
HAL Id: hal-04284489
https://hal.science/hal-04284489

Submitted on 14 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accounting for precipitation asymmetry in a
multiplicative random cascade disaggregation model

Kaltrina Maloku, Benoit Hingray, Guillaume Evin

To cite this version:
Kaltrina Maloku, Benoit Hingray, Guillaume Evin. Accounting for precipitation asymmetry in a
multiplicative random cascade disaggregation model. Hydrology and Earth System Sciences, 2023, 27
(20), pp.3643-3661. �10.5194/hess-27-3643-2023�. �hal-04284489�

https://hal.science/hal-04284489
https://hal.archives-ouvertes.fr


Hydrol. Earth Syst. Sci., 27, 3643–3661, 2023
https://doi.org/10.5194/hess-27-3643-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Accounting for precipitation asymmetry in a multiplicative
random cascade disaggregation model
Kaltrina Maloku, Benoit Hingray, and Guillaume Evin
Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 38000 Grenoble, France

Correspondence: Kaltrina Maloku (kaltrina.maloku@univ-grenoble-alpes.fr)

Received: 22 March 2023 – Discussion started: 5 April 2023
Revised: 5 September 2023 – Accepted: 14 September 2023 – Published: 18 October 2023

Abstract. Analytical multiplicative random cascades
(MRCs) are widely used for the temporal disaggregation
of coarse-resolution precipitation time series. This class of
models applies scaling models to represent the dependence
of the cascade generator on the temporal scale and the pre-
cipitation intensity. Although determinant, the dependence
on the external precipitation pattern is usually disregarded
in the analytical scaling models. Our work presents a
unified MRC modelling framework that allows the cascade
generator to depend in a continuous way on the temporal
scale, precipitation intensity and a so-called precipitation
asymmetry index.

Different MRC configurations are compared for 81 lo-
cations in Switzerland with contrasted climates. The added
value of the dependence of the MRC on the temporal scale
appears to be unclear, unlike what was suggested in previous
works. Introducing the precipitation asymmetry dependence
into the model leads to a drastic improvement in model per-
formance for all statistics related to precipitation temporal
persistence (wet–dry transition probabilities, lag-n autocor-
relation coefficients, lengths of dry–wet spells). Accounting
for precipitation asymmetry seems to solve this important
limitation of previous MRCs.

The model configuration that only accounts for the depen-
dence on precipitation intensity and asymmetry is highly par-
simonious, with only five parameters, and provides adequate
performances for all locations, seasons and temporal resolu-
tions. The spatial coherency of the parameter estimates indi-
cates a real potential for regionalisation and for further appli-
cation to any location in Switzerland.

1 Introduction

Multi-decadal time series of sub-daily precipitation at hourly
or even higher temporal resolutions are necessary for many
applications, e.g. assessment of soil erosion (Römkens et al.,
2002; Jebari et al., 2012) or of flash floods due to intense pre-
cipitation (Rafieeinasab et al., 2015; Liang et al., 2016) or hy-
drological simulations of small catchments, such as those in
mountainous regions (Sikorska and Seibert, 2018) or urban
areas (Ochoa-Rodriguez et al., 2015; Cristiano et al., 2017).
However, fine-scale precipitation data are scarce and usu-
ally cover limited periods of time, rarely predating the 1980s
(Segond et al., 2006; Jennings et al., 2010). In contrast, daily
precipitation observations are widely spread worldwide and
cover much longer periods, even going back to the middle of
the 19th century in some cases. To benefit from their much
richer information, high-resolution precipitation data are of-
ten derived from coarse-resolution observations (especially
at daily resolution) via some appropriate disaggregation pro-
cess. For a given sequence of daily precipitation amounts, for
instance, some disaggregation can be used to generate hourly
precipitation scenarios, distributing the precipitation amount
observed each day to its different hourly subdivisions. Dis-
aggregation has been widely used to produce high-resolution
time series scenarios from observed time series of daily pre-
cipitation, e.g. Molnar and Burlando (2005), or from low-
resolution synthetic ones obtained in a first step with a so-
called stochastic weather generator (e.g. Koutsoyiannis and
Onof, 2001; Kang and Ramírez, 2010; Paschalis et al., 2014).
Disaggregation models have also been used to generate high-
resolution spatial precipitation (multi-site or spatial fields,
see e.g. Mezghani and Hingray, 2009; Evin et al., 2018; Vivi-
roli et al., 2022).
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Many disaggregation models have been presented in the
past (see, for example, Srikanthan and McMahon, 2001, and
Koutsoyiannis, 2003, and the references within). A widely
used method is the non-parametric method of fragments
(MOF), where the disaggregation scheme for any target day
is obtained from the high-resolution temporal (and spatial,
if relevant) structure of a given analogue day selected in the
archive of observations (e.g. Mezghani and Hingray, 2009;
Breinl and Di Baldassarre, 2019; Park and Chung, 2020;
Acharya et al., 2022). By construction, MOF methods pre-
serve the sub-daily patterns of precipitation and the intermit-
tency properties within each day. An alternative disaggrega-
tion method is provided by multiplicative random cascades
(MRCs), inspired by the statistical theory of turbulent fields
(Schertzer and Lovejoy, 1987; Tessier et al., 1993). Because
of the simplicity of both parameter estimation and simulation
processes, MRCs have been widely used in the past for many
applications in hydrology, for the point temporal disaggre-
gation of precipitation time series (e.g. Menabde and Siva-
palan, 2000; Pui et al., 2012; Pohle et al., 2018) or for the
spatial–temporal disaggregation of precipitation fields (e.g.
Seed et al., 1999; Rupp et al., 2012; Schleiss, 2020).

MRC models are usually implemented with a so-called
branching number equal to 2. In such a case, the amount of
precipitation at any time step is partitioned into two parts,
attributed respectively to the first and second subdivision of
this time step. The partition is repeated throughout the cas-
cade levels until the final temporal resolution is achieved
(Olsson, 1998; Molnar and Burlando, 2005; Rupp et al.,
2009). In the so-called micro-canonical MRC models, the
partition of precipitation is conservative. The precipitation
amounts R1 and R2 attributed respectively to the first and
second subdivisions of the considered time step (with pre-
cipitation amount R0) are expressed as R1 =W1 ·R0 and
R2 =W2 ·R0, where W1+W2 = 1. For a given time step,
the disaggregation can be determined by the so-called break-
down coefficient (BDC) assigned to the first subdivision:
W :=W1, which can take the values 0 with probability p01
(no precipitation is attributed to the first subdivision), 1 with
probability p10 (R0 is fully attributed to the first subdivision)
or any value between 0 and 1. When W ∈ (0,1), W+ =W
follows a statistical distribution with a probability density
function fW+ .

The probabilities p01 and p10 and the distribution fW+ de-
fine 0, the statistical distribution of W , called the cascade
generator. For a given location, they have been found to de-
pend on different factors. They first depend on the tempo-
ral scale and on the precipitation intensity of the precipita-
tion amount R0 to disaggregate (e.g. Molnar and Burlando,
2005; Rupp et al., 2009). For instance, p01 and p10 tend
to significantly decrease with precipitation intensity and to
be larger for higher time resolutions; they also often exhibit
some seasonality (Molnar and Burlando, 2008). The cascade
generator 0 also depends on the so-called external pattern of
precipitation, i.e. on the temporal sequence of precipitation

amounts Rt−1, Rt and Rt+1 around the precipitation amount
Rt , to disaggregate (Ormsbee, 1989; Olsson, 1998; Günt-
ner et al., 2001). For instance, p01 tends to be higher and
p10 smaller in the case of a so-called ascending precipita-
tion pattern (when Rt−1 <Rt <Rt+1), and, conversely, p01
tends to be smaller and p10 higher with descending patterns
(Rt−1 >Rt >Rt+1).

Different models have been proposed for the cascade gen-
erator 0, i.e. for the estimation of p01, p10 and fW+ as a func-
tion of selected factors of variability. They are either empiri-
cal or analytical. Empirical models are usually obtained from
the empirical cumulative distribution function (ECDF) of W
estimated from time series of high-resolution observed data
for a discrete number of dependency configurations. Param-
eter estimation is usually performed on a seasonal basis by
considering the dependency on the temporal scales of inter-
ests and/or the dependency on the external pattern of precip-
itation (Olsson, 1998; Ormsbee, 1989; Güntner et al., 2001).
The main drawback of empirical MRCs is the considerable
number of parameters to be estimated, the large number of
classes to be considered and, as a consequence, the lack of
robustness in terms of parameter estimates. In practice, some
dependencies of the ECDFs are thus often ignored.

Besides empirical MRC models, analytical models aim to
represent in a synthetic way the dependency of p01 and p10
and of the distribution fW+ on important factors of variabil-
ity. Most analytical models have focused on the dependency
on the temporal scale and precipitation intensity. For in-
stance, the symmetric beta distribution has been extensively
used to model the distribution fW+ (Menabde and Sivapalan,
2000). The single parameter α of the symmetric beta distri-
bution shows strong relationships with the temporal scale and
the precipitation intensity and can be modelled with simple
scaling analytical laws (Molnar and Burlando, 2005; Paulson
and Baxter, 2007; Rupp et al., 2009). Analytical models typi-
cally use symmetric distribution models. Nevertheless, a few
exceptions are worth mentioning. McIntyre et al. (2016) use
a two-parameter asymmetric beta distribution and consider
four external pattern classes for the estimation of its param-
eters (the so-called ending, starting, enclosed and isolated
classes). Hingray and Ben Haha (2005) use an asymmetric
piecewise linear distribution function, where the asymme-
try of the distribution is estimated from a local precipitation
asymmetry index defined from the deterministic model of
Ormsbee (1989). In both cases, it was found that account-
ing for the asymmetry in the BDC distribution improved the
reproduction of statistics related to precipitation persistence
and intermittency, which are known to be difficult to repro-
duce with MRC models (e.g. Rupp et al., 2009; Paschalis
et al., 2012, 2014; Müller and Haberlandt, 2018; Pohle et al.,
2018). However, these MRC approaches did not include scal-
ing models to account for the dependency of the parameters
on the temporal scale and precipitation intensity, resulting in
a rather large number of parameters to be estimated.
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In this work, we present an analytical MRC modelling
framework that allows the cascade generator 0 to depend in
a continuous way on temporal scales, intensities and external
patterns of precipitation. The possibility of merging into a
single and unified analytical scaling framework all the prin-
cipal 0 dependencies allows a minimal number of parame-
ters while combining (1) scaling relationships with tempo-
ral scales and intensities and (2) scaling dependency on the
external pattern. This approach aims to improve the model’s
relevance and performance. The following questions are con-
sidered:

– To what extent can a continuous index of local precipita-
tion asymmetry describe the way the cascade generator
0 depends on the external pattern of precipitation?

– Is it possible to identify some scaling behaviour with
respect to this asymmetry index? And is it possible to
propose an analytical relationship to model this scaling
behaviour?

– What is the added value of including such an asymme-
try dependency in the cascade generator 0, especially
with regard to statistics related to precipitation persis-
tence and intermittency?

One important application of disaggregation models is for
locations where only coarse-resolution data are available. In
this case, the parameters of the model cannot be estimated
from local data as such data are missing and are obtained
with some regionalisation process based on data available
from neighbouring locations and/or locations with similar
precipitation regimes (e.g. Hingray et al., 2014). For such a
work, analytical scaling MRCs are promising. They are very
parsimonious, which is expected to ease model regionalisa-
tion and increase model robustness.

However, introducing precipitation asymmetry depen-
dence is at the expense of model parsimony. In this work, we
thus consider different MRC models of different complex-
ities to find, if relevant, a compromise between model per-
formance and parsimony. If the cascade generator is known
to depict different types of scaling dependencies, not all are
necessarily required to achieve fair model performance. Ac-
counting for temporal scale dependence is widely considered
to be beneficial. However, to our knowledge, the correspond-
ing gain in performance is questionable (no improvement in
Rupp et al. (2009) and loss of performance in Molnar and
Burlando (2005)). Introducing dependence on intensity was
conversely often found to significantly improve it (e.g. Rupp
et al., 2009; Paschalis et al., 2014).

An additional objective of the present work is to investi-
gate the loss of performance obtained when the cascade gen-
erator 0 disregards the dependency on temporal scales. In
particular, a model configuration that only accounts for the
dependence on precipitation intensity and asymmetry is as-
sessed.

The paper is structured as follows. In Sect. 2, we introduce
a precipitation asymmetry index used to model the depen-
dency on asymmetry. Four different analytical MRC models
are also presented in this section. They account for depen-
dency on the temporal scale, precipitation intensity and/or
precipitation asymmetry. The different models are used for
the disaggregation of daily precipitation time series available
for a large set of stations in Switzerland. Station locations and
precipitation data are presented in Sect. 3. The models are
evaluated on their ability to reproduce a number of charac-
teristic statistics of precipitation at multiple temporal scales.
The main performance evaluation results are presented in
Sect. 4, while the interests of different model components
are discussed in Sect. 5. Section 6 concludes the paper.

2 Methods

As mentioned previously, the cascade generator 0 used for
the disaggregation of any precipitation amount R0 is defined
by the probabilities p01 and p10 and the distribution of W+

denoted by fW+ . In the following, fW+ is modelled with a
two-parameter beta distribution following e.g. McIntyre et al.
(2016):

fW+ =
1

B (α1,α2)
W+

(α1−1)(
1−W+

)(α2−1)
, (1)

where the beta function B(α1, α2) is a normalisation con-
stant. The two parameters α1 and α2 are related to the mean
and the variance of the distribution as follows:

E
[
W+

]
=

α1

α1+α2
, (2)

and

Var
[
W+

]
=

α1α2

(α1+α2)
2 (α1+α2+ 1)

. (3)

Note that when α1 = α2 = α, the distribution is symmetric:

E[W+] = 0.5, (4)

and

Var
[
W+

]
=

1
4(2α+ 1)

. (5)

The MRCs compared in this study consider different ways of
modelling their dependencies on the temporal scale, precip-
itation intensity and precipitation asymmetry. Four models
are compared:

– Model A accounts for the dependency on the temporal
scale and precipitation intensity.

– Model B is a simplification of model A. It disregards the
dependency on the temporal scale.
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– Models A+ and B+ are refinements of models A and B,
where the dependency on asymmetry is accounted for.

In the following, we describe the way the different models
represent the scaling relationships for p01, p10, α1 and α2.
We first present the MRC modelling framework of model A
and the simplifications chosen for model B. Next, we intro-
duce a precipitation asymmetry index further considered to
account for the dependency of the cascade generator 0 on
asymmetry. Finally, we describe how models A+ and B+ in-
troduce this dependency.

To account for the seasonality of precipitation character-
istics in the region, models are estimated and evaluated on a
seasonal basis. Seasons are defined as follows: winter (De-
cember, January, February – DJF), spring (March, April,
May – MAM), summer (June, July, August – JJA) and au-
tumn (September, October, November – SON).

2.1 MRC models without asymmetry: models A and B

In models A and B, the dependency on precipitation asym-
metry is disregarded, and the distribution of the cascade gen-
erator is assumed to be symmetric. The probabilities p01 and
p10 are thus assumed equal to each other, and the distribu-
tion of the strictly positive BDCs, fW+ , is modelled with a
symmetric beta distribution, i.e. α1 = α2 = α.

The probabilities p01 and p10 are estimated from px =

1−p01−p10, where px is the non-zero subdivision proba-
bility, i.e. the probability that the precipitation amount is split
into two non-zero amounts. As illustrated with data from the
Zurich station in Fig. 1a, px generally increases with the in-
tensity of the precipitation amount to disaggregate and is ex-
pected to increase for coarser temporal scales. In model A,
following Rupp et al. (2009), the scaling dependency of px
on the temporal scale τ and precipitation intensity I is mod-
elled as follows:

px(I,τ )=
1
2

(
1+ erf

[
log(I )−µ(τ)
√

2σ(τ)

])
, (6)

where “erf” is the error function defined as erf(x)=
2
√
π

x∫
0
e−t

2
dt and where µ and σ are assumed to be linearly

dependent on the logarithm of the temporal scale:

µ(τ)= aµ log(τ )+ bµ, (7)
σ(τ)= aσ log(τ )+ bσ . (8)

In model B, the dependency on the temporal scale is disre-
garded. In this case, µ and σ are assumed to be constant, and
Eq. (6) is simplified to the following:

px(I )=
1
2

(
1+ erf

[
log(I )−µ
√

2σ

])
. (9)

The distribution fW+ in models A and B is a symmetric beta
distribution. Its shape is defined by the value of its unique pa-
rameter α, which is related to the variance ofW+ via Eq. (5).

Figure 1. (a, b) Two characteristics of the cascade generator 0 as a
function of precipitation intensity I and temporal scale τ . (a) Non-
zero subdivision probability px and (b) parameter α of the beta dis-
tribution for fW+ . In panel (a), the different lines correspond to the
different px(I )models obtained for different scales according to the
scaling model of model A (Eq. 6). In panel (b), the line corresponds
to the scaling model for α in model B (Eq. 13). In both graphs,
dots correspond to empirical estimates used for model fitting. They
are obtained for different classes of intensity and different tempo-
ral scales. The colour indicates the temporal scale. (c, d) The two
scaling sub-models for α in model A. (c) Model h(τ) (Eq. 11) and
(d) model g(I) (Eq. 12). In panel (c), dots correspond to empiri-
cal estimates of α for the different temporal scales (all intensities
included). In panel (d), dots correspond to empirical estimates of
the ratio α(I,τ )/h(τ) for different classes of intensity and different
temporal scales. Data obtained from the Zurich station during the
autumn season.

For α = 1, the probability density function (pdf) fW+ is con-
stant between 0 and 1; i.e. it corresponds to a uniform distri-
bution. For α > 1, the larger the value of α, the smaller the
variance ofW+, and the more the pdf is concentrated around
its mean, 0.5. A roughly equal partition towards both sub-
time steps becomes more likely in this case and leads to a
stronger persistence of precipitation. For α < 1, the smaller
the value of α, the larger the variance of W+, and the more
the pdf is concentrated close to 0 and 1, which leads to more
variable and/or intermittent precipitation. In autumn, for the
Zurich station, Fig. 1 shows that α increases (Var[W+] de-
creases) when precipitation intensity increases (Fig. 1b) and
that α decreases (Var[W+] increases) when the temporal
scale gets coarser (Fig. 1b and c).

In model A, α is modelled as a function of precipitation
intensity and temporal scale. Following Rupp et al. (2009),
the model is the product of two functions of both variables,
illustrated for Zurich data in Fig. 1c and d respectively:

α(τ,I )= g(I) ·h(τ), (10)

where

h(τ)= α0 · τ
H , (11)

Hydrol. Earth Syst. Sci., 27, 3643–3661, 2023 https://doi.org/10.5194/hess-27-3643-2023
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and

log[g(I)] = c0+ c1 log(I )+ c2[log(I )]2. (12)

In model B, the dependency of α on the temporal scale is
disregarded. The dependency on intensity is modelled with
the following function:

log(α(I ))=


0, if I ≤ I0

K
[
log(I/I0)

]2
, if I0 < I ≤ I1

K
[
log(I1/I0)

]2
, if I > I1

(13)

where I0 = 0.1 mm h−1 and I1 = 10 mm h−1, as illustrated
for Zurich data in Fig. 1b. The distribution fW+ is thus
uniform for very low intensities. For large intensities, α is
bounded to the value obtained for I1. The higher the value for
K , the higher the curvature of the scaling function log(α(I )).
Positive K values lead to higher α values for larger intensi-
ties (and vice versa). Models A and B have, respectively, nine
(aµ, bµ, aσ , bσ for px and α0, H , c0, c1, c2 for fW+ ) and
three (µ, σ for px andK for fW+ ) invariant parameters to be
estimated.

2.2 An asymmetry index of precipitation sequences

In models A+ and B+, the cascade generator can be asym-
metric: the probabilities p01 and p10 are not necessarily
equal, and the two-parameter Beta distribution used to model
fW+ can be asymmetric. As we will explain in the following,
the asymmetry of the cascade generator is assumed to depend
in a continuous way on the asymmetry of the precipitation
sequence {Rt−1, Rt , Rt+1}. In other words, we assume that
the larger the asymmetry of the sequence is, the larger the
asymmetry of the cascade generator is expected to be.

To characterise the asymmetry of {Rt−1, Rt , Rt+1}, we in-
troduce an asymmetry index Zt , as in Hingray and Ben Haha
(2005). Zt is defined as the hidden breakdown coefficient
of the {Rt−1, Rt , Rt+1} sequence. It is estimated from the
two hidden precipitation amounts R∗1 = Rt−1+ 0.5Rt and
R∗2 = 0.5Rt +Rt+1 that would be respectively obtained for
the first and second halves of the {Rt−1, Rt , Rt+1} sequence
if Rt was split in half. Zt thus reads as follows:

Zt =
Rt−1+ 0.5Rt

Rt−1+Rt +Rt+1
. (14)

WhileW is defined from the central precipitation and its sub-
division amounts, Zt is fully determined from the central and
its adjacent precipitation amounts. Details about the use of
this index in the cascade generator are given in the follow-
ing sections. Zt depends on the relative precipitation ratios
Rt−1/Rt and Rt+1/Rt and varies from 0 to 1, as illustrated
in Fig. 2.

The following points can be noticed:

– A symmetric precipitation sequence, i.e. when Rt−1 =

Rt+1, leads to Zt = 0.5 whatever the amount of precip-
itation in the central time step.

Figure 2. Asymmetry index Zt of the {Rt−1, Rt , Rt+1} precipita-
tion sequence as a function of the two precipitation ratios Rt−1/Rt
(x axis) and Rt+1/Rt (y axis).

– For sequences with central precipitation amounts much
larger than the adjacent ones, Zt is close to 0.5.

– Zt < 0.5 indicates an increasing or right-valley se-
quence, i.e. a sequence where Rt−1 <Rt+1, while
Zt > 0.5 indicates a decreasing or left-valley sequence
(Rt−1 >Rt+1).

– The Zt asymmetry index characterises in a continuous
way the intensity of the asymmetry; different decreasing
precipitation sequences will have differentZt values de-
pending on the steepness of the decrease. The larger the
deviation from 0.5, the larger the asymmetry.

– Zt values close to 0 indicate sequences with very lit-
tle precipitation in the first two time steps when com-
pared to the last one (very steep ascending sequences),
whereas Zt values close to 1 indicate sequences with
very little precipitation in the two last time steps when
compared to the first one (very steep descending se-
quences).

2.3 ECDF dependency on precipitation asymmetry and
scaling models

Figure 3a shows the ECDFs of observed weightsW obtained
for the Zurich station for 10 classes of precipitation asymme-
try index, defined as GZl = {Wt |Zt ∈ (0.1(l− 1),0.1l]}, for
l = 1, . . . , 10. As expected, the ECDF depends a lot on the
asymmetry class. The lower the value of Zt (i.e. correspond-
ing to very steep ascending external patterns), the higher the
value of p01 and the lower the value of p10 – in other words,
the higher the probability that the whole of the Rt precipi-
tation amount is attributed to the second subdivision and the
lower the probability that the whole of Rt is attributed to the
first subdivision. The exact opposite happens for high val-
ues of Zt (i.e. values corresponding to very steep descending
external patterns).

https://doi.org/10.5194/hess-27-3643-2023 Hydrol. Earth Syst. Sci., 27, 3643–3661, 2023
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Figure 3. Statistical characteristics of the breakdown coefficients
W as a function of the asymmetry index Z for the Zurich station
in winter (DJF, left column panels) and summer (JJA, right column
panels). (a) ECDFs of W for 10 classes of Z. (b) Dry probability
asymmetry ratio ϕ as a function of Z. The estimates ϕ obtained for
different classes of Z are indicated with black dots, and the fitted
model ϕ(Z) is indicated with a plain black line. (c) Estimated mean
ofW+ as a function of Z. Empirical means are indicated with black
dots, and the fitted model m(Z) is indicated with a plain black line.

The asymmetry of the precipitation sequence directly
translates to an asymmetry of the ECDF of W , namely to an
asymmetry between p01 and p10 and to an asymmetry in the
distribution fW+ . As shown in the following, the asymmetry
of ECDF significantly depends on the value of the asymmetry
indexZ. For clarity, the temporal index t is omitted hereafter.

To quantify the asymmetry between p01 and p10, we intro-
duce the probability asymmetry ratio, ϕ, defined as follows:

ϕ =
p01

p10+p01
=

p01

1−px
. (15)

For ϕ values close to 0.5, the asymmetry between p10 and
p01 is small. The case ϕ = 0.5 corresponds to the symmetric
case, i.e. p10 = p01. The most asymmetrical configurations
are obtained when ϕ = 0 or ϕ = 1. The case ϕ = 0 (respec-
tively, ϕ = 1) corresponds to p01 = 0 and p10 = 1−px (re-
spectively, p01 = 1−px and p10 = 0). The relationship be-
tween ϕ and Z is illustrated in Fig. 3b. As expected, when Z
increases, ϕ decreases. The ϕ(Z) relationship is found to be

roughly similar for all Swiss stations (results not shown) and
can be modelled with an error function as follows:

ϕ(Z)=
1
2

(
1+ erf

(
0.5−Z

ν
√

2

))
, (16)

where the single parameter ν is related to the strength of the
ϕ(Z) relationship around the pivot point (Z = 0.5, ϕ = 0.5).
The strength is found to depend on the station and on the
season. It is, for instance, slightly higher in winter than in
summer for Zurich station.

For asymmetric precipitation sequences, the distribution
fW+ is also expected to be asymmetric. In particular, the
mean of the distribution is expected to differ from 0.5. This
is illustrated in Fig. 3c for Zurich observation data, where the
mean ofW+, denoted bym, is estimated for different classes
of Z. As expected, the lower the value of Z, the lower the
value of the mean. In terms of precipitation dynamics, this
reflects the fact that, in an ascending precipitation sequence,
the amount of precipitation tends to be smaller in the first
time subdivision than in the second one. The reverse is true
in the case of a descending sequence. The m(Z) relationship
highlighted in Fig. 3c is found to be roughly linear for all
Swiss stations (results not shown) and can be modelled as
follows:

m(Z)= λ

(
Z−

1
2

)
+

1
2
. (17)

The model is centred on the pivot point (Z = 0.5, m= 0.5).
Its unique parameter λ corresponds to the slope of this linear
function and indicates the strength of the dependency on pre-
cipitation asymmetry Z. The strength is also found to depend
on the season and station.

In models A+ and B+ described in the following section,
the dependency of the cascade generator 0 on precipitation
asymmetry is accounted for with the help of the scaling mod-
els ϕ(Z) and m(Z). Both scaling models have one single in-
variant parameter to estimate.

2.4 MRC models with asymmetry: models A+ and B+

The introduction of asymmetry in model A, leading to
model A+, is described hereafter. In model A+, the non-
zero subdivision probability px is obtained for I and τ as
in model A with the scaling model px(I,τ ) presented in
Sect. 2.1 (see Eq. 6). Contrarily to model A, probabilities
p01 and p10 can be different and are obtained from Eq. (15)
of the probability asymmetry ratio ϕ(Z) as follows:

p01 = ϕ(Z)(1−px) , (18)
p10 = (1−ϕ(Z))(1−px) . (19)

In model A+, the Beta distribution fW+ can be asymmet-
ric and its two parameters can be related to E[W+] and
Var[W+] from Eqs. (4) and (5) as follows:
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Table 1. The four models compared and the parameters to be estimated for the scaling sub-models accounted for. The – symbol denotes a
configuration where the scaling dependency is disregarded. The total number of parameters per season and station is given in the column
“No. of params”.

Model No. of px or (p10 and p01) fW+ (α only or α1 and α2)

params Intensity Temporal Asymmetry Intensity Temporal Asymmetry
scale scale

A 9 px(I,τ )→ aµ, bµ, aσ , bσ – α(τ,I )→ c0, c1, c2, α0, H –
A+ 11 px(I,τ )→ aµ, bµ, aσ , bσ ϕ(Z)→ ν α(τ,I )→ c0, c1, c2, α0, H m(Z)→ λ

B 3 px(I )→ µ, σ – – α(I)→K – –
B+ 5 px(I )→ µ, σ – ϕ(Z)→ ν α(I)→K – m(Z)→ λ

α1 =

(
E
[
W+

](
1−E

[
W+

])
Var

[
W+

] − 1

)
E
[
W+

]
, (20)

α2 =

(
E
[
W+

](
1−E

[
W+

])
Var

[
W+

] − 1

)(
1−E

[
W+

])
. (21)

In model A+, we obtain E[W+] from the scaling model
m(Z) of Eq. (17), and Var[W+] is assumed to be the same
as in model A, i.e. in a configuration where the distribution
is assumed symmetric. In practice, Var[W+] is thus simply
derived from the value of α obtained with the scaling model
α(I,τ ) of model A as follows: Var[W+] = 1/(4(2α(I,τ )+
1)). The parameters α1 and α2 are then derived from these
representations of E[W+] and Var[W+].

Model B+ is derived from model B in the same way.
The probabilities p01 and p10 are obtained from Eqs. (18)
and (19) with the scaling model px(I ) of Eq. (9). α1 and
α2 are obtained from Eqs. (20) and (21), where E[W+] and
Var[W+] are obtained respectively from the modelm(Z) and
from 1/(4(2α(I)+ 1)).

2.5 Estimation of scaling models

Table 1 summarises the dependencies of each MRC model
on either temporal scale, intensity and/or asymmetry and in-
dicates the parameters to be estimated for the corresponding
scaling models.

Whatever the MRC model, the estimation of the differ-
ent parameters required for the scaling model for px is inde-
pendent of those related to α. The estimation of the scaling
sub-model for the probability asymmetry index ϕ and for the
mean m of the distribution fW+ is also independent of the
estimation of the scaling models for the dependency on the
intensity and/or temporal scale. In all cases, the estimation is
also sequential: in a first step, the empirical value of the vari-
able of interest (e.g. px , α, ϕ or m) is calculated for different
classes of disaggregation configuration (e.g. different tempo-
ral scales, different classes of intensity or different classes of
asymmetry index), and in a second step, the relevant scaling
model is fitted to those empirical values by the method of
least square errors.

This is illustrated in Fig. 3b and c for the asymmetry scal-
ing model ϕ(Z) andm(Z). The models of Eqs. (16) and (17)
are fitted (the plain black lines) to the empirical values of ϕ
and m obtained for different asymmetry index classes (black
dots). Empirical values of ϕ andm are calculated for each Z-
index class by ignoring the intensity class and temporal scale.
Estimation is also done on a seasonal basis. The estimation
process for the parameters of the other scaling models is sim-
ilar. It is described in detail for all models in Appendix A. An
example of the model fit is given in Fig. 1a, c and d (plain
lines) for the scaling models px(I,τ ), g(I) and h(τ) used in
model A. For the scaling model α(I) used in model B, an
example is given in Fig. 1b.

Precipitation data aggregated at six temporal resolutions
are considered for model estimation (40, 80, 160, 320, 640
and 1280 min). The 40 min precipitation data are obtained
from the 10 min time series available for the stations. The
40 min time series are aggregated to 80 min time series to
calculate the observed breakdown coefficients W using non-
overlapping adjacent pairs of precipitation amounts for this
cascade level. The aggregation procedure is repeated until
the time series reaches the temporal resolution of 1280 min.
These different series are used for the estimation of the BDCs
relative to each temporal scale and are also used as a ref-
erence for the evaluation of the disaggregation models (see
Sect. 2.6).

Note that the 1280 min aggregated temporal scale does not
correspond to the daily resolution of 1440 min. Following
Molnar and Burlando (2005), the first and last 80 min records
of each day were thus discarded from the initial observed
times series before aggregations. The resulting time series,
with truncated days of 21.3 h, was used as a reference daily
time series for model estimation and evaluation.

As reported in previous works, the precipitation measure-
ment resolution, defined by the precipitation tipping bucket
of automatic stations (0.1 mm here), is very likely to intro-
duce artefacts and/or biases in different statistical character-
istics of precipitation at fine temporal scales, especially sub-
hourly ones, and can impact the empirical distributions of the
breakdown coefficients W (e.g. Olsson, 1998; Rupp et al.,
2009; Licznar et al., 2011; Paschalis et al., 2012).
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Following previous works, the breakdown coefficients W
obtained from precipitation amounts below a given precipita-
tion threshold were discarded for the present study. A thresh-
old of 0.8 mm is applied for the estimation of α in all mod-
els and for the estimation of px in models B and B+ (see
Sect. 5.1 for further discussion on this issue).

2.6 Experimental setup

The 10 min observational records aggregated to the resolu-
tion of 1280 min are disaggregated back to the 40 min res-
olution using models A, B, A+ and B+. Since models are
stochastic, the disaggregation is performed 30 times for each
model.

The performance of a given model is evaluated by its abil-
ity to reproduce standard statistical metrics of precipitation,
such as the standard deviation of precipitation amounts, the
probability of precipitation occurrence and return levels of
maximum precipitation amounts for given return periods.
In addition, the temporal autocorrelation, wet–dry transition
probabilities, and the duration of wet and dry spells are used
to assess the ability of the models to reproduce the temporal
persistence of precipitation. Evaluations are carried out on a
seasonal basis for all available stations and for all temporal
scales involved in the generation process (i.e. 40 to 640 min).

Different evaluation criteria are used. For most evalua-
tion metrics, the variability between generated scenarios is
small to very small. In this case, the evaluation criterion is
the absolute error between the simulated and the observed
metric, averaged over the different scenarios (and possibly
temporal scales and seasons). To assess the performance of
a given model across multiple sites, single-site performances
are averaged over the different stations. We refer to this per-
formance criterion as the mean absolute error (MAE). For
some metrics, the percentage absolute relative error is con-
sidered (dividing for each station, season and temporal scale
the absolute error by the observed value of the metric), giv-
ing the mean absolute percentage error (MAPE, Hyndman
and Koehler, 2006).

For precipitation maxima, the variability between scenar-
ios is often large. In this case, we apply the CASE evaluation
framework proposed by Bennett et al. (2018) for which at-
site model performances are categorised as “good”, “fair”
and “bad”. For a single metric at a given site, 90 % and
99.7 % probability limits are obtained from the set of sim-
ulated metrics and are compared with the observed metric.
Then, the performance is categorised as

– “good” if the observed metric is inside the 90 % limits
of simulated metrics,

– “fair” if the observed metric is outside the 90 % limits of
simulated metrics but within the 99.7 % limits of simu-
lated metrics or absolute relative difference between the
observed metric and the average simulated metrics is
5 % or less, and

Figure 4. Map of Switzerland and gauge locations.

– “bad” otherwise.

To assess the performance of a given model across multiple
sites, single-site performances are summarised as percent-
ages of good, fair and bad cases among sites and seasons.
The variables evaluated here are the return levels estimated
for 5- and 20-year return periods. The 5- and 20-year return
levels, respectively, are estimated empirically in a Gumbel
plot from a linear interpolation between the two observed (or
simulated) annual maxima which have the empirical return
periods that are the closest to 5 and 20 years, respectively.
The empirical return period of each observed (or simulated)
annual maximum is simply obtained from its empirical non-
exceedance probability estimated with the Gringorten plot-
ting position formula (Gringorten, 1963).

3 Application to Swiss data

The four models are applied to 81 stations of the Swiss
meteorological observation network, a relatively dense net-
work, with high-quality observational data (Fig. 4). The sta-
tions have at least 20 years of data available through the pe-
riod 1980–2020 and use tipping-bucket rain gauges with a
sampling resolution of 10 min and a tip volume of 0.1 mm.
Switzerland has a complex topography, with 60 % of the ter-
ritory covered by the Alps. Together with the Swiss Plateau
and Jura mountains to the north, they are the main features
of the landscape. The complex topography induces very dif-
ferent weather and precipitation regimes, as described in the
precipitation climatology for the European Alps of Frei and
Schär (1998). For instance, the main topographic slopes at
the rim are responsible for enhanced precipitation and as-
sociated rain-shadowing of inner-Alpine sectors. The Swiss
Plateau tends to be sheltered by the Jura mountains, resulting
in less precipitation from northwestern fronts during winter
than for the Jura mountains (Baeriswyl and Rebetez, 1997).

If large precipitation amounts can be observed during win-
ter and spring due to long stratiform and orographic precipi-
tation events, intense precipitation events are often observed
in summer and fall due to the topographically triggered con-
vective events (Frei and Schär, 1998). Mediterranean cy-
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clonic activity in autumn brings heavy precipitation in the
region of Ticino, in the south of Switzerland, making autumn
the main precipitation season in this region (Molnar and Bur-
lando, 2008).

4 Results

We first focus on results obtained for the target 40 min
temporal resolution, namely for a set of standard statistics
(Sect. 4.1) and for 5- and 20-year return levels of annual
maxima (Sect. 4.2). Next, in Sect. 4.3, we present how re-
sults vary for intermediate disaggregation temporal resolu-
tions and for the different seasons.

4.1 Standard statistics

Simulated values obtained for a set of standard statistics at a
resolution of 40 min are compared to observed ones in Fig. 5.
For the standard deviation and proportion of wet 40 min time
steps, results are satisfying whatever the model. Slightly bet-
ter results (i.e. smaller MAE values) are obtained with mod-
els B and B+ for standard deviation (Fig. 5a) and with mod-
els A and A+ for the proportion of wet steps (Fig. 5b).

Differences between models are more important for statis-
tics related to precipitation persistence and intermittency.
The best-performing model depends on the statistic, but,
whatever the statistic, the performance of the model is al-
ways drastically improved when precipitation asymmetry is
accounted for (see model A+ vs. model A and model B+

vs. model B). At a 40 min resolution, this is illustrated with
results obtained for the wet–dry transition probability, lag-1
autocorrelation and mean duration of wet spells in Fig. 5c–e
respectively. For all stations and all seasons, the large over-
or underestimation obtained with models A and B is largely
reduced and even tends to disappear when asymmetry is ac-
counted for (models A+ and B+). In the same manner, much
better results are obtained for all other similar statistics and
all other temporal scales, as indicated by the results obtained
for lag-2 autocorrelation, mean duration of dry spells and all
the other wet–dry transition probabilities (dry–dry, dry–wet,
wet–wet) provided in the Supplement (see Figs. S3–S5 in the
Supplement).

Some differences are also noticed depending on whether
or not the dependency on the temporal scale is taken
into account (i.e. model B vs. model A and model B+

vs. model A+). While these differences are sometimes non-
negligible, they are much smaller than the obtained differ-
ences depending on whether or not the dependency on the
asymmetry is included. For example, at the 40 min resolu-
tion, the observed autocorrelation coefficients are better re-
produced with a dependency on the temporal scale (Fig. 5d
for lag-1 and Fig. S3 for lag-2). For durations of wet and dry
spells and the different wet–dry transition probabilities, the
consideration of dependency on the temporal scale has a lim-

ited influence (Fig. 5c and f for the duration of wet spell and
wet–dry transition probability and Figs. S4 and S5 for other
statistics).

4.2 The 5- and 20-year return levels

The ability of the models to simulate relevant return lev-
els for the 5- and 20-year return periods at the 40 min tem-
poral resolution is presented in Fig. 6. The percentages of
station–season configurations corresponding to the good, fair
and poor CASE criteria are summarised with the horizontal
green, yellow or red bar, respectively, in each graph.

Results are very similar from one model to the other. The
percentage of sites with good performance is slightly higher
for models B and B+, but MAPE values are very similar for
all models. Contrarily to most of the other considered met-
rics, the consideration of asymmetry has almost no influence
here.

All models are able to reproduce the large variety of 5- and
20-year return levels observed in Switzerland between sites
and seasons. They also all perform rather well for both re-
turn periods. For most sites and seasons, however, return lev-
els are slightly underestimated. At the 40 min resolution, the
underestimation is stronger in spring and summer for some
sites (Fig. 7). This point will be further discussed in Sect. 5.5.

4.3 Intermediate temporal scales and dependency on
seasons

Figure 7 presents the performance of each model for the re-
production of the lag-1 autocorrelation, mean length of wet
spells, and 5- and 20-year return levels at different tempo-
ral resolutions. Clearly, for almost all statistics, the perfor-
mances depend on the temporal resolution. For the interme-
diate disaggregation resolutions, the best-performing mod-
els are not necessarily the same as those found at a 40 min
resolution. For instance, between models A and B, with re-
gard to the reproduction of the lag-1 autocorrelation, the best
model at a 40 min resolution is model A, while model B is
the best model at 160 min and coarser resolutions. For the
mean length of wet (and dry) spells and for 5- and 20-year re-
turn levels, models A and B provide similar performances for
40 min, although model B tends to perform better at 160 min
and at coarser resolutions.

At 40 min resolution, accounting for asymmetry signifi-
cantly improves the reproduction of all statistics related to
precipitation persistence and intermittency, but it does not in-
fluence the reproduction of standard deviation, wet step prob-
ability and return levels. Similar results are obtained for the
intermediate temporal resolutions.

As already mentioned previously, results can also depend
on the season. Results for spring and summer are often sim-
ilar and are in contrast with the results obtained for winter
and autumn (Fig. 7).
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Figure 5. Observed versus simulated statistics for each considered model at a 40 min temporal resolution for different metrics. Each triangle
represents a site and a season. The triangles for the simulated metrics correspond to the median of the 30 statistics obtained from the
corresponding 30 simulated scenarios. MAE values over all sites and seasons are indicated in the bottom-right corner, and the lowest MAE
obtained over the four models is indicated in bold. Pearson’s autocorrelation coefficients are estimated using the function acf implemented
in R (R Core Team, 2022).

5 Discussion

5.1 Scaling MRC parameters with temporal scales

As highlighted in many previous works, the distribution of
the breakdown coefficients W+ depends on the temporal
scale, precipitation intensity, precipitation asymmetry and
possibly other factors. Even though it was done in a discrete
way by conditioning MRC parameters on a few external pat-
tern classes, the dependency on the precipitation asymme-

try has been widely accounted for in empirical approaches.
However, to our knowledge, except for the pattern-based
MRC model presented in Hingray and Ben Haha (2005), all
analytical MRC developments have disregarded this depen-
dency, most of them focusing on temporal scale and intensity
dependencies.

According to the results shown in Sect. 4, the depen-
dence on the temporal scale and its added value are not as
pronounced, as is usually considered. In the present study,
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Figure 6. Observed versus simulated return levels at the 40 min temporal resolution for (a) 5-year and (b) 20-year return periods for each
model and at each site. Vertical bands indicate the 90 % CI limits obtained from the 30 simulated time series for each station and each
season (one colour by season). Horizontal coloured bars indicate the percentage of good, fair and poor performance as assessed by the CASE
framework for all sites and seasons (81× 4= 324 cases). The return levels are estimated empirically using the Gringorten plotting position
formula (Gringorten, 1963). MAPE values over all sites and seasons are indicated in the bottom-right corner, and the lowest MAPE obtained
over the four models is indicated in bold.

Figure 7. Mean absolute percentage error (MAPE) as a function of the temporal aggregation level and season for lag-1 autocorrelation, mean
length of wet spells, and 5- and 20-year return levels. Each boxplot summarises the single-site performances obtained for the 81 stations.
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model A, which is the model considered by Rupp et al.
(2009) and later by Paschalis et al. (2014), includes the de-
pendency on the temporal scale and precipitation intensity.
Model B, a simplification of model A, disregards temporal
scale dependency. Besides the fact that it increases the num-
ber of parameters to be estimated (six additional parameters),
model A is found to have similar performances to model B
and even worse performances for coarse temporal scales.
Note that Molnar and Burlando (2005) and Rupp et al. (2009)
also show this limited advantage of the temporal scale depen-
dency.

Two issues must be put into perspective with the preceding
statements. The first one is related to the recording precision,
which induces a relatively high frequency of W = 1/2, 1/3
and 2/3 and, to a lesser extent, ofW = 1/4 and 3/4. This pre-
cision artefact is actually detrimental for a relevant estima-
tion of the cascade generator 0 characteristics for small tem-
poral scales and low intensities (not for moderate to high in-
tensities; see, e.g. Olsson, 1998; Rupp et al., 2009; Paschalis
et al., 2012). Rupp et al. (2009) suggested that some of the
dependency on intensity was the result of this artefact pre-
cision. We argue that a large part of the dependency on the
temporal scale is also a result of this precision artefact. This
is strongly suggested here concerning the probability px(I ).
As illustrated in Fig. 1a, the px(I ) relationship for the Zurich
station differs from one temporal scale to the other. The dif-
ference between the curves, which is mainly observed for
small to very small intensities, depends a lot on the low
precipitation threshold considered for selecting precipitation
data (not shown). The differences between the curves almost
disappear when precipitation amounts smaller than 0.8 mm
are removed from the analysis (see Fig. S2 for the Zurich
station). Without the small precipitation amounts, the scal-
ing model for px(I ) appears to not depend on the temporal
scale anymore and motivates the simplification of model B
considered here. Further investigations will be worthwhile to
assess whether this holds true in other regions. This issue also
calls for the development of a robust assessment framework
(to be defined) that would be able to disentangle, if existent,
the genuine dependence on the temporal scale from the one
induced by the precision artefact.

Note that these conclusions were also obtained in auxiliary
analyses we carried out on jittered high-resolution precipita-
tion data (not shown). Random perturbations were added to
the original observed 10 min time series before the model es-
timation procedure, as in Licznar et al. (2011). In our analy-
sis, the jittering process was designed as an attempt to mimic
the measurement process of the tipping-bucket rain gauge.
In a tipping bucket with 0.1 mm precision device, one rain-
fall pulse is recorded within a given 10 min time step once
the 0.1 mm rainfall bucket is filled, regardless of the duration
required to fill the bucket. In reality, the recorded 0.1 mm
measurement is likely to partially belong to the current time
step and partially to the previous time steps. The jittering
process reallocates the first recorded 0.1 mm of each time

step to the current and previous time steps. This process
results in the elimination of rounded quantities of precip-
itation (k× 0.1 mm; k = 1, 2, . . . n), especially small ones
(0.1, 0.2, 0.3, . . . mm), and consequently, the removal of
over-represented values of BDCs (W = 1/2, 1/3, 2/3, 1/4
and 3/4). In turn, this leads part of the scaling dependencies
mentioned above to disappear.

Another issue concerns the parameter α of the distribu-
tion fW+ . For this parameter, the dependence on the tempo-
ral scale is poorly understood. For Zurich, rather large devia-
tions are obtained between modelled and empirical estimates
whether this dependence is taken into account (model A;
see scaled parameter g(I) in Fig. 1d) or not (model B; see
Fig. 1b). Deviations are mainly observed for large intensities
in model A and for moderate intensities in model B. The tem-
poral scale dependency assumption also seems to be detri-
mental for the disaggregation of large precipitation amounts.
In all cases, neither of the two models (A and B) is fully satis-
fying for representing α, with similar results being obtained
for all other stations considered in this work. The dependency
on the temporal scale needs to be better characterised in fu-
ture works along with alternative scaling models.

5.2 Scaling MRC parameters with precipitation
asymmetry

The statistics related to precipitation persistence have always
been found to be significantly underestimated by analytical
MRC models (e.g. Hingray and Ben Haha, 2005; Rupp et al.,
2009; Paschalis et al., 2012). Paschalis et al. (2014) actually
suggest that analytical MRCs, by construction based on a
symmetric cascade generator, are unable to account for the
multiscale autocorrelation structure of precipitation. The re-
sults shown in Hingray and Ben Haha (2005) indicate that
this issue could be at least partly fixed when the precipitation
asymmetry is accounted for in the model. These insights are
thus confirmed with the present work for a large variety of
climate contexts found in Switzerland and for all seasons.

The dependence on precipitation asymmetry, acknowl-
edged for a long time, was never accounted for in a fully ana-
lytical MRC framework. This study fills this methodological
gap. We show that the dependency on the asymmetry can
be modelled with a two-part analytical scaling sub-model,
where the dry probability asymmetry ratio ϕ and the meanm
of the positive BDC distribution fW+ depend on the precip-
itation asymmetry index Z. For Swiss stations, the depen-
dence of the cascade generator properties on precipitation
asymmetry seems to be much larger than that on temporal
scales. The added value of introducing precipitation asym-
metry into the model is clear: all statistics relative to precip-
itation persistence are much better reproduced, whatever the
station, the season and the temporal scale.

Accounting for precipitation asymmetry seems to be of
crucial importance to achieve the generation of a time se-
ries with relevant properties. This is also suggested by the
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results of some auxiliary evaluations described below. As
shown previously in Sect. 2.3, the statistical distribution of
W is expected to strongly depend on the external pattern of
precipitation and more precisely on the value of the asym-
metry index Z. When the asymmetry index Z is larger, the
probability p01 (respectively, p10) is expected to be smaller
(respectively, larger), and the mean of the distribution is ex-
pected to be larger (see the ECDFs of W for the Zurich data
in Fig. 3).

Figures S12 and S13 demonstrate that the dependency of
ECDF of BDCs on Z is almost perfectly reproduced with
models A+ and B+ for Zurich data. Conversely, when the
cascade generator does not account for precipitation asym-
metry, as is the case with models A and B, the dependence of
ECDF of W on Z is no longer reproduced, which is not sur-
prising due to the inherent symmetric formulation of cascade
generators.

Besides, the statistics of a precipitation time series, e.g.
the standard statistics and the ECDF of W , are not expected
to change when the time series is offset in time by a small
time duration. This specific point is investigated here with
an offset experiment similar to that presented by Rupp et al.
(2009). Four 40 min time series are derived from the initial
10 min time series by aggregating 10 min data using four dif-
ferent time offsets: no offset, 10, 20 and 30 min. When the
offset experiment is applied to observed data, the consid-
ered statistics estimated for the four time series are similar.
Thus, the expected offset independence property is satisfied,
as shown in Fig. S10 for standard statistics of 12 stations and
in Figs. S12 and S13 for the ECDF of W for Zurich data.
When the offset experiment is applied to times series gen-
erated with the disaggregation models, the offset indepen-
dence property is not always satisfied. For illustration, the
disaggregated 40 min time series were further disaggregated
to 10 min time series (for the 20 and 10 min temporal scales,
the parameters of the cascade generator are obtained with the
scaling models). For each 10 min time series scenario, four
offset 40 min time series were produced with four different
offsets as for the observations. In general, the statistics ob-
tained with disaggregated scenarios from models A and B
(without asymmetry) are much more sensitive to temporal
offset than those obtained from models A+ and B+. For mod-
els A and B, the estimates obtained for the three non-zero off-
sets (10, 20, 30 min) are often significantly different from the
reference estimate (with the 0 min offset). This is the case
for standard statistics, as highlighted in Fig. S11, and it is
even more accentuated for the ECDFs of W , as illustrated in
Figs. S12 and S13. Including the asymmetry in the generator
makes the ECDFs rather insensitive to the offset.

As mentioned previously, the asymmetry of the cascade
generator is mainly disregarded in analytical MRCs, but it
is considered for a long time in empirical ones by estima-
tion of the cascade generator for different external pattern
classes. Conditioning the parameterisation of any analytical
model on external pattern classes is also possible. Is our con-

tinuous asymmetry approach of interest when compared to
a class-conditioned approach? To address this question, we
considered two more models, namely A position and B posi-
tion (Ap and Bp). These two models are based on models A
and B respectively, but they are estimated by conditioning
the estimation on four external pattern classes, i.e. the four
position classes (starting, enclosed, ending, isolated) consid-
ered in McIntyre et al. (2016). Again, the observed quasi-
daily amounts were disaggregated to time series of 40 min
resolution with all models. Figures S14 and S15 show that
the results depend on the considered statistics. Overall in our
case, conditioning the analytical models to the position class
improves the performance of classical unconditioned analyt-
ical models; nevertheless, it is less efficient than consider-
ing scaling laws with a continuous asymmetry index. These
interesting results will be worth further investigation, espe-
cially in other climates. We believe that the better perfor-
mance of models A+ and B+ over models Ap and Bp is due
to the fact that they are additionally able to make a distinc-
tion between different starting sequences (or different end-
ing sequences) as the asymmetry index is also a measure of
the intensity of the asymmetry (i.e. steep decreasing intensity
over the three consecutive precipitation amounts or only slow
decreasing). As they are additionally highly parsimonious,
models A+ and B+ appear to be promising alternatives to
the class-conditioned models.

5.3 Spatial variability of parameters and the potential
for a regional MRC model

In order to apply a MRC model in locations where only daily
data are available, the possibility to develop a robust regional
model for model parameters is necessary. The smaller the
number of parameters, the more robust and easier the region-
alisation is expected to be. In this regard, model B+ (5 pa-
rameters) is likely to be much more appropriate for regional-
isation than model A+ (11 parameters).

Another important factor that can jeopardise the success
of parameter regionalisation is the spatial variability of pa-
rameters. In the case of no evident relationship to some ge-
ographical features (e.g. topography), smooth spatial varia-
tions of parameters often help achieve robust regionalisation.
The spatial variability of the five parameters of model B+ is
shown in Fig. 8 where maps of estimates for µ, σ , K , ν and
λ are presented for each season. Regardless of the param-
eters and throughout all seasons, the regional coherency is
rather impressive. All parameters present significant spatial
variability, reflecting the large variety of regional climates
in Switzerland; nevertheless, the spatial variations are very
smooth at sub-regional scales and from one region to the
other. These results give increased confidence in the rele-
vance of estimates and in the robustness of the model. They
also suggest that a relevant regional model will be possi-
ble for all parameters, enabling the temporal disaggregation
of coarse-resolution precipitation data anywhere in Switzer-

https://doi.org/10.5194/hess-27-3643-2023 Hydrol. Earth Syst. Sci., 27, 3643–3661, 2023



3656 K. Maloku et al.: Accounting for precipitation asymmetry in a multiplicative cascade model

Figure 8. Maps of Switzerland showing spatial and seasonal variations of the estimated parameters for model B+. Each row corresponds to
one parameter of the model. Parameters representing the relationship between intermittency and intensity are those of the Eq. (9): (a) µ and
(b) σ . (c) ParameterK , as in Eq. (13), is related to the dependency of the distribution of positive weights, fW+ , on the precipitation intensity
and finally the parameters ν and λ in (d) and (e), respectively, hold the dependency of the cascade weights on the precipitation asymmetry
through Eqs. (16) and (17). The colour of the circle indicates the value of the parameter estimate for the respective station and season.

land. The performance of such a regional MRC model will
be further investigated in future works.

5.4 Seasonal variability of parameters

Additionally, the maps presented in Fig. 8 depict the seasonal
variations of the various parameters. As already shown in
previous works (e.g. Molnar and Burlando, 2005), the season
is actually a much larger factor of variability than the loca-
tion. The contrast between winter and summer is particularly
marked. Whatever the parameter, the values for spring and
autumn are similar to each other. This seasonality reflects the
different types of rainfall events throughout the year, with
more stratiform events in winter, more convective ones in

summer and mixed types in intermediate seasons. Stratiform
events are generally persistent in time and with a large spa-
tial extent, contrary to convective events which are often lo-
calised and with a short duration. The partition of any precip-
itation amount in two parts is thus expected to be smoother
in winter, with more frequent partitions of similar rainfall
amounts on the two subdivisions and more dependency on
the external precipitation pattern. This is reflected by higher
px values, higher α values, as well as higher sensitivity to
precipitation asymmetry. This is also shown by the values of
all scaling parameters in winter: lower values of µ and σ for
the intermittency probability-scaling sub-model, higher val-
ues of K for the no-dry subdivision-scaling sub-model, and
lower values of ν and higher values of λ for the asymmetry-
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Figure 9. (a) Scores as assigned by CASE framework for the reproduction of 5-year return levels at 40 min temporal resolution by model B
for each site and each season. (b) Mean absolute errors (MAEs) between observed and modelled px values for precipitation intensities higher
than 1 mm h−1 with model B; see Eq. (9).

scaling sub-models. As suggested by Rupp et al. (2009), an
alternative to the seasonal stratification could consist of a pa-
rameterisation conditional on the type of precipitation events,
especially for intermediate seasons where different types of
events are observed.

These results suggest the importance of seasonal stratifi-
cation for model parameter estimation. The interest of sea-
sonal stratification is even more obvious when simulations
are carried out with a model where parameter dependency on
season was ignored. This is illustrated in Figs. S8 and S9,
where the seasonal performances of all models are presented
for a configuration where one single set of parameters has
been estimated for all seasons together. The performance of
the models without seasonal stratification degrades a lot for
a number of statistics, especially in winter and summer sea-
sons.

5.5 Asymptotic assumption of no-dry subdivision
probability for high intensities

An opportunity for model improvement concerns the scal-
ing sub-model for the no-dry subdivisions probability px .
As shown in Sect. 4.2, all the models tend to underestimate
spring and summer extreme events at some sites. Figure 9a
shows that, for model B, this principally occurs in north-
ern Switzerland for spring and summer seasons. Very similar
maps are obtained for the other models (not shown). A plau-
sible explanation is that the model used for px is not valid for
very large intensities.

Following previous works, px is assumed to be related
to precipitation intensity via the erf function of Eq. (6). By
construction, for large precipitation intensities, this scaling
model has an asymptotic value of 1, and p01 and p10 tend
towards 0. In other words, very large precipitation amounts
are systematically divided into two non-zero parts. However,
the probability px has no reason to tend towards 1, especially

at coarse temporal scales (see illustration in Fig. S2). For in-
stance, large daily precipitation amounts in summer can re-
sult from intense convective events with short durations (less
than 1 h). In this case, the daily amount must be neither sub-
divided nor spread over multiple high-resolution time steps.
The BDCs for such events are either 0/1 or 1/0, and the prob-
ability of having the 1/1 configuration is expected for high
resolutions only. When px is overestimated for large inten-
sities, the 1/1 configurations (no-dry subdivisions) are thus
over-represented and lead to an underestimation of extreme
values.

The misrepresentation of px for large intensities is illus-
trated with the mean deviation obtained between modelled
and empirical px values for intensities larger than 1 mm h−1

in Fig. 9b. Whatever the season, the spatial pattern of these
deviations fits very well with that obtained for the under-
estimation of the 5-year return level shown in Fig. 9a. The
larger the deviation, the worse the underestimation. Relax-
ing the current asymptotic assumption for the px model may
improve the simulation of extremes.

6 Conclusions

According to many previous works, the distribution of the
breakdown coefficients (BDCs) used in MRC models de-
pends on a number of factors, including the temporal scale,
precipitation intensity and the external pattern of the local
precipitation sequence.

In the present study, we compare different MRC models
both with and without the scaling dependency on the tempo-
ral scales and with and without the scaling dependency on
the external pattern of precipitation. Conversely to the scal-
ing dependency on precipitation intensity and asymmetry, the
scaling dependency on temporal scales is not obvious, and its
added value in terms of model performance is less clear than
what was suggested in previous works. Moreover, account-
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ing for a dependency on the temporal scales drastically in-
creases the number of parameters to be estimated (six more
in the present case), which is especially expected to make
the model much less robust and less appropriate for further
regionalisation works.

The dependency on the external pattern of precipitation
is shown to be important. In previous studies, it was mainly
accounted for with empirical models where the BDC distri-
bution was conditioned on different external pattern classes.
To our knowledge, although determinant, it was never ac-
counted for in an analytical scaling framework, which also
accounts for temporal scale and intensity dependencies. Our
work presents a unified analytical MRC modelling frame-
work that allows the cascade generator to depend in a con-
tinuous way on the temporal scale, precipitation intensity
and precipitation asymmetry. The continuous dependency of
the cascade generator on the precipitation asymmetry index,
which is introduced here, allows for the interpretation of the
presented asymmetry sub-model as an extension of the posi-
tion dependency approach already considered in several pre-
vious works. This sub-model could be easily assimilated in
other multiplicative cascade models, either micro-canonical
or canonical ones.

Initially, we demonstrate the feasibility of characterising
the external precipitation pattern with a hidden BDC, the
so-called precipitation asymmetry index. We show that the
larger the deviation of this index from 0.5 (the index value
for a symmetrical precipitation configuration), the larger the
asymmetry of the distribution of the BDCs. The relationships
with this asymmetry index are modelled with two scaling
sub-models. The first sub-model represents the dry probabil-
ity asymmetry ratio ϕ that quantifies the asymmetry between
p10 and p01, i.e. the probabilities that the whole precipita-
tion amount is attributed exclusively either to the first or to
the second subdivision, respectively. The second sub-model
is related to the meanm of the distribution of positive BDCs,
fW+ , which is equal to 0.5 if the asymmetry is disregarded.

Accounting for precipitation asymmetry in the cascade
generator preserves the good performances of MRCs con-
cerning statistics related to precipitation distribution (stan-
dard deviations and precipitation extremes) and improves
other aspects of the disaggregated precipitation time series.
For the Swiss context considered in our work, we outline the
following.

– Accounting for precipitation asymmetry leads to signif-
icant model improvements for all statistics related to the
temporal persistence and intermittency of precipitation,
which are known to be difficult to simulate with stan-
dard MRC models.

– The statistical distribution of BDCs is expected to
strongly depend on the external pattern of precipita-
tion. This dependency is well (respectively, is not) re-
produced when precipitation asymmetry is included (re-
spectively, not included) in the MRC.

– The statistics of a precipitation time series are not ex-
pected to change when the time series is offset in time
by a small time duration. This offset independence
property is well (respectively, is not) satisfied when pre-
cipitation asymmetry is included (respectively, not in-
cluded) in the MRC.

Among the four different MRC models considered here,
the one that accounts only for precipitation intensity and
asymmetry seems promising. It performs very well for all
considered statistics, for all seasons and for all temporal
resolutions. It is, moreover, very parsimonious, with only
five parameters. The five parameters are almost all indepen-
dent from each other and can be estimated in a robust way,
which avoids equifinality issues (Beven, 2006; Bárdossy,
2007). Whatever the parameter, the regional coherency is
rather impressive. While all parameters present significant
spatial variability, reflecting the large variety of regional cli-
mates in Switzerland, the spatial variations of parameter es-
timates are very smooth. This suggests that a relevant re-
gional model will be possible for all parameters, allowing
in turn the temporal disaggregation of coarse-resolution pre-
cipitation data anywhere in Switzerland. This disaggregation
modelling framework is promising and could also be suited
to other climate contexts worldwide. Additional applications
could help to better characterise its performance, its limita-
tions and its potential for regionalisation in such other con-
texts.

Appendix A: Estimation of scaling-model parameters

The parameters of the scaling models of each MRC model
are estimated as follows:

– Model A. px(I,τ ) is first estimated for different in-
tensity classes I and temporal scales τ as the propor-
tion of wet time steps where both subdivisions are wet
(coloured dots in Fig. 1a). These estimates are used to fit
the relationships of Eq. (7) forµ(τ) and Eq. (8) for σ(τ)
using the method of least square errors, which leads
to estimates of the parameters aµ, bµ, aσ and bσ . For
α, this is first estimated for different classes of inten-
sity I and different temporal scales τ (coloured dots in
Fig. 1b) from the variance of the corresponding set of
W+s by fitting a beta distribution of theW+ values with
the method of moments (see Eq. 5). It is also estimated
for different classes of temporal scales τ (all intensities
included; coloured dots in Fig. 1c). The last estimates
are used to fit the relationship (Eq. 12) for h(τ), which
leads to estimates of the parameters α0 and H . In the
third step, the ratio α(I,τ )/h(τ) is estimated for dif-
ferent classes of intensity and different temporal scales
(coloured dots in Fig. 1d). These estimates are used to
fit the scaling model g(I) of Eq. (13), which leads to
estimates of the parameters c0, c1 and c2. An example
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of model fit for px(I,τ ), for g(I) and for h(τ), is given
in Fig. 1a, c and d respectively (plain lines).

– Model B. The estimation of model B follows a similar
but more direct sequential process than for model A.
In model B, px and α are assumed to only depend
on the intensity I . In a first step, estimates of px (re-
spectively, α) are thus simply obtained for different
classes of intensity and temporal scales (coloured dots
in Fig. S2c). These px (respectively, α) estimates are
then used to fit the scaling relationship (Eq. 9) for px(I )
(respectively, Eq.13 for α(I)) and to obtain estimates of
µ and σ (respectively, K). An illustration is given in
Fig. 1b for α.

– Models A+ and B+. Estimating the additional param-
eters related to the asymmetry follows an independent
estimation process. Different ϕ andm estimates are first
obtained for different Z-index classes (all intensities
and all temporal scales are merged for the estimation).
For ϕ, these estimates are obtained from Eq. (15), while
estimates of m are obtained as the mean of the W+ val-
ues for different Z-index classes. The scaling models
Eq. (16) for ϕ(Z) and Eq. (17) for m(Z) are then fit-
ted on these estimates, which leads to estimates of the
parameters ν and λ, respectively. An example of fit is il-
lustrated in Fig. 3b and c. The different steps necessary
to obtain p01 and p01 and the two parameters α1 and
α2 of the asymmetric beta distribution are described in
Sect. 2.4.

Code and data availability. The precipitation data used in this
study are maintained by the Swiss Federal Office of Meteorology
and Climatology, MeteoSwiss (MeteoSwiss, 2021). They are
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services-and-publications/service/weather-and-climate-products/
data-portal-for-teaching-and-research.html (IDAWEB, 2021).

The open-source code with routines allowing the fitting and dis-
aggregation of precipitation data based on the four MRC models
presented in this study is available as an R package. It can be in-
stalled via Zenodo: https://doi.org/10.5281/zenodo.8435607 (Mal-
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