corollary 11.3.5]). For P as Koszul operad, the counit Ω κ B κ A → A is a quasi-free resolution of A and in particular Ω κ B κ gives a canonical co brant replacement on the category of P-algebras. Furthermore, if C is a conilpotent

P ¡ -coalgebra, the unit C → B κ Ω κ C is a quasi-isomorphism.
Notice that the bar-cobar adjunction give us a direct connection between algebras over a Koszul operad P and algebras over it's Koszul dual P ! . We may define the Koszul dual algebra of a P-algebra A to be D(A), where D is given by:

D : Alg P Bκ -→ coAlg P ¡ ∨ → Alg P ! {-1} op A →A[-1] -→ Alg P ! op E 1.69.
• The dual commutative algebra of a Lie algebra g is its Chevalley-Eilenberg cochain complex with values in the trivial module k:

D(g) = CE * (g) = Sym k (g[1]) ∨ , d CE
• Similarly, the dual algebra of an associative algebra A is its Hochschild cochain complex with values on the trivial module k:

D(A) = CH * (A) = Hom(A[1] ⊗ * , k), d Hoch W 1.70.
Suppose the generators of P are finite dimensional. Despite the terminology "dual" there is no direct natural transformation between D 2 and id Alg P in any direction. However, if A is a degreewise finite dimensional P-algebra, we have B(A) ∨ = Ω(A ∨ ), and in that case, there is a map D 2 A → A which is equivalent to the bar-cobar resolution of A.

The bar-cobar adjunction has nice properties with respect to a model structure on coalgebras. 

Ω α : coAlg C Alg P : B α
This construction gives us a Quillen adjunction which is an equivalence if the twisting morphism is Koszul. This adjunction is natural in the choice of α, P and C (see [DCH16, Remark 3.12]). R 1.72. If we take α : C → I the augmentation on C , we obtain a model structure transferred from Alg I = Mod k , where weak equivalences are quasi-isomorphisms. However we will not make use of this model structure, since it is not compatible with the one on P-algebras.

Corollary 1.73. Given a Koszul operad P, there are Quillen equivalences:

coAlg P ¡ Alg P Alg P∞
Proof. The first equivalence follows from Theorem 1.71 and the second one from Theorem 1.46.

A comment on operads as algebras.

The reader might wonder what is the relation between the bar-cobar adjunction for algebras and for operads. In a roundabout way, operads can themselves be seen as algebras over a colored operad O with set of colors S = N (that is, O is a monoid in Fun(N N , Mod k ), see Remark 1.3). O is generated by binary operations consisting of the partial compositions • i (see [START_REF] Dehling | Symmetric homotopy theory for operads[END_REF]). This observation can be used to show that 1.74. It is a curious observation that given a permutative algebra A, we can define an operad P where P(n) = A for all n and setting all partial compositions to be the multiplication on A. Using that preLie ! = Perm we can use this observation to recover conceptually (albeit in an overcomplicated way) the pre-Lie structure on the totalization Tot(P) of an operad as follows: There is an adjunction between operads and colored operads

L : Op cOp : R in which L(Q)(c 1 , . . . , c n ; c 0 ) = Q(n)
for any choice of colors. The observation above manifests itself as a map of operads O → L(Perm), which by taking Koszul duals yields a map L(preLie

) → O ! = O.
The data of an operad structure on P is equivalent to a map O → End P .

Composing these maps and applying the adjunction, we obtain a map preLie → R(End P ),

One can show that R(End P ) = End Tot(P) so the map above recovers precisely the pre-Lie structure on Tot(P).

For more details, see [CCN20, Section 3.3].

A D T

As mentioned in the introduction, it is an old heuristic that deformation problems are in correspondence with Lie algebras. We will not define precisely for now what we mean by deformation problem, a formalisation of this correspondence will be treated in detail in Section 3. Nevertheless we point out that there is no general explicit procedure to produce a Lie algebra out of a deformation problem.

In the other direction though, this heuristic tells us that if for some reason we have access to the Lie algebra g controlling a deformation problem, then the set Maurer-Cartan elements of g, MC(g), corresponds to such deformations. Furthermore, a deformation problem should come with some notion of equivalence between two deformation problems which corresponds on the Lie algebra side, to an action of the "gauge group" or "exponential group" of g on MC(g).

The goal of this section is to present how the operadic tools treated in the previous section give us very e cient tools to produce Lie algebras associated to certain algebraic deformation problems. All along we will work with a cooperad C such that C (0) = 0 and C (1) = k so that ΩC is cofibrant. This condition implies in particular that C is conilpotent.

We will start, in Section 2.1, by recalling the definitions of homotopy Palgebras, ∞-morphisms and the homotopy transfer theorem. It turns out that these homotopy algebras provide a good context in which we can deform algebraic structures. In Section 2.2, we discuss the construction of spaces of deformations as the Maurer-Cartan space of the convolution Lie algebra. In that section, we will define two groupoids, one given by some Maurer-Cartan element together with gauge action between them, and the other given by deformations of algebraic structures together with equivalences of such deformations. The main result, Theorem 2.35, says that those groupoids are in fact equivalent. Then, in Section 2.3, we will focus on the interplay between commutative and associative structures.

Algebraic Structures Up to Homotopy.

As we addressed in Section 1.4, the non-invertibility of quasi-isomorphisms of P-algebras makes the study of the question of "A being quasi-isomorphic to B" rather unpleasant since it, in principle, forces us to consider all possible zig-zags of quasi-isomorphisms of algebras between A and B.

On the other hand, the category of P-algebras forms a model category in which every object is fibrant, so this already reduces that question to the existence of a single quasi-isomorphism Q(A) ∼ → B, where Q(A) is any cofibrant replacement of A. This is not always the best approach to this question or more generally to study the homotopy category of P-algebras.

In this section, we will always assume that P is a Koszul operad. We will see that the class of morphisms of P-algebras can be enlarged to an explicit notion of ∞-morphism, in which ∞-quasi-isomorphisms admit quasi-inverses, which gives us great control over the homotopy category. This is summarized by the following theorem.

Theorem 2.1. The faithful inclusion from P-algebras with ordinary morphisms to P-algebras with ∞-morphisms induces an equivalence at the level of the homotopy categories.

In particular, two P-algebras are weakly equivalent if and only if there exists a direct ∞-quasi-isomorphism between them.

Homotopy algebras and morphisms.

We will in fact start by enlarging the objects of the category of P-algebras rather than the morphisms, by going to the category of P ∞ -algebras, which recovers the classical notions of A ∞ -and L ∞ -algebras. The real advantages of doing so will only appear in Section 2.1.2, but for the moment notice that from the homotopical point of view, nothing is gained or lost thanks to Corollary 1.73. There are several di erent equivalent ways to define P ∞ -algebras. Given our presentation, the most natural definition is to define a P ∞ -structure on A to be a morphism P ∞ := ΩP ¡ → End A . But using Proposition 1.39, we have the equivalences:

Hom Op (P ∞ , End A ) Tw(P ¡ , End A ) Hom coOp conil P ¡ , BEnd A Lemma 2.2. A P ∞ -structure on A is exactly given by a codi erential on the cofree P ¡ -algebra P ¡ (A). We denote by codiff(P ¡ (A)) the set of such codi erentials.

By codi erential on P ¡ (A), we mean a degree 1 square zero coderivation D, such that the underlying map A → A is just the di erential on A:

D = d A + D ≥2
Proof. This is essentially the content of [ is filtered complete, with filtration given by the vertex filtration on T c (E). This filtration splits as a weight grading by the number of vertices:

Tot(Conv(P ¡ , End A )) = n≥1 Hom Σ (P ¡ (n) , End A ))
A twisting morphism then decomposes in φ = φ 1 + φ 2 + • • • and the Maurer-Cartan equation becomes:

- p+q=n p<n,q<n φ k φ l = ∂φ n
where ∂ and give the pre-Lie structure of the convolution pre-Lie algebra. E 2.4. • As ∞ and A ∞ -algebras:

For simplicity reasons let us consider As be the non-symmetric version of the associative operad and let us describe homotopy algebras over it. An A ∞ -algebra structure is given by a twisting morphism in Tw(As ¡ , End A ). Forgetting for now the Maurer-Cartan condition, this is given by a set of maps from As ¡ (n) to End A (n)[-1] for each n ∈ N. We have that:

As ! (n) = (As ¡ (n)) ∨ ⊗ End k[-1] (n) (As ¡ (n)) ∨ [n -1] Therefore we get As ¡ (n) = (As ! (n)) ∨ [1 -n] = As(n) ∨ [1 -n]
(since As ! = As). Therefore we have an isomorphism As

¡ (n) ∼ = k[1 -n] for n ≥ 1 and such a morphism is given for each n by an element in End A (n) of degree 2 -n, that is an element of degree 0 in Hom k (A ⊗n , A) [n -2].
This means that for each n ≥ 2, we get by an n-ary operation of degree 2 -n:

µ n : A ⊗n → A
satisfying some conditions corresponding to the Maurer-Cartan equation satisfied by the twisting morphism:

∂α + α α = 0
where ∂ is the di erential on Tw(As ¡ , End A ) given by ∂α = α • d As ¡ + ∂ A • α. But we have ∂ As ¡ = 0 and we get:

∂ A • α + α α = 0
From the codi erential point of view, P ¡ (A) is simply the shifted cofree tensor coalgebra on the graded module A[-1] given by the tensor algebra

(T (A[-1]))[1].
Then the maps µ n correspond to a map, D, on P ¡ (A) with

D = d A + µ 2 + • • • : P ¡ (A) → A
defining a derivation D on P ¡ (A). Then, if we write µ 1 := d A , the condition D 2 = 0 recovers the classical equations encoding the associativity up to homotopy of the A ∞ -algebras:

p+q+r=n (-1) p+qr µ p+r+1 • (id ⊗p ⊗ µ q ⊗ id ⊗r ) = 0, ∀n ≥ 1
• Lie ∞ and L ∞ -algebras: Similarly to the associative situation, we can see that Lie ¡ (n) ∼ = k[1 -n] with the sign action of Σ n . An L ∞ -algebra structure on A is given by a sequence of graded skew-symmetric maps for each n ≥ 2:

n : A ⊗n → A[n -2]
The cofree Lie ¡ -coalgebra generated by A is given by

(Sym A[-1])[1] together with the natural decomposition product. If D : Lie ¡ (A) → A
is the degree 1 codi erential associated to the sequence of n , and d A the di erential on A, then D 2 = 0 is equivalent to the following conditions:

p+q=n p>1,q>1 σ∈Unsh(p,q) sgn(σ)(-1) (p-1)q ( p • q ) σ = ∂ A ( n )
One of the most important feature of these homotopy algebras is the notion of ∞-morphism. They simultaneously control exactly the homotopy theory of these algebras, have very nice invertibility properties and naturally appear in the homotopy transfer theorem (Theorem 2.12).

De nition 2.5. Let A and B be two P ∞ -algebras given by codi erentials

P ¡ (A), ∆ A and P ¡ (B), ∆ B (see Lemma 2.2). An ∞-morphism from A
to B, denoted f : A B, is defined to be a morphism of P ¡ -coalgebras preserving the codi erential:

f : P ¡ (A), ∆ A → P ¡ (B), ∆ B R 2.6
. By virtue of being a map into a cofree conilpotent coalgebra, an ∞-morphism f : A B is in fact completely determined by the projection P ¡ (A) → B or equivalently, thanks to Lemma 1.24, by a map f : P ¡ → End A B . We call f 1 := f (I) : A → B the base map of the ∞-morphism. It is a morphism of cochain complexes and we interpret the other component of f as the homotopies controlling the failure of f 1 to intertwine the P or P ∞ structures.

Proposition 2.7. An ∞-morphism f : A B can be described by a map f :

P ¡ → End A B
in Seq Σ such that the following diagram commutes:

P ¡ End A End B End A B µ B µ A f
such that f satis es an extra condition described in [LV12, Theorem 10.2.3] and with the maps of the diagram are de ned by: Let A and B be A ∞ -algebras described by maps µ A i and µ B i respectively. An ∞-morphism f : A B is given by maps

Hom k (id, f 1 ) : End A → End A B Hom k (f ⊗• 1 , id) : End B →
f n : A[1] ⊗n → B[1]
for all each n ≥ 1. The condition that the induced map Ass ¡ (A) → Ass ¡ (B) preserves the di erential is, for all n ≥ 1:

0≤i+j≤n f i+j+1 • (1 ⊗i ⊗ µ A n-i-j ⊗ 1 ⊗j ) = r≥1 i 1 +•••+ir=n µ B r • (f i 1 ⊗ • • • ⊗ f ir )
• L ∞ -morphisms: Let A and B be L ∞ -algebras described by maps A i and B i respectively (with

A 1 = d A and B 1 = d B ). An ∞-morphism f : A B is given by maps f n : Sym n (A[1]) → B[1] for all each n ≥ 1. The condition that the induced map Lie ¡ (A) → Lie ¡ (B) preserves the dif-
ferential is a symmetrization of the A ∞ situation and for all n ≥ 1:

i+j=n σ∈Sh(i,j) (σ)(f j+1 • 1 A i ) σ = r≥1 i 1 +•••+ir=n σ∈Sh(i 1 ,••• ,ir) (σ) B r •(f i 1 ⊗• • •⊗f ir ) σ
De nition 2.9. We say that f is an ∞-(quasi)-isomorphism if the induced map f 1 : A → B is a (quasi)-isomorphism. An ∞-isotopy between two P ∞ -structure on A given by α, β :

P ∞ → End A is an ∞-morphism f : P ¡ → End A A = End A between α and β such that f 1 := id A . R 2.10. A morphism f : A → B of complexes between two P ∞ - algebras is said to extend to a ∞-morphism of P ∞ -algebra if there exists an ∞-morphism f ∞ : A B such that f = (f ∞ ) 1 .
2.1.2. Homotopy transfer theorem.

As a general heuristic, there is a trade-o between how small a P-algebra is and how simple its structure is, while preserving the quasi-isomorphism type.

For example, a quasi-free resolution of an algebra A (such as ΩBA) is simple in the sense that it is there are no relations, but free objects tend to be quite big.

Trying to go in the other direction, the smallest possible P-algebra that has any chance of being quasi-isomorphic to A is its own homology. In case A is not formal, the homotopy transfer theorem tells us that in that case we can insist on working with the cochain complex H(A) but the price to pay is to have to endow H(A) with a di erent P ∞ -algebra structure on it. It might look odd to consider a P ∞ structure on a complex with trivial differential, but this just means that while there exist higher operations, the Palgebra equations are satisfied on the nose. In that situation, the P ∞ structure on H(A) will recover the canonical P-algebra structure.

Given a quasi-isomorphism A → B of cochain complexes, we would like to know when we can transfer a P-algebra structure (or even P ∞ -structure) from A to B (or vice versa). In particular it can be used to obtain P ∞ structures on homology. We start by describing the conditions on our quasiisomorphism that permits such a transfer. This procedure gives a way to produce P ∞ -structures on cohomology, transferring from the deformation retract of cochain complexes on cohomology (see Proposition 1.43).

De nition 2.11. We say that (B, d B ) is a homotopy retract of (A, d A ) if there are maps of cochain complexes:

(A, d A ) (B, d B ) h p i such that i is a quasi-isomorphism and Id A -ip = d A h -hd A .
This pair is a deformation retract if moreover pi = id, and a strong deformation retract if we have the side conditions ph = hi = h 2 = 0.

To go from a deformation retract to a strong one, it su ces to change the homotopy

h to h = -h d A h , where h = (d A h + hd A )h(d A h + hd A ).
Theorem 2.12 (Homotopy Transfer Theorem, [LV12, Theorem 10.3.1]).

Let P be a Koszul operad and let (B, d B ) a homotopy retract of (A, d A ). Then, any P ∞ -algebra structure on A can be transferred to a P ∞ -algebra structure on B such that i extends to a ∞-quasi-isomorphism i ∞ . Moreover, the P ∞ structure on A and i ∞ can be explicitly described (see Remarks 2.14 and 2.15).

The proof is based on the Rosetta stone (Proposition 1.39) so that finding a P ∞ -structure on B boils down to finding a map P ¡ → BEnd B , which can be reduced to finding a map, Ψ : BEnd A → BEnd B that will make the following diagram commute:

P ¡ BEnd A BEnd B Ψ
This is the goal of the following Lemma.

Lemma 2.13 ([LV12, Section 10.3.2]). We can construct a map of cooperads Ψ :

BEnd A → BEnd B that extends (by cofreeness) the map sending m ∈ End A (n) to p • m • i ⊗n ∈ End B (n).
R 2.14. We will denote by sm the element of a cochain complex V [-1] corresponding to m ∈ V but in degree 1 higher. To understand the map obtained in Lemma 2.13, recall from Definition 1.36 that BEnd A is the cofree cooperad on End A [-1] together with the bar di erential. The idea is to define a map that will send a tree in BEnd A to an element in End B by adding i to each leaf of the tree, p to the root, and h to each internal edge:

sm 1 sm 2 sm 3 sm 4 sm 5 → s          m 1 m 2 m 3 m 4 m 5 i i i i i i p h h h h         
Composing all the maps in the tree on the right hand side gives an element in End B of same degree as the left hand side, and the map BEnd A to End B naturally extends to the map of Lemma 2.13. R 2.15. The ∞-morphism i ∞ is constructed by defining a map P ¡ → End B A as:

i ∞ : P ¡ T co P ¡ T co (End A [-1]) End B A ∆ T co sµ A Ψ i ∞ : I → i ∈ Hom k (B, A) ⊂ End B A
The morphism Ψ :

T co (End A [-1]) → End B
A is defined just as Ψ, except for the root which is not labeled by p:

sm 1 sm 2 sm 3 sm 4 sm 5 → s             m 1 m 2 m 3 m 4 m 5 i i i i i i h h h h            
Focusing on the case where B is the chain complex given by the homology of A, Proposition 1.43 guarantees the existence of a deformation retract.

Proposition 2.16 ([LV12, Proposition 10.3.9]). There exists a strong deformation retract from A to its homology:

(A, d A ) (H(A), 0) h p i
In this case, p can also be extended to an ∞-quasi-isomorphism of P ∞ -algebras:

p ∞ : A H(A)
In particular, the homology of a P-algebra always carries a transferred P ∞structure. This structure depends on the choice of deformation retract, and therefore it is only unique up to ∞-isomorphism.

E 2.17. For any topological space X, the cup product ∪ endows the singular cochain complex C * Sing (X) with an associative algebra structure. Choosing a deformation retract to the cohomology, we transfer an A ∞ structure to H * (X). For n = 3 the product µ 3 recovers essentially the Massey products of X [START_REF] Massey | Some higher order cohomology operations[END_REF], which are generalized to operadic algebras in [START_REF] Muro | Massey products for algebras over operads[END_REF]. Classically, the Massey product of classes x, y, z ∈ H * (X) is only defined if xy = 0 or yz = 0 and the result takes value in a quotient. The disappearance of this ambiguity in our case comes from the choice of deformation retract. More generally, the higher (µ n≥4 ) products obtained from the homotopy transfer theorem are also related to the so-called higher Massey products, but the relation is a bit more subtle [START_REF] Flynn-Connolly | Higher order massey products for algebras over algebraic operads[END_REF].

The homotopy transfer theorem enables a proof of Theorem 2.1 without appealing to any model categorical arguments. More generally, the same arguments show that all inclusions we can write between the four categories given by strict/homotopy P-algebras with strict/∞ morphisms induce equivalences at the level of homotopy categories, appealing to the property known as recti cation: Every P ∞ -algebra A is equivalent to a strict P-algebra, namely

Ω κ B κ A.
Sketch of proof of Theorem 2.1. The proof of this result rests on two key points. Given an ∞-quasi-isomorphism of P-algebras f : X Y :

(1) There is a zig-zag of quasi-isomorphisms connecting X to Y , (2) There is g : Y X such that the two composites are the identity in homology. For the first point, notice that by the bar-cobar adjunction f : BX → BY is equivalent to a map ΩBX → Y . One can therefore consider the short zig-zag

X ∼ ← ΩBX ∼ → Y .
For the second point, one first consider the case where d X = 0 = d Y , i.e., we need to know that ∞-isomorphisms of P ∞ are indeed invertible. This can be shown by an argument similar to the invertibility of formal power series (see [LV12, Theorem 10.4.1]). In case of non-trivial di erentials, by the homotopy transfer theorem we can reduce the problem to the homology. More precisely, the composite of ∞quasi-isomorphisms

H(X) ∼ i∞ X ∼ f Y ∼ p∞ H(Y ) (5)
is an ∞-isomorphism, therefore we set g to be

Y ∼ p∞ H(Y ) ∼ H(X) ∼ i∞ X,
where the middle map is the inverse of the composition given by (5).

For a general study of the operadic homotopy transfer theorem in the spirit of the homological perturbation lemma see [START_REF] Berglund | Homological perturbation theory for algebras over operads[END_REF]. This framework gives an extension of i, p and h.

Deformation of Algebraic Structures.

This section is devoted to the study of deformations of algebraic structures. The set of Maurer-Cartan elements (Definition 1.37) is not only good to define twisting morphism but is known to describe the set of deformations controlled by a Lie algebra g. We are interested in such deformations up to equivalences. Such equivalences usually coincide with the general notion of gauge equivalences: Since a finite dimensional classical (i.e. g = g 0 ) Lie algebra integrates to a Lie group via an exponential map, a (dg) Lie algebra g formally integrates to the so-called gauge group exp(g 0 ). The gauge group will act naturally on MC(g).

Given A ∈ Mod k , the
To talk about exponentials and deal with convergence issues, we will need to use complete filtered Lie algebras. Taking complete filtered Lie algebras will ensure that all the ensuing infinite sums will converge.

In this Section, we will describe the so called Deligne groupoid whose objects will be the Maurer-Cartan elements of a Lie algebra with morphisms given by a gauge action of the gauge group defined by "exponentiating" our Lie algebra. We will see later, with Theorem 2.35, that this is equivalent to a groupoid encoding deformations of algebraic structures.

De nition 2.18. We say that g is a complete positively ltered Lie algebras or just a complete Lie algebra if it is equipped with a complete Hausdor descending filtration:

g := F 1 g ⊃ F 2 g ⊃ • • •
being complete Hausdor here means that there is a equivalence g → lim n g F n g . To any filtered Lie algebra, one can associate a complete Lie algebra, ĝ = lim n g F n g , called its completion.

We also assume that the filtration is compatible with the di erential and the Lie bracket:

d(F n g) ⊂ F n g [F p g, F q g] ⊂ F p+q g
We will denote by g 0 the set of degree 0 elements.

For now, let us assume that the Lie structure on g is obtained from a unital associative product [x, y] = x y -y x. Then, assuming convergence, we can write down the usual formula for the exponential:

exp : g 0 -→ g 0 X → e X = k X k k!
The image of this map forms a group with respect to and unit 1, which we would like to call the gauge group G. Taking the formal logarithm, we can equivalently define the gauge group as a group structure on the underlying set of g 0 : G = (g 0 , X • G Y := log(e X e Y ), 0).

However, this product does not make sense for a general Lie algebra. To address this issue, we can value this exponential in the complete universal enveloping algebra of g 0 :

exp : g 0 -→ Ug 0 X → e X = k X k k!
In fact, the tentative formula that we wrote before in the associative case log(e X e Y ) turns out to be expressible purely in terms of the Lie bracket of g 0 in a universal way. This formula is called the BCH (Baker-Campbell-Hausdor ) formula, and its initial terms are:

BCH(X, Y ) = X + Y + 1 2 [X, Y ] + 1 12 ([X, [X, Y ]] + [Y, [Y, X]]) + . . . .
Proposition 2.19. There exist a universal BCH formula, such that:

e X e Y = e BCH(X,Y )
In particular, the exponential map induces a bijection between g 0 and its image:

exp : g 0 → G ⊂ Ug 0
We call the group G := exp(g 0 ) ∼ = (g 0 , BCH, 0), the gauge group of g.

Proof.

To show a universal BCH formula, it is enough to show that such a formula exists on the free complete Lie algebra on two generators Lie(X, Y ).

Note that its universal enveloping algebra is free complete associative algebra on X, Y , i.e. the algebra of non-commutative formal power series Ass(X, Y ) = k X, Y .

One can show that the exponential map k X, Y → k X, Y restricts to a bijection from the primitive elements of k X, Y to the grouplike elements (see 1.2.1). By the Poincaré-Birko -Witt theorem, the set of primitive elements of k X, Y is precisely the Lie algebra Lie(X, Y ) and the group-like elements form a group with respect to the product and unit of the universal enveloping algebra.

The BCH formula is therefore obtained by taking the exponentials of X, Y ∈ Lie(X, Y ), multiplying them into a group-like element e X • e Y and taking the inverse of the exponential.

De nition 2.20.

There is an action of the gauge group, exp(g) = (g 0 , BCH), on the set of Maurer-Cartan elements, MC(g), defined by:

e λ .x = x + e ad λ -id ad λ (d x λ) := x - n k=0 [λ, -] n (n + 1)! (d x λ)
where d x := [x, -] + d is the di erential on g twisted by the Maurer-Cartan element x. We will denote by Del(g) := MC(g) the set of Maurer-Cartan elements. The associated action groupoid is called the Deligne groupoid, denoted Del(g).

When dealing with homotopy theory, we often need an ∞-groupoid to obtain a full "space" with higher homotopies. It turns out that there is an ∞-groupoid version of the Deligne groupoid.

De nition 2.21 (Deligne ∞-Groupoid, [DR15, Section 2.2]). Consider the simplicial commutative k-algebra Ω[∆ • ] (sometimes written Ω • ) defined by:

Ω[∆ n ] := k[t 0 , • • • , t n , dt 0 , • • • , dt n ] t i = 1, dt i = 0
with the di erential sending t i to dt i . For any Lie algebra g, g⊗Ω[∆ • ] is a simplicial Lie algebra where for all n ∈ N, g ⊗ Ω[∆ n ] is the Lie algebra with Lie bracket:

[v ⊗ α, w ⊗ β] = [v, w] g ⊗ α.β
Then the Deligne ∞-groupoid is the simplicial set defined by:

Del(g) := MC(g ⊗Ω[∆ • ]) with g ⊗Ω[∆ • ] := lim n g F n g ⊗Ω[∆ • ]
. This definition from [START_REF] Dolgushev | A version of the Goldman-Millson theorem for filtered L∞-algebras[END_REF] enables an extension of Theorem 2.23 to Theorem 2.25. This simplicial set is an ∞groupoid (i.e. a Kan complex) thanks to [DR17, Proposition 4.1].

Proposition 2.22 ([DR15, Lemma B.2]).

There is a bijection between the connected components of the Deligne groupoid and those of the ∞-Groupoid of Maurer-Cartan elements: Del(g) ∼ := π 0 (Del(g)) π 0 (Del(g))

The equivalence relation ∼ is given by the gauge equivalences obtained from the action of the gauge group.

Theorem 2.23 (Goldman-Milson, [START_REF] Dolgushev | A version of the Goldman-Millson theorem for filtered L∞-algebras[END_REF]). Given f : g → h, a ltered quasiisomorphism (see 2.24) of ltered complete Lie algebras, we have a bijection:

Del(g) ∼ → Del(h) ∼
From the deformation theoretical perspective, this result tells us that two Lie algebras that are quasi-isomorphic encode equivalent deformation problems.

In practice, one might be interested in showing that a Lie algebra is formal in order to have the "simplest possible description" of the deformation problem at hand. R 2.24. The hypothesis that f : g → h is a ltered quasi-isomorphic is a stronger requirement than just a quasi-isomorphism, meaning that f induces a quasi-isomorphism on the associated graded. As an example, let g be the two dimensional Lie algebra spanned by an element x in degree 1, and an element [x, x] in degree 2, such that dx = -1 2 [x, x]. This Lie algebra is quasi-isomorphic to 0, but not filtered quasi-isomorphic to 0 for any possible filtration. Indeed, g has two Maurer-Cartan elements 0 and x which are not equivalent, since the gauge group is trivial.

One can suspect that the Goldman-Milson should generalise to the ∞-case, since ∞-morphisms are equivalent to zig-zags of strict morphisms and L ∞algebras are rectifiable to strict Lie algebras. Indeed, given a complete L ∞algebra g, the corresponding Maurer-Cartan equation is:

MC(g) = {x ∈ g 1 | dx + 1 2! 2 (x, x) + 1 3! 3 (x, x, x) + • • • = 0}.
This is functorial with respect to any ∞-morphism f : g h with components (f n ) n≥1 . We get a map:

f : MC(g) → MC(h) x → n≥1 1 n! f n (x, . . . , x).
The Goldman-Milson Theorem indeed generalises to this setting and furthermore, thanks to Proposition 2.22, we can interpret the Goldman-Milson theorem as the π 0 case of an equivalence of the Deligne ∞-groupoid:

Theorem 2.25 ([DR15, Theorem 1.1]). Let f : L → L be an ∞-morphism between complete positively ltered L ∞ -algebras compatible with the ltration. If the linear term f 1 : L → L is a ltered quasi-isomorphism, then it induces a weak homotopy equivalence:

Del(L) → Del(L )

A digression on variations of the Deligne groupoid.

Given a complete Lie algebra g, it follows from Ω[∆ 0 ] = k that the 0-simplices of the Deligne groupoid Del(g) are precisely the Maurer-Cartan elements of g. In light of Proposition 2.22, it would be natural to expect the 1-simplices of Del(g) to correspond to the gauge equivalences. This is however not true:

the set of 1-simplices is too big (even though it encodes the same gauge equivalence relation). In [START_REF] Getzler | Lie theory for nilpotent L∞-algebras[END_REF], Getzler solved this problem by considering the normalised cellular complex of the n-simplex C n := C * (∆ n ), which has the advantage of being much smaller than Ω[∆ n ] and the disadvantage of not being a commutative algebra.

Proposition 2.26 (Dupont contraction). There exists a simplicial deformation retract:

Ω[∆ • ] C • . h• p• i•
The word "simplicial" in the statement means that i • , p • and h • commute with the respective simplicial structures.

Theorem 2.27 ([Get09]). Given a complete Lie algebra g, the simplicial set

γ • (g) := MC(g ⊗Ω[∆ • ]) ∩ ker h •
is isomorphic to the nerve of the gauge group of g. In particular it is a ∞-groupoid and the inclusion γ • (g) → Del(g) is a homotopy equivalence. We call it the Getzler ∞-groupoid.

Despite its apparent simplicity, the condition h • (x) = 0 hides the di cult combinatorics of the Dupont contraction, which make some categorical properties of γ • more di cult to show. Let us briefly describe the operadic approach that led Robert-Nicoud and Vallette [START_REF] Robert | Higher Lie theory[END_REF] to give a more conceptual presentation of Getzler's ∞-groupoid.

The usual construction of the Deligne ∞-groupoid involves taking a simplicial framing of a Lie algebra g by associating to it the simplicial Lie algebra g ⊗ Ω[∆ • ]. Notice that its Maurer-Cartan elements can be identified with a mapping space. Let k be the 1-dimensional Lie ¡ coalgebra, with deg = 1 and ∆ = 1 2 ⊗ . Then if κ : Lie ¡ → Lie is the canonical Koszul morphism, we have

Del(g) = Hom Alg Lie (Ω κ (k ), g ⊗ Ω[∆ • ]).
Another way to cook up a simplicial set out of a Lie algebra g is to consider all maps from a cosimplicial Lie algebra into g. The cosimplicial Lie algebra we will consider is denoted mc • is in fact an L ∞ -algebra that is Koszul dual to the C ∞ -algebra structure on C • obtained by applying the homotopy transfer theorem (on every simplicial degree) to the Dupont contraction (see [RV20, Section 2.2]).

Theorem 2.28 ([RV20, Theorem 2.17]). There is an isomorphism

γ • (g) ∼ = Hom L∞ (mc • , g).
This description automatically gives some functoriality properties of γ • relative to some refined version of ∞-morphisms of Lie algebras and immediately produces the left adjoint L of γ • : Alg L∞ → sSets. As a beautiful application, let us point out that one of the key steps in [START_REF] Getzler | Lie theory for nilpotent L∞-algebras[END_REF] is showing that γ • (g) is an ∞-groupoid. Using the explicit formula for L one can easily show that given any horn Λ n k → γ • (g), the set of corresponding horn fillers is in bijection with the degree -n elements g -n . It follows that there always exist horn fillers since g -n is a vector space and is therefore nonempty! Furthermore, a canonical horn filler exists: 0 ∈ g -n . Such objects are called algebraic Kan complexes.

Proposition 2.29 ([RV20, Section 5.2]). Let x, y ∈ exp g be elements of the gauge group of g. They de ne a horn Λ 2 1 → γ • (g). The horn ller correponding to 0 produces the BCH formula:

2.2.3. Deformation Complex.
In this section we define a groupoid of deformations of algebraic structures obtained by considering algebraic structures on the tensor product with a local commutative algebra such that the quotient by the maximal ideal recovers the initial structure we want to deform. For example, if O X is some algebra of functions, a classical question is to understand its deformations as an associative algebra along the algebra of formal power series k [[t]]. This is given by an associative product on

O X ⊗ k k[[t]] = O X [[t]] such that for all a, b ∈ O X , a.b = a b mod (t).
First let us describe the space of P-algebra structures on a given cochain complex A. Such a structure naturally defines a map µ : P ∞ → End A . We know from Proposition 1.39 that this is equivalent to a twisting morphism in the convolution pre-Lie algebra.

De nition 2.30. We define the convolution Lie algebra of the cochain complex A (Definition 1.35) as:

g P∞,A := Tot(Conv(P ¡ , End A )) := n≥0 Hom Σn P ¡ (n), End A (n)
together with the Lie structure induced by the natural pre-Lie product of Definition 1.35. As such, we have an equivalence between P ∞ -structures and Maurer-Cartan elements in g P∞,A :

{P ∞ -structures on A} Tw(P ¡ , End A ) := MC(g P∞,A )

Notice that the convolution Lie algebra is naturally complete filtered with filtration given by the arity.

Proposition 2.31. Given a Lie algebra g and φ ∈ MC(g), we can twist g by φ and de ne:

g φ = (g, [-, -] g , d φ = d + [φ, -] g )
This is also a Lie algebra and a Maurer-Cartan elements in g φ is exactly an element ψ ∈ g such that φ + ψ is a Maurer-Cartan element of g. In other words, we can think of them as the "deformations" of the Maurer-Cartan element φ.

R 2.32. The construction of g φ is functorial in the pair (g, φ). More precisely, for a morphism:

f : (g, φ) → (h, φ )
given by a morphism of Lie algebras f : g → h such that f (φ) = φ , then we get a morphism of Lie algebras:

f : g φ → h φ
To see this, we only need to show that f exchanges d φ and d φ :

f • d φ = f • (d + [φ, -] g ) = f • d + f ([φ, -] g ) = d • f + [f (φ), f (-)] h = d φ • f
De nition 2.33. Let A be a P ∞ -algebra, represented by φ ∈ MC(g P∞,A ). We define the deformation complex of A (or deformation complex at φ) to be the twisted Lie algebra g φ P∞,A (using the notation of Proposition 2.31).

We will now explain how this deformation complex does indeed encode deformations of the P-algebra structure determined by φ. To do so we fix a classical (non-dg) local commutative algebra R with maximal ideal M that will parameterize the type of deformation we are interested in. For example we can consider R a local Artinian algebra (Definition 3.1), the algebra of dual numbers R = k[ ] (with 2 = 0) for "first-order" deformations (more generally any R with M 2 = 0 will encode "first-order" deformations) or the pro-Artinian algebra (a cofiltered limit of Artinian algebras) R = k[[t]] to encode formal deformations.

De nition 2.34. We define the set of deformations of a P-algebraic structure on A, φ : P → End A , as the set of R-linear P ⊗R-algebra structure on A⊗R that coincide with φ modulo M. This can be described as:

Def φ (R) := Φ ∈ MC g φ P∞,A ⊗ R , Φ ∼ = φ mod M ,
see [LV12, Lemma 12.2.5] for details. The functor sending R to Def φ (R) is (in good situations) a deformation functor. A more thorough study of deformation functors is done in Section 3.2. We also refer to [START_REF] Nitsure | Notes on Deformation Theory[END_REF] for a more classical approach to deformation functors.

An equivalence between two such deformations is given by an R-linear isomorphism f :

(A ⊗ R, Φ) → (A ⊗ R, Ψ) such that f ∼ = id mod M.
Together with this notion of equivalence, Def φ (R) forms a groupoid. We will denote this groupoid by Def φ (R) and its quotient by:

Def φ (R) := Def φ (R) ∼ = π 0 Def φ (R)
Theorem 2.35 ([LV12, Theorem 12.2.10]). For R an Artinian local algebra (De nition 3.1), there is a equivalence between the deformation groupoid and the Deligne groupoid (De nition 2.20):

Def φ (R) Del g φ P∞,A ⊗ M R 2.36. For the pro-Artinian algebra R = k[[t]] = colim k[t]
(t n ) , we could de ne the value of Def and Del as the colimits:

Def φ (k[[t]]) := colim Def φ k[t] (t n ) Del(k[[t]]) := colim Del k[t] (t n )
so that the equivalence also extends to pro-Artinian algebras. R 2.37. For R = k[ ], the algebra of dual numbers, we have M = k and we find that Def

φ (k[ ]) = Z 1 (g φ P∞,A ) and Def φ (k[ ]) = H 1 (g φ P∞,A
). In that sense, g φ P∞,A encodes the infinitesimal deformations of φ. Moreover the obstruction to extending an infinitesimal deformation to a formal deformation is controlled by H 2 (g φ P∞,A ) ([LV12, Theorem 12.2.14]). Moreover, as we will see in Proposition 3.18, the deformation complex is closely related to the operadic tangent complex which classifies higher deformations including higher homology as explained in Remarks 3.11 and 3.42. E 2.38. • Let us compute the deformation complex of an associative1 algebra A.

g A∞,A = n≥0 Hom Σn Ass ¡ (n), End A (n) = n≥0 Hom Σn (k[Σ n ], End A (n)) [n -1] = n≥1 Hom k (A ⊗n , A)[n -1]
When twisting g A∞,A with a Maurer-Cartan element (i.e. an associative multiplication), the di erential on g m A∞,A is given by [m, -]. It is not hard to see that this coincides with the Hochschild cochain complex of the algebra (A, m) with the Gerstenhaber bracket.

From Remark 2.37, if we take m an associative multiplication, the infinitesimal deformations are classified by the first Hochschild cohomology group, and the obstruction to extending to higher formal deformations in controlled by the second Hochschild cohomology group.

• The deformation complex for a Lie 1 algebra A is computed as follows:

g L∞,A = n≥0 Hom Σn Lie ¡ (n), End A (n) = n≥1 Hom Σn (k, End A (n)) [n -1] = n≥1 Hom k ((Sym n A[-1]) [n], A)[n -1] = n≥1 Hom k (Sym n (A[-1]), A[-1])
This coincides with the Chevalley-Eilenberg algebra valued in A with trivial Lie algebra structure on A. Given a Lie structure on A (corresponding to a Maurer-Cartan element φ in g L∞,A ), we obtain that g φ L∞,A is the Chevalley-Eilenberg algebra associated to A (with the structure associated to φ) valued in A. (i) The star-product is associative.

(ii) The star-product is a deformation of the original product:

f g = f • g + O( ), for f, g ∈ C ∞ (M ). (iii) The star-product quantizes the Poisson bracket: f g-g f = {f, g} + O( 2 ).
Given a star-product on M , one can check that

{f, g} = lim →0 f g -g f
defines a Poisson bracket on M . If our original Poisson bracket is obtained from a star-product in this form, we say that quantizes (M, {-, -}). The natural questions being raised are:

(1) Can every Poisson manifold be quantized?

(2) If so, can one provide explicit formulas?

(3) Are quantizations unique? In his seminal paper [START_REF] Kontsevich | Deformation quantization of Poisson manifolds[END_REF], Kontsevich used the machinery described above to give a complete solution to the previous questions: (1) yes, (2) yes up to computing some integrals and (3) essentially yes.

1 Recall from Example 2.4 that Lie ¡ (n) is 1-dimensional concentrated in degree 1 -n.
The first observation is that the data of a star-product is encoded by the (Hochschild) deformation complex of A = C ∞ (M ) seen as an associative algebra. Ignoring condition (iii), a star-product is a Maurer-Cartan element of g A∞,C ∞ (M ) ⊗R[[ ]]. More precisely, requiring the components of the starproduct to be multidi erential operators leads us to consider the Lie subalgebra D poly , where

D n-1 poly (M ) = D : C ∞ (M ) ⊗n → C ∞ (M ) D loc. = f ∂ ∂x I 1 ⊗ • • • ⊗ ∂ ∂x In .
On the other hand, the datum of a Poisson bracket is equivalently given by a bivector field π ∈ Γ(M, T X ∧ T X ), such that [π, π] = 0 with respect to the Schouten-Nijenhuis bracket. One can therefore interpret the Poisson structure as a Maurer-Cartan element in the Lie algebra (with d = 0) of polyvector fields T poly (M ), where T -1 poly (M ) = C ∞ (M ) and T n-1 poly (M ) = Γ(M, T ∧n X ). Theorem 2.40 (Kontsevich Formality, [START_REF] Kontsevich | Deformation quantization of Poisson manifolds[END_REF]). For every manifold M , there exists an ∞-quasi-isomorphism

U: T poly (M ) D poly (M ).
The rst component of the ∞-morphism is the Hochschild-Kostant-Rosenberg (HKR) map, which is obtained by de-symmetrization. The higher components are parametrized by certain kinds of graphs, with coe cients given by integrals over con guration spaces of points on the upper half-plane.

It now follows from the Goldman-Milson Theorem 2.25 that for every Poisson bivector π, its image under U is a star-product quantizing it. Furthermore, any such quantization is unique up to gauge equivalence.

Functoriality of the deformation complex:

The construction of the deformation complex is functorial in the following sense: Suppose f : Q → P is a map of Koszul operads, induced by a map on the generators of the quadratic data. Then, there is an associated map of cooperads f ¡ : Q ¡ → P ¡ , as well as the Koszul dual map f ! : 

P ! → Q ! . Then, (f ¡ , f ) form a map
Com ! → Ass ! → Lie !
are dual (up to some shifts) to:

Lie ¡ → Ass ¡ → Com ¡
This induces morphisms between the deformation complexes:

g Com∞,A → g Ass∞,A → g Lie∞,A
If A is a commutative algebra, applying the Maurer-Cartan functor to the first map recovers the usual inclusion from the Harrison complex into the Hochschild complex. Similarly, if A is an associative algebra, applying the Maurer-Cartan functor to the second map yields the classical projection of the Hochschild complex into the Chevalley-Eilenberg complex of A.

2.3.

A Deformation Approach to P ∞ -Algebras.

In this section we will show how the operadic and deformation tools introduced previously apply to address a problem that is not (or at least does not seem) deformation theoretical in nature.

A bit more concretely, assume P is a Koszul operad and let A and B be two P-algebras. We consider the following questions: Q 2.42. • Weak equivalence: Do we have a zig-zag of quasi-isomorphisms of Palgebras from A to B? We will denote this equivalence relation by

A ∼ P B. • Formality: Is A ∼ P H(A)?
Given a map of operads f : Q → P and a P algebra A, to avoid excessive notation we will refer to f * (A) as "A seen as a Q-algebra" (see Proposition 1.28). We will be particularly interested in seeing a commutative algebra as just an associative algebra. This abuse of notation justifies the P in ∼ P , which is in principle redundant. R 2.43. Let us consider the unit operad I = I(1) = k. Every I-algebra is given by some A ∈ Mod k and is formal since k a field. In particular, when forgetting the P-structures (via the unit I → P), every P-algebra is equivalent to its homology as a cochain complex, but not as a P-algebra a priori.

Recall that Theorem 2.1 implies in particular that the weak-equivalence problem can be fully reformulated in terms of ∞-morphisms.

Proposition 2.44. A ∼ P B if and only if there is a

P ∞ -quasi-isomorphism A B.
This allows us to simplify the question of whether A and B are weakly equivalent P-algebras: First, the homotopy transfer theorem allows us to intepret the P-algebra structure of both A and B as a P ∞ structure in the same graded vector space H := H(A) ∼ = H(B), which we denote α and β respectively. Secondly, Proposition 2.44 implies that the existence of such a weak equivalence is equivalent to an ∞-quasi-isomorphism:

f : (H, α) (H, β)
notice that since H has null di erential, an ∞-quasi-isomorphism H H is just an ∞-isomorphism. We can in fact suppose that f 1 : H → H is id H and therefore get an ∞-isotopy (Definition 2.9). We can therefore reformulate Questions 2.42 as follows: R 2.45. • Weak equivalence: Given two P ∞ -algebra structures α and β on H, are they ∞-isotopic? • Formality: Is the transferred P ∞ structure on H(A) ∞-isotopic to a strict one?

Theorem 2.46 ([DSV16, Theorem 3]). The action of the gauge group of g P∞,A on MC(g P∞,A ) corresponds to the action of ∞-isotopies f : A A on the space of P ∞ structures on A. In other words we have:

Del(g P∞,A ) ∼ = (P ∞ -algebra structures on A, ∞-isotopies)
The proof of this theorem makes use of the fact that the Lie bracket on the deformation complex g P∞,A arises as the anti-symmetrisation of a pre-Lie product (see Definition 1.35). In [START_REF] Dotsenko | Pre-Lie deformation theory[END_REF], Dotsenko-Shadrin-Vallette develop a method of pre-Lie exponentials, making use of the fact that the expression k X k k! makes sense for complete pre-Lie algebras, in order to produce explicit formulas for the gauge group product and action. More generally, the more appropriate notion of exponentials to consider for other algebraic structures seems to be graph exponentials [START_REF] Campos | Graph exponential map[END_REF].

Proof. We already saw that P ∞ structures on A are given by Maurer-Cartan elements:

MC(g P∞,A ) ⊂ n≥0 Hom Σn P ¡ (n), End A (n) .
An ∞-isotopy (see Definition 2.9) between these structures is a degree 0 map f : P ¡ → End A A = End A that intertwines the P ∞ -structures on A (see Proposition 2.7). Therefore, as sets, the gauge group and the ∞-isotopies agree. The explicit computation of [DSV16, Lemma 2] shows that the gauge group structure (the BCH formula) agrees with the composition of ∞-isotopies, noted . Using an argument of uniqueness of solutions of formal di erential equations, one can show that the gauge group acts indeed by ∞-isotopies, via the formula λ • α = (e λ α) e -λ , see [DSV16, Proposition 5].

Commutative and associative algebras.

Let us start this section with the following motivating example, which is at first unrelated to any ∞-structures. E 2.47. In rational homotopy theory à la Sullivan, we consider the functor Ω : Top → Alg Q/ Com of rational di erential forms. One might naively wonder whether we could consider instead the simpler functor of rational singular cochains C * (-, Q) landing in Alg Q/ Ass . Despite being quasi-isomorphic, it is unclear whether this functor remembers the homotopy type of the space. This is because Corollary 10.10 in [START_REF] Félix | Rational homotopy theory[END_REF] only gives a zig-zag of natural quasi-isomorphisms between the singular rational cochains C * (-, Q) functor and F • Ω where F is the forgetful functor Alg

Q/ Com → Alg Q/ Ass . It raises the following question, given X, Y ∈ Top such that C * (X, Q) ∼ Alg Q/ Ass C * (Y, Q),
are they rationally equivalent, i.e. do we have Ω(X) ∼ Alg Q/ Ass Ω(Y )? Thanks to Corollary 10.10 in [START_REF] Félix | Rational homotopy theory[END_REF], this reduces to proving the following implication:

Ω(X) ∼ Alg Q/ Ass Ω(Y ) ⇒ Ω(X) ∼ Alg Q/ Com Ω(Y )
This problem is actually algebraic. Motivated by this example, we consider the following question: Q 2.48. If A, B are commutative algebras over a field of characteristic zero, do we have:

A ∼ Ass B ⇒ A ∼ Com B
In other words, if there is a zig-zag of quasi-isomorphisms passing by associative algebras, must there be one passing by commutative algebras? A first attempt to show this directly could be to abelianize the associative zig-zag. Unfortunately, abelianization does not commute with taking homology, as we saw in Warning 1.47. Nevertheless, the answer to the question is yes.

Theorem 2.49 ([CPRW19, Theorem (A) and (B)]). Two (non-)unital commutative algebras A and B are quasi-isomorphic if and only if they are quasi-isomorphic as (non-)unital associative algebras.

At first this question might look too simple to have a di cult answer. The answer being yes, one might wonder whether this is a formal consequence of some simple property of the (fully faithful) forgetful functor F from commutative to associative algebras, which is also induced from the map of operads Ass → Com. This does not seem to be the case: While it is indeed true that F induces a faithful functor at the level of the homotopy categories (this not trivial, see [START_REF] Campos | Commutative homotopical algebra embeds into non-commutative homotopical algebra[END_REF]), h(F ) is not full as can be seen in the following example.

E 2.50. Consider the algebra A = k[x, y]. Then, in the homotopy category, we have:

Hom hAlg Com (k[x, y], S) ∼ H 0 (S) ⊕ H 0 (S) Hom hAlg Ass (k[x, y], S) ∼ H 0 (S) ⊕ H 0 (S) ⊕ H -1 (S)
This comes from the fact that k[x, y] is not cofibrant as an associative algebra. It needs to be replaced by the quasi-free associative algebra generated by x, y and of degree -1 such that d = xy -yx.

Making use of Reformulation 2.46 and denoting H := H(A) ∼ = H(B), we can also reformulate this question as follows. R 2.51. If α and β are two C ∞ -structure on a graded vector space H that are A ∞ isotopic, are they C ∞ -isotopic?

To answer that question, using Theorem 2.46, we need to ask whether an associative gauge λ between α and β in Del (g A∞,H ) (corresponding to the two A ∞ structures on H) can be lifted to a commutative gauge λ in Del (g C∞,H ) such that the image of λ through the map between the Deligne groupoids induced by the map g C∞,H → g A∞,H from Example 2.41 is λ. If g C∞,H → g A∞,H were a quasi-isomorphism, then our conclusion would follow from the Goldmann-Milson Theorem 2.23. In our case, the map is injective and it even remains injective in homology upon twisting by a C ∞ structure, but this does not generally su ce to obtain an injective map at the level of gauge equivalence classes of Maurer-Cartan elements. The following theorem is the appropriate "injectivity" refinement of the Goldmann-Milson Theorem.

Theorem 2.52 (Theorem 1.7 in [START_REF] Campos | Lie, associative and commutative quasi-isomorphism[END_REF]). Let i : h → g a map of ltered complete di erential graded Lie algebra. Suppose that i has a retract r as h-modules (i.e. r[i(h), x] = [h, r(x)]). Then the following map is injective:

MC(h) ∼ → MC(g) ∼
Idea of proof of Theorem 2.49. Admitting Theorem 2.52, we need to construct such a retract of i : g C∞,H → g A∞,H . If there existed a retract of Lie = Com ! → Ass = Ass ! as operads, then it would induce a retract of i as Lie algebras. It turns out that to obtain a retract as g C∞,H , it su ces to construct a retract of Lie → Ass as infinitesimal Lie-bimodules. To obtain such a retract, we can use a suitable variant of the Poincaré-Birkho -Witt theorem 1.32 to express Ass ∼ = Sym(Lie) and then projecting onto the summand Sym 1 (Lie) = Lie (see [CPRW19, Proposition 2.09]).

We point out that in Theorem 2.52, the gauge equivalence λ ∈ exp(h) one constructs is not just r(λ). It is rather obtained by an iterative procedure which is not fully explicit. Therefore, while the answer to Question 2.48 is yes, even given explicit deformation retracts of A and B into H, there is no known constructive way of exhibiting such a zig-zag.

Lie algebras and their enveloping algebras.

Let us consider a seemingly unrelated question to the previous section: Q 2.53. Can we recover a Lie algebra from its universal enveloping algebra?

Recalling the digression in Section 1.2.1, the immediate answer should be yes: g is isomorphic (as a Lie algebra) to the primitive elements of Ug. However, this makes use of the Hopf algebra structure. Interpreting U as a functor into associative algebras, we can rephrase the previous question more similarly to Question 2.48 Q 2.54. If g and h are Lie algebras, do we have:

Ug ∼ Ass Uh ⇒ g ∼ Lie h.
Let us start by pointing out two di erences between Questions 2.48 and 2.54. The first one is that the converse of Question 2.48 is obviously true: the same zig-zag exhibiting the equivalence between two commutative algebras exhibits their equivalence as associative algebras. The same argument holds for Question 2.54, as soon as we know the much less trivial fact that universal enveloping algebras preserve quasi-isomorphisms. Indeed, by the PBW Theorem 1.32, as a cochain complex Ug ∼ = Sym g and the symmetric algebra functor preserves quasi-isomorphisms. Notice that both of these facts require char k = 0.

The second di erence is that in the classical (i.e. non-dg) setting, Question 2.54 is non-trivial. In fact, in characteristic 0 the following is still an open question:

Q 2.55 (The isomorphism problem for enveloping algebras). Let g and h be Lie algebras in vector spaces, such that the associative algebras Ug and Uh are isomorphic. Are g and h necessarily isomorphic? Question 2.48 concerns the restriction functor associated to the operad morphism f : Ass → Com, while Question 2.54 concerns the induction functor associated to the Koszul dual morphism f ! : Lie → Ass. In a sense that we will make precise, Koszul duality intertwines these two functors in a way that makes the two questions almost equivalent. The word almost is present because Koszul duality, as presented in Section 1.5 is only an equivalence between P-algebras and P ¡ -coalgebras and some nilpotence assumptions are required in order to have an equivalence between P-algebras and P ! -algebras (see Warning 1.70). Theorem 2.56. Let g and h be Lie algebras in non-negative degrees that are either nilpotent or concentrated in strictly positive degrees. Then we have:

Ug ∼ Ass Uh ⇒ g ∼ Lie h
Proof. We consider the bar-cobar adjunction associated to the twisting morphism α : P ¡ P (Definition 1.64) for P = Lie and P = Ass:

Ω α : coAlg conil P ¡ Alg P : B α
Recall that we have a morphism of twisting morphisms (Definition 1.38)

Com ∨ {-1} Lie ¡ Lie Ass ∨ {-1} Ass ¡ Ass α β
the induces the following diagram of adjunctions thanks to the naturality of the bar-cobar construction (see Remark 1.67):

coAlg Lie ¡ Alg Lie coAlg Ass ¡ Alg Ass Ωα F Bα U Ω β B β
The diagram of left (respectively right) adjoint commute and therefore U • Ω α = Ω β • F , where F the is the forgetful functor. Let us now suppose Ug ∼ Ass Uh. The rest of the proof decomposes into the following cochain of implications explained below:

(1)

UΩ α B α g ∼ Ass UΩ α B α h. (2) Ω β B α g ∼ Ass Ω β B α h. (3) B α g ∼ Ass ¡ B α h. (4) B α g ∼ Lie ¡ B α h.
(5) g ∼ Lie h. The first point follows from the PBW theorem 1.32, which implies that

UΩ α B α g ∼ → Ug
is a resolution. The second point follows from the equality

U • Ω α = Ω β • F established before.
The third point follows from applying B β and the fact that id → B β Ω β is a natural quasi-isomorphism since Lie is Koszul and using Proposition 1.68. Notice that we are also using that bar constructions preserve quasi-isomorphisms (see Proposition 1.68), since we are applying B β to the whole zig-zag. We find ourselves in a situation where we have two (shifted) cocommutative algebras that are quasi-isomorphic only as (shifted) coassociative algebras. The same methods used to prove Theorem 2.49 can be applied in the coalgebra setting to show that such coalgebras must also be quasi-isomorphic as cocommutative algebras [CPRW19, Theorem 4.27], showing point 4. Finally, to deduce point 5 we would like to proceed as in point 3 and apply Ω α , but unfortunately cobar constructions do not preserve quasi-isomorphisms in general.

What one can instead do is to apply the complete cobar construction Ω ∧ α , which does preserve quasi-isomorphisms. The resulting Lie algebras are no longer quasi-isomorphic to g and h, but rather to their homotopy completions. The hypotheses of the theorem are such that the homotopy completions of g and h are equivalent to g and h, thus concuding the proof.

F M P K D

This section aims at explaining recent results on "operadic deformation theory" and extend the classical philosophy that the space of deformations is classified by a Lie algebra.

We start with the Section 3.1.1 where we define deformations from a geometric point of view and recall the notion of infinitesimal deformations, and their relationship with the tangent complex (Section 3.1.2) and algebraic deformation theory (Section 3.1.3) relating geometric deformations and deformations as studied in Section 2.2.

Then Section 3.2 sets up a general context to describe deformation theories (following [START_REF] Lurie | Derived algebraic geometry x: Formal moduli problems[END_REF]). We will see a generalization of the notion of infinitesimal objects using the formalism of small objects and morphisms. This leads to the definition of formal moduli problem (Definition 3.31) which gives an axiomatic framework for what a deformation functor1 is in a given deformation context. This allowed Lurie [START_REF] Lurie | Derived algebraic geometry x: Formal moduli problems[END_REF] and Pridham [START_REF] Pridham | Unifying derived deformation theories[END_REF] to formalize the classical philosophy into a rigorous equivalence of ∞-categories.

Later on we will need to use the language of ∞-categories and we will not distinguish the notations between model categories and their ∞-localisations. This equivalence is in fact an instance of the Koszul duality between the operads Com (deformations are parametrized by commutative algebras) and Lie.

The notion of a deformation problem formalizes into an ∞-category of formal moduli problems FMP.

Theorem 3.36 ([Lur11, Pri10]).

There is an equivalence of ∞-categories:

MC : Alg Lie FMP : T[-1] ∼
This equivalence is roughly given by the Deligne ∞-groupoid in one direction and by the shifted tangent space in the other direction. We will see that we can consider deformations parameterized by more general algebraic structures.

Indeed, in Section 3.3 we describe the categories of formal moduli problems over a class of deformation contexts for P-algebras. We have the following generalization of Theorem 3.36:

Theorem 3.64. For P a Koszul binary quadratic operad concentrated in nonpositive degrees, there is an equivalence of ∞-categories:

FMP P Alg P ! .
In Section 3.3.1, we define the tangent of a functor that describe this equivalence.

Then in Sections 3.3.2 and 3.3.3 we set up the general framework of Koszul duality context (Definition 3.46) that will provide an axiomatic framework to obtain equivalent descriptions of the category of formal moduli problems (Theorem 3.52). Then Section 3.3.4 is an application of this general framework to the case of operadic Koszul duality following the results of [START_REF] Calaque | Moduli problems for operadic algebras[END_REF]. Through all this section we will work with augmented operads (see Remark 1.30).

3.1. Geometric Deformation Theory.

Classical deformation theory.

Let us start by reviewing classical deformation theory. First of all, we recall that classically, the space along which we deforme is often chosen to be a local Artinian algebras. Such algebras are infinitesimal extensions of a point and therefore will encode infinitesimal deformations.

De nition 3.1. The category Art of classical local Artinian k-algebras with residue field k is the category of local non-graded commutative k-algebras A, with residue field k, such that the maximal ideal satisfies M n A = 0 for n 0.

The adjective "classical" in the definition above is non-standard. The reason for this is to distinguish it from the di erential graded version of Artinian algebras which will be central starting from Section 3.2. R 3.2. Geometrically, Artinian algebras contain only one closed point (given by the augmentation A → k), and they correspond to infinitesimal neighborhoods of this point. For example, the algebras k[x]/(x n ) are classical local Artinian algebras.

The following definition is given for k-schemes but the reader can keep in mind the example of proper smooth C-varieties.

De nition 3.3 (Deformation of Algebraic Schemes, [Ser07, Section 1.2.1]).

Let X be an algebraic scheme (locally finitely generated k-scheme). Let (S, s) be a pointed scheme. Then, an (S, s) deformation is given by a scheme X together with a flat surjective morphism π : X → S such that the following square is a pullback:

X X S π s Deformations along Spec (k[ ])
, where 2 = 0, are called rst-order deformations. More generally, we say that a deformation is in nitesimal if S = Spec(A) with A a local Artinian k-algebra with residue field k.

Two deformations X 1 and X 2 are said to be isomorphic if there is an isomorphism of schemes φ : X 1 → X 2 making the following diagram commute:

X X 1 X 2 S φ
Observe that this implies that φ induces the identity on the pullback, X. R 3.4. • If X = Spec(B) and S = Spec(A) are a ne and A is a classical local Artinian algebra, then it is shown in [Ser07, Section 1.2.2] that any deformation X is also a ne. We can rephrase the notion of deformation of an a ne space by saying that a deformation of B along A is the data of a commutative algebra B together with a flat map A → B and an isomorphism

B ⊗ A k ∼ → B.
As before, an equivalence of two such deformations is given by an isomorphism φ : B 1 → B 2 of A-algebras making the following diagram commute:

A B 2 ⊗ A k B 1 ⊗ A k B ∼ φ ∼
• Smooth algebras are rigid. If B is a smooth (non-graded) algebra, then Theorem 1.2.4 in [START_REF] Sernesi | Deformations of Algebraic Schemes[END_REF] shows that if A is a classical local Artinian algebra, then any deformation of

B along A is trivial, that is, any deformation B is equivalent to B ⊗ k A.
Let us now mention two classical results on deformations of geometric spaces that will motivate the relationship between first-order deformations, the tangent space and a set of Maurer-Cartan elements. These relations will then be explored in detail and generalized later on.

Theorem 3.5 (Kodaira-Spencer, [START_REF] Kodaira | On deformations of complex analytic structures[END_REF]). First order deformations (for A = C[ ]) of a complex analytic manifold are controlled by the cohomology of X with values on the tangent bundle H * (X, T X ), namely:

H 1 (X, T X ) 1:1 ←→ deformations along Spec (C[ ])
H 2 (X, T X )

1:1 ←→ Obstructions to extending the deformation to higher order.

This statement is a geometric version of [LV12, Theorem 12.2.14] and Remark 2.37. We will see the relationship between algebraic and geometric deformations in Section 3.1.3. In this setting, the Lie algebra controlling infinitesimal deformations of the complex manifold X is precisely the Dolbeaut complex Ω 0, * (T X ), with de Rham degree and di erential, and inheriting a bracket from the Lie bracket of vector fields.

Proposition 3.6 ([Man05, Theorem V.55]). Given a classical local artinian algebra A with maximal ideal M A we have an isomorphism of groupoids:

{Deformations of X along A} MC Ω 0, * (T X ) ⊗ M A Aut Gauge
3.1.2. Cotangent complex and higher deformations.

As we have seen in Proposition 2.22, the right hand side of Proposition 3.6 is only a slice of the full Deligne ∞-groupoid. Nevertheless, the construction of Del involves tensoring the Lie algebra Ω 0, * (T X ) ⊗ M A , living in non-negative degrees with di erential forms, also living in non-negative degrees. Since the Maurer-Cartan equation lives in degree 2, it is natural to wonder what is the role of the higher degrees of Ω 0, * (T X ), or more generally, of any Lie algebra controlling a deformation problem. In short, these higher degrees control derived deformations.

This section will explore the relationship between infinitesimal deformation, square zero extensions, (higher) infinitesimal deformations, higher Ext groups and the cotangent complex.

De nition 3.7. A square zero extension of B ∈ Alg Com is a commutative algebra B ∈ Alg Com together with a surjection π : B → B that fits in an exact sequence in Alg Com :

0 I B B 0 π such that I 2 = 0. This is an algebraic version of the extension of a scheme described in [Ser07, Section 1.1.3]. Moreover, if B ∈ Alg A/
Com , i.e. B comes with a map A → B for some fixed A ∈ Alg Com , then the same definition makes sense with all objects under A. Given any B-module M , we can construct the trivial square zero extension B ⊕ M given by the direct sum as a B-module, and with the product defined by (b, m) × (b , m ) = (bb , bm + b m). This square zero extension corresponds to the split exact sequence:

0 M B ⊕ M B 0 π
A morphism between two square zero extensions B 1 and B 2 is a morphism φ : B 1 → B 2 that commutes with the projections on B. E 3.8. Any iterated square zero extension of k is classical local Artinian. Conversely, any classical local Artinian algebra can be obtained as an iterated square zero extension of the trivial algebra k. Indeed, if A is such that M n A = 0 and M n-1 A = 0, then:

0 → M n-1 A → A → A M n-1 A → 0
exhibits A as a square zero extension of an algebra of lower nilpotence. As a particular example, the quotient k

[x] (x n ) → k[x] (x n-1
) is a square zero extension. R 3.9. Let us explain how trivial square zero extensions are functorially related to derivations.

• Given B ∈ Alg

A/
Com , the trivial square zero extension construction defines a functor: Com , the module of Kähler di erentials is defined as the B-modules Ω 1 B/A representing A-linear derivations:

B ⊕ -: Mod B Alg A//B Com M B ⊕ M • A-
Hom B Ω 1 B/A , M ∼ = Der A (B, M )
Remark 3.9 ensures that: The derived version is called the cotangent complex L B/A representing the derived module of derivations:

Ω 1 B/A = L(id : B → B) A direct construction of Ω 1 B/A is
Hom B L B/A , M RDer A (B, M ) := RHom Alg A//B Com (B, B ⊕ M ) .
The B-linear dual of L B/A is called the tangent complex and we have:

T B/A := Hom B L B/A , B RDer A (B, B) R 3.11.
Here are a few basic properties of the cotangent complex: • Using the derived functor of the adjunction in Remark 3.9, we obtain:

L B/A := L(Id : B → B) := Ω 1 Q(B)/A ⊗ Q(B) B,
where

Q is a cofibrant replacement functor in Alg A//B
Com and L denotes the left derived functor of L.

• Given f : A → B and g : B → C, we have a homotopy fiber sequence:

L B/A ⊗ B C L C/A L C/B
In particular for A = k we write L B/k = L B and we get:

L B ⊗ B C L C L C/B
• The isomorphism classes of square zero extensions of B along I are in one to one correspondence with Ext 1 A (L B , I). In particular, for I = B and A = B, we get Ext 1 B (L B , B) = Ext 1 B (B, T B ). Moreover, the trivial square zero extension of B by M described in Remark 3.9 represents the class of 0 ∈ Ext 1 (L B , M ).

• Following [START_REF] Vezzosi | A note on the cotangent complex in derived algebraic geometry[END_REF], the cotangent complex enables us to extend the question of deformation to higher deformations. Such higher deformations are encoded by higher Ext groups, and those are controlled by derived mappings from higher infinitesimal disks into the k-scheme X we want to deform. More precisely, for any R, a commutative k-algebra, a R-point in X, x : Spec(R) → X, and any M ∈ Mod R . Then we define the derived i-th order infinitesimal disk over R by:

D R,i (M ) := Spec (R ⊕ M [i])
More generally, for M a quasi-coherent sheaf on X, we define:

D X,i (M ) := Spec X (O X ⊕ M [i])
Then Proposition 2.1 in [START_REF] Vezzosi | A note on the cotangent complex in derived algebraic geometry[END_REF] tells us that this is related to the Ext 1 functor via the equivalences:

Ext i R (L X,x , M ) RHom (D R,i (M ), O X,x ) Ext i O X (L X , M ) RHom(D X,i (M ), O X )
1 ExtA(M, N ) is the derived functor of Hom A (-, -) evaluated at M , N .

Moreover the maps, φ ij , satisfy a cocycle condition on triple intersections that lift to a cocycle condition on the family of derivations. Such a family is then exactly an element in the first cohomology class of T X .

3.1.3. Deformation from the algebraic point of view.

We want to describe deformations from the algebraic point of view. To do so, we start by describing deformations of commutative algebras similarly to the a ne geometric situation of Remark 3.4. This definition extends naturally from commutative algebras to general P-algebras and we will compare this notions of deformation that mimics geometric deformation, with deformations of P-algebraic structures as defined in Section 2.2.1 and 2.2.3.

We consider the canonical model structure on groupoids in which weak equivalences are equivalences of categories and fibrations are isofibrations 1 . This model structure is the natural model structure restricting the model structure on the category of small categories, or equivalently the transferred model structure from sSet via the nerve adjunction (see [Hol08, Theorem 2.1 and Corollary 2.3]).

De nition 3.13. The groupoid of geometric deformations of a P-algebra B along a local Artinian algebra A (Proposition 3.27) is defined as the homotopy pullback of groupoids 2 :

Def P B (A) Alg iso P⊗ k A (Mod A ) Alg iso P B
where the lower functor sends B to B ⊗ A k. For groupoids all objects are fibrant so we only need to have one fibration. To do that, we need to replace the map B by an equivalent fibration given by the following factorization:

Alg iso P /B
Alg iso P triv.cof fib.

Computing the strict pullback with this replacement, we obtain that Def P B (A) is equivalent to the groupoid whose objects are elements B ∈ Alg P (Mod A ) together with an isomorphism B ⊗ A k ∼ → B. This corresponds to the a ne version of the set of geometric A-deformations as described in Remark 3.4.

The morphisms in Def P B (A) correspond to the notion of equivalence described in Remark 3.4. In other words, two deformations B 1 and B 2 are equivalent if 1 An isofibration is a functor p : C → D such that for any object e of C and any isomorphism f : p(e) → b, there exists an isomorphism f : e → e such that p( f ) = f . 2 The superscript iso denotes the subcategory given by the maximal subgroupoid.

there exists an isomorphism φ : B 1 → B 2 in Alg P⊗ k A (Mod A ) such that the following diagram commutes:

B 1 ⊗ A k B 2 ⊗ A k B φ⊗ A k
From now on we will assume that P is Koszul. In that situation, the Palgebra structure on B is given by a map P → End B . Recall that the set of deformations of a P-algebra structure φ : P → End B along A, given by Definition 2.34, is the set:

Def φ (A) := Φ ∈ MC g φ P∞,B ⊗ A , Φ ∼ = φ mod M
It turns out that these algebraic deformations coincide with the more geometric deformations (of a ne):

Proposition 3.14. Given B a P-algebra with φ : P → End B and A a classical local Artinian k-algebra, there is a map of groupoids:

Def φ (A) → Def P∞ B (A) Proof. An element in Def φ (A) is a P ∞ -structure on B ⊗ k A such that modulo M A ,
it recovers the P-structure on B. In other words, the natural map:

B ⊗ k A ⊗ A k → B
is an isomorphism on P-algebras. Therefore there is an inclusion of the set of objects. Furthermore, the definition of morphisms in Def φ (A) (Definition 2.34) induces a morphism in Def P∞ B (A) defining the faithfull functor we seek.

We will now extend the previous construction to the full ∞-groupoids of deformations. This ∞-groupoid will both extend the previous ones to higher homotopies of deformations and will take into account the homotopy theory of P-algebras.

De nition 3.15 ([Hin04, Definition 2.1]). Let A be an Artinian commutative algebra concentrated in non-positive degree (Proposition 3.27) and P a Koszul operad. We define W c (P, A) to be the simplicial category whose objects are cofibrant P ⊗ k A-algebras in Mod A and whose n-morphisms from B to C are given by quasi-isomorphisms B → Ω(∆ n ) ⊗ C. Then the higher deformation groupoid Def A (B) of B ∈ Alg P is defined as the homotopy pullback:

Def A (B) N (W c (P, A)) N (W c (P, k)) B
Where B → B is a cofibrant resolution of B and N denotes the simplicial nerve functor. R 3.16. In [START_REF] Hinich | Deformations of homotopy algebras[END_REF], it is shown thanks to Theorem 2.1.2, that for P and B non-positively graded, the deformation ∞-groupoid Def A (B) is naturally equivalent to the higher Deligne groupoid Del T P B ⊗ k A of the P-operadic tangent Lie algebra (see Definition 3.17).

The operadic tangent and cotangent complexes are defined in a very similar way to what was explained in Section 3.1.2 for P = Com.

De nition 3.17 (Operadic Tangent Complex). Let A be a P-algebra. A derivation of A valued in A is a map D : A → A such that for all p ∈ P(n),

D(p(b 1 , . . . , b n )) = n i=1 p(b 1 , . . . , Db i , . . . , b n ).
The k-module of all derivations Der(A, A) is a Lie algebra with bracket given by the commutator of derivations. The derived derivations of A, which we denote T P A , is called the tangent complex of A.

As the name indicates, the derived derivations can be obtained as a derived functor. Indeed, there is an operadic notion of module of Kähler di erentials, Ω P A and the operadic cotangent complex L P A , see [LV12, Sections 12.3.8-12.3.10]. One could equivalently define T P A = Hom A L P A , A . To complete this story, we would like to have a relationship between T P A and the deformation complex, to have a relationship between the higher deformation groupoid of Definition 3.15 and the higher Deligne groupoid (Definition 2.21). To obtain a model of T P A (which is only defined up to quasi-isomorphism) we choose the cofibrant resolution of A given by the bar-cobar resolution. We have then

T P A Der k (Ω κ B κ A, Ω κ B κ A) = Hom k (B κ A, Ω κ B κ A) p → Hom k (B κ A, A) .
The map p is induced by the bar-cobar resolution and is therefore a quasiisomorphism of complexes. In fact, Hom k (B κ A, A) can be indentified with coderivations on B κ A and therefore has a Lie algebra structure making p a quasi-isomorphism of Lie algebras. Notice that ignoring di erentials B κ A = P ¡ • A and therefore as graded vector spaces we have

Hom k (B κ A, A) ∼ = n≥1 Hom k P ¡ (n), End A (n)
We recognize here the underlying graded vector space of the deformation complex, up to a caveat: In the deformation complex one should remove the counit by taking P ¡ instead, see Remark 1.40.

Keeping track of the di erential and the bracket, we see that they correspond precisely to the di erential and bracket of the deformation complex. Taking this model for T P A , the projection P ¡ → P ¡ yields a well defined inclusion of Lie algebras:

g φ P∞,A → T P A
This map is the Lie algebra version of the map of groupoids of Proposition 3.14. In short, we have shown the following Proposition: Proposition 3.18. Let φ : P → End A be a P-algebra structure on A ∈ Mod k . There is a homotopy ber sequence of Lie algebras:

g φ P∞,A → T P A → Hom(A, A) R 3.
19. Heuristically, Proposition 3.18 expresses that the "di erence" between the two deformation problems is the deformation of the underlying k-module, which is encoded by Hom(A, A). Notice that the Lie algebra structure on Hom(A, A) in fact arises from an associative algebra structure. From the deformation perspective, this means that the corresponding deformation problem is also richer. This will correspond to an associative (as opposed to commutative, not Lie) formal moduli problem and its formalisation will be the topic of the next sections. R 3.20 (Global Deformations). So far, we only talked about deformation of "a ne objects", that is P-algebras. However, we could be interested in deforming not only P-algebras, but a sheaf of P-algebras in the spirit of the first part of Remark 3.4. In [START_REF] Hinich | Deformations of sheaves of algebras[END_REF], it is shown that the deformations of a sheaf of P-algebras A is controlled, under some conditions on P and A given in [Hin05, Assumption 3.5.1], by the higher Deligne groupoid of the derived global sections of the presheaf of local tangent Lie algebras, which by definition gives the tangent cohomology.

Formal Moduli Problems.

This section is about axiomatizing the notion of deformation theory. After seeing how deformations from an algebraic and from a geometric point of view are related, we expect them to have very similar properties which we will encode in the notion of formal moduli problems. The idea is that deformations can be understood as a functor sending an "Artinian" object (which we think think of as a parameter space) to a space of deformations along this object. For example such a deformation functor assigns for each choice of Artinian local algebra A a set, groupoid or ∞groupoid of deformations of X along A. As the category of local Artinian algebras and the notion of "infinitesimal" object will play a more important role from here, we will start, following [START_REF] Lurie | Derived algebraic geometry x: Formal moduli problems[END_REF], by defining a general framework in which we can speak of deformations and Artinian objects. In this section, P will be an augmented Koszul operad.

Artinian and small algebras in a deformation context.

The general idea behind Artinian algebras is to have a class of algebras considered "small" so that deforming along those algebras amounts to consider in nitesimal deformations, looking at the formal neighborhood of what we want to deform. We will always assume that our ambient category A , in which we will define the notion of Artinian object, has a terminal object. This leads to the general framework of deformation context:

De nition 3.21 ([Lur11, Definition 1.1.3]). A deformation context is a pair (A , {E α } α )
where A is a presentable1 ∞-category and {E α } α is a set of objects in Stab(A ), the stabilization2 of A .

Intuitively, {E α } α corresponds to the first-order objects we want to deform along. To compare with the classical picture, we take A to be the category of commutative k-algebras. Since previously we took k[ ] as the algebra representing first-order deformations, we now take it as the underlying object of the spectrum object

E = (• • • , k[ 2 ], k[ 1 ], k[ 0 ], • • • ), where k[ i ]
is the 2dimensional augmented commutative algebra with deg i = -i and 2 i = 0. We will see in Section 3.3.1 that deformations along k[ i ] are both related to the higher tangent complex and control obstructions to lifting deformations. Typically, the family {E α } α contains only a single object. Here are some other examples of deformation contexts. 

Alg Com , {(k[n]) n∈Z }
where k[n] is the trivial commutative algebra on k[n]. This deformation context can also be seen as obtained from a transfer of deformation contexts along the adjunction of Equation (6) (see [CG18, Lemma 2.6]).

• For A = Alg P we consider the deformation context:

(Alg P , (k[n]) n∈Z )
We will denote it by A P for short.

From a deformation context, we can define the notion of "small" objects and morphisms using Ω ∞-n E α as building blocks. De nition 3.24 ([Lur11, Definition 1.1.14]). Given a deformation context (A , {E α } α∈T ) we say that:

• A morphism f : A → A is elementary if it is given by a pullback of the form:

A A Ω ∞-n (E α )
f 1 Since we assume that P is augmented, Remark 1.30 gives us a functor Mod k → Alg P giving the trivial P-algebra structure to a module.

for some α ∈ T and n ≥ 1. • A morphism f : A → A is small if it is a finite composition of elementary morphisms. • An object A ∈ A is Artinian if the morphism A → is small1 . We denote by Art A the full sub-category of A given by small objects. E 3.25. Going back to the example of commutative algebras, we have Ω ∞-n E = k[ n ] so that in order to compute the homotopy pullback of → Ω ∞-n E, one can replace the point = k by the algebra k ⊕ k n ⊕ k n-1 (notice that n ≥ 1), with the only non-zero product being the unit and with di erential sending n to n-1 . The strict pullback exhibits therefore A as a square zero extension of A along k n-1 . In particular, an Artinian commutative algebra concentrated in degree zero is precisely a classical Artinian local algebra in the sense of Definition 3.1.

We will now specialize these definitions to the deformation contexts we are interested in, namely A aug 

A × k⊕k[n] k k A k ⊕ k[n]
This is a variation of Proposition 3.28.

We can also describe Artinian algebras in more classical terms:

Proposition 3.27 ([Lur11, Proposition 1.1.11]). A ∈ Alg k//k
Com is Artinian if and only if:

• H i (A) = 0 for all i > 0.

• H * (A) is of total nite dimension.

• Artinian condition: ker H 0 (A) → k is nilpotent. In particular H 0 (A) ∈ Art and there is an embedding of strict categories Art → Art A aug Proposition 3.28. The category Art P of Artinian P-algebra is the smallest full sub-category of Alg P such that:

• k[n] ∈ Art P for all n ≥ 0 • For any A ∈ Art P and any map in Alg P , A → k[n] with n ≥ 1, the following homotopy pullback A × k[n] 0 is also Artinian:

A × k[n] 0 0 A k[n]
This is corresponds to [CCN20, Definition 2.2].

Proof. By definition, we have that k[n] is Artinian since the map k[n] → 0 is elementary, given by the homotopy pullback: Similarly we can rephrase the Artinian P-algebra property as a simpler condition.

k[n] 0 0 k[n + 1] Moreover, the map A × k[n] 0 → A is elementary, therefore if A is Artinian, then the composition A × k[n] 0 → A → 0 is
Lemma 3.29 ([CCN20, Lemma 2.8]). A P-algebra A ∈ Alg P is Artinian if:

• H i (A) = 0 for i > 0.
• H * (A) has total nite dimension.

• H i (A) is nilpotent with respect to the H 0 (P) algebra H 0 (A) i.e. for all a 1 , • • • , a n ∈ H 0 (A), P ∈ H 0 (P)(n + 1) the map:

P(a 1 , • • • , a n , -) : H i (A) → H i (A)
is such that the k-th iteration of this map is 0 for some k ∈ N. We can then check that B is part of the homotopy pullback square:

B A ⊕ k[n] 0 A k[n + 1] χ
where χ is obtain as a (shift of) the part of the di erential on

A ⊕ k[n] going from A to k[n].
In particular, we have B A × h k[n+1] 0 and therefore B is Artinian. This is analogous to Example 3.8.

Formal moduli problems.

In Sections 3.2.1 and 2.2, we defined, given a local Artinian algebra A, different notions of sets, groupoids or even ∞-groupoids of deformations of a object along A.

These assignments that send A to such spaces of deformations define functors which will be the prototypical examples of what we will call "formal moduli problems". In other words, given an object X (for example a P-algebra, a complex manifold, etc...), we will be interested in studying the functor that sends an Artinian object A to the space of all deformations of X along A. To be precise about what we mean by "space", we take S to be the ∞-category of ∞-groupoids.

De nition 3.31 (Formal Moduli Problem, [Lur11, Definition 1.1.14]). Given a deformation context (A , {E α } α∈T ), a functor of ∞-categories F : Art A → S is called a formal moduli problem if it satisfies the following conditions:

• Deformations along the point (terminal object) are trivial:

F ( )
• Any homotopy pullback in Art A along a small morphism φ : A → B is sent to a pullback in S :

F      A A B B φ      = F (A ) F (A) F (B ) F (B) F (φ)
The ∞-category of such functors will be denoted FMP (A , {E α } α∈T ) or FMP A for short if the choice of the collection of spectrum objects E α is clear. E 3.32. A formal moduli problem on the deformation context A P is a functor F : Art P → S such that F ( ) and send the following homotopy pullbacks of Artinian objects to homotopy pullbacks (for all n ≥ 0):

F      A 0 B k[n + 1]      = F (A) F (B) F (k[n + 1]) F (φ)
This is the class of examples we will be interested in. We will denote it by FMP P . The category FMP Com will be denoted FMP. R 3.33. Given a square zero extension of an Artinian object along k[n], we have seen in Remark 3.30 that it is equivalent to a homotopy pullback of the small morphism 0 → k[n]. In particular, it is equivalent to a homotopy pullback diagram:

F (A ⊕ k[n]) F (A) F (k[n + 1])
Therefore, the obstruction for a deformation of A to lift to a deformation of a square zero extension

B A ⊕ k[n] is controlled by F (k[n + 1]
). We will see in Section 3.3.1 that the F (k[n + 1]) defines the notion of tangent space which controls the obstructions to lifting deformations. 

F      A A B B φ      = F (A ) F (A) F (B ) F (B) F (φ)
It recovers the classical Schlessinger condition (see [START_REF] Schlessinger | Functors of Artin rings[END_REF]).

As we have mentioned multiple times, it is an old philosophy that deformation problems are classified by Lie algebras. This classical idea is formalized by the following theorem:

Theorem 3.36 ([Lur11, Pri10]).
There is an equivalence of ∞-categories:

MC : Alg Lie FMP : T[-1] ∼ W 3.37.
For g a Lie algebra, the one should think heuristically of MC as the functor assigning to an Artinian algebra A the space Del(g ⊗ A), that is, the space of Maurer-Cartan elements. Unfortunately, Del(g ⊗ -) does not generally define a formal moduli problem, essentially for the same reasons the Goldmann-Milson theorem 2.23 does not preserve all weak-equivalences, but only the filtered ones. On finite dimensional A, the formula Del(g ⊗ A) gives the correct result on objects. The functor MC is in some sense more general in order to circumvent this problem.

In the next sections we will explore the techniques used to prove this result, as well as explain its generalisation to operadic algebras.

Operadic Formal Moduli Problems and Koszul Duality.

The goal of this section is to make sense of the generalization of Theorem 3.36. The main insight is that the equivalence between (commutative) formal moduli problems and Lie algebras arises from the Koszul duality between the operads Com and Lie. With this in mind, this Theorem generalizes to Theorem 3.64, stating the existence of an equivalence of ∞-categories:

Alg P FMP P ! for P a Koszul binary quadratic operad concentrated in non-positive degrees.

The key observation is that if the generators E = P(2) are finite dimensional, there is a map of operads Lie → P ⊗ P ! , defined by sending the generator 2 of Lie to e∈E e ⊗ e ∨ , where the sum runs over a basis of E, and e ∨ represents a dual basis. In this case, if g is now a P-algebra and A is an Artinian P ! -algebra, g ⊗ A is a Lie algebra and, with the same caveats of Warning 3.37, the formula Del(g ⊗ A) is the correct one.

We will start in Section 3.3.1 by explaining how the inverse of MC is related to the tangent complex. Then Sections 3.3.2 and 3.3.3 are devoted to the study of Koszul duality in the context of deformation theory. Then the main result and its functoriality are discussed in Sections 3.3.4 and 3.3.5.

3.3.1. Tangent complex of a formal moduli problem.

The goal of this section is to explain that the algebra controlling a given formal moduli problem is the "tangent" of this formal moduli problem. In particular this explain why first-order deformations and obstructions to lifting those deformations are controlled by the tangent complex.

To motivate the following definition, we will start by explaining the example of the formal spectrum (Example 3.34) of an augmented commutative algebra B. We have that Spf(B)(A) = Map (B, A). In the case of first order deformation, A = k[ ], this mapping space corresponds to the tangent complex of Spec(B) at the point 1 x : → Spec(B). This is a consequence of the following equivalences:

Map Alg k//k Com (B, k[ ]) Map Alg k//B Com (B, B ⊕ x * k[n]) Map Mod B (L B , x * k[n]) Map Mod k (x * L B , k[n]) |x * T B [n]| |T B,x [n]|
The goal will be to generalize this by applying the functor not only to k[ ] but to all "first-order elements" of a given deformation context. Such "first-order" objects correspond to the elements in {Ω ∞-n (E α )} α∈T,n∈N (for example the square zero extensions k ⊕ k[n] for n ∈ N in the case of augmented commutative algebras). Therefore, we will define the tangent functor of a general formal moduli problem by evaluating it at first-order elements.

De nition 3.38 (Tangent Functor, [Lur11, Section 1.2]). Given a deformation context (A , {E α } α∈T ), (see Definition 3.21), we define the tangent space of a formal moduli problem F : Art A → S on this deformation context at α ∈ T to be T α F := F (Ω ∞ E α ) ∈ S . To remember higher deformations, it is not enough to evaluate F at Ω ∞ E α but we should also evaluate it at all Ω ∞-n E α for n ≥ 0. We define the tangent complex of F at α to be the spectrum object F (E α ) ∈ Sp := Stab(sSet), which we denote 2 T F in case there is only a single α ∈ T .

This spectrum object verifies

Ω ∞-n F (E α ) F (Ω ∞-n E α ) for all n ≥ 0 (see [Lur11, Remark 1.2.7]
). Notice that the tangent complex T F is not actually a chain complex but rather only a spectrum object a priori. These two categories are related by the composition:

1 Given a map B → A with A local Artinian, the composition B → A → k defines a unique point around which B is deformed. The tangent complex at a point x is defined as the k-linear derivations of B at x, with Der 2 This notation is by analogy to the tangent complex but is a priori only a (collection of) spectrum object. However, we will see that TF can be "represented" by objects with more structure (see the discussion following Proposition 3.39 and Proposition 3.53).

(

) Mod k Forget -→ Mod Z DK Stab(sAb) Forget -→ Stab(sSet) = Sp 7 
In the setting of operadic formal moduli problems, the following proposition justifies the terminology.

Proposition 3.39 ([CCN20, Lemma 2.15]). A formal moduli problem F ∈ FMP P has a unique pre-image in Mod k under the map (7), which we also denote by T F . Moreover for any n ≥ 0, we have an equivalence:

Map Mod k (k[-n], T F ) F (k[n])
In the case of the formal spectrum of unital commutative rings, we saw that Spf(B)(k[ ]) |T B,x | (and similarly when shifting ). Now the associated spectrum object to T B,x (given by the composition (7)) coincides with the spectrum object given by Spf(B)(k[ n ]) so that T B,x is the representative of T Spf(B) given by Proposition 3.39.

It turns out that this also extends to the formal spectrum of a P-algebra A. Indeed, the tangent functor is given by the collection for each n of the spaces:

Spf(A)(k[n]) Map Alg P (A, k[n])
where k[n] is endowed with the trivial P-algebra structure (induced by the augmentation P → I). Taking the trivial algebra is a right adjoint functor (see Remark 1.30) and we get:

Spf(A)(k[n]) Map Alg P (A, k[n]) Map Mod k (I • P Ã, k[n])
where à is a cofibrant resolution of A. In particular, we can take the cobar-bar resolution, à := Ω κ B κ A. Note that I• P à is the space of derived indecomposables, that is the derived space of elements that cannot be written as a product in A.

We have the following observations:

• There is an equivalence:

I • P Ω κ B κ A (I • P P • I B κ A, d Ω + d BκA )
• We have:

I • P P • I B κ A B κ A
• Since d Ω has positive weight on the free algebra P • I B κ A and the functor I• P kills all the positive weight parts, the di erential induced on I • P P • I B κ A is exactly d BκA and we have an equivalence:

I • P Ω κ B κ A B κ A
Therefore we get:

Spf(A)(k[n]) Map Mod k (B κ A, k[n]) Der P (A, k[n]) |x * T A [n]|
Proposition 3.40. For the deformation context A aug Com , the tangent complex of a formal moduli problem F is given by the Ω-spectrum determined1 by (F (k ⊕ k[n])) n≥0 . For the deformation context A P , the tangent functor of a formal moduli problem F is given by the Ω-spectrum de ned by (F (k[n])) n≥0 .

Proof. Essentially, the properties of F ensure that

F (k ⊕ k[n]) → ΩF (k ⊕ k[n + 1])
for n ≥ 0 are equivalences making F (k ⊕ k[n]) an Ω-spectrum. See the discussion preceding [CCN20, Definition 2.14]. R 3.41. This implies that the obstruction to lifting deformations along square zero extensions (see Remark 3.33) is controlled by the cohomology of T F . Indeed, recall from Remark 3.30 that a square zero extension B of an Artinian algebra A by k[n + 1] is equivalently given (up to taking a cofibrant resolution) by a homotopy pullback:

B A ⊕ k[n] 0 A k[n + 1]
Applying F ∈ FMP P , we obtain the homotopy pullback diagram of Remark 3.33:

F (B) F (A) F (k[n + 1]) 0 
Therefore a A-deformation, given by a point → F (A), lifts to a B-deformation → F (B) if and only if the composition → F (A) → F (k[n + 1]) is homotopic to 0. Therefore the obstruction to lifting such a deformation is controlled by the 1-simplices of F (k[n + 1]). Since F (k[n + 1]) is represented by the (shifted) tangent complex, a deformation lifts if it induces an exact element in the tangent complex. and we recover the higher deformations of Spec(B) as discussed in 3.11 (see also [START_REF] Vezzosi | A note on the cotangent complex in derived algebraic geometry[END_REF]). In Mod k this corresponds to the tangent complex at the point x, T B,x . R 3.43. In [START_REF] Nitsure | Notes on Deformation Theory[END_REF], there is a natural version of tangent of functors in sets, F : Art → Set which is essentially the same as our more general version. They prove ([Nit06, Theorem 7]) that given X a smooth proper variety over k, the tangent of the deformation functor Def X is given by the k-vector space H1 (X, T X ).

Koszul duality context.

Going back again to the setting of a general deformation context A , we are looking to identify an ∞-category of algebraic objects B which is equivalent to FMP A . The formal spectrum Spf from Example 3.34 is a functorial way to construct formal moduli problems out of objects of A . Assuming the existence of the desired equivalence, we could construct a functor:

D : A op Spf -→ FMP A ∼ → B
This functor should be interpreted as a "weak duality" functor, which is not an equivalence, but at least its restriction to Artinian objects should behave as an equivalence into a subcategory of B of "good" objects. Of course, we are interested in the case where B are P-algebras and A are P ! -algebras. In that case the reader can think of D as the dual of the bar construction, see Warning 1.70. In this section, we introduce the notion of Koszul duality context as the appropriate axiomatic framework that enables us to obtain the desired equivalence, as shown in Theorem 3.52. such that for all n ≥ 0, there is an equivalence

Ω ∞-n E α D (Ω ∞-n F α ).
It is called a Koszul Duality context if the following holds:

(1) For every object B ∈ B gd , the counit morphism DD B → B is an equivalence.

(2) For each α, the functor: Corollary 3.51. Given a Koszul duality context, we can construct the following functor:

ψ : B Fun (B op , S ) Fun (A , S ) •D
Then ψ factor through FMP(A , {E α }) and we get a map:

Ψ : B → FMP(A , {E α })
It turns out that the definition of Koszul duality context ensures that the map Ψ : B → FMP(A , {E α }) is in fact an equivalence.

Theorem 3.52 ([CG18, Theorem 2.33] or [Lur11, Theorem 1.3.12]). Given a Koszul duality context as above, the functor Ψ is an equivalence:

Ψ : B → FMP(A , {E α })
Proposition 3.53 ([CG18, Proposition 2.36]). We have the following commutative diagram:

B FMP (A , {E α }) Sp Ψ Θ T
where Θ is the functor described in De nition 3.46 and T is the tangent complex of F (De nition 3.38). R 3.54. This diagram shows that T F is equivalent to Θ(T F ) with T F ∈ B so this tangent functor has more structure that being just a spectrum object. When we will work with the Koszul Duality context for operads (Definition 3.59), with Spf(B), we get that T F is exactly x * T P B the P-tangent complex together with a P ! structure.

De nition 3.55 ([CG18, Definition 2.23]). Given two (weak) Koszul duality contexts:

D

1 : A 1 , {E 1 α } B op 1 , {F 1 α } : D 1 D 2 : A 2 , {E 2 α } B op 2 , {F 2 α } : D 2
A morphism of (weak) Koszul duality context is given by a diagram of adjunctions:

A 1 B op 1 A 2 B op 2 D 1 L 1 D 1 L 2 R 1 D 2 D 1 R 2
such that the diagram of right adjoint commute:

A 1 B op 1 A 2 B op 2 D 1 R 1 D 1 R 2 and we have equivalences R 2 Ω ∞-n F 2 α F 1
α for all α ∈ T and n ≥ 0. Proposition 3.56 ([CG18, Proposition 2.39]). Given a morphism of Koszul duality contexts (following the notation of De nition 3.55), we get a commutative diagram:

B 1 FMP A 1 , {E 1 α } Sp B 2 FMP A 2 , {E 2 α } L 2 Ψ 1 R 1 T Ψ 2 T 3.3.3. Koszul duality context from Koszul duality.
In this section we will study examples of (weak) Koszul duality contexts that arise from operadic Koszul duality. The typical instance of such Koszul duality context can be exemplified by the following proposition:

Proposition 3.57 ([CG18, Proposition 2.30]). We have a Koszul duality context:

D : Alg aug Com , (k ⊕ k[n]) Alg op Lie , (Lie(k[-n -1])) n∈Z : CE •
where the right adjoint is the (∞-categorical) Chevalley-Eilenberg cochain complex, see Example 1.69.

While [START_REF] Calaque | Formal moduli problems and formal derived stacks[END_REF] and [START_REF] Lurie | Derived algebraic geometry x: Formal moduli problems[END_REF] do not construct left adjoint D explicitly (they deduce it from the Adjoint Functor Theorem), one can check that the functor D coincides with the so-called Harrison complex, constructed as the functor (also denoted D) preceding Example 1.69. These duality functors preserve quasi-isomorphisms and therefore define functors of ∞-categories, but notice that they do not arise from a Quillen adjunction. The proof of this proposition makes use of the fact that we are in the conditions of Warning 1.70.

It is clear that this result has more to do with the Koszul duality between the operads Com and Lie and with the operads themselves. We will show how construct a (weak) Koszul duality context from operadic Koszul duality, which as we will see is the main tool to prove Theorem 3.64. Throughout this section, we will work with the deformation context A P described in Example 3.23. From now on, we will consider P a k-augmented k-operad so that P = P ⊕ I. Given a twisting morphism φ : C P, we use the bar-cobar adjunction associated to φ to define the following functor: We would like to know when this weak Koszul duality context is a Koszul duality context so that under those conditions, formal moduli problems over P will be equivalent to Alg D(P) . The necessary conditions are given by the following theorem:

D φ : Alg P coAlg C (Alg C ∨ ) op B φ ( 
Theorem 3.60. Let P be an augmented operad and assume that the following conditions hold:

• P is connective 1 .

• P is splendid (see Remark 3.61).

1 Concentrated in non-positive degrees.

Then the following holds:

• For any A ∈ Art P , the unit map A → D D(A) is an equivalence.

• D(k[n]) is freely generated by k[-n] for all n ≥ 0 , that is:

D(k[n]) D(P)(k[-n])
• D sends a pullback square in Art P :

A 0 A k[n]
to a pullback square in Alg D(P) . • In general (without the assumptions of the theorem) the functor: Therefore the counit restricted to good object is also an equivalence. Finally, the following functor is conservative and preserves sifted colimits:

Alg D(P) FMP P Sp MC T but thanks to Proposition 3.53, this functor is exactly the functor Θ from Definition 3.46 that we want to show is conservative and preserves sifted colimits. R 3.61. The condition being splendid is given in [CCN20, Definition 3.37]. It is a somewhat technical condition which we will not explain here. It is however worth noting the following examples of splendid operads:

• Any (non-necessarily binary) Koszul quadratic operad generated in non-positive degree and in bounded arity are splendid. • If P is connective, P(0) = 0 and P(1) = k then P is splendid and even satisfies all the conditions of Theorem 3.60. • In particular, Com, Ass and Lie are splendid and satisfy all the conditions of Theorem 3.60.

Main result.

Putting together [CCN20, Theorem 4.18] and Theorem 3.60, we obtain the following result:

Theorem 3.62. Suppose that P is a k-augmented k-operad that is connective and splendid, then we have an equivalence:

Ψ P : Alg D(P) → FMP P that sends g ∈ Alg D(P) to Map D(P) (D(-), g). Moreover the inverse functor sends a formal moduli problem F to its tangent complex T F endowed with some D(P)algebra structure, with D(P) = (BP) ∨ P ! {-1} (see Remark 3.54). R 3.63. The functor Ψ P of Theorem 3.62 is, for P = ΩC and other mild conditions, given by some space of Maurer-Cartan elements. Let us sketch why this is the case, see [CCN20, Theorem 7.18] for more details. Under these conditions, given any g ∈ Alg C ∨ and A ∈ Art P , we want to understand the space:

Map Alg C ∨ (D(A), g)

With some finiteness assumptions on A, we have a natural isomorphism Ω α † (A ∨ ) → D α (A), obtained from the twisting morphisms α : C P and α † : B(C ∨ ) C ∨ . There is a Rosetta Stone for algebras similar to the case of operads 1.39, where we can identify maps from a cobar construction with Maurer-Cartan elements of a certain L ∞ -algebra [Wie19, Theorem 7.1]:

Map Alg C ∨ Ω α † (A ∨ ), g MC Hom k-Mod A ∨ , g ⊗ Ω(∆ • )
Since A is Artinian, as complexes, the L ∞ -algebra above is isormorphic to A ⊗ k g ⊗ Ω(∆ • ). Expanding on the discussion at the beginning of Section 3.3, there is a (shifted) L ∞ -algebra structure on P ⊗ C ∨ -algebras given by the twisting morphism (see [CCN20, Lemma 7.15]) and these two L ∞ -structures on A ⊗ k g ⊗ Ω(∆ • ) coincide. We conclude that Map Alg C ∨ Ω α † (A ∨ ), g MC (A ⊗ k g ⊗ Ω(∆ • )) Del (A ⊗ k g)

When P is a Koszul operad there is an equivalence between D(P) and P ! {-1}. This implies the result:

Theorem 3.64. For P a Koszul binary quadratic operad concentrated in nonpositive degrees, there is an equivalence of ∞-categories:

FMP P Alg P ! .
Proof. We have weak equivalences of operads ΩP ¡ → P and D(P) → P ! {-1}. P satisfies the condition of Theorem 3.62, and we get a zig-zag of equivalences: A final important point to make concerns the naturality Theorem 3.64 with respect to the operads involved. The main example of deformation problems studied in Section 2 were encoded by the deformation complex g φ P∞,A . If we consider deformations of the trivial algebra structure on A, i.e. when φ = 0, the deformation complex is in fact a pre-Lie algebra. The associated permutative formal moduli problem yields by restriction a commutative moduli problem and the naturality of Theorem 3.64 asserts that the two commutative formal moduli problems are the same. The whole text we worked over a field of characteristic zero with good reason. Many of the homological results do not generally hold in positive characteristic, for instance the bar-cobar "resolution" can be constructed but is not a quasi-isomorphism and the Maurer-Cartan equation and gauge groups cannot even be defined. On the other hand, whenever the concerned operads are non-symmetric or at least the symmetric groups act freely (Σ-free) there is some hope to retain some homotopy invariance. For instance, the Maurer-Cartan equation for A ∞ -algebras (which are indeed equivalent to associative algebras) reads 0 = dµ + m m + m m m + . . . which makes sense in every characteristic and can therefore be studied with operadic methods, see [START_REF] De | Lie theory for complete curved a∞-algebras[END_REF].

One approach to operadic deformation theory in positive characteristic involves therefore considering Σ-free resolutions of operads. A particularly important example is the case of the commutative operad, whose Σ-free resolutions are called E ∞ -operads. Notice that since the commutative operad is the unit for the tensor product of operads (if we are careful with assumptions on arities ≤ 1), given such an E ∞ -operad E , P ⊗ E is a Σ-free resolution of P. It is therefore important to have access to small models E , but there is no similar Koszul duality for algebraic operads able to produce minimal models in positive characteristic. The best known such model is the Barratt-Eccles operads [START_REF] Berger | Combinatorial operad actions on cochains[END_REF], but others exist [BF04, MM20, BCN21].

-P ∨ , C ∨ : P ∨ is the arity-wise dual of the operad P and C ∨ is the operad given by the arity-wise dual of the cooperad C (Construction 

→

  Maurer-Cartan elements of g[ ].

  13. • Trivial operad: The symmetric sequence I defined by I(1) = k and I(k) = 0 for k = 1 is the unit for • and possesses a natural operad structure given by the identity as monoidal product and unit: I = I • I → I I → I • Associative operad: The associative operad is the operad generated by two binary operations, m and its permutation m = τ.m, subject to the associativity relations generated by µ(m, (m, 1)) -µ(m, (1, m)). The generator of this relation can be depicted by: The complex T (2) E = (E(2) ⊗ E(2)) ⊕3 is generated by all permutations of the partial compositions m • 1 m and m • 2 m. The relations imposed for the associative algebra are generated by all the permutations of m • 1 m -m • 2 m: m m x σ(1)

  Op aug : B between coaugmented conilpotent cooperads and augmented operads defined by Ω(C ) = T(C [-1]), d C + d Ω with C := C I for Ω, and with BP := T co P[1], d P + d B .

Theorem 1 .

 1 48 ([BM03, Theorem 3.2]).There is a a co brantly generated model structure on the category Op such that a morphism P → Q is a weak equivalence (respectively bration) if for all n ∈ N the maps P(n) → Q(n) are weak-equivalences (respectively brations) in the projective model structure on Mod k . R 1.49. The free operad functor is left adjoint adjoint to the forgetful functor Op → Seq Σ where the model structure Seq Σ is the projective model structure on the functor category Fun (N ∼ , Mod k ), where fibrations and weakequivalences are defined object-wise. This forgetful functor clearly preserves fibrations and acyclic fibrations which makes it a right Quillen functor. In fact the model structure on Op is left transferred from the model structure on Seq Σ via the free-forget adjunction. R 1.50. The original version on Theorem 3.2 in [BM03] is a more general version of this theorem giving a model structure on the category of operads valued in any Cartesian closed model category (with some additional technical assumptions). R 1.51.

  Theorem 1.71 ([DCH16, Theorem 3.11] or [Val20, Theorem 2.1]). Given any twisting morphism α : C P, we can de ne the α-model structure on coAlg C as the model structure obtain via the left transfer along the bar-cobar adjunction for P-algebras (see De nition 1.64):

  operads form a model category by applying a colored version of Theorem 1.44. Furthermore, the operad O is quadratic and Koszul self dual O ! = O. The (colored enhancement of the) bar-cobar construction from Definition 1.64 with respect to the canonical O ¡ O corresponds precisely to the operadic barcobar construction.

  E

  End A B where f 1 := f (I) : A → B and µ A , µ B are the twisting morphisms describing the P ∞ -structures on A and B. Each operation a ∈ P ¡ (n) gives rise to a map f a := f (a) : A ⊗n → B and we have f 1 := f I by de nition. These maps characterize the ∞-morphism. E 2.8. [LV12, Section 10.2.6] • A ∞ -morphisms:

E 2 .

 2 39 (Deformation quantization of Poisson manifolds).Given a Poisson manifold (M, {-, -}), a (formal deformation) quantization of M is a so-called star-product, i.e., an R[[ ]]-linear associative product -on formal power series of functions C ∞ (M )[[ ]], such that:

  linear sections of the projection B ⊕ M → B are precisely A-linear M -valued derivations 1 on B: Hom Alg A//B Com (B, B ⊕ M ) ∼ = Der A (B, M ) • The square zero extension functor B ⊕has a left adjoint: L : Alg A//B Com → Mod B Moreover this adjunction is Quillen for the standard model structures on Alg A//B Com and Mod B . De nition 3.10. Given B ∈ Alg A/

  obtained by constructing the free B-module on formal generators d dR b for all b ∈ B, subject to the relations d dR a = 0 for a ∈ A, d B d dR x = -d dR d B x and d dR (xy) = (d dR x)y + (-1) deg x xd dR y.

••

  Given a commutative algebra A, we want to understand the stabilization of A-augmented commutative A-algebra, Stab Alg A//A Com . This category can be identified with Mod A using the square zero extension functor:Mod A Stab Alg A//A Com M (A ⊕ M [n]) n∈Z ∼ To understand Stab (Alg Com )first observe that there is an equivalence: Com sending a non-unital commutative algebra B to its unitalization k ⊕ B and an augmented k-algebra A to the fiber of the augmentation A → k. This equivalence induces an equivalence:Stab (Alg Com ) Stab Alg k//k ComAs such Stab (Alg Com ) is also equivalent to Mod k and under this equivalence the spectrum object corresponding to M ∈ Mod k is (M [n]) n∈Z with the trivial commutative product on each (M [n]).• Similarly Stab (Alg P ) will be given by the category of P-modules.A P-module M corresponds the spectrum object (M [n]) n∈Z where M [n] is viewed with the trivial P-algebra structure 1 . E 3.23. • For A = Mod A (with A ∈ Alg Com ), we can define the deformation context (Mod A , {E}) with only one spectrum object E = (A ⊕ A[n]) n∈Z ([CG18, Example 2.2]). • Given A a commutative algebra, we consider A = Alg A//A Com and we can define the following deformation context:Alg A//A Com , {E = (A ⊕ A[n]) n∈Z } where A ⊕ A[n] is the square zero extension of A by A[n] ([CG18, Remark 2.5]). When A = k, we will call this deformation context A augCom for short. • For A = Alg Com we consider the following deformation context:

  Com and A P . Proposition 3.26 (Artinian Commutative Augmented k-Algebras). The category Art A aug Com is the smallest full sub-category of Alg k//k Com such that:• k ⊕ k[n] ∈ Art A aug Com for all n ≥ 0 • For any A ∈ Art A augCom and any map A → k ⊕ k[n] with n ≥ 1, the homotopy pullback A × k⊕k[n] k is also Artinian:

Com.

  Indeed, as we have seen in Example 3.8, classical local Artinian algebras are created by successive square-zero extensions. With Definition 3.24 and the deformation context on Alg P of Example 3.23 we have now a suitable notion of Artinian algebra over an operad.

  Artinian as well. Therefore Art P satisfies the properties given in the proposition. It is the smallest such category because any Artinian object can be obtained from some k[n] in finitely many pullbacks along some 0 → k[n] for n ≥ 1.

R 3 .

 3 30. If A ∈ Art P , then for any square zero extension by the trivial P-module k[n]: k[n] B A B is also in Art P ([CCN20, Example 2.3]). Indeed up to pulling back to a quasi-free resolution of A, the surjection B → A splits as graded algebras and B A ⊕ k[n] with di erential d(a, v) = (da, dv + χ(a)).

E 3 .

 3 34. For any B ∈ Alg k//k Com the following functor is a formal moduli problem: Spf(B) : Art A aug Com S A Map (B, A) Moreover we get a functor Alg Com → FMP sending B to Spf(B). Spf(B) is called the formal spectrum of B. More generally, we can define the formal spectrum in a similar way for B ∈ Alg P as: Spf(B) : Art P S A Map (B, A) Proposition 3.35. Following [Lur11, Lemma 1.1.20], a morphism f : A → B between Artinian commutative algebras, A, B ∈ Art A aug Com is small if and only if it induces a surjection of commutative rings H 0 (A) → H 0 (B). Therefore the second condition of De nition 3.31 can be rephrased as follows: Any homotopy pullback in Art A aug Com such that H 0 (A) → H 0 (B) or H 0 (B ) → H 0 (B) is surjective is sent to a pullback in S :

  x k (B, M ) := Hom Alg k//k Com (B, k ⊕ M ) with B viewed over k via x (see [TV08, Definition 1.4.1.2]).

R 3 .

 3 42. Let B ∈ Alg k//kCom and let x : → Spec(B) be the point corresponding to the augmentation. Then we have:T x Spf(B) := Map dSch / (D k,n (k), Spec(B))

  n≥0

•

  Θ α : B → Sp sending B ∈ B to the spectrum object: Hom B (Ω ∞-n E α , B) n∈Z ∈ Sp under the functor is conservative and preserves sifted colimits. R 3.47. A weak Koszul duality context together with condition (1) gives us a weak deformation theory according to the terminology of Lurie, [Lur11, Definition 1.3.1]. A Koszul duality context is an example of a deformation theory according to [Lur11, Definition 1.3.9]. R 3.48. The name "Koszul duality context" comes from the fact that Koszul duality for operads (C , P) induces a weak Koszul duality context between P-algebras and C ∨ -algebras (see Proposition 3.58). Under the assumptions of Theorem 3.60, this is even a Koszul duality context. E 3.49. Let A ∈ Alg Com . We have a Koszul duality context given by the dualization: (-) ∨ : Mod A , (A[n]) n∈Z Mod op A , (A[-n]) n∈Z : (-) ∨ Proposition 3.50 ([CG18, Proposition 2.22]). Given a Koszul duality context (using the same notation as in De nition 3.46), we have the following: • D (Ω ∞-n E α ) Ω ∞-n F α for all n ≥ 0. • For every Artinian object A ∈ Art A , the unit map A → D DA is an equivalence. The adjunction D D induces an equivalence: D : Art A B gd op : D • If M ∈ Art A and f : A → B is a small morphism in A then D sends the pullback diagram:

  -) ∨ Proposition 3.58. If φ is a weakly Koszul twisting morphism (see De nition 1.54), then we have the following:• For any A ∈ Alg P , we have:D φ (A) RDer P (A, k)• D φ preserves all colimits and therefore has a right adjoint:D φ : Alg P Alg op C ∨ : D φ •The aforementioned adjunction de nes a weak Koszul duality context with Alg P seen with the deformation context A P and with the dual deformation context Alg C ∨ , (C ∨ (k[-n])) n∈Z described in Example 3.45. Proof. The first two parts can be extracted from [CCN20, Lemma 4.1], while the last claim is a consequence of [CCN20, Corollary 4.7] where we apply the result to V = k[n] = Ω ∞-n F . Since P(k[n]) = k[n] (the free P-algebra structure on k[n] is the trivial one), we obtain that D φ (k[n]) = D φ (P(k[n])) = triv(k[n]) = k[n] which is the criterion for the adjunction to be a weak Koszul duality context. De nition 3.59. Given P an augmented operad, we denote D(P) := (BP) ∨ and π : BP P the universal twisting morphism (Definition 1.54). Then the associated weak Koszul duality context is denoted by: D : Alg P Alg op D(P) : D

  Alg D(P) FMP P Sp MC T is conservative and preserves sifted colimits. Then, we have a Koszul duality context: D : Alg P Alg op D(P) : D for the deformation context Alg P , {(k[n]) n∈Z } of Example 3.23 and dual deformation context Alg D(P) , {(D(P)(k[-n])) n∈Z } of Example 3.45. Proof. The first four items of the Theorem are proven in [CCN20, Theorem 5.1]. The last one is proven at the end of the proof of [CCN20, Theorem 4.18]. For the last part, we will show that these axioms imply the axioms of a Koszul duality context (Definition 3.46). Using that the unit of the adjunction is an equivalence on Artinian algebras (similarly to Warning 1.70), and that D(k[n]) D(P)(k[-n]) we get an equivalence: k[n] D D(k[n]) D (D(P)(k[-n]))This shows that the adjunction is a weak Koszul duality context. More generally, we can show that there is an equivalence:

  . • For P = Com we get back Theorem 3.36: FMP ∼ → Alg Lie • For P = Ass, we get the result of Lurie, in [Lur11]: FMP Ass ∼ → Alg Ass • For P = Lie we obtain a new equivalence: FMP Lie ∼ → Alg Com • For the permutative operad we get: FMP Perm ∼ → Alg preLie The reader can find many examples treated in detail in Section 3 of [CCN20]. 3.3.5. Naturality of the main result.

Proposition 3 .DD

 3 66 ([CCN20, Proposition 6.5]). The construction in Section 3.3.3 de nes a natural transformation 1 : such that D(α) = D α : Alg P → Alg opCIf we restrict to using the universal twisting morphism as in Definition 3.59, we get the natural transformation ([CCN20, Corollary 6.7]):Note that the functor D gives us weak Koszul duality context (and even Koszul duality context for nice enough operads). Moreover, Proposition 3.56 gives us some naturality with respect to morphisms of Koszul duality context. In the end, we obtain the following result: Proposition 3.67 ([CCN20, Proposition 6.10]). Let Op + k denote the category of splendid connective k-operads. Then we have a natural equivalence 1 : f : P → Q to the commutative square of right adjoint:Alg D(P) FMP P Alg D(Q) FMP Q D(f ) * (f * ) *3.3.6. Some vague comments on positive characteristic.

¡:-

  1.19). -End M N : Symmetric sequence of map from M ⊗• to N (Definition 1.23). -Conv(C , P): Convolution Operad (Definition 1.33). -B Ω: Bar-cobar adjunction (Definition 1.36). -Q{-n}: Q ⊗ End k[n] . -P ! : Koszul Dual Operad (Definition 1.61). -P Koszul dual cooperad (Definition 1.61). -P ∞ : Minimal cofibrant resolution of P, P ∞ := ΩP ¡ (Notation 1). -Tw: Category of all twisting morphisms (Definition 1.38). -Koszul: Full sub-category of Tw given by Koszul morphisms (Definition 1.54). -A ∞ , L ∞ , C ∞ : Notation for Ass ∞ , Lie ∞ and Com ∞ (Notation 1). Other: -k: Field of characteristic 0. -Σ n : Group of permutations of n-elements. -Der A (B, M ), Der A (B, M ) and RDer A (B, M ): B-Module, di erential graded module and derived module of M -valued, A-linear derivations on B respectively. -k[[t]]: Algebra of formal power series in t over k. -∼: Denote an equivalence relation. In general in a model category, A ∼ B if there is a zig-zag of weak-equivalences between them. -M A : Maximal ideal of a local ring A. -B⊕-: Square zero extension functor sending a B-module to the trivial square zero extension B ⊕ M (Definition 3.7). -Ω 1 A/B : A-module of Kähler di erential on A relative to B (Definition 3.10). -L A/B : Cotangent complex of A relative to B (Definition 3.10). Categories: Mod k : Category of cochain complexes over k.-Mod R : Category of cochain complexes over a commutative ring R.-Hom: Internal Hom for categories enriched over themselves.-C A/ , C /A and C A//B : Category of objects under A, objects over A and objects both over B and under A respectively. -Fun(C , D): Category (or ∞-category) of functors from C to D.-C iso : Given a category C , C iso denotes the sub-category of C with same objects and morphism being the isomorphism in C . -N ∼ : Category with objects the sets {1, . . . , n} for all n ∈ N and morphisms given by the permutations of these sets. -N S : Category with objects being k-tuples of elements on S for all k ∈ N and morphisms given by all permutations of these tuples, (a 1 , • • • , a k ) → (a σ 1 , • • • , a σ k ).

-c∈C and c∈C :

 c∈C End and coend functors sending a functor F : C op × C → D to and object c∈F F (c, c) ∈ D (see[START_REF] Loregian | Coend calculus[END_REF]).-Mon(C ): Categorie of monoid in a monoidal category C . -C -Mod: Categorie of C-module for C ∈ Mon(C ). -N : Denotes all the nerve functors, including simplicial nerves and nerve of a category or groupoid. -S : ∞-categories of spaces. -sSet: Category of simplicial sets. -| -|: Geometric realisation functor | -| : sSet → Top. -hC : Homotopy category of a model or ∞-category (Section 1.4.1). -Stab(C ): Stable ∞-category associated to an ∞-category C . -Ω ∞-n : Functor from Stab(C ) to C sending a spectrum object (A k ) k∈Z to A n . -Sp: Category of spectra, Sp = Stab(Top).-Def φ (R): Groupoid of deformation of an algebraic structure φ : P → End A along the local algebra R.Deformation Theory:-MC: Functor sending a Lie algebra g to its set of Maurer-Cartan elements, MC(g)(Definition 1.37). -k[ ]: k-algebra of dual numbers. k[ ] := k[x] (x 2 ) -Ω[∆ • ]: Simplicial commutative k-algebra of dierential forms on simplices (Definition 2.21). -Del(g): Deligne ∞-groupoid associated to a Lie algebra g (Definition 2.21). -Del(g): Deligne groupoid associated to a Lie algebra g (Definition 2.20). -Def P B (A): Groupoid of geometric deformation of a P-algebra structure on B along A (Definition 3.13). -Def P B (A): ∞-Groupoid of geometric deformation of a P-algebra structure on B along A (Definition 3.15). -A aug Com : Deformation context for augmented commutative k-algebras (Example 3.23). -A P : Augmentation context for P-algebras (Example 3.23). -Art, Art A aug Com and Art P : Category of classical commutative local Artinian algebra, di erential graded commutative local Artinian algebra and Artinian algebra in Art P (Definition 3.1 and 3.24). -FMP, FMP A and FMP P : Category of formal moduli problem associated to commutative deformations, the deformation context A and the deformation context A P respectively (Definition 3.31 and Example 3.32). -Spf: Formal spectrum functor (Example 3.34). Algebraic Structures: -Alg Com⊗ k A (Mod A ): Category of A-linear commutative algebra in Mod A . -CE: Chevalley-Eilenberg functor. -Art: Category of local Artinian k-algebras (Definition 3.1). -Alg P , coAlg P and coAlg conil P : Category of all P-algebras, P-coalgebras and conilpotent P-coalgebras respectively (Definition 1.20). -Alg C , coAlg C and coAlg conil C : Category of all C -algebras, C -coalgebras and conilpotent C -coalgebras respectively (Definition 1.21). -P(-) and C (-): Free P-algebra functor and cofree conilpotent Ccoalgebra functor respectively (Proposition 1.26). -Conv(C , P): Convolution operad (Definition 1.33). -Tot(P): Totalisation pre-Lie algebra (Definition 1.35). -(-) : Forgetful functor forgetting the P (or C ) (co)algebra structure. -f ! f * : Free-forget adjunction associated to a map of operad f : P → Q (Proposition 1.28). In particular f ! is the free Q-algebra functor relative to P. -U: Universal enveloping algebra functor (Section 1.2.1). -Sym: Symmetric algebra functor. -Ω α B α : Algebraic cobar-bar adjunction associated to a twisting morphism α (Definition 1.64). -D: Koszul dual algebra (Definition 3.59). -f : A B: ∞-morphism from A to B (Definition 2.5). -F • g: Filtration on a Lie algebra g (Definition 2.18). --: Completion functor for filtered algebras (Definition 2.18). -BCH: The BCH product satisfying e X e Y = e BCH(X,Y )

  1.44 ([Hin97, Theorem 4.1.1]). For an operad P ∈ Op, consider the adjunction of Proposition 1.26,

(-) : Alg P Mod k : P(-) Then we can left transfer the model structure on Mod k (Theorem 1.41) to a model structure on Alg P such that a map f is weak equivalence (respectively a bration) in Alg O (Mod k ) if and only if f is a quasi-isomorphism (respectively a bration). With this model structure this adjunction is Quillen. R 1.45. Let us note that if P has no di erential, then H(

  set of P ∞ -structures on A is by definition given by Tw P ¡ , End A , the set of Maurer-Cartan elements of the convolution Lie algebra (Definition 2.30 and 1.38). In Section 2.2.1, we define a set, groupoid and ∞-groupoid over the set of Maurer-Cartan elements of a Lie algebra, commonly called the Deligne (∞-)groupoid. This is a priori unclear what these objects have to do with deformations, but in Section 2.2.3, we define a set, groupoid and ∞-groupoid of R-deformations of a P

∞ -structure on A with R a local (Artinian) commutative ring (for example R = k[ ], the ring of dual numbers). Theorem 2.35 then tells us that the deformation ∞-groupoid is homotopy equivalent to a Deligne ∞-groupoid of a certain twisted Lie algebra. 2.2.1. Maurer-Cartan space and gauge group.

  We say that an object (resp. morphism) of B is good if it is Artinian when considered in (B op , {F α } α∈T ) 1 . We denote by B gd the full sub-category of good objects of B. Alg Com , then Mod A , (A[n]) n∈Z is a deformation context and since taking the opposite category exchanges the suspension and desuspension functor, we get the dual deformation Mod A , (A[-n]) n∈Z .If A is bounded and concentrated in non-positive degrees, [CG18, Lemma 2.16] tells us that an element M ∈ Mod A in this dual deformation context is good if it is perfect and cohomologically concentrated in positive degrees (see also[START_REF] Calaque | Formal moduli problems and formal derived stacks[END_REF] Remark 2.17]).

	E De nition 3.46 ([CG18, Definition 2.18]). A weak Koszul duality context is the 3.45. [CG18, Section 2.2]). Using this on the free-forget adjunction: Mod k Alg P we get a dual deformation context: Alg P , {(P • k[-n]) n∈Z } data of: • A deformation context (A , {E α } α∈T ) • A dual deformation context (B, {F α } α∈T ) • An adjunction: • If A ∈ • Dual deformation contexts can be transferred along left adjoints (see D : A B op : D

De nition 3.44 (Dual Deformation Context, [CG18, Definition 2.11]). A pair (B, {F α } α∈T ) is called a dual deformation context if B is a presentable ∞category and F α ∈ Stab(B op ).

  Indeed, the following diagram of restrictions commutes: More generally, following Theorem 3.56, we can formulate a notion of naturality in the Koszul duality contexts obtained from universal twisting morphisms. These Koszul duality context are themselves natural in the choice of twisting morphism. We recall that Koszul twisting morphism form a category (Definition 1.54).

	FMP Com	∼	Alg Lie
	FMP Perm	∼	Alg preLie
	FMP Ass	∼	Alg Ass
	FMP Lie	∼	Alg Com

  (Proposition 2.19). -g P∞,A : Convolution Lie Algebra of the cochain complex A (Definition 2.30). -g φ : Twisted Lie algebra by a Maurer-Cartan element φ of g (Proposition 2.31). -g φ P∞,A : Deformation complex of A with P ∞ structure φ ∈ MC(g P∞,A ) (Definition 2.33). Email address: ricardo.campos@math.univ-toulouse.fr
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I ⊂ P is called an operadic ideal if µ(l⊗(l1 ⊗ • • • ⊗ l k )) ∈ I as soon as one of l, l1, • • • , l k is in I .

Where C -Mod• denotes the category of modules over a monoid C for the monoidal product •.

A symmetric sequence M is called arity-wise dualizable if for each n ∈ N, M (n) is dualizable, which in our setting corresponds to bounded and finite dimensional in every degree.

Free as a graded algebra, if we forget the di erential.

Recall from Example

2.4 that Ass ¡ (n) is isomorphic to k[Σn] in arity n and degree 1 -n.

Essentially, a deformation functor is a functor that sends a "small" deformation parameter (e.g. k[ ]) to the "space of all deformation" along this parameter space.

Der A (B, M ) denotes the B-module of A-linear M -valued derivations concentrated in degree 0 and RDerA(B, M ) its derived functor.

Bij denotes the restriction of Bi to the intersection of Bi with Bj. In other words, Bi,j is a localisation of Bi by some ideal realising this intersection.

A is presentable if it is generated by a small set of "small objects" under homotopy colimits.

Recall that objects in Stab(A ) correspond to spectrum objects in A * , i.e., a sequence E = (• • • , a2, a1, a0, a-1, • • • ) of pointed objects of A , such that ai is equivalent to the loop space Ωai+1. For n ≥ 0, we denote Ω ∞-n E = an.

Artinian objects can be though as "small" objects. In fact they are called "small" in[START_REF] Lurie | Derived algebraic geometry x: Formal moduli problems[END_REF] 

An Ω-spectrum object is completely determined by a collection (xi) i∈N , indexed by N, such that there are weak equivalences xi → Ωxi+1. We recover the full spectrum object by applying Ω successively to the xi.

Here (B op , {Fα}α∈T ) is generally not a deformation context since B op will in general not be presentable. However the definition of Artinian object still makes sense in B op .

Cat L ∞ denotes the ∞-category of ∞-categories with left adjoint ∞-functor as morphisms.

Pr R denote the ∞-category of presentable ∞-categories with morphisms given by right adjoint functors.

The first author was supported by ANR-20-CE40-0016 HighAGT. The second author received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 768679).
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Extensions of the Kodaira-Spencer morphism and obstruction are also discussed in [Vez10, Section 3].

We can now show how rst-order derivations of smooth schemes are related to the tangent cohomology. Proposition 3.12. Let X be a smooth nitely generated k-scheme, then rst-order deformations up to equivalence are in bijection with H 1 (X, T X ).

Proof. First, notice that a first-order deformation of a smooth algebra Spec(B) is trivial as explained in Remark 3. Now a first order deformation X can be covered by smooth a ne opens. Take {Spec(B i )} such a smooth open chart. Then pulling back this covering along X → X gives a covering of X . Then, we have the following pullback:

) is an open of X who is smooth, then Spec(B) is also smooth, and by rigidity (see Remark 3.4) we have

X is therefore only characterized by the gluing data of the B i [ ], lifting the gluing data of X.

In other other, if B i and B j intersect, we need a lifting of the isomorphism φ ij : B i,j → B j,i 1 characterizing the gluing on X:

Since φ is an isomorphism, giving a filling is equivalent to taking a section of B j,i [ ] → B j,i . We can also show that such a lift is necessarily an isomorphism.

Since such sections are equivalent to derivations of B j,i , a deformation is given by a family of derivations on pairwise intersections of X.

I N

Operads:

-Seq Σ : Category of symmetric sequences (Definition 1.1).

-⊗ Day : Day convolution (Definition 1.5).

- -O: Colored operad encoding symmetric operads (Section 1.6.1).