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Multi Layer Perceptrons (MLP) have been popular

| INTRODUCTION

The satellite remote sensing community has been accustomed to traditional Neural Networks (NN) for the last 30 years. These NN algorithms have been particularly popular for infrared or microwave instruments (REFs generales). The versatility and accuracy of such NNs have been a true advantage to retrieve many geophysical variables in the atmosphere [START_REF] Butler | Retrieving atmospheric temperature parameters from dmsp ssm/t-1 data with a neural network[END_REF][START_REF] Bouillon | Time evolution of temperature profiles retrieved from 13 years of iasi data using an artificial neural network[END_REF], as well as over land (Aires et al., 2002b,d) and the ocean [START_REF] Aires | A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations[END_REF]. Such NNs have for instance been used for the processing of IASI (Infrared Atmospheric Sounding Interferometer) data (Aires et al., 2002b,a,d,e;[START_REF] Paul | An innovative physical scheme to retrieve simultaneously surface temperature and emissivities using high spectral infrared observations from IASI[END_REF][START_REF] August | Iasi on metop-a: Operational level 2 retrievals after five years in orbit[END_REF][START_REF] Blackwell | A neural-network technique for the retrieval of atmospheric temperature and moisture profiles from high spectral resolution sounding data[END_REF]. For instance, a combined LST/SST retrieval was recently proposed in [START_REF] Safieddine | Artificial neural networks to retrieve land and sea skin temperature from iasi[END_REF] to build a long-term and coherent surface temperature (TS) record from the IASI instrument.

The traditional NN models, also known as multi-layer perceptrons (MLPs), used so far are mainly built at the pixel level for such instruments because it is commonly admitted that there is low or no interest in using neighbourhood pixels for the retrieval on a central pixel. This depends however on several aspects: the spatial coherency of the variable that is being retrieved, the signal-to-noise ratio of the satellite measurements, or the spatial resolution of the data. This was considered in (Aires et al., 2021a). Although the pixel-level approach has proven efficient, especially with an instrument like IASI, it is judicious to explore the possibility of exploiting the neighbourhood information, in a more image-processing way, in particular with the increased popularity of Artificial Intelligence (AI).

Several research institutes or space agencies have prioritised the use of Deep Learning (DL) techniques for the improvement of the next generation of remote sensing algorithms (see for instance the ESA AI4EO initiative). Among the available DL models, the Convolutional Neural Networks (CNN) is the predominant chosen network. CNNs are image-processing techniques that have proven useful in particular when applied to high spatial resolution instruments such as SAR (Synthetic Aperture Radar) for mapping of forest harvesting [START_REF] Zhao | Monthly mapping of forest harvesting using dense time series sentinel-1 sar imagery and deep learning[END_REF], or in the visible domain to monitor for instance rice fields [START_REF] Zhang | Mapping paddy rice using a convolutional neural network (cnn) with landsat 8 datasets in the dongting lake area, china[END_REF].

CNNs are well suited for such high resolution data, which generally present dominant spatial features, contrasted textures with high spatial coherency, and stationarity of the images being processed. However, the benefits of such an approach for coarse resolution is still questionable. This question began to be answered in two recent papers [START_REF] Malmgren-Hansen | Statistical retrieval of atmospheric profiles with deep convolutional neural networks[END_REF]Aires et al., 2021a) and this paper aims to further develop on the question. Furthermore, working with images instead of pixels comes at a cost: missing data and the domain on which we choose to work on are a problematic. This is especially true when processing infrared images from a such as IASI in a polar orbiting model. So answers would be needed when using such CNNs on IASI data.

In general, the MLP retrieval models are constructed to be generic: A unique MLP is trained over the entire globe and it is expected to perform well everywhere. This is an ambitious task. There is some justification for this as the physics is the same everywhere. However, obtaining a general physical relationship would require all the information to represent correctly the radiative transfer (RT) (forward or inverse) all around the world, whatever the environment type or local conditions. This can be true in the atmosphere where the RT reaches adequate level of precision (enough for assimilation) but it is less true for the Earth surfaces where the RT is still not entirely satisfactory (Aires et al., 2021b). Some surface parameters describing the soil properties or the state of vegetation are not available at the global scale so only a simplified relationship is attainable. The MLP training will actually find the best compromise, using a simplified relationship between the satellite observations and the variable(s) to retrieve. This can result in regional biases that can impact the quality of the retrieval and cause a problem when the retrievals are assimilated into Numerical Weather Prediction (NWP) models. Therefore, the need to deal with these biases requires adopting a bias-correction strategy such as a variational bias-correction (var, 2004) or a Cumulative Distribution Function (CDF)-matching. [START_REF] Wagner | A method for estimating soil moisture from ers scatterometer and soil data[END_REF]Aires et al., 2021b). CDF-matching consists in transforming at the pixel level, before the assimilation, the CDF of the satellite-based estimate towards the CDF of the corresponding variable in the model, which harmonises the averages, ranges and even physical units of the variable. Whilst this method has its advantages, it also changes the spatial patterns present in the satellite data towards the spatial patterns of the model (Aires et al., 2021b).

| Grid and Spatial domain

The data was re-gridded on a regular 0.25 • grid over a fixed domain covering France and its surroundings, ranging between 41 • N and 52 • N in latitude and 5 • W and 10 • E in longitude. The choice of the domain is motivated by the necessity to reduce computational cost, the diversity of situations in such domain (mountains, sea, coastal and land pixels, variable cloud cover), and by the availability of good evaluation. The chosen domain is diverse and contrasting meteorological conditions can occur within a same scene. It is also often cloudy, which allows us to study the impact of missing data on the retrieval schemes. The choice of fixing a domain to work on is motivated by the image-processing techniques that will be tested. Images of size 44 × 60 are obtained in this domain, but images can be only partially filled depending on the IASI orbit.

On average, IASI observes a part of the chosen domain between two and four times per day. This leaves us with 15711 image samples over the ten-year period. This number is reduced to 8242 after screening out the images with a large cloud fraction. This results in two images per day on average.

| EUMETSAT IASI archive

The IASI instrument is a Michelson interferometer that measures the infrared radiation coming out of the atmosphere at several IASI is composed of a Fourier transform spectrometer which decomposes the infrared light emitted by the atmosphere and the Earth's surface. The 8461 channels provide a high resolution infrared spectrum between 645 and 2760 cm -1 (equivalent to between 3.6 and 15.5 µm wavelengths). Its fine spectral resolution (0.25 cm -1 un-apodized) enables the instrument to retrieve skin temperature, temperature and water-vapor profiles in the troposphere and the lower stratosphere as well as other atmospheric constituents.

We rely on a processing of ten and a half years of IASI MetOp-A data (July 2007 -December 2018) performed by EUMETSAT [START_REF] Hilton | Hyperspectral earth observation from iasi: Five years of accomplishments[END_REF]. The EUMETSAT archive was provided in the form of orbit files containing Level 1c data (i.e. TBs of the 8461 IASI channels) and Level 2 data (i.e. retrieved geophysical variables including LST, SST, atmospheric The CDR files include four surface parameters (surface pressure, surface air temperature, surface air dew point temperature, and surface skin temperature) as well as the atmospheric profiles of temperature and humidity. In addition, the CDR also provides a cloud indicator and an uncertainty estimate for each product.

The surface skin temperature (TS) over ocean (SST) and land (LST) were extracted, together with a cloud indicator, over the fixed domain. Figure 1(c) shows an example of the surface temperature product. Again, white pixels are for cloudy conditions as obtained from the EUMETSAT cloud mask.

| Ancillary databases

| ERA5 temperature product

The European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis ERA5 is produced using 4D-Var data assimilation in a Numerical Weather Prediction (NWP) model. This reanalysis re-processes the model equations with all available observations a posteriori in an optimal way in order to estimate the state of the atmosphere and the surface with an hourly time step. We extract hourly skin surface temperature under all sky conditions over our chosen domain. A cloud flag is however introduced according to the EUMETSAT classification. Figure 1 (d) shows an example of the skin temperature product.

We extract the same ten and a half years period (July 2007 -December 2018). However, since only hourly data are available, we do not have exact time collocation between the two datasets. Therefore, for each orbit in our EUMETSAT (IASI) database, we extract the closest hour from the ERA5 database (i.e. max ± 30 min difference).

| Land-SAF LST

The Land Surface Analysis Satellite Application Facility (LSA-SAF or Land-SAF) provides a land surface temperature derived from the clear-sky measurements of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) at channels 10.8 and 12.0 µm.

SEVIRI is on board the Meteosat Second Generation (MSG) geostationary satellite.

This data is available from 2007 onwards [START_REF] Trigo | An assessment of remotely sensed land surface temperature[END_REF][START_REF] Trigo | The satellite application facility for land surface analysis[END_REF], with one measurement every 15 minutes, although it is only available to download with a time step of 1 hour. Therefore, we proceed in the same way as for the previous ERA5 dataset: we re-gridded the data over our domain at the same resolution (0.25 • ) and for each image in the database, we choose the closest hour available of the Land-SAF LST data. We will validate our retrieval using one year of data (2015) for the sake of computational cost. Since SEVIRI Land-SAF LST has its own cloud mask, the comparison will be limited to clear pixels according to both EUMETSAT and SEVIRI masks. Figure 1(e) shows an example of the Land-SAF LST product.

| TELSEI Surface emissivities

This study uses the surface emissivities climatology derived from the emissivity interpolator TELSEI (A Tool to Estimate Land Surface Emissivity in the Infrared) [START_REF] Paul | An innovative physical scheme to retrieve simultaneously surface temperature and emissivities using high spectral infrared observations from IASI[END_REF]. The climatology is a database of monthly global infrared emissivity with IASI spectral resolution intended to follow the emissivity natural variability. Figure 2 illustrates a surface emissivity spectrum in January, over different areas of the chosen domain. To coincide with the IASI channels chosen for the database of TBs and to capture a good sample of the spectrum, we choose to keep the surface emissivity on three channels: 850, 900 and 1100 cm -1 to sample the emissivity spectrum at wavenumbers that help to discriminate surface type. The emissivity is fixed to 1 over the sea. [START_REF] Mcculloch | A logical calculus of ideas immanent in nervous activity[END_REF]. This work was further developed in 1958 by Frank Rosenblatt who introduced the Perceptron [START_REF] Rosenblatt | The perceptron: A probabilistic model for information storage and organization in the brain[END_REF]. This model later became the MLP models we know and use today [START_REF] Rumelhart | Learning internal representations by error propagation[END_REF]. Historically, the MLP model was trained with a simple gradient descent. This technique was not very successful because it was computationally F I G U R E 2 A soil emissivity spectrum (wavenumbers in cm -1 ) in January, over different areas of the chosen domain. In blue, a pixel over France's Western coast, in red a pixel over the French Alps, and in green a pixel in Central France.

too expensive. It was with the invention of the gradient back-propagation algorithm, speeding up the gradient descent, that MLPs began to be used for real-world applications. During the gradient back-propagation, the output errors are back-propagated from the output to the input layer to limit the number of gradients to estimate. The algorithm adjusts the weights given to each connection to reduce the error, at a low computational cost.

The MLP model consists of several interconnected layers of neurons, where each neuron in one layer has direct connections to neurons in the next layer. It is therefore characterized by its inputs, its outputs, the number of hidden layers and the number of neurons in each hidden layer. These two last parameters control the complexity of the model. Figure 3(a) illustrates an example of a MLP model consisting of 3 inputs (here the TB PC's), one hidden layer with 5 neurons and one output estimating the TS.

Classically, the MLP model is trained to reproduce the behaviour described by a dataset of input-output (IASI TBs -IASI TS) samples using the back-propagation algorithm (i.e. an optimization strategy that exploits the neural network architecture).

The experiments conducted in this paper use the Levenberg-Marquardt optimization algorithm, also known as the damped least-squares method. This algorithm was designed specifically for loss functions in the form of a sum of squared errors. In this application, the objective is to minimize the Mean Squared Error (MSE). The model is trained on a dataset of samples (i.e. the training dataset) and its ability to generalise to unknown inputs is tracked on an independent validation dataset. The training is stopped when this generalisation error ceases to decrease.

Given a sufficient amount of samples, any complex continuous relationship can be learnt by a MLP model with enough hidden neurons [START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF]. However, the quality of the retrieval obtained by such models ultimately depends on the information content of its inputs.

| Convolutional Neural Networks (CNN)

Recently, deep learning techniques, successfully developed in other scientific domains, have been introduced in the remote sensing community (Aires et al., 2021a;[START_REF] Malmgren-Hansen | Statistical retrieval of atmospheric profiles with deep convolutional neural networks[END_REF]. Deep learning techniques are an adaptation of MLP models where a large number of layers are stacked.

CNNs are now one of the most widely used classes of deep learning models. CNNs are image-processing-based networks where the inputs are no longer single pixels but images (Aires et al., 2021a), an example can be seen in Figure 3 The fundamental layer in such networks is the spatial convolutional layer. The learnable parameters of this layer consist of a set of filters (or kernels), usually of size 3 × 3 × depth or 5 × 5 × depth. In the forward pass, each filter is convolved over the height and width of the input volume, computing the dot product between the input volume and the filter weights, producing what is called a two-dimensional feature map of that filter (this is the equivalent of the weighted sum in classical neural networks). The network thus learns spatial filters that activate when it detects a particular type of spatial feature in the image. The stacking of activation maps for all filters along the depth dimension forms the complete output volume of the convolution layer. Each input in the output volume can therefore be interpreted as an output from a neuron that looks at a small region of the input and shares parameters (i.e. weights) with neurons in the same activation map. There are three hyper-parameters that control the output volume of the convolution layer: depth, stride, and padding. The depth of the layer corresponds to the number of convolution kernels; the stride represents the overlap, so when the stride is equal to 1, the filter moves one pixel at a time; and finally, the padding is the margin added around the input image allowing to control the spatial dimension of the output volume.

An activation function follows the convolutional layer. This is generally the Rectified Linear Unit (ReLU) function defined as

f (x ) = max(0, x ).
Other types of transfer functions exist, such as the Max Pooling, but these are generally used for downsizing the inputs and thus performing a classification task of the while image. We will therefore not go into the detail of these layers.

CNNs are trained to minimize, in the case of regression tasks, the MSE obtained in the output layer. We use here the Adam algorithm (Kingma and Ba, 2014) to do so. Using standard MLPs for the retrieval of TS has proven to be efficient [START_REF] Aires | A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations[END_REF](Aires et al., , 2002b;;[START_REF] Paul | An innovative physical scheme to retrieve simultaneously surface temperature and emissivities using high spectral infrared observations from IASI[END_REF][START_REF] Safieddine | Artificial neural networks to retrieve land and sea skin temperature from iasi[END_REF]. However, when using a unique MLP for the retrieval around the world, regional bias errors can arise. This might be surprising as any form of NN (MLP and CNNs) is by definition an unbiased estimator. But this is an unbiased estimator on the whole learning dataset, but not locally, in each region of the spatial domain.

The remote sensing goal is to convert what is measured by the satellite into geophysical quantities that characterize the atmosphere or the Earth's surface using some ancillary data if necessary. This is an inverse problem that requires inverting the RT equation in the atmosphere. The RT equation does not require information about the location it is being applied to, since each physical parameter is supposed to be provided to the RT. For atmospheric applications, this is often the case, but for surface applications the problem is much more complex. When it comes to surface retrievals, many information describing local conditions are often missing, and this will translate into regional biases. For instance, an error in the surface emissivity would lead to a regional bias in the retrieval [START_REF] Paul | An innovative physical scheme to retrieve simultaneously surface temperature and emissivities using high spectral infrared observations from IASI[END_REF].

| Localization in MLPs

In the remote sensing community, MLP models are most widely used at the pixel level, meaning that the neural network is applied independently on each pixel. Generally, one network is trained on all pixels, no matter the localization of the pixel. The MLP is then expected to perform well everywhere, but this can lead to regional biases if not enough information is provided, especially if using only the IASI TBs for instance: The network has to find a compromise between all TBs-TS relations present in the whole database and a general compromise might not perform as well everywhere.

To reduce these biases, it is however possible to incorporate localization information within the inputs of the MLP. This can be done in several ways:

1 By introducing more physical variables into the inputs. This can be the land fraction, the surface altitude, or the emissivity of the surface of each pixel [START_REF] Aires | A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations[END_REF], in addition to the TBs. Adding more information in this way is an attempt to obtain a more physical MLP, able to deal with all possible situations around the world, thus obtaining a general inverse RT applicable to any location or ideally, all surface parameters that have a potential impact on the TBs (soil moisture, vegetation, soil properties, etc.) should be considered. This is a more ambitious task.

2 By introducing geo-localisation information on the pixel, e.g. including the latitude and longitude of each pixel, in addition to the TBs. This is a less physical approach that we don't recommend here, but it is worth testing because many studies use such an approach.

3 By training independent MLPs for each pixel of the domain. This allows the MLP to specialize on the relationship between

TBs and TS at a certain location only, the missing physical variables are supposed in this case to not change for a particular pixel so that they can be omitted. The RT is therefore simplified, and the job of the MLP is made easier.

These three approaches bring additional information to the MLP, allowing it to somewhat localize the MLP behaviour for specific conditions. Each approach has its own advantages and drawbacks. The choice of the method should be based on the quality of the obtained results, and the type of use that will be made of the MLP.

| Localization in CNNs

Approaches for localisation are available too for image-processing-based methods such as CNNs. They aim to incorporate the notion of spatial dependency directly into the network architecture. Generic CNNs, as described in Section 3.2, already incorporate some form of localization information from the fact that they apply and use spatial filters in a different way in each part of the input image. However, generic CNNs are based on the concept of "weight sharing": This means that the same convolution kernels are applicable throughout the entire image. A small number of spatial filters might be sufficient for a particular location in the image, but a large stacking of convolution kernels is necessary to represent the whole image in a generic CNN.

Since we are working on a fixed spatial domain, the different parts of the image are always in the same physical location of the Earth's surface. This means that for each location of the image, a limited number of specific convolution kernels could be found instead of using a large number of generic kernels applicable everywhere. This is the role of the "locally connected layer"

(or local convolutional layer) [START_REF] Chen | Locally-connected and convolutional neural networks for small footprint speaker recognition[END_REF]. This layer can be seen as an intermediate solution between a fully connected layer and a classic convolutional layer. It works exactly in the same way as the well-known convolutional layer apart from the fact that the parameters are not shared throughout an activation map. This means that the optimal kernels that are obtained by the CNN will vary with the location. For instance, it can be different on the top right corner of an image than at the center of the image, over a plain or a mountain, on a coastal area or over sea.

Figure 4 highlights the difference between the two types of layers. We can see that for a classic convolutional layer, each of the three illustrated kernels is passed throughout the whole image. For the local convolution, the kernels differ for different locations, the CNN is therefore "localized". For instance, in coastal areas, kernels will tend to spot a contrast between land and sea, whilst on mountainous regions, where LST is highly heterogeneous with a limited spatial coherency, spatial kernels will be focusing on the central pixel of the convolution pattern. Although each layer contains a lot more parameters than for a classic convolutional layer, fewer layers are needed to obtain similar results. Each layer is able to capture the spatial patterns that are important for each specific area of the input. Again, generic or localized-CNNs have their own advantages and drawbacks and choice must be made based on results and practicality of use or interpretability of results.

| FILLING MISSING DATA FOR CNNS

Using image-processing techniques has its advantages, notably for exploiting spatial coherency. However, these techniques also present disadvantages, among which is missing data, one of the main concerns for CNNs. The problem of missing data when using CNNs has not been addressed satisfactorily so far in the literature, in particular for satellite images.

Several sources of missing data can be listed. Firstly, clouds cover approximately 60% of the globe at any time [START_REF] Rossow | Advances in understanding clouds from isccp[END_REF] although the exact number depends on spatial resolution. IASI observations are extremely sensitive to the presence of clouds, in particular for the retrieval of surface properties. Secondly, since we are focusing on a fixed domain, we have to face the issue of some orbits not covering the whole domain. Not processing images because missing data are present will mean that most of the IASI data flux would be lost for this type of CNN models. For current IASI processing chains, this has not been a problem since retrievals are performed at the pixel scale, it is therefore easy in that case to only process clear and available pixels. Missing data is a true limitation for the use of CNNs, and more generally image processing techniques, in the satellite community as complete images are rarely available for visible/infrared instruments. An approach to fill missing data is therefore a necessity.

Even if a filling process is put in place in the inputs of the CNNs, the exploitation of the CNN retrievals can be done with confidence only for clear pixels where a true satellite observation exists. In this case, the filling is performed in order to not disturb too much the retrieval of the clear pixels (this will be commented in the following). The retrievals could also be exploited on missing pixels: in this case, it is expected that the use of the spatial dependencies allows to inter-/extrapolate the information available of the clear pixels into the missing pixels. This will be investigated in a part II companion paper (Boucher and Aires).

| Standard spatial interpolation and extrapolation methods

Several spatial interpolation and extrapolation methods are considered here.

| A priori filling

The common practice with CNNs is insert a first guess value before the CNN is applied. Different a priori filling can be thought of : (1) Filling the missing data by inserting zeros values. Although this is the most widely used solution in the DL community, it is obviously a solution that is not satisfactory. (2) Filling the missing data by inserting the previous clear sky value on the particular pixel. This can be a little dangerous, notably in very cloudy regions since it is possible that the previous clear value dates from a few weeks in the past. (3) Filling the missing data with a climatological guess. This can come from monthly-mean values for each pixel location for example, but again, the monthly climatological value can be quite different than the true TS value.

These options are questionable as these artificial values can mislead the networks. This would then translate into reducing the spatial dependency we are trying to make use of in such methods.

| Bilinear interpolation and Nearest Neighbor extrapolation

It is expected that it is more appropriate to interpolate the variable in such way to obtain plausible data in the missing pixels. This method should perturb less the CNN processing of the input image. A simple method for this is the linear or bilinear interpolation.

Bilinear interpolation is an extension of the linear interpolation method for functions of two variables (i.e. x and y) on a 2D regular grid. It allows to calculate the value of a function at any point, from its two nearest neighbours in each direction. The interpolation function is f (x, y ) = ax + b y + cx y + d where f (x, y ) is the interpolated value at the point (x, y ) and a, b, c, d are coefficients computed from the four nearest neighbours. Bilinear interpolation is an easy-to-implement method. However, it is an interpolation method only, not suitable for extrapolation. This means that for the interpolation to be accurate and coherent, clear-sky pixels need to be available all around and in the vicinity of the considered missing pixel. Using this method on large clusters of missing data or missing parts of an image due to the orbit trajectory is thus not possible.

A possible extrapolation method associated to bilinear interpolation is the "nearest neighbour" extrapolation. This technique consists in applying bilinear interpolation where possible (i.e. filling the missing data points which have enough available neighbours) and filling the remaining of the missing data with the value of the nearest neighbour. However, if a large part of the image is missing in a corner of the image for instance, this method leads to the entire corner being filled with a single value.

Again, this can mislead the CNN and can reduce the spatial information that such a network is based on.

| Extrapolation method based on PCA

PCA is a very general statistical methodology that intends to describe the variability of multivariate observations using a new representation base defined by a limited set of patterns. For example, PCA was used to compress the IASI spectra in Section 2.2.1.

PCA has been widely used too in geophysics to isolate important spatial patterns, that is, the so-called Empirical Orthogonal Functions (EOFs), and this can be used for interpolation or extrapolation. This approach was used for example in [START_REF] Aires | Temporal interpolation of global surface skin temperature diurnal cycle over land under clear and cloudy conditions[END_REF] for temporal interpolation and in [START_REF] Aires | Characterization and space-time downscaling of the inundation extent over the inner niger delta using giems and modis data[END_REF] for spatial interpolation.

| PCA representation of images

Let X = X 11 . . . X 1n . . . . . . . . . X k 1 . . . X k n
, be the matrix of samples in our database, where k is the number of samples and n the number of features for each sample. The samples are images and the number of features is n = 44 × 60 = 2640 pixels. Most samples

x i = x i 1 , x i 2 , • • • , NaN, , • • • x i n
contain missing data, represented by NaN (i.e. Not a Number). We extract the EOFs (eigenvectors) F 1 , F 2 , • • • , F n and eigenvalues c 1 , c 2 , • • • , c n of the covariance matrix obtained from X. The coordinates of this covariance matrix are calculated using only the clear pixels (excluding the NaNs). Each image sample x i data can therefore be written as:

x i = λ 1 • F 1 + λ 2 • F 2 + • • • + λ m • F m , (1) 
where m ≤ n is the number of spatial EOFs chosen for the EOF representation (i.e. the new basis vectors) of the images, and λ i are the coordinates of the projection of the data points in the new basis. The optimal number m to represent images needs to be optimized; it ought to be large enough to represent a sufficient part of the variability in X, but small enough so that the following optimization scheme can find the right parameters

(λ 1 , λ 2 , • • • , λ m ).

| PCA extrapolation algorithm

An algorithm relying on these this EOF representation [START_REF] Azcarate | Data interpolating empirical orthogonal functions (dineof): a tool for geophysical data analyses[END_REF]) is now presented. The goal is to find the coordinates

(λ 1 , λ 2 , • • • , λ m ) (
where m is the chosen number of EOFs) of an incomplete image

x i = x i 1 , x i 2 , • • • , NaN, • • • , x i n (i.e.
containing NaNs). These coordinates should be such that the representation Eq. ( 1) should be as close as possible to the incomplete image x i over the clear pixels.

There are therefore two steps for this optimization scheme:

1. First guess -In order to find the coefficients λ i (i.e. project the data points onto the new basis), the image needs to be complete. For this purpose, missing values are replaced by a first guess, for which several possibilities exist. The first one would be to use any of the methods proposed in 4.1. However, after several tests, the chosen solution adopted here is to find λ 1 such that λ 1 • F 1 is as close as possible to the available data points. This is an optimization using only the first, most important, EOF and it provides a good first guess. The way to find the coordinates λ 1 is simply to test the several possibilities in a wide range [-500; +500] and chose the best solution by measuring the RMS error between λ 1 • F 1 and x i over the available clear pixels. Once λ 1 is chosen, the missing values are replaced by λ 1 • F 1 .

2. Optimization algorithm -Once the image is completed with a first guess, we are able to project the data points onto the EOF basis and thus obtain λ 1 , • • • , λ m . m = 5 is chosen. We can then replace the first guesses by

λ 1 • F 1 + λ 2 • F 2 + • • • + λ m • F m
in the missing pixels. We then project this new image onto the EOF basis and obtain a new version of λ 1 , • • • , λ m . This process is repeated until the predicted missing values have converged which means we can interpolate or extrapolate over the missing values based on the spatial pattern obtained in the PCA. A complete image is then obtained.1 

| Methods comparison and proposed strategy

We compare the previous PCA extrapolation technique with two of the presented solutions consisting of filling missing values with (1) monthly means (this will be the baseline), or (2) spatial bilinear interpolation followed by nearest neighbour extrapolation values.

In order to test the ability of the filling techniques, additional missing data are first introduced in our database so that results can be tested against real data. This will allow calculating the errors made by the interpolation techniques. For this purpose, three types of missing data are introduced:

• Small holes: randomly insert 9 missing pixels every 10 pixels in the image. They will be used to test the interpolation capacity.

• Upper and lower triangles: remove respectively the upper and lower triangle of the images. This will allow to test extrapolation on the edge of the image, without any guidance.

• Central square: remove a square of 35×50 in the center of the images. This serves to test large interpolation when pixels are available on the edges, providing some guidance on the interpolation ability.

Table 1 shows the Root Mean Squared (RMS) error between the true values and the interpolated/extrapolated values. We calculate the RMS error on available pixels that were artificially removed following the three previously described missing data categories. Bilinear interpolation is more efficient on small holes while the EOF technique leads to lower errors than the two other techniques when it comes to extrapolation. This was to be expected since a simple nearest neighbour extrapolation is not ideal when there is few or no available pixels in the neighbourhood to guide it. The EOF interpolation scheme is able to find the m most important spatial features (i.e. the EOFs) and then use them and their spatial dependency to fill large missing parts of the image based on the available information provided by the clear pixels.

This leads us to propose a strategy in two steps. First, we partially fill the images with a simple linear interpolation for the "small holes" in the image, defined as follow: there are three or more available pixels in the 5×5 window surrounding it. This allows to have more pixels available to help better constrain the following PCA inter-/extra-polation. To fill (interpolation or extrapolation) any larger holes (from clouds or missing parts caused by the orbit), the EOF-approach is used instead.

This technique is applied on both the TBs and the TS images. The final results of the process are illustrated in Figure 5.

This figure shows the results when the process is applied to the TS images. This particular example is interesting to look at. It contains smaller holes in the Eastern and Southern parts of the image. Larger parts of the image are also missing due to both clouds and the orbit not covering the entire domain. The first step of the interpolation process is seen in Figure 5(b). No big discontinuities are observed and regional specificities are well propagated in interpolated areas. The fully extrapolated image is seen in Figure 5(c). Again, it is observed that the general spatial patterns are respected, notably the gradient between land and sea and the distinction over the Alpine region, even though there are little or no pixels in those areas. A bilinear interpolation in such large areas would not respect the land/sea discontinuity, showing the interest of the PCA approach.

The image on the right is the image used for training the CNNs, the image on the left shows the pixels on which clear-sky retrieval statistics will be made. For pixel-wise approaches, we use only clear-sky pixels both for training and for calculating retrieval statistics. 

Interpolation on Extrapolation on

| SURFACE TEMPERATURE RETRIEVAL

We undergo several experiments to retrieve TS over our fixed domain from the three principle components (PCs) of the IASI selected TBs. The training is performed on pairs of collocated IASI TBs and ERA5 TS. The choice to use ERA5 TS for the training process is motivated by the fact that we want to facilitate the assimilation of IASI retrieved products at a later stage.

Using the model-trained retrieved TS for assimilation presents multiple advantages and has been a question in the assimilation community for some years already (F. [START_REF] Prigent | Soil moisture at a global scale. ii -global statistical relationships[END_REF]Kolassa et al., 2013;[START_REF] Rodriguez-Fernandez | Smos neural network soil moisture data assimilation in a land surface model and atmospheric impact[END_REF]. The first advantage is the compatibility of the retrieved product with the ERA5 model. Using ERA5 outputs for training means that the retrieved TS is coherent with the ERA5 TS. TS is a complex variable that can be difficult to define. Indeed, it is defined as the radiative temperature of the land/sea surface and depends on the thermal emission at the surface. The notion of surface can be defined differently, for example it can be at a depth of 1 mm or 1 cm. By training on the model outputs, there are no more ambiguities. The retrieved TS necessarily follows the same definition as the model TS and this hugely facilitates the assimilation of the product. The second advantage is that of course the obtained TS respects the spatio-temporal dynamics present in the IASI TBs. This is the most important aspect to facilitate assimilation. Obtained results will therefore be directly comparable to the EUMETSAT TS product which is also trained using ERA5 data and the comparison will be made in the Part II companion paper (Boucher and Aires).

Considering the relatively small number of samples in our database, we train the networks on 95% of the samples and use the remaining 5% for validation. As described in Section 3.3, multiple solutions are available to introduce localization information into the NNs. We therefore compare MLPs in which we introduce several degrees of localization information, and

CNNs in which the extent of localization is defined within the architecture itself, depending on the chosen type of convolutional layer. We train the MLP models on clear pixels only and use the extrapolated images to train the CNNs2 . In both cases, result statistics are computed on clear pixels only. We analyze the results by comparing the maps of the bias, standard deviation and RMS errors (K), as well as correlation coefficient.

| Neural Architectures

We define and describe here the architectures that will be used in the following.

Unique MLP: We consider first a MLP model as described in Section 3.1. This model is composed of one hidden layer with 100 neurons followed by a linear activation function. The number of input neurons is determined by the number of input variables (i.e. the 3 TB PCs and any other localization variable).

Independent MLP: We propose a variant of this architecture with only 5 neurons in the hidden layer. This network architecture will be used for testing the extreme localization technique that consists in training an individual network for each pixel (i.e. 44 × 60 = 2640 networks).

Generic CNN:

The first proposed CNN model consists in the most commonly used convolutional layer. As described in Section 3.2, the main asset of this layer is the weight sharing that exists throughout the entire image. Each filter convolved through the entire image represents and detects a relevant spatial pattern (e.g. a gradient in one direction). A relatively large amount of filters is therefore necessary because different patterns might be necessary to extract spatial features in different locations. So a whole alphabet of spatial filters needs to be found and utilised. Figure 6(a) shows the chosen architecture for this so-called "generic" CNN. It begins with a series of convolutional layers, respectively of 64, 32, 16 and 8 kernels of 5 × 5 pixels size. Each convolutional layer is preceded by a step of zero-padding which controls the spatial dimension of the output and is followed by a ReLU activation function. Finally, we regress the 8 feature maps into the retrieved TS with a dense layer. This means that the TS retrieval is the result of each feature maps output multiplied by a certain weight. The weight given to each of the 8 feature maps remains constant regardless of the pixel location in the image. There is therefore not much localization in this type of architecture.

Localized-CNN: Lastly, we present a "localized" CNN. This model utilizes the locally connected layer described in Section 3.2. Since this layer is a version of a convolutional layer in which the weights are not shared, it is not necessary to stack many local convolutional layers. The convolution kernel will choose the most dominant spatial feature for each particular location.

Experiments demonstrate that even just one convolutional layer with one kernel is enough to capture the spatial dependency present in the full image. Figure 6(b) shows the proposed architecture. We apply a single convolutional layer with a single kernel.

This results in a unique feature map. In order to keep the localization aspect of this architecture, we follow by flattening this feature map and applying a local dense layer. This means that the TS retrieval weight varies according to the pixel location. We finish by reshaping the output into an image.

(a) Classic CNN with 4 convolutional layers with 64, 32, 16 and 8 kernels respectively and 1 final dense layer to retrieve the TS.

(b) Localized-CNN with only 1 convolutional layer and one kernel. This layer is followed by a local dense layer for the TS retrieval.

F I G U R E 6 A Classic CNN architecture versus a localized-CNN architecture.

| Comparison of the neural retrievals

Table 2 lists the localization strategies that are tested and analyzed here. First, a comparison is made between an MLP architecture in which various localization variables are successively added, including the Land Fraction (LF), the Altitude (A), the surface Emissivity (Em), and the Latitude and Longitude (Lat/Lon). They are compared to a Independent MLP architecture with no localization inputs. Indeed, this architecture is already localized since one network is trained specifically on each pixel. Lastly, two CNN architectures introduced previously are also considered: the generic and the localized-CNN.

First, we compare the localization strategies for the MLP models. Opting for the simplest solution of training a unique MLP model on the whole spatial domain and using only the TB information leads to large regional biases, even if the spatial domain small compared to a global scale retrieval. Naturally, this is an extreme scenario on the ladder of "localization". It remains nonetheless relevant to consider this scenario for comparison purposes. This network has to find a compromise between the physics present over the entire domain. A single network cannot capture the subtleties of the independent TBs/TS relation that lies within each pixel of the domain because there is missing data that would be necessary to fully describe the RT. The training minimizes the mean squared error whilst producing an un-biased output on the whole domain which does not prevent regional biases. The bias map in Figure 7(a) suggests that these choices are not in favour of more complex locations such as the coastal and Alpine regions. This is visible too on the RMS error map where the highest errors occur in these complex regions. The retrievals over the complex regions need to be improved by introducing localization information. Introducing the land fraction as an additional input variable for example lowers the regional bias over the coastal regions, but this is not enough. The LF variable also helps correcting the systematic bias present over sea in Figure 7(a). A clear improvement can be observed when introducing additional localization variables such as the altitude and the surface emissivities. Indeed, columns (b), (c), (d) and (e) showcase an improvement in terms of RMS error, std and bias over these complex regions. Theoretically, introducing the emissivities into the inputs should almost completely resorb regional biases since this variable highly impacts the TS. However, the emissivities available are not perfect, especially over coastal areas, and this translates in higher biases over these areas. When adding latitude and longitude, the bias is improved over the alps but the coastal areas are degraded. This is not a good strategy. Lastly, the result of adding all the previous localization variables at once in the inputs of the MLP can be observed in column (g): regional biases are significantly reduced, especially over complex areas. The localization information is beneficial for the MLP, however it is preferred here to add only "physical" variables to the input for reasons stated in section 3.3.

A great improvement can be observed when using independent MLP models: with only 5 neurons in the hidden layer for each MLP model, a reduced RMS error is obtained and almost no regional bias is observed over the problematic regions (especially the Alpine region) because each MLP is specialized to a pixel location. These models do not have to make any compromise between regions and the remaining error and bias over notably the Alps are inherent to the true physical difficulty of the physical inversion process in these locations.

Although localized by nature of the image-processing approach, the generic CNN model produces considerable RMS error over the problematic regions, mostly from bias errors. This can be explained by the fact that: (1) Generic CNNs need a large number of convolutional layers in order to capture spatial patterns (possible only if a lot of samples are available in the learning database), (2) Spatial patterns need to be specialised in the various locations. However, the localized-CNN model produces much lower bias errors. It is also the model which results in the least RMS error overall (i.e. considering both bias and std errors).

The localized convolutional layer allows to capture spatial patterns dedicated to each location, to help a specialised TS retrieval in a very simple and understandable way. For instance, it uses a spatial filter that is more "pixelized" in areas where spatial heterogeneity is high.

Overall, the retrieved dynamics is relatively constant no matter the localization method, which explains why the overall std and correlations do not vary significantly depending on the method. 

  wavelengths. It was designed by the French space agency (CNES) and placed onboard the European meteorological satellites MetOp-A launched in 2006, MetOp-B launched in 2012 and MetOp-C launched in 2018. IASI is operated by EUMETSAT.

  Figures 1(a) and (b) show an example of a TB at 1130 cm -1 and the first extracted principle component. White pixels indicate cloudy sky conditions for which IASI TBs cannot be exploited for LST and SST retrievals.

  (a) TB at 1130 cm -1 (K) (b) 1 st TB PC (c) EUMETSAT TS (K) (d) ERA5 TS (K) (e) Land-SAF LST (K) F I G U R E 1 Some of the used data on January 1 st , 2015. Column (a) represents the IASI TB at 1130cm -1 . Column (b) shows the first principle component obtained after the spectral PCA is applied. Column (c), (d) and (e) represent the TS from the EUMETSAT, ERA5 and Land-SAF archives respectively. 2.2.2 | Temperature products (L2) EUMETSAT provides Level 2 Climate Data Record (CDR) derived from the "all-sky IASI PWLR3 retrieval" (DOI: 10.15770-/EUM_SEC_CLM_0027). The PWLR3 is a machine learning algorithm trained with real satellite observations paired with best correlative representation of the Earth system. It nominally exploits IASI measurements in synergy with collocated microwave data from the AMSU and MHS companion instruments onboard MetOp. The training is performed with about 100 millions of pairs of IASI, MHS and AMSU observations and collocated ERA5 atmospheric profiles.
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  | NEURAL NETWORK REMOTE SENSING AND LOCALIZATION STRATE-GIES 3.1 | Multi-Layer Perceptrons (MLP) Traditional NNs, commonly known as feed-forward networks or Multi-Layer Perceptrons (MLP) derive from the earlier work in 1943 of Warren McCulloch and Walter Pitts who proposed a very simple model inspired from the biological model of a neuron

  (b). Input images are represented as a tensor of shape (image height) × (image width) × (image depth) (generally RGB values, however in our case, the depth corresponds to the TB PCs. CNNs are both capable of performing classification and, although more rarely done, regression tasks. The typical architecture is a stack of layers transforming the input image into an output image using

  (a) MLP with 3 TB PCs as input, 5 hidden neurons in the hidden layer and one T S variable as output. The inputs and outputs correspond to values over a single pixel. (b) CNN with 3 TB PC images as input, some image-processing layers and the resulting TS image as output. Note that the inputs and outputs are whole images. F I G U R E 3 Examples of MLP (top) and CNN (bottom) architectures. convolutions (dot products) and activation functions.

3. 3

 3 | Localization strategies (a) Classic Convolutional Layer (b) Local Convolutional Layer F I G U R E 4 Left: standard CNN with same convolutional kernel layers convolved along the entire image. Right: localized convolution layer with a different kernels in each part of the image.

  (a) TS Raw (K) (b) TS partially interpolated (K) (c) TS fully extrapolated (K) F I G U R E 5 Interpolation and extrapolation steps on a sample TS image starting with (a) the raw TS containing missing data, (b) the intermediary step after applying the bi-linear interpolation in small holes and (c) the completely extrapolated image obtained after the EOF extrapolation procedure.

  E 2 Tested localization strategies. The left column refers to the network architecture used for the neuronal modeling. The right column indicates which variables are used as input to the network.

  U R E 7 RMS, std, and bias error (K), together with the correlation coefficients between retrieved and target TS, calculated on the validation database. Columns (a) to (g) are for the global-scale MLP models, column (h) is for the Independent MLP, and columns (i) and (j) depict the generic and localized-CNNs.

Another optimization algorithm that was tested was to reiterate the first guess method for all the λ i , in a sequence. Results were similar, however computation time was much higher.

It should be noted that the MLPs can be trained on pure available data, where CNNs have to be trained on filled, less-reliable, data

Funder One, Funder One Department, Grant/Award Number: 123456, 123457 and 123458; Funder Two, Funder Two Department, Grant/Award Number: 123459 in the remote sensing community for the last 30 years, in particular for the IASI (Infrared Atmospheric Sounding Interferometer) instrument.

| CONCLUSION

In this paper, the standard MLP global and pixel-wise retrievals were compared to the CNN image-processing approaches. For surface properties retrieval (such as surface temperature), missing information on the radiative transfer (e.g. reliable surface emissivities) is a true difficulty for the retrieval. Therefore, a global statistical retrieval scheme needs to make a compromise on the ensemble of samples of the learning dataset by choosing a simplified relationship. This often results in regional biases, limiting the use of such retrievals for assimilation. CDF-matching techniques can be used in order to reduce these biases (Aires et al., 2021b), but this approach is not ideal either because, by construction, they alter the spatial patterns of the satellite observations towards the spatial pattern of the model. An alternative solution to this is using a "localization" strategy. Diverse schemes of localization were proposed here to reduce these regional biases. These schemes include adding localization variables to a standard MLP model, training independent MLPs for each pixel, or using image-processing techniques. Each approach has its own advantages and drawbacks and results depend on the application. However, CNN techniques, alongside all image-processing approaches, comes with some obligatory pre-processing steps:

Firstly, it is necessary to transform the orbital data into images. The choice to focus on a fixed domain over a particular domain has proven to be a reasonable choice. Indeed, it allows using a CNN or localized CNN to make full use of the local features.

Secondly, it is essential to fill the missing data that related to cloudy skies or to parts of the orbits not covering the domain. An effective algorithm was presented to fill the images both in the interpolation and the extrapolation modes. The extrapolation respects the large scale spatial patterns present in the database whilst constraining the extrapolation by staying close to available data in each image, and the interpolation follows the local conditions of the observations. The missing data scheme is essential for building the training database, but also in operational mode to actually perform the retrievals.

Perspectives are numerous for this work. In a companion article (Boucher and Aires), several aspect will be investigated.

The first step will focus on the localized-CNN, a promising DL solution, to analyze further and evaluate the results of the localized-CNN against the EUMETSAT and Land-SAF TS surface temperature products. The impact of clouds on the LST will also be studied (Boucher and Aires). Assimilation of retrieved products requires an uncertainty estimate. Furthermore, the image-processing techniques presented in this paper are a good choice when treating data from geostationary satellites such as SEVIRI placed on board the MSG satellite. However, a solution for retrieval (and assimilation) of polar orbiting data, at the global scale is yet to be discussed. Potential solutions and their respective advantages and disadvantages will be discussed too in the second part of this paper.
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