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A global topography-and hydrography-based floodability index for the downscaling, analysis, and data-fusion of surface water
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Firstly, a new global floodability index with a resolution of 3 arc-second is built from topography-based information provided by the MERIT database, using a neural network approach. The topography and permanent water were defined in a coherent way, ensuring the coherency between the resulting floodability index and permanent water, which is unprecedented in previous versions. The evaluation of the floodability index is done with independent observation datasets on surface water and land cover, showing good performances in areas where surface water is naturally driven by topography conditions and limitation in human-affected areas and some specific environments like peatland. Secondly, some of the applications that the floodability index can serve are introduced, including downscaling low-resolution data, analyzing and comparing datasets at different resolution, and data fusion.

Introduction

The importance of surface water to life on Earth has been documented countless times regarding many different aspects, such as the environment and habitats (Ramsar Convention Secretariat, 2016;[START_REF] Gokce | Introductory Chapter: Wetland Importance and Management[END_REF], the production activities [START_REF] Yoo | Hydrology and Water Supply for Pond Aquaculture. An AVI book[END_REF][START_REF] Pimentel | Water resources: Agriculture, the environment, and society[END_REF][START_REF] Dieter | Estimated use of water in the United States in 2015[END_REF], and the public health sector [START_REF] Pruss | Estimating the burden of disease from water, sanitation, and hygiene at a global level[END_REF][START_REF] Konradsen | Water Management for Disease Vector Control[END_REF]. Satellite data has been applied to study and monitor surface water for a long time.

Three types of data are commonly used: (1) the optical [START_REF] Pekel | High-resolution mapping of global surface water and its long-term changes[END_REF][START_REF] Buchhorn | Copernicus global land cover layers -collection 2[END_REF], (2) the active microwave [START_REF] Hess | Wetlands of the lowland amazon basin: Extent, vegetative cover, and dual-season inundated area as mapped with jers-1 synthetic aperture radar[END_REF][START_REF] Rosenqvist | Mapping of maximum and minimum inundation extents in the amazon basin 2014 -2017 with alos-2 palsar-2 scansar time-series data[END_REF], and (3) the passive microwave [START_REF] Sippel | Passive microwave observations of inundation area and the area/stage relation in the amazon river floodplain[END_REF][START_REF] Prigent | Global inundation dynamics inferred from multiple satellite observations, 1993-2000[END_REF][START_REF] Parrens | Mapping dynamic water fraction under the tropical rain forests of the amazonian basin from smos brightness temperatures[END_REF]. Observations by the optical sensors can be done frequently with a medium to high spatial resolution (e.g. MODIS with a 250m resolution and a near daily revisit time, or Sentinel-2 constellation with a 10m resolution and a 5-day revisit time). However, such observations are affected by weather conditions and vegetation coverage. The active microwave or SAR observations have high spatial resolution and are much less sensitive to clouds; however, the backscattering signal from ground is sensitive to vegetation and active microwave data from past satellites have very low temporal resolution, e.g. 35 days for ERS1/2. New generation of satellites, despite of much shorter revisit time along with high spatial resolution (e.g. 10m resolution and 6-day revisit time of Sentinel-1 constellation), does not yet offer data regularly for every region. The passive microwave is the least sensitive to vegetation but has a strong limitation of very coarse resolution (e.g. 27km resolution of SMMR sensor onboard the Nimbus-7 satellite). Table 1 describes briefly some surface water datasets for reference.

There are nowadays plenty of satellite-derived products on surface water, with each of them having its own pros and cons from their original nature and [START_REF] Prigent | Remote sensing of global wetland dynamics with multiple satellite data sets[END_REF][START_REF] Prigent | Global inundation dynamics inferred from multiple satellite observations, 1993-2000[END_REF][START_REF] Prigent | Satellite-derived global surface water extent and dynamics over the last 25 years (giems-2)[END_REF] Monthly inundation fraction with their varying spatial and temporal resolution. The question is now how to exploit them in an efficient way.

We present a global topography-based floodability index as a tool to change or put multiple datasets into the same grid, so that we can easily compare, analyze and fuse them to obtain a more comprehensive dataset on surface water.

Topography-based floodability index is defined as a proxy for the probability that a pixel will be inundated compared to adjacent pixels. Consider a floodability index ranging from 0 to 1: the higher the index compared to its neighbors, the more likely the pixel will be inundated compared to its neighborhood. In other words, it is a local assessment tool, provided at the global scale, that helps understanding the local spatial pattern of inundation. With that operation, the floodability index can be used for instance to downscale Low-Resolution (LR) data [START_REF] Fluet-Chouinard | Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data[END_REF][START_REF] Aires | A global dynamic long-term inundation extent dataset at high spatial resolution derived through downscaling of satellite observations[END_REF]. Downscaling is actually not only a way to retrieve High-Resolution (HR) information from LR data, but also a stepping-stone to aggregate multiple LR data at high resolution for different purposes as stated above.

It is possible to derive a floodability index from satellite observations; in this case, the floodability index is defined as the probability for a pixel to be inundated. This derivation requires data over a long time record; therefore it can be done more easily at a local scale for some regions (e.g. over Niger

Delta by Aires et al. (2013b), over Vietnam by [START_REF] Aires | A global dynamic long-term inundation extent dataset at high spatial resolution derived through downscaling of satellite observations[END_REF], both with MODIS time-series). In this case, the floodability index is at the resolution of the satellite data, and it is possible to have a seasonality or even more specific characteristics. At the global scale, so far, it is impossible to obtain a HR floodability index from satellite observation due to the deficiency of HR global data to work satisfactorily in all conditions for long term with enough time samples. This is actually expected to be solved by the upcoming launch of the SWOT satellite in 2022 (https://swot.jpl.nasa.gov/).

Here, we use topography information to take advantage of the global availability of this kind of data and because the flooding state is naturally driven partly by topography conditions, such as slope and elevation [START_REF] Woods | Hydrologic concepts of variability and scale[END_REF].

Flooding is also dependent on other factors like land cover or irrigating activities [START_REF] Woods | Hydrologic concepts of variability and scale[END_REF][START_REF] Vriend | Regulated lowland rivers[END_REF], but for now, we only take into account topography and temporarily disregard other factors. Previously, such a topography-based floodability index was proposed by [START_REF] Fluet-Chouinard | Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data[END_REF], which can be considered as the first version, and later by [START_REF] Aires | A global dynamic long-term inundation extent dataset at high spatial resolution derived through downscaling of satellite observations[END_REF] with more detail and some improvements (better resolution, optimized topography-variables selection neural network model). Although the floodability index is based on topography information, some surface water datasets are still needed in the process. The coherency between all the sources of information required to develop the floodability index is essential, for instance, to ensure that one river is not double-counted or that the coast of a lake is more likely to be inundated than the pixels further from the lake. This coherency, however, was not ensured in previous versions.

This study aims at two goals: (1) to improve the floodability index previously designed in our group, and (2) to show some potential applications of the floodability index. For ( 1), first, we use a newer topography that has been improved by solving problem of trees and better filtering the Shuttle Radar Topography Mission (SRTM) problems [START_REF] Yamazaki | A highaccuracy map of global terrain elevations[END_REF][START_REF] Yamazaki | Merit hydro: A high-resolution global hydrography map based on latest topography dataset[END_REF]. Second, a high-resolution permanent water information resulting from the data fusion of several HR water datasets [START_REF] Yamazaki | Development of the global width database for large rivers[END_REF][START_REF] Yamazaki | Development of a global 90m water body map using multi-temporal landsat images[END_REF] will be integrated in our floodability index. This means that the floodability index performs already a data fusion of surface water datasets. Third, the topography-based parameters used to build the floodability index will be defined in complete coherency with the permanent water database to further increase their coherency. For (2), such applications could be performed with any floodability index, we will obviously illustrate them here using our new floodability index.

Section 2 describes all the datasets used in this study, including those for the floodability index construction and those for evaluation and applications. How the floodability index is build will be presented in detail in Section 3, and the results will be shown in Section 4. Section 5 will introduce some of the potential applications of the floodability index.

Databases

MERIT Topography

The Multi-Error-Removed Improved-Terrain Digital Elevation Model (MERIT DEM) provides globally terrain elevation at a horizontal spatial resolution of 3arc -second (≈ 90m at the equator). It was developed from existing Digital

Elevator Models (DEMs), including Shuttle Radar Topography Mission (SRTM-3) of NASA, ALOS World 3D (AW3D) of JAXA, and Viewfinder Panoramas (VFP-DEM). The major error components from the original DEMs were separated and eliminated, hence a better vertical accuracy for this newer DEM. [START_REF] Yamazaki | A highaccuracy map of global terrain elevations[END_REF].

Based on the MERIT DEM, hydrography information was retrieved [START_REF] Yamazaki | Merit hydro: A high-resolution global hydrography map based on latest topography dataset[END_REF], from which a variety of related variables were calculated.

Some of these variables are related to the presence of water [START_REF] Aires | A global dynamic long-term inundation extent dataset at high spatial resolution derived through downscaling of satellite observations[END_REF] and will be considered in the floodability index construction, such as flow "distance to" and "height above" the small, medium and big nearest drainage, and terrain slope (some examples are given in Figure 1a-d). Small, medium, and large drainages are defined by an upper flow accumulation area greater than 0.5km 2 , 10km 2 , and 100km 2 , respectively. The big advantage of using MERIT DEM is its coherency with the observed permanent water that will be mentioned The GLWD synthesizes and combines various existing maps, data and information, such as the Digital Chart of the World, World Conservation Monitoring Centre (WCMC) and others [START_REF] Lehner | Development and validation of a global database of lakes, reservoirs and wetlands[END_REF]. It presents the lake and wetland distribution at three levels. At level 1 and level 2, the database includes polygons representing large lakes and reservoirs (GLWD-1) and smaller permanent water bodies (GLWD-2). Data at level 3 (GLWD-3), given in raster format at a resolution of 30 second, provides a classification of lakes and wetlands (Figure 1e). Twelve types are listed in Table 2. GLWD-3, with its diverse classes, will be used to train the floodability index model. The permanent water data (Figure 1f) itself does not exist but is extracted from the global database of river width at 3-second resolution. The river width data is obtained from multiple data sources, including Global 1 arc-second Water Body Map (G1WBM), Global Surface Water Occurrence (GSWO), and Open

Street Map [START_REF] Yamazaki | Development of the global width database for large rivers[END_REF][START_REF] Yamazaki | Development of a global 90m water body map using multi-temporal landsat images[END_REF]. This database is advantageous since it describes even small canals for some regions and prevents virtual drainage due to a possibly misleading topography. The river width is calculated and assigned for river-center-line pixels. Pixels that are permanent water but not in the center-line are also noted. Hence, a permanent water mask was derived.

With its high resolution, the permanent water data is used to supplement the GLWD with the small permanent water bodies and rivers that are not resolved by GLWD.

Datasets for evaluation and applications

Global Surface Water (GSW)

The GSW dataset maps the spatial and temporal variability of open surface water at global scale and qualifies its long-term changes [START_REF] Pekel | High-resolution mapping of global surface water and its long-term changes[END_REF].

The dataset was obtained from three million Landsat images spanning over 32 years , with a spatial resolution of 30m. An expert system was used to classify each Landsat pixel as water, dry, and non-valid observation. The classification results were assembled for each month in the 32 years, forming the "Monthly Water History" product. This product was then used to derive some thematic maps on surface water dynamic characterization, including the GSWO (Global Surface Water Occurrence) which represents the frequency of water presence over the 32-year period, and the Maximum Water Extent which indicates every pixel that has ever been detected as water during the whole period. Due to the image acquisition by optical sensors of Landsat satellites, one can find a lot of missing data (non-observation) in each single monthly water map of the GSW. Such spatial discontinuities can make the monthly maps useless in studies over large areas. However, when assembling multiple monthly maps over a long time period to make thematic products, the generated statistical information makes sense for open water, despite the fact that the water beneath vegetation cannot be reported.

GSWO will be used for some applications of the floodability index ( Section 5).

GlobCover landcover map

The GlobCover landcover map is a product of the GlobCover project -an initiative of ESA and partners [START_REF] Bicheron | Globcover: a 300 m global land cover product for 2005 using envisat meris time series[END_REF]. The map was generated from MERIS/ENVISAT observations. It covers the [180

• W to 180 • E, 90 • N to 65 • S]
domain with a spatial resolution of 300m. 22 types of land cover were classified, including different kinds of cropland, forest, shrub, water, etc.

The GlobCover map can provide reference information for the evaluation of the floodability index (Section 4).

GFPLAIN250m dataset of Earth's floodplains

The global dataset GFPLAIN250m [START_REF] Nardi | Gfplain250m, a global high-resolution dataset of earth's floodplains[END_REF] provides a binary delineation of floodplains at 8.33 arcsecond resolution (250m at equator). The spatial extent of floodplains was obtained by a geomorphic algorithm, which implemented terrain analysis procedures on Shuttle Radar Topography Mission (SRTM) digital terrain model. The GFPLAIN250m map excludes areas with insignificant water availability, such as deserts and icy high latitude. This dataset will be used to evaluate the floodability index over some regions (Section 4).

Global Inundation Extent from Multiple Satellite (GIEMS)

GIEMS is a global dataset of surface water extent and dynamics over a period of 15 years (1993)(1994)(1995)(1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007). The estimate of GIEMS was obtained by a multi-wavelength algorithm that exploited a range of satellite observations:

The passive microwave measurement from Special Sensor Microwave/Imager (SSM/I);

The active microwave backscattering coefficients from European Remote Sensing (ERS) satellite; and

The visible and near-infrared reflectances from AVHRR and the derived Normalized Difference Vegetation Index (NDVI).

The inundation is primarily detected based on microwave emissivity calculated from the brightness temperature measured by SSM/I. The active microwave data, with a high contrast between open water and water beneath vegetation, helps estimate the contribution of vegetation to SSM/I measurement. The other data source, NDVI, helps differentiate bare soil and inundation in semi-arid areas. The detailed algorithm can be found in [START_REF] Prigent | Remote sensing of global wetland dynamics with multiple satellite data sets[END_REF][START_REF] Prigent | Global inundation dynamics inferred from multiple satellite observations, 1993-2000[END_REF].

GIEMS estimates the inundated fraction on a monthly basis over an equalarea grid, with each cell occupying about 773km 2 (≈ 0.25 • × 0.25 • at the equator). The combination of different types of observations takes advantage of their complementary strengths and thus, the problems related to each individual one is limited. The evaluation of GIEMS with existing independent datasets shows its consistency with them in various environments (major river system/irrigated fields/small-lakes network) and at various latitudes (tropical/boreal). However, there is also a tendency of GIEMS to underestimate the low fractional inundation and overestimate the high fractional inundation.

GIEMS will be used in this study to illustrate some applications of the floodability index: It will be downscaled, then analyzed and fused with other datasets at high resolution (Section 5).

Inundation fraction data from THMB Model

The 2) will be used in the application section (Section 5).

SAR data

From the mosaics of Japanese Earth Resources Satellite (JERS-1) SAR imagery, a comprehensive map of wetland extent, vegetation cover types, and dual-season inundation states in the lowland Amazon basin was produced by [START_REF] Hess | Wetlands of the lowland amazon basin: Extent, vegetative cover, and dual-season inundated area as mapped with jers-1 synthetic aperture radar[END_REF]. The acquisition time of the SAR images was during October-November 1995 and May-June 1996. The low-and high-water seasons in this area are defined as these two times. To produce the classification map, a wetland mask was first derived by a segmentation and clustering process based on the mean backscattering coefficient. The wetland pixels were then processed using a rule set based on dual-season backscattering values and labeled in five vegetation cover types (non-vegetated/herbaceous/shrub/woodland/forest) and in two inundation states (flooded/non-flooded).

The dataset is available in a geographic coordinate system with a 3 -arcsecond resolution, similar to the floodability index. The land cover information it provides is not taken into account in this study, but the flooding states are representative for the average low-and high-water conditions, corresponding to the minimum and maximum water extent in a year. Therefore, the flooding information of the two seasons is extracted from the dataset. It would be interesting to fuse it with the low-resolution data downscaled by the floodability index (Section 5.3).

Tree cover density

The tree cover density is a data layer under the Collection 2 of the Copernicus Global Land Cover layers, provided by the Copernicus Global Land Service [START_REF] Buchhorn | Copernicus global land cover layers -collection 2[END_REF]. The collection is an annual global dataset (180

• W to 180 • E, 78.25 • N to 60 • S, 2015 to 2019) produced from Sentinel-2 observations
with an overall accuracy > 80%. The spatial resolution is 100m at the Equator. Tree cover density will be used for the evaluation of the floodability index (Section 4).

Floodability Index model

The general flowchart for building our floodability index is shown in Fig-

ure 2. Firstly, a sampling procedure is implemented globally on topography and water data. Among 11 potential topography variables, useful ones are selected, together with water information forming the learning dataset to train the neural network model (topography is input; water is output). After being trained, the model uses global data of selected topography variables as inputs to produce the floodability index.

Neural network

The floodability index is modeled using a Neural Network (NN) with inputs being topography variables. The floodability index can be associated with a and will take a value from 0 to 1. Before the NN can be used to estimate the inundation probability, it needs to be trained with a learning dataset which will be described in Section 3.2. An appropriate configuration is also necessary to be defined so that the NN does not suffer from under-or over-fitting. After several tests (not shown here), we decided to use a fully-connected feed-forward NN with one hidden layer of 10 neurons which is believed to provide a good compromise: it is complex enough to represent P (C = 1|X = x), and simple enough to perform well on the data it has never seen.

Learning dataset

A NN operates based on what it has been trained so the selected samples should represent all possibilities as much as possible. Hence two notes:

(1) For a global floodability index able to perform well in every environment, the samples need to scatter across various environments under different hydrography and topography conditions. If this is not done, the floodability index model will work well in some areas but not in others. For example, if the model is trained almost with low-elevation and flat condition like in deltas, it will be confused when encountering high-elevation and steep terrain.

(2) The learning dataset must not be dominated either by water samples (C = 1) or dry ones (C = 0). If sampling is done totally randomly over the globe, there will be much fewer water samples than dry ones because surface water occupies only a small area on Earth continental surface. Then, the water samples will be treated as noise in the training phase of the NN. Therefore, it is important to control that the learning dataset is made up of 50% of water samples and 50% of dry ones.

With this sampling strategy, we built a learning dataset denoted by β: The target O is a binary variable based on permanent water data and GLWD.

β = {S e ; e =
For all the pixels that are permanent water, the target is given 1. Although we do not estimate the floodability index for permanent water, we use them in the learning stage because they represent good samples of surface water. For the remaining pixels, the target is defined by GLWD: all lakes and wetlands documented by GLWD give targets of 1, otherwise 0. Note again that the NN can be trained with binary targets but still gives continuous values in the operational mode so it is able to represent the proxy of a probability.

For input vector I, various topography variables are available, but maybe not all of them are useful. [START_REF] Guyon | An introduction to variable and feature selection[END_REF] introduced some variable selection methodologies, among which a wrapper is preferable in this study as it is able to assess the usefulness of variable subsets regardless of the chosen model.

Forward selection, a flavor of the wrapper methodology, was used by [START_REF] Aires | A global dynamic long-term inundation extent dataset at high spatial resolution derived through downscaling of satellite observations[END_REF] to decide which among 11 available variables should be used to produce the floodability index. The idea is to find the best variable (i 1 ), then find the second best (i 2 ) that can be combined with i 1 to give best result, then the third best (i 3 ) that best combines with i 1 and i 2 , and so forth... Normally, the performance of the NN gets better each time one variable is added until a certain point K, for which the performance saturates. The group of variables preceding K will be selected as input for the model, while the remaining variables are considered as redundant and are neglected. Removing redundant variables can reduce the computational load and avoid overtraining by reducing the model's complexity [START_REF] Bishop | Neural networks for pattern recognition[END_REF]. We conduct such a forward variable selection with the MERIT topography dataset and select seven variables that will be used to construct the floodability index, including: Eventually, the final learning dataset consists of 15,000,000 samples (half water, half dry), each with an input vector of 7 topography attributes and a single binary output.

New floodability index

After training the NN with the Levenberg-Marquardt algorithm, we obtain a floodability index ranging from 0 to 1 that can be used everywhere globally.

Note that it is a static information. The new floodability index is completely coherent with the permanent water because the topography variables have been defined based on this permanent water information. The floodability index construction can therefore be considered as a data fusion of several datasets (Section 2).

Assessment of the floodability index

Global results

The global map of floodability index is shown in Figure 3. Permanent water is represented in black. Visually, the floodability index appears to be coherent:

the drainage networks are well presented with high values of the index, and the index value gets lower when going away from the drainages. Over some arid areas (e.g. African desert or Australia), one can find very high floodability index. However, this does not mean that such arid areas are as wet or prone to be inundated as major basins like on the Amazon: the floodability index does not imply the frequency of water presence. The floodability index is built using topography information. Topography can identify a pixel as a potential river pixel because of the topography configuration of that pixel, but hydrologically, this pixel might never have water. This explains why the floodability index can be high in arid areas. The floodability index does not either give a comparison between pixels far away from each other because they are not under the same hydrological and climate conditions. Instead, it is a "local hierarchy of pixels"

indicating the chances to be inundated among adjacent pixels. If we use the floodability index to downscale a coarse resolution inundation dataset, if this coarse resolution dataset says that there is no water in the arid region, the floodability index will not put water where there is none. Arid areas can experience flash floods (e.g. in Eastern Desert of Egypt [START_REF] Mashaly | Flash flood hazard using optical, radar, and stereo-pair derived dem: Eastern desert, egypt[END_REF],

Oman and North Brazil [START_REF] Saber | Flash Flood Modeling and Mitigation in Arid and Semiarid Basins: Case Studies from Oman and Brazil[END_REF]) with very complex flood responses that depend on many factors such as intense storms, steep slopes, and the lack of vegetation [START_REF] Lin | Flash floods in arid and semi-arid zones[END_REF]. The floodability index here does not account for all factors but only topography conditions, but can help to isolate pixels that are more prone to flash floods in such areas.

To assess the high spatial resolution of this new floodability index, two layers of zoom have been represented to show the type of details that can be obtained.

These zooms have been done over Louisiana/USA with a part of the Mississippi basin, the Amazon basin, the Congo basin, the Himalaya mountainous area, and some Russian peatland.

Comparison with previous version

This new improved floodability index is compared with its previous version which was developed by [START_REF] Aires | A global dynamic long-term inundation extent dataset at high spatial resolution derived through downscaling of satellite observations[END_REF]. At the global scale when aggregated to the resolution of 0.025 • , the two versions have a correlation coefficient of 0.7. This is not a very pertinent quality measure since the floodability index is not done to compare regions across the globe but rather to provide a pixel hierarchy at the local scale. However, such measurements can be a scene of progress in quality. When considering pixels in the maximum water extent derived from GSWO (pixels with water occurrence >0), the old floodability index is correlated with GSWO by a coefficient of 0.4, while this coefficient is increased to the 0.5 level with the new floodability index. When looking at the global maps, it is not an easy task to differentiate the old and the new floodability indices.

However, it is possible to zoom on several locations to see more details (e.g.

in Figure 4, full resolution): The new version appears to be an improvement compared to the older version. We can see in Figure 4a that artifacts from the older topography have been suppressed . The continuity of the new floodability is also improved in some cases (e.g. Figure 4b). Case 3 in Figure 4 illustrates that the location of river beds could be shifted in the older version of the floodability index due to imprecise topography and due to the fact that permanent water information was not used to define the NN inputs of the model. These 3 cases show some improvements that could not be seen at the global scale, but that can drastically change when looking at the more local scale. Of course, the new floodability index is far from the perfection, but it is shown here how it is possible to improve it when feeding the model with better information, and when the modeling is done in a smarter way. Beside the coherency with permanent water, the integration of permanent water in the new floodability index is also one of its advantages over the old version, especially for the downscaling of low-resolution data. This is illustrated by Figure 5. The old (a) and new (b) floodability indices can be compared in the first row. In this given domain, the permanent water occupies 21% of the area.

If we allocate 21% of water in this domain using the older floodability index, the water surface in blue (Figure 5c) is far from the true permanent water. This can be understood since there is no constraint in the old floodability index or the downscaling in [START_REF] Aires | A global dynamic long-term inundation extent dataset at high spatial resolution derived through downscaling of satellite observations[END_REF] to force the retrieval of any permanent waters. This problem is well solved when using the new floodability index that actually integrates the permanent water information (pixels in blue, Figure 5d).

If the flooding is increased by 10% to 31% (Figure 5e,f), the agreement is much better, which is a good sign for the coherency of the two floodability indices, but errors are still present. What is noticeable in Figure 5f is that the added flooding is well placed around the permanent water, as it was designed for. there is a higher tree density. There is no judge on this dissimilarity as no easy direct observation can be used to evaluate them. Vegetation prevents the optical observations to detect water below it. In places with high tree density, GSWO simply cannot detect water presence. The land cover map (Figure 6e)

Regional assessment

shows some notable wetlands and water bodies. For example, large wetlands in the South of the basin (14 • S, 66 • W ), in the West (5 • S, 75 • W ), in the center (0 • S, 62 • W ), and in the East (3 • S, 52 • W ) have very high floodability index that appears to be reasonable. The wetlands in GLWD (Figure 6f) are reproduced well in most cases with a high floodability index. GLWD itself does not include small hydrological structures as its resolution is not very high (30"), but thanks to the additional high-resolution information of permanent water data that is fused, small structures are present in the new floodability index.

In Figure 6g Peatland is a specific environment where flooding is naturally controlled but it is driven more locally (by precipitation for instance) and less by river connection.

In such areas, the floodability index cannot always reproduce well the complex distribution of surface water (e.g. Siberian peatland, Figure A.13), and a specific work would be necessary to improve the floodability index in this type of environment.

Limitation of building this floodability index

The floodability index presented here is not perfect, and building it also has some limitations.

First, it immensely focuses on natural conditions more related to river networks, making the floodability index less pertinent where flooding is independent of river flows such as rice fields where inundation is often under human control, or peatlands where inundation is mainly caused by precipitation or groundwater. Adding more information for such particular regions (e.g., number of rice crops per year, groundwater level) could be a solution to improve the floodability index. This is not straightforward to be done on a global scale to obtain a global floodability index. This could be done more easily on local scales to produce multiple localized floodability indices. However, how to smoothly piece them together would then be a challenging problem.

The second limitation concerns the evaluation of the floodability index: it is not an easy task because of the lack of good references. A global high-resolution dataset providing long-term water dynamics, adequate even below vegetation, would be ideal, but such a dataset is currently unavailable, neither from space nor from in situ inventories. Good data for particular regions of the world may exist in some locations and can be used locally, but they are difficult to access.

A good evaluation is important as it can help examine thoroughly where the index works well and where it does not. From a thorough evaluation, we could review the floodability index model and improve it if necessary.

This study neglects the fact that topography may change in form of land subsidence or uplift, and rivers may change their paths. Although those changes generally happen very little over time (ignoring them is therefore not a big issue), they can be more significant in some locations. However, topography and hydrography data are not available for short-term intervals, so this cannot be considered in this framework.

Applications of the floodability index

Like a Swiss army knife, the floodability index has several potential applications. Downscaling low-resolution data is the most natural application; it is also the core of almost all other ones. Below we will introduce some other applications of this floodability index.

Downscaling tool

Low-Resolution (LR) surface water datasets originates, for instance, from passive microwave observations or model simulations [START_REF] Sippel | Passive microwave observations of inundation area and the area/stage relation in the amazon river floodplain[END_REF][START_REF] Prigent | Remote sensing of global wetland dynamics with multiple satellite data sets[END_REF][START_REF] Yamazaki | A physically based description of floodplain inundation dynamics in a global river routing model[END_REF][START_REF] Coe | Lba-eco lc-04 thmb model simulations for the amazon and tocantins basins: 1939-1998[END_REF]. They are delivered regularly, in all-weather and day-night conditions, which makes them an essential tool to monitor surface water in general and wetlands more specifically. Both GIEMS (primarily from passive microwave) and GSW Monthly Water History (from Landsat) are available on a monthly basis, but only GIEMS provides spatially continuous estimation in every time step, while GSW suffers from many missing data. However, the low spatial resolution makes data like GIEMS not well suited for local applications. Downscaling LR data is therefore a practical solution to obtain high-resolution information. This has been done in many studies, such as [START_REF] Galantowicz | High-resolution flood mapping from low-resolution passive microwave data[END_REF], [START_REF] Li | Derivation of 30-m-resolution water maps from terra/modis and srtm[END_REF]Aires et al. (2013a).

Among various downscaling techniques that have been proposed, using the floodability index emerged as an efficient method with its global operability.

Fluet-Chouinard et al. ( 2015) used the floodability index to downscale globally GIEMS from resolution of 0.25 • to 15 arc-second, creating the static product GIEMS-D15. This method was then further developed by [START_REF] Aires | A global dynamic long-term inundation extent dataset at high spatial resolution derived through downscaling of satellite observations[END_REF], resulting in the GIEMS-D3, a dynamic dataset with a resolution of 3 arc-second.

The principle of this downscaling technique is that if a LR cell is n% inundated, water will be allocated to the n% high-resolution (HR) pixels with highest floodability index, as the pixels with higher floodability index are more prone to be inundated than the other ones. We developed in companion Paper II [START_REF] Nguyen | Downscaling surface waters at global scale[END_REF] a more sophisticated technique with the permanent water integrated coherently into our floodability index. Our downscaling is also a way to fuse HR water permanent information into the LR data, in a totally coherent way. Due to the technical and systemic complexity, the whole downscaling process will be described in detail in the Paper II of this study [START_REF] Nguyen | Downscaling surface waters at global scale[END_REF].

Analysis tool at high spatial resolution

It is very difficult to compare datasets available at different resolution. The solution is to transfer them to the same grid, either by upscaling or downscaling them. In this way, one can more easily perform both visual and quantitative analyses. Upscaling allows comparing them at low-resolution and seems simpler;

however, many important details can be missed in this way. Downscaling to analyze them at high resolution requires more efforts, but it is the only solution to access some details on the datasets. The floodability index, via its downscaling application, is therefore a useful tool to analyze datasets at different spatial resolutions.

Here, we illustrate how to use the floodability index as an analysis tool confronting GIEMS (25km resolution) and the THMB model (9km resolution) data.

Both datasets provide inundation fraction on a monthly basis; data of one month (May 1996) were extracted and downscaled to water extent maps at 90m resolution, called GIEMS-D and THMB-D (Figure 7). Note that the downscaling of both GIEMS and the model is already an interesting improvement of these two datasets. In fact, many interesting HR features have been introduced in them by this process. One can find easily where water is allocated by the one of the two or by both datasets (orange, green, and blue in the HR water extent map), synthesized with some diagnostics in Table 3. 128, 000km 2 of water (about half of the total of water) is reported by both GIEMS-D and THMB-D, distributed mostly in the mainstream and central lines of channels. However, GIEMS-D records more water than THMB-D. The mismatches between the two datasets occur mainly in the vicinity of big streams. The THMB-D does not report the big wetland in the north, but many strange patterns scattering over the area.

GIEMS-D is likely to be more reliable because it is based on real observation.

If this is the case, GIEMS-D could certainly be useful to calibrate or constrain the model, and data assimilation could also be considered, at the HR. With several available sources of surface water observation, each with its own advantages and inconvenience, data fusion is a way to better exploit all the available observations to produce a better dataset. However, how to aggregate data effectively is indeed challenging. Depending on the application, the data fusion needs to be adapted from simple to more complex approaches. It will be shown below three examples of how to use the floodability index as a data-fusion tool over the Amazon basin.

Monthly water extent

Firstly, for the monthly water extent, GIEMS [START_REF] Prigent | Global inundation dynamics inferred from multiple satellite observations, 1993-2000[END_REF], THMB model [START_REF] Coe | Lba-eco lc-04 thmb model simulations for the amazon and tocantins basins: 1939-1998[END_REF], and GSW Monthly Water [START_REF] Pekel | High-resolution mapping of global surface water and its long-term changes[END_REF]) data, at a single time step, will be fused (see Figure 8). The floodability index is used to downscale GIEMS and THMB data from 25km and 9km resolution to 90m, resulting in GIEMS-D and THMB-D. On the contrary, the GSW with a resolution of 30m is upscaled to the same grid as the other two. Each water extent map is now binary with water/dry states. Our illustrative fusion rule is that if at least 2/3 (more than half) datasets are water, then the pixel is set as water in the output map. This very simple rule is based on a confidence level: Generally, the more datasets that report water at a point, the more likely water should be present there. We do not choose the threshold of 3 (i.e., water is present if all datasets agree on that) because any dataset can have omission error; for example, the GSW often fails to detect water below dense tree cover.

Meanwhile, the threshold of 1 is inadequate to conclude the water presence because any dataset can have commission error. If we have 20 datasets instead of three as now, we will have more choices of thresholding, and what would be obtained finally can be even more reliable [START_REF] Fleischmann | How much inundation occurs in the amazon river basin? Earth and Space Science Open Archive[END_REF].

Minimum/maximum extent

The data fusion of minimum/maximum extent from GIEMS, GSWO [START_REF] Pekel | High-resolution mapping of global surface water and its long-term changes[END_REF], and SAR [START_REF] Hess | Wetlands of the lowland amazon basin: Extent, vegetative cover, and dual-season inundated area as mapped with jers-1 synthetic aperture radar[END_REF] data is considered in Figure 9. Providing the minimum and maximum water extent is essential for water or ecology management. 180 months of GIEMS are downscaled using the floodability index, after that the minimum extent is derived by identifying pixels that are always inundated during the whole period, and the maximum extent is derived 560 by including all pixels that have been inundated at least one time. The mini-561 mum/maximum extent from GSWO after upscaling this data is obtained in a similar way: minimum extent is where occurrence > 0.9 and maximum extent is where occurrence > 0. The occurrence threshold of 0.9 for minimum extent is used instead of 1 (detected as water all times) to compensate for the omissive detection due to vegetation or some other erroneous classification (suggested by [START_REF] Aires | Comparison of visible and multi-satellite global inundation datasets at high-spatial resolution[END_REF]). The SAR data provided at 90m resolution with the 2 states of inundation is ready for use. We take the maximum extent of all the minimum/maximum extents to obtain the new minimum/maximum extent.

Considering such a maximum is useful if what is of interest is how far away water can spread from the streams in the low and high season; for example, one wants to build an infrastructure close to the river but never inundated.

Water occurrence

Water occurrence must be derived from a time-series of water data, and so far not many data sources provide data continuously over a long time period. We choose GIEMS, THMB and GSWO because of their different natures below vegetation. Therefore, we use the tree density cover data to control the contribution of GSWO in the data fusion:

If tree density is high (>= 70%), optical observation almost fails to detect water, GSWO is neglected:

New water occurrence = (GIEMS-D + THMB-D)/2; If tree density is not very high (< 70%), but GSWO still underestimates water presence (GSWO < 10% of min(GIEMS-D, THMB-D)):

New water occurrence = (GIEMS-D + THMB-D)/2; If tree density is not very high, and three datasets give comparable values:

New water occurrence = (GIEMS-D + THMB-D + GSWO)/3;

In the fused water occurrence map, any ever inundated area reported by at least one dataset is represented, such as the large wetland in the north missed by the THMB model and very fuzzy in GSW data but well detected by GIEMS.

The hydrology structure is made more apparent than in the individual datasets;

for example, the main river with considerably high values stands out from the floodplain on its banks. Note that this data fusion rule could be made even more complex if more auxiliary data was exploited. A machine learning approach could be considered, but this is outside the scope of this paper.

Ancillary tool for water retrieval

The retrieval of surface water from remote sensing data can be an ambiguous task. For instance, shadow or bare ground can be misclassified as surface water with SAR data because they all have low backscattering coefficient, i.e. appear as dark areas in SAR images. Erroneous water detection can also happen with optical data due to the similarity of the spectral characteristics between water bodies and other objects. Different approaches have been proposed to eliminate Using the floodability index as ancillary information would also be an interesting way to improve the accuracy of surface water retrieval by remote sensing.

The idea is that the retrieval can exploit the spatial coherency provided by the floodability index. For instance, if a water pixel has a significantly lower floodability index than dry pixels within the local area, that pixel was probably wrongly classified. This is a post-processing using the floodability index, as in [START_REF] Aires | A global dynamic long-term inundation extent dataset at high spatial resolution derived through downscaling of satellite observations[END_REF]. However, the floodability index can also potentially used as one of the inputs of the retrieval algorithm, because it synthesized already many sources of information such as topography and other surface water products. We list here this potential application of the floodability index, however, it will not be illustrated in this paper but will be tested in a forthcoming study.

Conclusions and perspectives

A new floodability index was produced from topography-based information using a neural network model. Compared to previous versions, this floodability index includes certain improvements. Firstly, we used a better topography dataset as input: it is more accurate and totally coherent with the permanent water dataset that is used. The issue of surface water artifacts has been avoided, and the patterns of the floodability index are also improved in the new version.

Secondly, we integrated permanent water information into the floodability index, which makes the floodability index more pertinent for its various applications.

The floodability index is already itself a tool to gather multiple hydrological information. With its help, the comparison, analysis and fusion of multiple datasets at different resolution become more feasible. It could even facilitate the water retrieval by using a post-processing step or as an input information for the retrieval. In a context where multiple datasets appear with different spatial resolutions, and with completely different natures (from visible to active and passive microwave observations), the future relies in a new approach to optimally combine them to obtain the optimal synthesis. It was shown here several ways to do so using the floodability index.

Due to the reliance on only topography-based information, the floodability index is not perfect, especially over areas where inundation is not driven by natural topography condition. However, we have seen that it is possible to improve it by improving the information that it uses. Any new topography, and new permanent waters could be integrated to obtain a better index. Other information (e.g. surface water observations), if combined, will help achieve a better quality of the floodability index. For instance, over peatlands that are very particular areas with many isolated water bodies, we could use other a priori datasets of peatland observations (e.g. data of [START_REF] Hugelius | Large stocks of peat-land carbon and nitrogen are vulnerable to permafrost thaw[END_REF]) to develop a dedicated floodability index. For areas with human-controlled flooding, we can use irrigation information in addition (e.g. cropland map of [START_REF] Salmon | Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data[END_REF]).

Information on wetland type could be useful too in the floodability index and this could be implemented in the NN approach adopted here. Finally, regionalizing the floodability index is a potential strategy to better take into account local conditions. Instead of a single neural network trained from the globallysampled training dataset, small regions can have their own floodability index models built from their own training datasets. However, compiling regional floodability indices to obtain a consistent global picture, without discontinuities across regions boundaries, is then a challenge that needs to be addressed.

Not only important to reconcile datasets at different spatial resolution, the floodability index can also facilitate the data fusion of datasets with different temporal resolution. The floodability index can be used for temporal inter-polation (e.g. producing weekly data from monthly data), thus synchronizing datasets for easier comparison or fusion. 
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 1 Figure 1: Example of datasets used for the construction of the floodability index. See details in the text.

  THMB (Terrestrial Hydrology Model with Biogeochemistry) model is a numerical model that simulates the water flow, including river discharge, water height above flood stage, and inundation fraction, based on topography conditions (from DEM), precipitation (from local climate data), base flow (from ecosystem model), surface runoff (from ecosystem model), and evaporation from water surfaces (from local climate data and energy balance model) (Coe et al., 2012). The model runs on a 5-minute grid (≈ 9km at the equator) over the Amazon and Tocantins basin from 1939 to 1998. The original time step of the model was 1 hour, the model output was then averaged on a monthly basis. Similar to GIEMS, the monthly inundation fraction data from this model (version 1.

Figure 2 :

 2 Figure 2: Schematic representation of the necessary steps to build the global floodability index, from left to right

  1, ..., N } with: S: Sample = (I, O) I: Input vector O: Target N : The number of samples = 15,000,000.

  hand sma: height above the nearest small drainage [m]; hand med: height above the nearest medium drainage [m]; hand lar: height above the nearest large drainage [m]; dist sma: distance to the nearest small drainage [km]; dist med: distance to the nearest medium drainage [km]; slope: slope [m/m]; uparea: upper flow accumulation [km 2 ].

Figure 3 :

 3 Figure 3: Global floodability index map with two levels of zoom over Louisiana/USA, the Amazon basin, the Congo basin, the Himalaya mountainous area, and some Russian peatland.

Figure 4 :

 4 Figure 4: Comparison of the old floodability index (first line) with the new version (second line) and Google Earth images (third line) for 3 different locations (a, b and c columns). Permanent water is not integrated in the old version, but presented here in magenta. In the new floodability index, artifacts originating from topography data are eliminated (a), smoothness is improved (b), and river beds are reconstructed more coherently to permanent water (c)(note the shift in the river bed for the older version of the floodability index).

Figure 6

 6 Figure6compares the floodability index with GSWO, GlobeCover map, GF-PLAIN250m, and GLWD over the Amazon basin, the biggest drainage basin in the world, almost entirely covered by the Amazon forest. The hydrological structures in GSWO are well represented by the floodability index. This similarity (high water occurrence versus high floodability index) occurs where there is little tree cover, which can be seen in the tree density map and by the red dots in the scatterplot (Figure6b,d). This is a good point of the floodability index: it can represent well what GSWO reports. However, many smaller structures in the floodability index are not found in the GSWO, specifically where

Figure 5 :

 5 Figure5: The integration of permanent water in the new floodability index can improve the downscaling low-resolution water. For example in the given box, permanent water occupies 21% surface area. When downscaling a 31% inundation within the box, the new version ensures that water is allocated 21% first to permanent water pixels, then 10% remaining to 10% pixels with highest floodability index (d,f). Meanwhile, in the old version, a selection of 31% pixels with the highest floodability index does not ensure permanent water is completely inundated (c,e).

  , the floodplains from GFPLAIN250m are represented, even small water bodies. They clearly correspond to high floodability index areas. This good agreement between the floodability index and this independent dataset is very positive. It can be explained by the topography origin of the two datasets, though it was exploited in two different ways. Results of some other areas with different natural conditions are put in Appendix A. Overall, the floodability index works well in areas where inundation is driven by natural topography (e.g. Congo basin, Figure A.11) and less efficiently where there are artificial irrigation practices (e.g. Mekong delta, Figure A.12).

Figure 6 :

 6 Figure 6: Comparison of the floodability index with GSWO, GlobCover landcover map, and GLWD over the Amazon basin.

Figure 7 :

 7 Figure 7: Analysis tool: Comparison of the water extent from two datasets (GIEMS and THMB) in May 1996.

Figure 8 :

 8 Figure8: Data-fusion tool: Fusion of water extent at one time step (07/1996) from GIEMS-D, THMB-D, and GSW. After the downscaling, if at least 2/3 datasets indicate water, the pixel is defined as water. In general, the result looks reasonable, although some places are not perfect, for instance, the river structure in the red circle is cut because neither THMB nor GSW is able to see it.

  (i.e. passive microwave observation/model simulation/optical observation). The time-series of GIEMS and THMB were first downscaled by the floodability index (GIEMS-D and THMB-D), then the water occurrence from each dataset was calculated. As noted in Section 5.2, many scattered bizarre patterns can be found in the THMB data. They are most likely model errors. Therefore, we use the maximum extent map from data fusion of GIEMS, SAR, and GSW data (Section 5.3.2) to correct the THMB-D: outside the reference maximum extent, water occurrence becomes 0. With this correction, the erroneous model patterns are eliminated. The GSWO is upscaled from 30m to 90m by taking the average. Water occurrence differs from the first two cases in that it is a continuous value, so the simplest version of data fusion is averaging water occurrence from all datasets. However, GSWO with its optical origin does not work well

Figure 9 :

 9 Figure 9: Data fusion tool: Fusion of minimum/maximum water extent from GIEMS, GSWO, and SAR. The new minimum/maximum extent is derived by taking the maximum extent of minimum/maximum extents from all datasets.

Figure 10 :

 10 Figure 10: Data fusion of water occurrence from GIEMS, THMB, and GSWO. Fuse by mean function.

Figure A. 11 :

 11 Figure A.11: Comparison of the floodability index with GSWO, GlobCover landcover map, and GLWD over the Congo basin.

  

  

Table 1 :

 1 Six surface water datasets from satellite observations

		Dataset/ Study	Attribute	Sensor	Scale	Res.	Time
	1	Global Surface Water	Monthly water extent, wa-	Optic	Global	30m	1984-
		(Pekel et al., 2016)	ter occurrence, maximum				2015
				water extent, etc.			
	2	Copernicus	Global	Annual inundation frac-	Optic	Global	100m 2015-
		Land Cover Layers	tion				2019
		(Buchhorn et al.,				
		2020)					
	3	Hess et al. (2015)	Vegetation cover types	SAR	Local	3"	1995-
				with dual-season flooding				1996
				states			
	4	Rosenqvist et al.	Maximum/ minimum in-	SAR	Local	1.6"	2014-
		(2020)		undation extents				2017
	5	GIEMS					

Table 2 :

 2 Surface classes of the GLWD-3 database

	Pixel value	Class
	1	Lake
	2	Reservoir
	3	River
	4	Freshwater Marsh, Floodplain
	5	Swamp Forest, Flooded Forest
	6	Coastal Wetland (incl. Mangrove, Estuary, Delta, Lagoon)
	7	Pan, Brackish/Saline Wetland
	8	Bog, Fen, Mire (Peatland)
	9	Intermittent Wetland/Lake
	10	50-100% Wetland
	11	25-50% Wetland
	12	0-25% Wetland
	2.2.2. Permanent water
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Appendix A. Regional assessment of the floodability index

In the Congo basin (Figure A.11), the wetland around the major river is striking in all maps except the GSWO due to the dense tree cover. The drainage system not presented by the GlobeCover map but quite obvious in GSWO and GLWD is reproduced well by the floodability index. The lakes and wetlands in the southeast of the basin are conspicuous across all four maps.

In the Mekong basin largely covered by cropland, the floodability index, GSWO, and GLWD do not agree much (Figure A.12). This is not surprising given that in croplands, surface water is more controlled by irrigation than by topography. Note also that the optical observation cannot detect water when the crop is high. Such a discrepancy was also noted in [START_REF] Aires | A global dynamic long-term inundation extent dataset at high spatial resolution derived through downscaling of satellite observations[END_REF] when comparing the floodability index from topography with the one from MODIS data over rice paddy area in Vietnam.

Peatland is a specific type of wetland concentrated mainly in the boreal region. Figure A.13 shows a peatland domain in Siberia where the inundation seems to be totally natural. There are similar patterns between floodability index and GSWO, with a quite clear correlation between them if the tree density is low (red points in the scatter plot). Most of water bodies in GlobeCover have high floodability index and GSWO values. However, the floodability index does not capture well the interlace wetland in the bottom middle of the GlobeCover map and the complex mixture of freshwater marsh, floodplain and peatland in the north part of GLWD.