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The physics of metallic glass local devitrification employing ultrafast laser irradiation is the cra-
dle of complex phenomena that are still not understood despite its applicative potential in material
processing for nanotechnology. This paper reports a theoretical simulation combining the two tem-
perature model and classical molecular dynamics simulations to unravel the mechanisms that lead
to the localized phase transition in Cu-Zr metallic glass. According to observations, the initial
composition of amorphous samples plays an essential role, in addition to nonequilibrium thermo-
dynamic processes caused by the laser energy deposition that alters the atomic environment. We
further demonstrate that specific compositions devitrify despite its high glass-forming ability. The
thermodynamic conditions fostering the emergence of a stable nanocrystalline phase are clearly es-
tablished. The compressive pressure wave and the rapid heating process caused by ultrafast laser
energy deposition synergistically contribute to disrupt the microstructure of the glass significantly,
thereby initiating the devitrification process. Results are discussed using additional classical MD
simulations that provide valuable insights for interpreting the distinct contributions of temperature
and pressure to the phase transformation. Finally, the impact of the formed nanocrystals on the
phononic thermal conductivity of the alloy is presented confirming the potential application of the
laser-induced devitrification process for the development of a new generation of nanoarchitectured
materials.

I. INTRODUCTION

Ultrafast laser processes causing structural modifica-
tion in ordered nanocrystalline alloys or metastable sys-
tems such as metallic glasses (MGs) have been exten-
sively investigated in experimental and theoretical stud-
ies [1]. Several applications were the object of a partic-
ular focus because of their attractive properties, includ-
ing magnetic fabrication [2], electrocatalysis for energy
storage [3], coatings properties [4], standing ductility [5],
catalysis [6], and optical applications [7]. The fact re-
mains that all these efforts to design a material with ex-
ceptional properties are still far from fulfilling all fab-
rication challenges. One of the approach is to create
nanocomposite alloys combining crystalline and amor-
phous structures [8]. These hybrid materials may inherit
properties from either the amorphous or nanocrystalline
phases, or even exhibit unexpected outstanding prop-
erties due to anisotropic characteristics induced by the
presence of nanocrystals within the amorphous material
[9–13]. Conventional annealing method is the most popu-
lar technique proposed in the literature to achieve devit-
rification. This consists in maintaining the amorphous
sample long enough in a temperature region below the
melting temperature and above its glass transition tem-
perature to crystallize [14–16]. The main drawbacks of
this approach are the spontaneous aspect and the un-
controlled spatial character of the devitrification in MGs
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[17]. New strategies to control the final crystalline phase,
the rate of seeds emergence, their location and size are
required. In general, this disorder-order transformation
depends on the Glass-Forming Ability (GFA) of the ma-
terial, which translates to its ability to form an amor-
phous structure [18]. In this context, the ultrafast laser
seems to be one the most appropriate tool to overcome
this limitation.

Monoatomic metallic structures are difficult to amor-
phize and tend to remain crystalline due to their low
GFA [19, 20]. Experimental and theoretical vitrification
processes in liquid metals during rapid quenching
confirm this behavior, as demonstrated in Al, Ti, Fe,
Ni, and Cu [21–28]. Nevertheless, a novel experimental
method known as ultrafast quenching technique with
an ultrahigh cooling rate was developed to achieve the
amorphization of pure metallic elements Ta and V [29].
Furthermore, numerous studies have shown that binary
alloys have the potential to undergo amorphous-crystal
phase transition over a wide range, such as NiZr [30–33],
CuTi [34, 35], PdSi [36], FeNi [37, 38], SiAl [39, 40],
SiAu [41], NiAu [42], and NiAl [43]. The study on NiNb
MG highlights that from a thermodynamics point of
view, the maximum devitrification occurs around the
glass transition temperature (Tg) [44, 45]. Recent work
on ZrCo MG provides another pathway to understand
the devitrification mechanism, where atomic species and
concentration play an important role (Co concentration
in the range of 30-90 %) [46]. Devitrification process
is even sought for multicomponent MG mixtures. As
reported in the literature, it concerns ternary alloys
such as CuZrPd [47], AlNiCo [48], CuZrAl [49, 50], and
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AlNiLa [51]. Several studies have achieved devitrification
in multicomponent amorphous systems in supercooling
condition, namely ZrCoAlFe [52], LaAlNiCu [53], Zr-
TiNiCuBe [54, 55], and ZrTiCuNiAl [56]. The authors
support that the atomic element size and the stoichiom-
etry of mixtures are fundamental ingredients to realize
devitrification.

Due to the high GFA of some alloys, devitrification
can be challenging. This was confirmed by comparing
the nucleation rates of two amorphous alloys using a
crystal/liquid interfacial setup. The work highlights
a significantly slower crystal growth rate for CuZr
compared to low-GFA NiAl [57]. To reduce the large
GFA of CuZr MG, different methods were proposed with
the aim of activating devitrification. We can mention
the sandwiching method that consists in confining CuZr
MG between two pure Zr and Cu layers that allows the
emergence of nanocrystals [58]. The work [59] relies on
a seeding method where a BCC crystalline structure
is inserted within the amorphous material to trigger
devitrification. Furthermore, the devitrification of CuZr
MG using X-ray was confirmed experimentally, but no
mechanism was proposed for such a process [60]. In
laser processing, ultrafast laser irradiation can be used
to induce the amorphous-crystal transformation [61].
However, the mechanism and thermodynamic conditions
behind this transformation remain largely unknown
[62–71]. An attempt was made to study ultrafast
laser interactions with amorphous CuZr targets using
atomistic computations but no successful transition from
amorphous to crystalline structure was reported [72].

In the physical vapor deposition (PVD) process, MG
thin films are engineered with specific properties that dif-
fer from the substrate that can be designed for specific
optical, thermal and mechanical applications. Laser ir-
radiation has the significant advantage of being able to
process the film without affecting the substrate [73, 74].
This versatility enables MG devitrification and thus the
creation of a composite at a specific location using a
single-step treatment, rather than multiple steps or pro-
cesses making this experimental method highly adapt-
able. Ideal laser conditions remain hard to reach while
the elementary physical processes responsible for the
laser-matter reaction are still ambiguous. Our study re-
lies on a theoretical approach that combines a two tem-
perature model (TTM) and classical molecular dynamics
(MD) simulations used to investigate laser conditions and
CuZr composition as well as to analyze the devitrification
mechanisms at the surface of thick irradiated samples.
First, several CuZr compositions are tested to identify
stable MG to be subjected to the laser treatment. Then,
the impact of the laser on the sample is investigated in
terms of pressure waves propagation and temperature as
well as local atomic rearrangements with the aim of jus-
tifying the occurrence of nanocrystals within the glassy
matrix. Results are discussed in the light of additional

classical MD simulations following relevant thermome-
chanical paths. The study concludes with a discussion
about thermal conductivity calculations performed on
the nanostructured MG.

II. COMPUTATIONAL DETAILS

The laser-material interaction process in amorphous
(α) CuZr alloys is modelled using a TTM-MD hybrid
method [75–79] as implemented in the LAMMPS soft-
ware [80, 81]. Several initial random solid solutions with
BCC-like crystalline structure and various stoichiom-
etry including Cu19.4Zr80.6, Cu19.9Zr80.1, Cu21.9Zr78.1,
Cu23.5Zr76.5, Cu24.9Zr75.1, and Cu26Zr74 were first mod-
eled using the embedded atom model parameterization of
Mendelev et al [82]. Each 3D-periodic 8.13× 8.13× 8.13
nm3 simulation cell is filled with 31250 atoms and is
subjected to a classical amorphization cycle using MD
as described in Ref. [83]. First, the system is heated
up to 2000 K in the liquid state at a rate of 1013 K.s−1

and then it is quenched down to 300 K using a rate of
1011 K.s−1 where another equilibration run is performed
during 100 ps in the NPT ensemble (isothermal-isobaric)
using the Nosé-Hoover thermostat and barostat [84]. An
MD timestep of δt=1 fs is used for all simulations. Then
the obtained amorphous cell is replicated in the three
direction of space to extend the sample size, following
the classical procedure of Cao et al [85]. Finally, the
simulation box is extended twice (vacuum region) in the
X-direction to create the surface of the material and is
further equilibrated for another 100 ps.

The TTM-MD equations are solved on an electronic
grid of 702 × 1 × 1 during 30 ps. Ultrafast laser operat-
ing conditions of pulse duration τ=100 fs and absorbed
fluence Fabs=34 mJ/cm2 are employed to preclude the
system from ablation. After the laser pulse, the system
is tracked during 16 ns without thermomechanical con-
strains. To effectively prevent pressure wave reflection
at the rear surface of the bulk sample, a damping re-
gion known as the Non-Reflecting Boundary Condition
(NRBC) is employed, as outlined in Ref [83]. This re-
gion is characterized by a damping coefficient γdamp=2.5

10−3 eV ps Å−2. The TTM solver incorporates elec-
tronic properties, as documented in Ref. [83], which
compiles data from multiple sources, including Refs.
[72, 83, 86, 87]. It is assumed that these electronic prop-
erties exhibit minimal variation with changes in com-
position within amorphous CuZr alloys. All the struc-
tural analysis are performed using the Common Neighbor
Analysis (CNA) [88] and Polyhedral Template Matching
(PTM) [89] algorithms as implemented in the OVITO
software [90] applied here to Cu and Zr sublattices.
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III. RESULTS AND DISCUSSION

A. CuZr amorphous configurations

Considering the high GFA of CuZr systems in the
range 30≤%-Zr≤50 [91], the strategy is to build a stable
Zr-rich amorphous structure to boost the probability to
activate devitrification. For this purpose, six structures
with different compositions are tested. The final results
are illustrated in Figure 1 where the CNA algorithm is
used without chemistry considerations.

Figure 1. Cu1-xZrx MG samples produced after the amor-
phization cycle. The compositions are: a) Cu19.4Zr80.6,
b) Cu19.9Zr80.1, c) Cu21.9Zr78.1, d) Cu23.5Zr76.5, e)
Cu24.9Zr75.1, and f) Cu26Zr74. The local atomic structure
is characterized using CNA (blue=BCC-like configurations,
grey=amorphous).

Figure 1 presents the local structures analysis obtained
for the various stochiometries after the amorphization
process. The different compositions exhibit a compe-
tition between the amorphous and crystalline phases.
Three contrasted behaviors are observed. Firstly, in Fig-
ure 1 a), the α-Cu19.4Zr80.6 partially crystallizes dur-
ing the process with ∼40 % of the atoms characterized
by a BCC-like structure. Secondly, in Figure 1 b), the
α-Cu19.9Zr80.1 is also partially crystallized with BCC-
like clusters corresponding to 4 % of the total amount
of atoms. Finally, the last samples are completely sta-
bilized MGs as illustrated in Figure 1 c), d), e) and
f) corresponding to α-Cu21.9Zr78.1, α-Cu23.5Zr76.5, α-
Cu24.9Zr75.1 and α-Cu26Zr74, respectively. A comple-
mentary analysis based on Radial Distribution Function
(RDFs) is shown in Figure 2.

The results reveal that for the completely vitrified
amorphous structures α-Cu26Zr74, α-Cu24.9Zr75.1, α-
Cu23.5Zr76.5 and α-Cu21.9Zr78.1 a double splitting of the
RDFs second peak typical of amorphization is noticed
whatever the stoichiometry. On the contrary, a single
pronounced peak is observed for the α-Cu19.4Zr80.6
structure which is the footprint of an already existing

Figure 2. RDFs of the various CuZr MGs after the amor-
phization process. The complete amorphization of the sample
is characterized by the double splitting of the second peak.

crystal.

An additional simulation is performed on the α-
Cu21.9Zr78.1 sample to verify that the structure is stable
and does not undergo spontaneous crystallization. The
sample is subjected to an additional equilibration sim-
ulation of 100 ns in the NPT ensemble at 300 K and
1 bar using the Nosé-Hoover thermostat and barostat.
The results confirm the metastable character of the glass
where no crystal is detected (see supplementary materi-
als). In the following, the amorphous α-Cu21.9Zr78.1 is
selected as the initial structure to investigate the devit-
rification process triggered by ultrafast laser irradiation.
This amorphous cell is replicated up to 211.31 × 7.61 ×
10.50 nm3 size.

B. Ultrafast laser irradiation of α-Cu21.9Zr78.1

Figure 3 shows a specific region within the α-
Cu21.9Zr78.1 at t∼8 ns after the laser energy deposition.
The CNA algorithm recognizes the emergence of BCC-

like crystalline germs within the amorphous matrix. This
structure matches the prediction of the CuZr phase di-
agram at high-temperature where a solid solution of Cu
in the BCC β-Zr phase is expected for this specific com-
position [92]. The characteristic size of the crystalline
nanocrystals that nucleate in the subsurface region is
lower than 1 nm. The growth of the crystalline phase
deeper inside the material is shown in Figure 4.
Figure 4(a) indicates that the first crystal seeds

within the Cu21.9Zr78.1 amorphous structure do not
form instantly after the laser pulse but at t∼8 ns in a
region located at X∼63 nm. As the seeds grow, they
coalesce to form a crystallization front at t=9 ns and
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Figure 3. Nucleation of BCC-like nuclei (∼15 atomic plans)
within the amorphous α-Cu21.9Zr78.1 at t∼8 ns after the laser-
energy deposition.

travel through the devitrified region that reaches a final
thickness of ∼30 nm at the end of the process. The
freshly nucleated crystal phase is not transient and
survives until the end of the simulation at t=16 ns.
Furthermore, Figure 4(b) emphasizes the devitrified
region at t=16 ns where the PTM analysis clearly
shows crystallographic planes. The CuZr nanocrystals
have the global Cu (21.9 %) and Zr (78.1 %) con-
centrations without segregation/crystallization effects.
A detailed analysis was performed to identify the
number of BCC-like atoms and the propagation veloc-
ity of the crystal front. The results are shown in Figure 5.

Figure 5 provides the variation of the crystallization
front relative position ∆X=X(t)-X(0) with X(0)=63
nm as function of time. At t=9 ns, the fraction of
crystalline phase is originally ∼5 %. Beyond t=9 ns, the
crystallization front travels the sample which permits
the crystalline phase fraction to increase up to 55 %
at t=16 ns. The front propagates toward the melted
surface (-X direction) with an average velocity of 2.77
m.s−1 (∼100 times slower than the sound velocity in
air). This means that the crystallization is partial,
localized (∼0-30 nm) and relatively slow as compared
e.g., to the devitrification of CuTi amorphous alloys
that occurs only under supercooling condition with a
crystallization front velocity of ∼40 m.s−1 [35].

To track the emergence of crystalline solid solution

during devitrification, a complementary analysis in-
volving RDFs at several key times is computed in the
devitrified region (35≤X≤63 nm), see Figure 6. At
t=0 ns, we observe that the structure is amorphous,
characterized by the presence of the second peak double
splitting. At t=5 ns, the decrease of the first peak
intensity together with the disappearance of the double
splitting and the appearance of a broader second peak
indicate that the system liquefies in this region. Beyond
t=5 ns, the intensity of the first peak starts to increase
and the shape of RDFs becomes sharper confirming
a local ordered atomic rearrangements. The first and
second peaks reach their maximum at t=16 ns where
no double peak is observed. Instead, a single narrowed
peak that indicates the growth of a crystalline structure
within the amorphous material is detected.

C. Origins of the devitrification process

When the laser energy is delivered, the system is driven
to a nonequilibrium state where electrons are hot and
the lattice is still relatively cold. Therefore, a process
of electron-phonon relaxation takes place to balance the
energy. The two temperature dynamics defines an ionic
temperature gradient inducing stress accumulation that
manifests in the form of a compression pressure wave
followed by a rarefaction pressure wave due to relaxation
of the system. Pressure waves operate at times between
t=0-200 ps. The computed spatial evolution of pressure
is shown in Figure 7.
At t=5 ps, the pressure reaches its maximum value of

∼4 GPa and gradually dwindles to ∼3.1, 2.2, 1.7, 0.2
GPa associated to t=15, 20, 30, and 200 ps respectively.
Moreover, a negative pressure of ∼−1 GPa correspond-
ing to the rarefaction pressure wave propagation is
detected at t=80-100 ps. As mentioned previously, the
amorphous-crystal transformation starts at t∼8 ns, much
later after the complete absorbance of the pressure waves.

To interpret the devitrification phenomenon, in the fol-
lowing we further investigate the local atomic rearrange-
ments evolution of the sample during the process. All
MG exhibit a unique fraction of polyhedra atomic con-
figurations, which is considered as the footprint of the
amorphous structure. In this context, it is generally ar-
gued that the formation/breakage of the polyhedra net-
work has a major impact on the glass phase stability [93].
Here, we track the proportions of the two most prevalent
polyhedra, namely <0, 1, 10, 4> (Z15I1) and <0, 2, 8,
5> (Z15I2), in the devitrified region as well as in a non-
devitrified domain. The polyhedra fraction evolution is
shown in Figure 8.

At t=0 ns, Figure 8 shows a significant fraction of
polyhedra in the initial structure c.a., 2.4 and 4.2 % in
both regions for Z15I1 and Z15I2, respectively. However,
these fractions quickly drop down to 1.1, and 2.1 % at
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Figure 4. α-Cu21.9Zr78.1 atomic configurations after ultrafast laser irradiation as a function of time. Emphasize of the devitrified
region: a) global view of the devitrified region located at 35≤X≤63 nm, b) magnification of a devitrified subdomain at t=16
ns. The atoms are colored according to their local atomic structure computed using the PTM algorithm. Atoms colored in
grey rely to hidden amorphous and liquid domains.

Figure 5. Mean position of the crystallization front’s propa-
gation toward the surface versus time at t=8-16 ns during the
devitrification process in the α-Cu21.9Zr78.1 MG sample. In
blue, we can notice the formed crystalline BCC-like atoms at
t=9, 11, 13 and 16 ns.

t=0.05 ns in the region that will devitrify. No significant
variation of the polyhedra fraction was noticed in
the non-devitrified region. The insets in both Figure

Figure 6. RDFs evolution in the α-Cu21.9Zr78.1 sample at
different times during the devitrification process. The double
splitting of the secondary peak typical of the amorphous state
disappears proving the emergence of a crystalline structure.

8(a) and (b) show that a significant reduction in the
fraction of polyhedra within the devitrified region occurs
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Figure 7. Spatial evolution of the local pressure profile in α-
Cu21.9Zr78.1 at t=0-200 ps. The laser processing conditions
are τ=100 fs, Fabs=34 mJ/cm2 for the pulse duration and
absorbed fluence respectively. A devitrified zone (in salmon),
a non-devitrified zone (in aqua) are chosen to compare the
impact of pressure on polyhedra, and NRBC region (in gray).

primarily within t=0-0.05 ns. This time interval aligns
with the period during which both the compression
wave and the temperature peak progress, as depicted
in Figures 7 and 9, respectively. On contrary, the
rarefaction wave has the same maximum amplitude of
∼−1 GPa within both the devitrified and non-devitrified
investigated regions. Furthermore, it is worthy to notice
that while the pressure quickly vanishes after t=0.2 ns,
the polyhedra breaking process stops and a steady-state
regime sets in with a proportion of 0.9 % Z15I1 and
1.9 % of Z15I2 until ∼5 ns in the devitrified region.
An intermediate regime, associated with the frustration
and recombination of polyhedra is recorded within
the devitrified region at t∼5-8 ns time range whereas
the non-devitrified region is found to have a constant
proportion of Z15I1 and Z15I2 polyhedra equivalent
to those observed before the laser energy deposition.
When the system devitrifies at t>8 ns, the fraction of
both Z15I1 and Z15I2 decreases to 0.3 and 0.7 % in the
devitrified region, respectively.

Investigating more carefully the time-evolution of the
temperature profile (Figure 9), we notice at t=5 ps the
amorphous-liquid transition in the X<40 nm region
with a maximum temperature T∼3000 K (Tm≈1440
K). Moreover, the temperature drops from ∼1800 to
1250 K in the devitrified region for 1≤t≤8 ns marking
a thermal relaxation of the amorphous sample. At
t=8 ns, T∼0.87 Tm and this corresponds to the time
where the first crystal seed is formed as shown in Figure
3. The temperature gradually decreases to T∼780 K
slightly below the theoretical temperature Tg∼830 K.

Figure 8. Time evolution of the polyhedra at t=0-16 ns within
the α-Cu21.9Zr78.1 MG in the devitrified region located at
35≤X≤63 nm and in a non-devitrified domain located at
65≤X≤93 nm, a) <0, 1, 10, 4>, b) <0, 2, 8, 5>. A zoom in
the time range of 0-0.2 ns is provided.

At t=16 ns, the amount of crystalline structure becomes
relatively stable, and the crystallization wave ceases
to propagate. As a consequence, we conclude that
the fast cooling stage from Tm to Tg is a determinant
mechanism to promote the devitrification process in a
region where the local atomic skeleton made of the Z15I1
and Z15I2 polyhedra has already undergone significant
disorganization. In addition, it is noteworthy that the
temperature in the non-devitrified zone is below Tg.
This confirms that the optimal temperature range to
favor crystal nucleation is in the vicinity of Tg. This
thermodynamics kinetic tendency is fostered by the
sharp increase of the viscosity below Tg that prevents
any substantial atoms reorganization.

In the following, a computation is performed to deter-
mine the critical temperature Tc below which the crystals
are formed and compare it to the previous temperature
determined at 8 ns (∼0.87 Tm). An additional brick of
comprehension is brought by invoking classical nucle-
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Figure 9. Spatial evolution profile of the local lattice temper-
ature in α-Cu21.9Zr78.1 at several key times 0.005, 0.5, 1, 5,
8, 10, 14, and 16 ns of the devitrification process. A devit-
rified zone (in salmon) and a non-devitrified zone (in aqua)
are chosen to investigate the impact of temperature on the
devitrification process.

ation models [94, 95]. The standard Classical Nucleation
Theory (CNT) assumes that devitrification occurs in two
correlated distinct stages namely nucleation and growth.
The devitrification that intervenes in α-Zr78.1Cu21.9 is
homogeneous, in contrast to the heterogeneous process
that may intervene due to impurities or crystalline seeds
already present in the amorphous structure.

As shown in Figure 3, the nucleation starts with the
emergence of a nucleus with a minimal critical size (∼2−5
Å ) that settles within the amorphous matrix [96]. As-
suming that the formed nucleus has a spherical shape,
the change of Gibbs free energy in an undercooled liquid
is defined by Equation 1 as:

∆Gcrystal(T ) = −4πr3

3
∆GV (T ) + 4πr2σC−G (1)

where ∆GV represents the free energy difference per
volume between the glassy and the crystalline states,
σC−G is the crystal-glass interfacial free energy, and r is
the radius of the crystal nucleus.

During the devitrification ∆GV (T )≈∆Hm

(
1− T

Tm

)
where ∆Hm is the melting enthalpy. The critical tem-
perature Tc below which the nucleus survives within the
liquid environment during the devitrification is provided
by:

Tc = Tm

(
1− 2σC−G

∆Hmr

)
(2)

σC−G=0.11 J/m2 is a reasonable approximation in the
composition range of ∼40-78.1 %, σC−G is assumed to
not vary substantially [97]. ∆Hm=8.20×109 J/m3 [98],
and r≈5 Å. We end up with a final value of Tc≈0.94 Tm,
whereas at t=8 ns when the devitrification starts T≈0.87
Tm which is below the predicted Tc. Therefore, we can
conclude that the CNT is able to successfully predict
a temperature range for CuZr MG devitrification con-
firmed by MD simulation. However, at this stage, there
is no clear evidence indicating the exclusive influence of
either temperature or compressive pressure effects on the
observed devitrification process under the modeled ultra-
fast laser operating conditions.

D. Thermal vs. compressive effects

Additional classical MD simulations (i.e., without
relying on the TTM model) aiming at decorrelating the
influence of the temperature and compressive wave on
the devitrification process are presented in the following.
The two additional simulations use as an input a subset
of the original virtual sample described in Figure 4
with dimensions 8.13×8.13×8.13 nm3, at t=0. The
corresponding subsystem is subjected to stress (Pxx)
and temperature cycles as close as those induced by
the laser in the region where the transformation begins.
While classical MD simulations do not reproduce the
same exact dynamics as the TTM-MD approach, they
may still offer valuable insights to help interpreting the
phase transformation.

Two simulations are carried out without constraints
on the sample volume and total energy. Firstly, the
sample is heated from 300 K to 1000 K for 15 ps and
then annealed at constant temperature for additional
85 ps before cooling down to 300 K over a period
of 20 ns. This cycle exactly replicates the thermal
conditions imposed by the laser in the region X∼60
nm of the original sample (see Figure 4). Meanwhile,
each component of the stress tensor is maintained at 0
GPa during the whole simulation process. In the second
simulation, the same thermal cycle is followed, but Pxx

is increased from 0 to 3 GPa during the first 15 ps, i.e.,
during the heating process from 300 to 1000 K, before it
is gradually reduced down to 0 GPa during the following
next 85 ps. As in the other simulation, the sample is
cooled down to 300 K between times t=100 ps and 20
ns. For further analysis, the local crystallography and
Polyhedra evolution are monitored in the transformed
zone along the entire process for both simulations.
Results are depicted in Figure 10.

The left panel of Figure 10 illustrates the time
evolution of <0,2,5,8> Polyhedra in the transformed
zone of the sample subset for the two model simulations.
The results demonstrate that the number of polyhedra
broken during the initial stages of both simulations i.e.,
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Figure 10. Polyhedra evolution and devitrification in the model classical MD simulations. Left panel: evolution of the fraction
of <0,2,5,8> Polyhedra in the simulation (i) without stress (blue curve) and (ii) with a preliminary Pxx=0↗3↘0 GPa cycle,
as computed in the transformed zone emphasized in the right panel (black-dashed lines). The red domain highlights a high-PT
condition period during which the <0,2,5,8> fraction decreases in the simulation with stress cycle. Right panel: final atomic
configurations for simulations with and without stress. In blue, we notice the formed crystalline BCC-like atoms (solid solution).

with or without the Pxx cycle, is of a similar magnitude.
This finding further confirms the predominant role of
temperature in driving this process. However, only
the simulation with the Pxx cycle exhibits a phase
transformation initiation similar to the one observed
in the ultrafast laser simulation (Figure 10, right
panel). Investigating more carefully the evolution of the
polyhedra during the first 50 ps, one can see that the
number of polyhedra decreases slightly more when the
sample is subjected to a stress pulse concomitant to
the heating process. Thus, the Pxx cycle acts as a hint
upon the glass microstructure stability that helps the
temperature at devitrifying the glass, in the operating
conditions of the ultrafast laser simulated in the previous
section. We believe that a similar process takes place in
the laser simulation described in the previous section.
Additional Gibbs-free energy calculations using the PM7
semi-empirical method that aim at characterizing the
time-evolution of the transformation are presented in
the Supplementary Information.

IV. APPLICATION TO PHONONIC THERMAL
CONDUCTIVITY

In this last section, MD is employed to compute the
phononic thermal conductivity (κa) in the partially
devitrified glass. It has been demonstrated in recent
studies that there is a possibility to improve κa of

materials by using a femtosecond laser treatment on
nanoparticles. This was mainly achieved in alumina and
titanium dioxide as reported in the works of Ha et al
[99, 100]. However, to our knowledge, no literature dis-
cussed the improvement of κa in amorphous compounds
post-treated with an ultrafast laser. Furthermore,
since amorphous CuZr alloys exhibit low κa values, the
objective here is to examine the possible influence of
crystal growth on κa.

Practically, κa is calculated in both the amorphous
and composite structures employing the Green−Kubo
method as implemented in LAMMPS [101–103]. The
phonon thermal conductivity is given by the following
equation:

κa =
V

3kBT 2

∫ ∞

0

⟨J(0)J(t)⟩dt (3)

where V , kB , T , J , and t describe volume, Boltzmann
constant, temperature, instantaneous heat flux (with
contributions from all components Jx, Jy, and Jz), and
time respectively.

We use the initial (amorphous) and final (composite)
configurations obtained from the laser-matter interaction
simulation and probe the temperature sensitivity of the
thermal conductivity. The thermal conductivity is com-
puted in the 300-900 K temperature range. For this
purpose, we first distribute the atom velocities and then



9

equilibrate the system during 20 ps within the NVE en-
semble using a MD timestep of 1 fs. Then, we used a
statistical method to compute the averaged value of the
spontaneous heat autocorrelation flux < J(0)J(t) > dur-
ing 400 ps in the NVE ensemble. The result is illustrated
in Figure 11.

Figure 11. Phononic thermal conductivity of α-Zr78.1Cu21.9

in the amorphous phase and in the nanocomposite at various
temperatures. Note the factor 36 between the two phases at
T=300 K.

κa of both the nanocomposite and amorphous struc-
tures decreases when the temperature increases due to
the rise of the phonon–phonon scattering rate [104]. κa

of the amorphous structure also decreases significantly
by 72 % (1.30 W m−1K−1 at 300 K to 0.36 W m−1K−1

at 900 K), whereas the composites one decreases by 92 %
(47.33Wm−1K−1 at 300 K to 3.74Wm−1K−1 at 900 K).
These results show that κa of the nanocomposite is ∼36
and ∼9 times larger than the one of the amorphous phase
at T=300, 900 K, respectively. Therefore, the presence of
nanocrystals within the amorphous α-Zr78.1Cu21.9 struc-
ture leads to the sharp increase of κa confirming that the
local devitrification of amorphous structures is a promis-
ing approach for the creation of high-performance mate-
rials with exceptional properties at room temperature.

V. SUMMARY

In this study, the TTM-MD method is used to
investigate the devitrification process induced by an
ultrafast laser irradiating an α-Cu21.9Zr78.1 glass. Our
results show that the ultrafast laser can be used to

devitrify α-Cu21.9Zr78.1 leading to nucleation of BCC
(solid solution) nanoprecicipitates localized at a few
tens of nanometers below the sample surface. At the
investigated fluency and pulse duration laser conditions,
the main mechanism behind this phase transition is
found to be the local atomic rearrangements (breaking of
polyhedra) mostly induced by the heating and thermal
relaxation cycles, assisted by the compressive wave
generated by the laser. The temperature plays here a
major role where the highest crystallization occurs at
temperatures over Tg. Importantly, we observed that the
crystalline nanoprecipitates are not transient but rather
stable over time within the amorphous matrix. These
results show that the ultrafast laser pulse technique
can be used to generate very localized devitrification
that promotes glass architecturation i.e., from the
laser focalisation at the sample surface to the in-depth
controlled precipitation, suggesting that this method
could be further employed in materials processing to
create new nanoarchitectured systems, with enhanced
material properties and efficiency, for modern industrial
technologies.

DECLARATION OF COMPETING INTEREST

The authors declare that they have no known com-
peting financial interests or personal relationships that
could have appeared to influence the work reported in
this paper.

ACKNOWLEDGMENTS

We gratefully acknowledge the ANR project ME-
GALIT (ANR-18-CE08) and the project FORMEL of
the Pack Ambition Research program of the Auvergne
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