
HAL Id: hal-04284419
https://hal.science/hal-04284419v1

Submitted on 14 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Revisiting the bias correction of climate models for
impact studies

Thi Lan Anh Dinh, Filipe Aires

To cite this version:
Thi Lan Anh Dinh, Filipe Aires. Revisiting the bias correction of climate models for impact studies.
Climatic Change, 2023, 176 (10), pp.140. �10.1007/s10584-023-03597-y�. �hal-04284419�

https://hal.science/hal-04284419v1
https://hal.archives-ouvertes.fr


un
co
rr
ec
te
d
pr
oo
f

Climatic Change         (2023) 176:140 
https://doi.org/10.1007/s10584-023-03597-y

REV IEW ART ICLE

Revisiting the bias correction of climate models for impact
studies

Thi Lan Anh Dinh1 · Filipe Aires2

Received: 21 April 2022 / Accepted: 8 August 2023
© Springer Nature B.V. 2023

Abstract 1

Climatemodels arewidely used in climate change impact studies. However, these simulations 2

often cannot beuseddirectly due to inherent limitations, such as structural biases or parametric 3

uncertainties. Nevertheless, several so-called “bias correction” (B-C) or “bias adjustment” 4

methods have been proposed to get these simulations closer to real observations. Various 5

studies have reviewed available methods; however, numerous innovative methods have been 6

developed in recent years. An up-to-date review of the B-C methods is presented here. To 7

compare these complex methods, a focus is placed on the pedagogy of the presentation. The 8

main lines of thought are presented based on the method assumptions, mathematical form, 9

properties, and applicative purposes. Six representative quantile-basedmethods are compared 10

for temperature and precipitation monthly time series over the European area, for a climate 11

change scenario with a strong CO2 forcing which is chosen here to facilitate the analysis of 12

the differences among the methods. New, simple, and easy-to-understand diagnostic tools 13

are recommended to measure the impact of the adjustment on the ability of B-C methods 14

to: (1) bring the model outputs closer to observations over the historical record, (2) exploit 15

as much as possible the climate change signal provided by the model. Each B-C method is 16

intended to find the best compromise between these two objectives. A discussion on potential 17

pathways for future developments is finally proposed. 18

Keywords Climate model · Calibration · Bias correction · Quantile mapping 19

1 Introduction 20

Global and regional circulationmodels are ourmajor source of information for climate change 21

impact studies, e.g. in hydrology or agriculture. However, they often suffer from substantial 22

biases and errors compared to the real-world climate as described by observations (Flato 23

et al. 2013; Kotlarski et al. 2014; Doblas-Reyes et al. 2021). These biases originate from 24

several sources, for instance, due to structural and parametric uncertainties. Consequently, 25
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post-processing techniques are needed to correct climate model simulations so that they can26

appropriately be used in climate impact studies (Doblas-Reyes et al. 2021). Many previous27

studies have applied several bias correction/adjustment strategies to remove systematicmodel28

errors and calibrate model outputs against observations (Wood et al. 2004; Ines and Hansen29

2006; Lenderink et al. 2007; Li et al. 2010; Hawkins et al. 2013; Cannon et al. 2015; Kim30

et al. 2019; Maraun and Widmann 2018).31

In the past decades, the number of B-C techniques has not ceased to increase. Several32

studies have attempted to reviewor inter-compare them.For example, Teutschbein andSeibert33

(2012) reviewed and evaluated six different methods for temperature and precipitation over34

five catchments in Sweden.Watanabe et al. (2012) inter-compared six different methods (five35

existing methods and one new method) for monthly temperature and precipitation. Maraun36

(2016) gave a critical reviewon common approaches used for bias correcting and downscaling37

climate change simulations. Gutjahr and Heinemann (2013) compared different precipitation38

B-C methods for high-resolution regional climate model simulations. Since then, numerous39

novel methods (e.g. quantile- or distribution-based methods) have been proposed to correct40

and minimise climate model errors. For instance, some studies may aim at adjusting the41

wet-day frequencies, while others may prefer to take into account the recurrence interval42

value (i.e. return period value). This variety is indeed an advantage as more choices allow43

the climate modellers to choose the best one for their own particular needs. However, the44

variety of solutions can also become a difficulty when the impact modellers need to choose45

an adequate calibration method. Consequently, an up-to-date and synthetic review of existing46

methods should be welcomed at this time. Although a recent study of Casanueva et al. (2020)47

inter-compared some standard and novel (i.e. trend-preserving) methods, the study aims to48

assess the influence of observational uncertainty and resolution mismatch rather than provide49

a synthetic review. In another example, Maraun and Widmann (2018) provided a general50

discussion of B-C approaches; however, a detailed presentation (e.g. with mathematical51

form) was not included yet.52

Our study aims to provide a comprehensive reference of available B-C methods for the53

readers, e.g. the beginners in the field or the experienced users. Methods will be presented54

pedagogically—based on understanding the principles and requirements that lead to mathe-55

matical properties—to convey better their ideas, hypotheses, advantages, and inconveniences.56

Practical diagnostic tools that measure inherent statistical properties are necessary to assess57

various available methods. These tools will be presented in this study.58

In the following, Section2 introduces the study area, the datasets, and notations used in59

the study. Section3 proposes a synthetic review of the three main B-C “families”: direct,60

delta, and combined. The general principle of each method is described, together with the61

mathematical formulas, resulting in properties and literature references. In addition, a general62

table synthesising all this information is provided. Section4 analyses, compares and evaluates63

six commonly used quantile-basedmethods. Finally, Section 6 concludes the study andSect. 764

discusses further prospects.65

2 Materials66

Studyarea This studywill focus on the [8◦W−31.5◦E;33◦N−70◦N]area that coversEurope67

and part of northern Africa. It is a very contrasted domain with cold and very hot regions and68

elevations.69

Observations The re-analysis data will be considered in the following as the observations.70

We chose here the ERA5-Land, i.e. a replay of the land component of ERA5 re-analysis of the71
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European Center for Medium-Range Weather Forecasts (ECMWF) (Hersbach et al. 2018). 72

The data are available at a resolution of 0.1◦ × 0.1◦ (about 10km × 10km at the Equator) 73

from 1981 to 2018 (Muñoz Sabater 2019) and can be freely downloaded from https://cds. 74

climate.copernicus.eu/#!/home. These data are upscaled to 1◦ × 1◦ resolution to be consistent 75

with the climate model data. We studied here the gridded monthly-mean 2m temperature (T ) 76

and total precipitation (P) during the 1981–2014 period, which will be referred to in the 77

following as the historical (i.e. present-day) period. Typically, reanalysis precipitation can 78

be strongly biassed as rainfall observations are not assimilated. However, in the context of 79

this study, the potential bias in the data used as observations is not a major concern since the 80

B-C methods can be tested using any reference dataset with reasonably realistic statistical 81

properties. 82

Climate model data We considered the monthly mean of temperature and precipitation 83

data from CNRM-CM6-1-HR (Voldoire 2019; Voldoire et al. 2019) as the climate model 84

data. CNRM-CM6-1-HR is the high resolution of the fully coupled atmosphere-ocean gen- 85

eral circulation model of sixth-generation jointly developed by CNRM (Centre National 86

de Recherches Météorologiques) and Cerfacs (Centre Européen de Recherche et de For- 87

mation Avancée en Calcul Scientifique). These data belong to the High-Resolution Model 88

Intercomparison Project (Haarsma et al. 2016) of the sixth phase of the CoupledModel Inter- 89

comparison Project 6 (Eyring et al. 2016) and can be downloaded from https://esgf-node. 90

ipsl.upmc.fr/projects/cmip6-ipsl/. They are available from 1850 to 2100 at a resolution of 1◦
91

× 1◦. 92

As mentioned above, the data from 1981 to 2014 are studied for the historical period. 93

The model provides the data from 2015 to 2100 as the future projections. These future data 94

are available for several Shared Socioeconomic Pathways (SSPs) (O’Neill et al. 2016; Riahi 95

et al. 2017). In the following, we will perform the tests on the SSP585 scenario. This scenario 96

indicates a future in a high fossil-fuel development world throughout the 21st century, i.e. 97

a target radiative forcing of 8.5 W·m−2 in 2100. The CNRM model is considered here, but 98

other models could easily be used. This will be done with an ensemble of models in the 99

future. 100

Notations In the following, the subscript O stands for Observation, M for Model, C for 101

Bias Correction; h for historical, f for future; and X here refers to T or P variables. 102

To perform a B-C, three datasets are considered, including 103

• A dataset of historical observations XO,h (i.e. the 1981–2014 period); 104

• Adataset of historical simulations from the considered climatemodel XM,h (i.e. the same 105

period as the observations); 106

• A dataset of model simulations of the future climate (i.e. climate model projections) 107

XM, f (e.g. the 2066–2099 period). 108

The calibrated values will be denoted as XC,h for values in the historical period and XC, f 109

in the future period. 110
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3 Bias correctionmethods111

3.1 Previous classifications of the B-Cmethods112

In the literature, B-C methods have been classified into distinct categories. Gudmundsson113

et al. (2012) defined parametric and non-parametric transformations as the two common B-C114

methods. Ho et al. (2012) determined two adjustment pathways: bias correction (i.e. mapping115

of future climate model simulations to find corresponding calibrated data) and change factor116

(i.e. mapping of the observations to find future calibrated data). The same classification117

was identified in the latter studies, but with different names, e.g. bias correction and delta118

change in Räisänen and Räty (2013); Doblas-Reyes et al. (2021), or direct and delta change119

in Maraun (2016). Another study of Watanabe et al. (2012) used two distinct categories to120

classify available B-C methods: by whether future statistics are included in the equation121

for B-C (constant and variable types), and by assumptions on the statistical distributions122

(parametric and non-parametric types).123

Here, we divided available methods into three main approaches: direct,1 delta,2 and com-124

bined (as shown in Fig. 1). While the direct approach (Section3.2.1) applies the B-C directly125

to the climate model data, the delta approach (Section3.2.2) considers only the model change126

signals (e.g. the change or difference between model simulations and projections). In addi-127

tion, the combined approach (Section3.2.3) associates the two former ones: it calibrates the128

climate model data but also accounts for the model change signals (e.g. changes in the mean,129

variance, long-term trend, or changes in quantiles). For example, Fig. 1c presents an illus-130

tration of a particular combined method (named as Equidistant Quantile Mapping (EqQM),131

which will be detailed in Section3.2.3): this method calibrates the raw future model simula-132

tions by using the projected model changes in quantiles.133

3.2 Review of three B-C approaches134

3.2.1 Direct approach135

The direct approach first estimates the statistical/distributional properties of the climate data136

(both observations and climate model data) during the historical record (step (1) in Fig. 1a).137

Then it tries to correct the model data to get closer to the observations (step (2) in Fig. 1a)138

to obtain the same statistical properties. The choice of statistical properties depends on139

the requirements of the considered applications; it can be the mean, variance, frequency,140

quantiles, or other complex properties. Moreover, several models can be used to calibrate141

these properties, from linear scaling to non-linear transformations. This chosen model will142

be referred to as the transfer model or “transfer function” in the following.143

(a) Linear Scaling (LS) The LS method (Lenderink et al. 2007; Graham et al. 2007a; Berg144

et al. 2012) is one of the simplest B-C methods which aims to preserve the mean value of the145

consideredvariable: themeanof calibratedmodel datawill be equal to that of the observations.146

A linear transformation model is used. An additive (or multiplicative) term corresponding to147

the difference of historical mean observations and historical model simulations is applied to148

the model temperatures (or precipitations).149

1 Also known as the bias correction (Ho et al. 2012; Hawkins et al. 2013) or the nudging approach (Hawkins
et al. 2013).
2 Also known as the change factor (Diaz-Nieto and Wilby 2005; Chen et al. 2011a; Ho et al. 2012; Hawkins
et al. 2013) or the delta change (Hay et al. 2000; Maraun 2016).
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Fig. 1 Schematic (top) and time series illustration (bottom) of the three B-C approaches: a Direct approach
applies the adjustment directly to the climate model data. b Delta approach considers only the model change
signals and then applies this change to the observed data. c An illustration of a particular combined method
(Equidistant Quantile Mapping (EqQM) in Section3.2.3) includes three steps: project the future model values
to historical time, compute the projected model changes (in quantiles), superimpose these changes to the raw
future model data. The notations include: XO,h - Observations in historical period; XM,h - Model data in
historical period; XM, f - Model data in future period; and XC, f - Bias Correction in future period

The calibrated temperatures can be described as follows: 150

TC,h(i) = TM,h(i) + [
μ(TO,h) − μ(TM,h )

]
151

TC, f (i) = TM, f (i) + [
μ(TO,h) − μ(TM,h )

]
(1) 152

where μ represents for the historical monthly mean, and i is the time step. The calibrated 153

precipitations are as follows: 154

PC,h(i) = PM,h(i) ×
[

μ(PO,h)

μ(PM,h )

]
155

PC, f (i) = PM, f (i) ×
[

μ(PO,h)

μ(PM,h )

]
(2) 156

Since these transformations are additive and/or multiplicative, the term “linear scaling” 157

(LS) is used here. LS corrects the temperaturemean, and both precipitationmean and variance 158

(but keeps their ratio constant). This method uses the model data as the baseline; thus, climate 159

variability is more consistent with the model simulations. However, for that reason, the 160

calibrated data is sensitive to the quality of climate model data used as inputs. 161

Figure 2a1 presents the scatter plot between the observed and simulated historical tem- 162

peratures. Then the Probability Density Functions (PDFs) of the observed, modelled, and 163

calibrated temperatures are plotted in Figs. 2a3 and a4 for the historical and future periods. 164

In addition to the LS method, the Local intensity scaling method was introduced by 165

Schmidli et al. (2006) and successfully applied by Moron et al. (2008) or Themeßl et al. 166

(2011) to correct the wet-day frequencies and wet-day intensities. 167

(b) Non-linear scaling While the LS method focuses on the bias in the mean, other attempts 168

to correct both the mean and variance were considered in the past, for example, using a 169

non-linear transformation model. The non-linearity is not related to the fact that we look 170
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Fig. 2 Direct B-C methods applied for August temperature, at the pixel [48◦N − 7◦E], for the historical
(1981–2014) and future (2066–2099) periods. LS method: a1 plots the scatter between the observed (XO,h )
and historical model data (XM,h ), and the linear fit line as for XC,h showed in Eq. 1; a3 shows the PDFs of
the observed, modelled and calibrated data (XC,h ); a4 shows the observed data (for comparison purpose), the
future model and corresponding calibrated data (XC, f ). EQMmethod: b1 presents the polynomial fit between
the historical model quantiles and the difference between the observed and historical model quantiles; b2 plots
the CDFs of the observed, historical model, and calibrated data. From the polynomial fit in b1, we obtain a
transfer function to correct the CDF of model data to match the CDF of the observations; b3 and b4 are the
same as a3 and a4. FQMmethod: similar to the EQM, but c1 presents a quantile-quantile (Q-Q) plot between
the distribution of the observed and historical model data against the expected normal distribution, c2 shows
the fitted CDFs instead of the empirical CDFs as in b2

at something else than the bias. The Power Transformation (PT) and modified PT methods171

(Leander and Buishand 2007; Leander et al. 2008; van Pelt et al. 2009; Terink et al. 2010;172

Teutschbein and Seibert 2012; Smitha et al. 2018) consider an exponential form of precip-173

itation by transforming precipitation value (P) into a corrected amount Pc = a × Pb. The174

two parameters a and b in the transformation model make it possible to fit both the mean and175

the variance.176

With a similar idea, Chen et al. (2011a, b) proposed a method aiming at conserving the177

mean and standard deviation of temperature variable, named as Variance Scaling. A detailed178

description of these methods can be found in Teutschbein and Seibert (2012).179
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(c) Quantile Mapping (QM) The QM3 is the most widely used technique (Panofsky and 180

Brier 1968; Wood et al. 2004; Ines and Hansen 2006; Déqué 2007; Boé et al. 2007; Piani 181

et al. 2009; Watanabe et al. 2012; Cannon et al. 2015). There are numerous QM-based or 182

quantile-based adaptations (as presented in the following sections). The main idea of QM 183

is to correct the distribution function of climate model simulations to match the distribution 184

function of the observations. This is more ambitious than trying to adjust only the mean 185

and variance; we expect here to adjust the whole distribution of the considered variable. 186

A more complex transfer function needs to be used to calibrate data for that purpose. The 187

transfer function will non-linearly adjust all events and thus, be able to correct the wet/dry 188

day frequencies and intensities. 189

The general QM can be expressed as follows: 190

XC,h(i) = F−1
O,h

[
FM,h(XM,h(i))

]
191

XC, f (i) = F−1
O,h

[
FM,h(XM, f (i))

]
, (3) 192

where F is the Cumulative Distribution Function (CDF) and F−1 is the inverse of F . 193

In Eq. 3, if F is an empirical transformation, without any assumption on the variable 194

distribution (e.g. temperature or precipitation), the method is known as the Empirical (or 195

non-parametric) Quantile Mapping (EQM) method (Themeßl et al. 2011). In this case, 196

F and F−1 are non-parametric and can be quite complex. Figure2 illustrates the EQM 197

method in the second row. Here, the transfer function is a polynomial regression that fits 198

the historical model quantiles and the difference between the observed and historical model 199

quantiles (Fig. 2b1). This transfer function corrects the model CDF to match the observed 200

CDF during the historical period (Fig. 2b2). Then, Fig. 2 plots the PDFs of the observed, 201

modelled, and calibrated data in panels b3 and b4. By definition, this method is set up during 202

the historical period, and this will condition the range of values that can be considered by the 203

B-C model. Thus, the problem arises when a simulated value is out-of-range of the historical 204

values. For instance, the fit on this over-range data point can cause “new extremes”. To 205

deal with these extremes, Wood et al. (2004) and Themeßl et al. (2012) proposed some 206

form of extrapolation using a parametric distribution based on a hypothesis for the variable 207

distribution. Boé et al. (2007) employed the constant correction approach to handle this new 208

extreme issue. In another study, Michelangeli et al. (2009) suggested a specific extreme value 209

method to model extreme wind intensities. 210

Instead of using the non-parametric CDF (i.e. EQM), another suggestion is to fit the 211

CDF to the common distribution laws, which we call here a Fitted (or parametric)Quantile 212

Mapping (FQM) method. This method performs best when the distribution of the data fits 213

well the distribution type. For example, the Normal (or Gaussian) distribution N (μ, σ ) is 214

often used to fit the temperature distribution (Thom 1954; Hay and Clark 2023; Haerter et al. 215

2011; Ho et al. 2012; Teutschbein and Seibert 2012). On the other hand, the two-parameter 216

gamma distribution (Thom 1958) �(k, θ) has been shown to be appropriate for precipitation 217

distribution (Watterson and Dix 2003; Hay and Clark 2023; Ines and Hansen 2006; Block 218

et al. 2009; Piani et al. 2009). 219

3 Also known as “probability mapping” (Ines and Hansen 2006; Block et al. 2009), “quantile-quantile
mapping/quantile-based mapping” (Wood et al. 2004; Déqué 2007; Boé et al. 2007), “statistical bias cor-
rection” (Piani et al. 2009; Haerter et al. 2011), or “histogram equalisation” (Rojas et al. 2011).

123

Journal: 10584 Article No.: 3597 TYPESET DISK LE CP Disp.:2023/10/4 Pages: 30 Layout: Small



un
co
rr
ec
te
d
pr
oo
f

  140 Page 8 of 30 Climatic Change          (2023) 176:140 

For temperature, the calibrated model data are given by220

TC,h(i) = F−1
N

[
FN (TM,h(i);μ(TM,h ), σ(TM,h));μ(TO,h ), σ(TO,h)

]
221

TC, f (i) = F−1
N

[
FN (TM, f (i);μ(TM,h ), σ(TM,h));μ(TO,h ), σ(TO,h)

]
(4)222

where FN is the Normal CDF and F−1
N its inverse; μ is the mean or expectation of the223

distribution and σ is its standard deviation.224

For precipitation, we use225

PC,h(i) = F−1
�

[
F�(PM,h(i); k(PM,h ), θ(PM,h )); k(PO,h ), θ(PO,h)

]
226

PC, f (i) = F−1
�

[
F�(PM, f (i); k(PM,h ), θ(PM,h )); k(PO,h ), θ(PO,h )

]
(5)227

where F� is the gamma CDF and its inverse is denoted as F−1
� ; k is a shape parameter and228

θ is a scale parameter.229

The methodology of the FQMmethod is also presented in the third row of Fig. 2: panel c1230

presents a quantile-quantile (Q-Q) plot between the distribution of the observed and model231

data during the historical record against the expected normal distribution. After that, the fitted232

model CDF is transferred to the observed CDF in panel c2. Finally, the PDFs of all data are233

plotted for the historical and future periods in panels c3 and c4.234

Other distribution laws (e.g. Gumbel, Weibull, Lognormal, etc.) can also be considered235

to better fit the variables of interest. For example, the Generalised Extreme Value (GEV)236

distribution can be used to fit the temperature and precipitation extremes (Coles 2001; Kharin237

et al. 2007). Watterson (2008) showed that the four-parameter beta distribution provides a238

smooth PDF matching the mean and range of the simulated data.239

The Gamma-Pareto Quantile Mapping—based on the combination of a gamma distri-240

bution and a Generalised Pareto Distribution GPD(k, θ, ζ ) (Dargahi-Noubary 1989; Coles241

2001)—is widely used in the literature (Gutjahr and Heinemann 2013; Volosciuk et al. 2017;242

Kim et al. 2019). The main idea of this method is to better correct the higher percentiles. For243

precipitation, F� is fitted for values between the 5th and 95th percentiles, while the GPD is244

used to fit the upper and lower 5%:245

PC, f (i) = F−1
�

[
F�(PM, f (i); k(PM,h ), θ(PM,h )); k(PO,h ), θ(PO,h)

]
,246

if 5thpercentile < PM, f (i) < 95thpercentile;247

PC, f (i) = F−1
GPD

[
FGPD(PM, f (i);μ(PM,h ), σ(PM,h), ζ(PM,h ));μ(PO,h ), σ(PO,h), ζ(PO,h )

]
,248

if PM, f (i) ≥ 95thpercentile or PM, f (i) ≤ 5thpercentile. (6)249

Here, the GPD is specified by three parameters: location μ, scale σ , and shape ζ .250

The formula of Eq. 6 can also be used to calibrate the temperature variable, but a Normal251

distribution FN will be preferred over F� for the 5th and 95th percentiles.252

We have shown that a different transfer function needs to be used to in the direct approach,253

depending on the statistical properties thatwe aim to preserve in the calibrated data (e.g.mean,254

variance, quantiles, extremes).255

3.2.2 Delta approach256

The delta approach extracts the model change signals, i.e. the differences between historical257

and future climate simulations. These signals are then added onto the observations to obtain258

the adjusted climate projections. Thus, this delta approach is not a bias correction of climate259

models (Teutschbein and Seibert 2012; Maraun 2016). However, as it has a long history and260
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has been widely used in climate studies (Hay et al. 2000; Graham et al. 2007a, b; Olsson 261

et al. 2009; Bosshard et al. 2011; Hawkins et al. 2013; Navarro-Racines et al. 2020), we will 262

therefore include it in this review study as one of the available B-C approaches. 263

Like the direct approach (Section3.2.1), the delta approach can be used to adjust dif- 264

ferent statistical properties (e.g. mean, variance, or quantiles). All methods presented in 265

Section3.2.1 can be adapted to the delta approach in practise. Here, we present the two main 266

delta methods: LS� and QM� (the subindex � will be added to avoid confusion with the 267

direct approach). In addition, an adjustment of QM—named the Adjusted Quantile Mapping 268

(AQM)—will be introduced. 269

Since, by definition, this approach does not aim to correct the historical model data, only 270

the adjustments for the future period XC, f will be presented in the following of this section. 271

(a) Linear Scaling (LS�) In the LS� method (Graham et al. 2007a; Chen et al. 2011a; 272

Hawkins et al. 2013), the absolute (or relative) changes in temperature (or precipitation) 273

characteristics, estimated from climate model data, are transferred to the observed tempera- 274

ture (or precipitation) time series by additive (or multiplicative) factors: 275

TC, f (i) = TO,h(i) + [
μ(TM, f ) − μ(TM,h)

]
(7) 276

for temperature, and: 277

PC, f (i) = PO,h(i) ×
[

μ(PM, f )

μ(PM,h )

]
(8) 278

for precipitation. 279

By utilising the observed climate as a baseline, this method ensures that the adjusted 280

data aligns with the statistical properties of the observed climate in the historical record. 281

For instance, the number of rainy days will not change for future climate compared to the 282

historical climate (i.e. the observations). In addition, extreme events are modified by the same 283

factors as all other precipitation events. 284

(b) Quantile Mapping (QM�) The QM� method assumes that the changes from historical 285

to future in the observation distribution are the same as the changes in the model distribution 286

(Olsson et al. 2009; Ho et al. 2012; Hawkins et al. 2013). This is achieved by using QM 287

(Section3.2.1(c)): the transfer function is first estimated from the changes in the model 288

distribution (between future and historical data); then, this transfer function is applied to the 289

observed time series. While the LS� method corrects only temperature mean and applies the 290

same factors for precipitation variable, the QM� method is able to correct both frequencies 291

and intensities. 292

In general, the calibrated data (both precipitation and temperature) can be estimated as 293

follows: 294

XC, f (i) = F−1
M, f

[
FM,h(XO,h(i))

]
(9) 295

As for the direct approach, the CDF function F can be empirical (EQM�) or follow a 296

known distribution law (FQM�) (see Section3.2.1). 297

(c) Adjusted Quantile Mapping (AQM) As an adaptation of the QM� method, Amengual 298

et al. (2012) proposed the AQMmethod (or quantile-quantile adjustment) to obtain the future 299

model simulations. The method first detects the changes of each quantile in the CDFs of the 300

climatemodel outputs and then applies these changes, after calibration based on the historical 301

period, to the observed time series. 302
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The mathematical formula of the calibrated future model data is as follows:303

X j
C, f = X j

O,h + gδ + s(δ j − δ) (10)304

where:305

• the index j here refers to the j th ranked value of the corresponding CDFs (e.g. for306

observations or historical and future model data),307

• δ j = X j
M, f − X j

M,h ,308

• δ =
∑N

j=1 δ j

N ,309

• g = 1 for temperature and g = μ(XO,h )

μ(XM,h )
for precipitation,310

• s = I QRO,h
I QRM,h

. Here, I QRO,h and I QRM,h are the interquartile ranges of the observed311

and modelled data during the historical record, respectively.312

313

3.2.3 Combined approach314

Various quantile-based methods are based on the QM technique (direct approach in315

Sect. 3.2.1) but also account for the model change signals (e.g. delta approach). This316

is intended to benefit from the advantages of the two previously described approaches317

(Sects. 3.2.1 and 3.2.2). These methods are called here “combined approach”.318

In this approach, the calibrated model simulations over the historical record are identical319

to the results obtained by the direct QM method (i.e. XC,h in Eq.3), except for the Scaled320

Distribution Mapping (SDM) method. Thus, only calibrated model simulations over the321

future record (i.e. calibrated model projections) will be considered in the following.322

(a) New Quantile Mapping (NewQM) Suggested by Watanabe et al. (2012), a NewQM323

method—which is based on FQM—takes into account the changes in mean and standard324

deviation (or coefficient of variation) for temperature (or precipitation).325

Mathematically, the model temperatures over the future period are calibrated following:326

TC, f (i) = F−1
N

[
FN (TM, f (i);μ(TM,h ), σ(TM,h));μcor , σcor

]
(11)327

in which μcor = μ(TO,h) + μ(TM, f ) − μ(TM,h) and σcor = σ(TO,h )×σ(TM, f )

σ(TM,h )
.328

The non-precipitation months (P = 0) are first removed, and the model precipitations329

over the future period are then corrected following:330

PC, f (i) = F−1
�

[
F�(PM, f (i); k(PM,h ), θ(PM,h )); kcor , θcor

]
(12)331

where kcor and θcor are induced from the corrected mean and coefficient of variation (CV),332

in which: μcor = μ(PO,h )×μ(PM, f )

μ(PM,h )
and CVcor = CV(PO,h )×CV(PM, f )

CV(PM,h )
.333

(b) Detrended Quantile Mapping (DetQM) Based on the idea that trends should be pre-334

served during the B-C process (Hempel et al. 2013), the DetQM was suggested by Cannon335

et al. (2015). This method is developed from the EQM method (Sect. 3.2.1), but it explicitly336

accounts for the modelled changes in trend. In detail, the model data are used to obtain a337

climate trend. Then, QM is used to calibrate model projections that have their long-term trend338

removed. After that, the removed climate trend is then reintroduced. This DetQM method is339

designed to preserve the long-term absolute (or relative) trend of the model temperature (or340

precipitation) data.341
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This method follows three steps: 342

• Step (1): Trend removal: T Det1
C, f (i) = TM, f (i) − [

μ(TM, f ) − μ(TM,h)

]
; and PDet1

C, f (i) = 343

PM, f (i) ×
[

μ(PM,h )

μ(PM, f )

]
. 344

• Step (2): Quantile mapping: T Det2
C, f (i) = F−1

O,h

[
FM,h(T Det1

C, f (i))
]
; and PDet2

C, f (i) = 345

F−1
O,h

[
FM,h(PDet1

C, f (i))
]
. 346

• Step (3): Trend reimposition: TC, f (i) = T Det2
C, f (i)+ [

μ(TM, f ) − μ(TM,h)

]
; and PC, f (i) = 347

PDet2
C, f (i) ×

[
μ(PM, f )

μ(PM,h )

]
. 348

Here, zero values in the observed and modelled data are first replaced by nonzero uni- 349

form random values below a tracing threshold prior to calibration. Then, values—after the 350

adjustment—that are lower than the predefined threshold are set back to zero. This measure, 351

therefore, can adjust the wet-day frequencies. 352

Initially, EQM is considered in Step (2), but we can also apply FQM instead, depending 353

on the considered application. 354

(c) Equidistant Quantile Mapping (EqQM) The EqQM method (Li et al. 2010; Pierce et al. 355

2015) focuses on the historical bias, i.e. the difference between observed and modelled data, 356

at a given percentile during the historical period will apply to the future period: 357

XC, f (i) = XM, f (i) + F−1
O,h

[
FM, f (XM, f (i))

] − F−1
M,h

[
FM, f (XM, f (i))

]
. (13) 358

Initially, Li et al. (2010) used EqQM to correct both temperature and precipitation data. 359

However, the method was shown to be inefficient for precipitation; for example, it was 360

problematic over some dry regions (Li et al. 2010) or resulted in negative precipitation 361

values (Wang and Chen 2014). Consequently, a multiplicative factor (i.e. ratio) should be 362

considered instead of an additive form, as often for precipitation. This adaptation was first 363

proposed by Li et al. (2010) and then introduced as the equiratio CDF matching method by 364

Wang and Chen (2014): 365

PC, f (i) = PM, f (i) × F−1
O,h

[
FM, f (PM, f (i))

]

F−1
M,h

[
FM, f (PM, f (i))

] . (14) 366

For simplicity reasons, we will consider Eqs. 13 and 14 as the additive and multiplicative 367

forms of the EqQM method. 368

(d) QuantileDeltaMapping (QDM) TheQDMmethod (Cannon et al. 2015) aims to preserve 369

the change signals of the model in terms of quantiles. The method considers the relative 370

changes of a ratio variable. QDM follows three main steps: 371

• Step (1): The future model simulations are detrended by quantile and adjusted to obser- 372

vations by QM: 373

PQDM1
C, f (i) = F−1

O,h

[
FM, f (PM, f (i))

]
(15) 374

• Step (2): Themodel changes (relative for precipitation) in terms of quantiles are computed 375

following: 376

�m,P (i) = F−1
M, f

[
FM, f (PM, f (i))

]

F−1
M,h

[
FM, f (PM, f (i))

] = PM, f (i)

F−1
M,h

[
FM, f (PM, f (i))

] (16) 377
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• Step (3): The relative changes �m,P (i) are then superimposed on the corrected data378

PQDM1
C, f (i):379

PC, f (i) = PQDM1
C, f (i) × �m,P (i) (17)380

In short, Eq. 17 can be rewritten as PC, f (i) = PM, f (i) × F−1
O,h[FM, f (PM, f (i))]

F−1
M,h[FM, f (PM, f (i))]

, which is381

similar to the equiratio CDF matching method (Wang and Chen 2014) showed in Eq.14.382

Also, the additive form of the QDM method had been showed to be equivalent to the EqQM383

as in Eq.13 (Li et al. 2010; Cannon et al. 2015). Although, EqQM and QDM start with384

different motivations (i.e. the historical biases and the future change signals respectively),385

they are found to be similar, as concluded in Cannon et al. (2015). In the following sections,386

we will consider these two methods (EqQM and QDM) as EqQM.387

In addition, QDM uses the same correction for the wet-day frequencies as the DetQM388

method (shown previously in Sect. 3.2.3(b)).389

(e) Scaled Distribution Mapping (SDM) The SDM method was first proposed by Switanek390

et al. (2017) and recently used to correct a regional climatemodel byMaraun et al. (2021). This391

method is similar to QDM but also considers the frequency of rain days (which is essential392

when dealing with the daily precipitation data) and the likelihood of individual events.393

SDMcan be implemented by following seven steps for both temperature and precipitation:394

• Step (1): preprocess data: detrend the rawmodelled and observed temperature time series,395

and set a precipitation threshold to separate days with and without rain;396

• Step (2): fit a PDF on the preprocessed data;397

• Step (3): calculate the scaling between the fitted raw future model distribution and the398

fitted raw historical distribution at each probability corresponding to the events of the399

raw future model time series;400

• Step (4): calculate the recurrence intervals (RI);401

• Step (5): find the scaled or adjusted RI (RIscaled ) and then the corresponding scaled CDF402

values (Fscaled ) for the future simulation;403

• Step (6): calculate the initial array of corrected values (BCinitial );404

• Step (7): reinsert BCinitial back into the right time series, and then correct the precipitation405

and trend of temperature.406

A detailed algorithm of SDM can be found in Switanek et al. (2017).407

The BCinitial can be mathematically written as:408

BCinitial(i) = F−1
O,h

[
Fscaled,T (TM, f (i))

] + �m,T (i) for temperature, (18)409

in which �m,T (i) =
{
F−1
M, f

[
FM, f (TM, f (i))

] − F−1
M,h

[
FM, f (TM, f (i))

]} ×
[

σ(TO,h )

σ(TM,h )

]
.410

The multiplicative form of SDM for precipitation is given by:411

BCinitial(i) = F−1
O,h

[
Fscaled,P (PM, f (i))

] × �m,P (i), (19)412

in which �m,P (i) is given in Eq.16. As we can see by comparing Eqs. 17 and 19, the two413

methods (QDM and SDM) are very similar, except that SDM considers Fscaled instead of the414

CDF of the model projections FM, f . The Fscaled reflects the scaling of the model change in415

likelihood event corresponding to the observed likelihoods. In addition, SDM includes the416

preprocessing step that also helps dealing with the trend in the temperature data or the non-417

precipitation day. As a result, SDM may work better when working with daily precipitation418

data.419
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3.3 General comments 420

Table 1 synthesises the methods discussed in Sect. 3.2, providing the main ideas, their advan- 421

tages and disadvantages, and references. The presented B-C methods differ fundamentally 422

in how they apply corrections for a specific quantile to future climate data. Some methods, 423

notably direct approaches, determine the percentile of a simulated value in the future climate 424

based on the CDF of simulated values in the present climate and then map onto the observed 425

values for the same percentile (e.g. in Eq.3). This means a simulated value is always mapped 426

onto the same corrected value regardless of whether it occurs in the present or future climate. 427

While this stationary assumption may not be the optimal option, it can be considered reason- 428

able due to the lack of knowledge on how biases may change from present to future climate. 429

In contrast, alternative methods, such as combined approaches, calculate the percentile of a 430

simulated future value using the future simulated CDF and apply the correction derived from 431

the present climate specifically for this percentile (see, for instance, in Eqs. 13 and 14). In 432

addition, each method can also be used to correct different statistical properties of climate 433

model data (except the delta approach), e.g. simply correcting the mean (LS), the mean and 434

variance (Non-Linear Scaling), or adjusting all moments of the climate model distribution 435

(QM and its variants). Therefore, the choice of using a particular B-C method depends on 436

the applications (Ho et al. 2012; Teutschbein and Seibert 2012; Switanek et al. 2017) and 437

on what the impact modellers aim to emphasise on the observations (e.g. average mean, 438

high-resolution pattern) and on the model data (e.g. trend, distributions of changes). 439

4 Comparison of quantile-based B-Cmethods 440

The delta methods-especially LS� and QM�-do not adjust the climate model outputs. How- 441

ever, among three delta methods listed in Sect. 3.2.2, it can be interesting to analyse the AQM 442

method, which is based on QM� but also accounts for the relationship between observations 443

and model simulations in the historical period (i.e. the factors g and s in Eq. 10). In the 444

following sections, our analyses will focus on six quantile-based methods (i.e. QM and its 445

variants): one direct method (FQM), one delta method (AQM), and four combined meth- 446

ods (NewQM, DetQM, EqQM, SDM). Here, the QM refers to the FQM, where a normal 447

distribution is used to fit temperature values, and a gamma distribution is for precipitation 448

values. Other distribution functions or EQM could have been considered. For the detailed 449

analysis among direct methods (and LS�), we refer the readers to the previous review study 450

by Teutschbein and Seibert (2012). 451

By definition, the historical calibrated data of the combined methods (except for SDM) 452

will be similar to the one fromFQM, i.e. XC,h(FQM).Also, to be consistent, XC,h(AQM)will 453

be considered equivalent to the observations XO,h . In brief, the results include XC,h(FQM), 454

XC,h(AQM), and XC,h(SDM) for historical period and six B-Cmethods for the future period. 455

4.1 Metrics of comparison 456

The B-C for the future period cannot be validated. Previous studies often tried to evaluate 457

the B-C performance on the historical periods, but this evaluation might not be valid for the 458

future (Teutschbein and Seibert 2012). Switanek et al. (2017) tested the impact of different 459

historical periods (i.e. control periods) and showed that the control period strongly influences 460

the B-C. This is equivalent inmachine learning; they try to learn toomuch on the training data 461
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Fig. 3 Schematic presenting the two main objectives of a B-C method: (1) Do the bias corrected data (XC,h )
get closer to the observed data (XO,h )? (2) How the bias corrected change (DCal ) is comparated to the raw
model change (DMod ). D represents the climate change signal (between historical and future climate), these
changes can be measured using several statistical characteristics (e.g. mean, standard deviation, skewness)

at the detriment to the generalisation ability of the model (i.e. overtraining or overfitting). As 462

a result, this study will not only evaluate B-Cmethods based on the historical period. Instead, 463

we aim to balance the two main objectives (shown in Fig. 3) that the B-C is designed for: 464

(1) Do the bias corrected data (XC,h) get closer to the observed data (XO,h)? (2) How the 465

bias corrected change (DCal ) is compared to the raw model change (DMod ). D represents 466

the climate change signal or the change between historical and future climate. The question 467

of preserving the change signal should be addressed case by case. Ideally, B-C should not 468

alter a credibly simulated trend. However, if the simulated climate change is implausible, it 469

may be necessary to consider a method that modifies the trend. Further discussions on this 470

climate change signal can be found inMaraun et al. (2017) andMaraun andWidmann (2018). 471

Our analysis here assumes that the model provides a realistic climate change signal. We then 472

evaluate these changes (DCal and DMod ) using several characteristics of the distribution, for 473

instance: 474

• mean (μ)—an indication of the general size of the data, 475

• standard deviation or std (σ )—an indication of variability, 476

• 10th and 90th percentiles (X10, X90)—an indication of extreme values, 477

• skewness (γ )—a measurement of the asymmetry of the distribution of values. 478

We also included the trend for temperature analysis and coefficient of variation (CV) for 479

precipitation analysis. Furthermore, two diagnostics are considered: the spatial correlation 480

(COR4) and Root Mean Square Error (RMSE) between DMod and DCal for all grid cells. 481

4 This refers to Pearson’s correlation between two variables within a given spatial domain. The correlation
is closer to 1, indicating a strong relationship between the two variables; however, the two variables are not
necessarily identical if COR = 1.
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4.2 Performance482

Figure 4 presents an example of July statistics for standard deviation (a) and skewness (b) over483

Europe and part of northern Africa. Here, we can see that the raw climate model data (XM,h484

and XM, f ) change significantly over time. For example, the July temperature variability485

increases about 2◦C over the study area (shown in Fig. 4a). In addition, the skewness varies486

greatly between the two considered periods. In Fig. 4b, the skewness of the July temperature487

Fig. 4 July temperature statistics over Europe and part of northern Africa, for standard deviation (a) and
skewness (b). For both metrics, we show the observed (Obs), raw model (Mod), and calibrated data (Cal)
induced from three quantile-based methods (i.e. FQM, AQM, SDM), for the historical (1981–2014) and
future (2066–2099) periods
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series over France is positive for the historical period (panel of XM,h), i.e. right skewness— 488

most values are on the left side of the mean value. However, this value is mostly negative 489

for the future period (panel of XM, f ). These changes, for instance, in standard deviation and 490

skewness, suggest that a B-C method should better correct higher-order characteristics of the 491

climate distribution rather than just correct the mean (Li et al. 2010). 492

Impact of B-C methods on climate model outputs For the considered examples in Fig. 4, 493

three quantile-based methods (FQM, AQM, and SDM) are able to correct the standard devia- 494

tion. For the historical period, FQM calibrates XM,h to be similar to XO,h (i.e. the correlation 495

between XC,h(FQM) and XO,h is 1). AQM, by definition, considers the observations as the 496

baseline data. SDM reduces the variability but not the same as XO,h . Similar to the effects 497

in the historical period, the three B-C methods generally reduce the variability for the future 498

period. In particular, AQM captures changes in the climate model outputs and incorporates 499

them into the observations. It becomes evident that the model displays a greater increase in 500

variability over the eastern region (i.e. nearMoscow), indicating a correspondingly larger vari- 501

ability increase in these regions in the future than in other regions. SDM slightly improves the 502

model due to its target that focuses on preserving the raw climate model change (more details 503

will be discussed in the next parts). On the other hand, each method deals with other charac- 504

teristics of the distribution (e.g. skewness) differently. In Fig. 4b, XC,h(FQM) is exactly the 505

same as XM,h ; and XC, f (FQM) is quite similar to XM, f . Although FQM adjusts the whole 506

distribution of the considered variable, this method assumes that themodel discrepancies stay 507

constant in time: it is stationary in the skew of the distribution and only changes in the mean 508

and standard deviation. For the delta method, the skewness of XC, f (AQM) tends to retain 509

signals/patterns from XO,h , but also accounts for the model change signal. SDM adjusts the 510

climate model data for both historical and future periods. 511

Impact of B-C methods on climate change signals Figure5 shows the impact of B-C 512

methods on climate change signals D for July temperature, over Europe and part of northern 513

Africa, between the future and historical periods. Most of the B-C methods (except FQM) 514

preserve well the climate change signals—with correlation scores of about 1—in various 515

characteristics of the distribution (mean, standard deviation, 10th and 90th percentiles, and 516

skewness), in addition to the change in the trend. In contrast, FQM shows much lower 517

correlation scores between DCal and DMod for all considered metrics. 518

On the other hand, for precipitation in Fig. 6, FQM preserves well the climate change 519

signals, which could be explained by the fact that the precipitation distribution fits well the 520

gamma distribution. NewQM focuses on the changes in coefficient of variation rather than in 521

standard deviation; therefore, the obtained results are much better for the coefficient of vari- 522

ation (COR(DMod ,DCal )=0.91) than for the standard deviation (COR(DMod ,DCal )=0.56). 523

While Figs. 5 and 6 show particular examples in July, Fig. 7 summarises the temporal 524

evolution of six B-C methods over all pixels shown in Fig. 5, for both temperature and 525

precipitation. Here, we used a B-C model for each month of the year. For temperature, AQM 526

and four combined methods (NewQM, DetQM, EqQM, SDM) outperform the traditional 527

FQM method in preserving the climate change signals for all considered characteristics and 528

the trend (as seen in Fig. 5). For example, FQM shows the RMSE(DMod ,DCal ) in the change 529

to the mean of about 1.5 to 2◦C while other methods much better minimise this RMSE 530

value (approximately 0◦C). Similar behaviours are observed in other characteristics of the 531

distribution (standard deviation, 10th and 90th percentiles) inwhich FQMshowsmuch higher 532

RMSE values than other methods. SDM performs best with respect to preserving the changes 533

in the trend. This can be explained by the preprocessing step of SDM to adjust the trend of 534
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Fig. 5 Impact of B-C methods on climate change signals D for July temperature between the future (2066–
2099) and historical (1981–2014) periods over Europe and part of northern Africa. The first column shows
the raw model change (DMod ), other columns present the calibrated changes (DCal ) induced from several
methods. The figure presents the changes in various characteristics of the distribution (mean μ, standard
deviation (std) σ , 10th percentile X10, 90th percentile X90, skewness γ ) in addition to the trend. The spatial
correlation between DMod and DCal are indicated on each panel

temperature. For precipitation, five quantile-based variants (AQM,NewQM,DetQM, EqQM,535

and SDM) show improvement in the ability to preserve the raw projected mean change536

compared to FQM. On the other hand, FQM preserves well the climate change signals537

for other moments of the distribution. Again, NewQM performs better for the coefficient538

of variation than standard deviation as its target is to focus on the coefficient of variation539

correction. There is no significant difference among considered methods for precipitation.540

This behaviour can be explained by the considered temporal resolution:mostmethods attempt541

to handle the non-rain days, while this study focuses on the monthly data.542

To sum up, Fig. 7 gives an overview/intercomparison of all methods via several diagnos-543

tics. More methods/diagnostics—that are important to the users—can be added easily. This544

kind of presentation is something simple but very informative. We can readily discern any545

seasonal dependencies by examining the 12-month results for each method and diagnostic.546

Also, this comparison helps identify the method that effectively preserves climate change547

signals, such as changes in the mean or trend. With this comprehensive perspective, users548
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Fig. 6 Same as Fig. 5, but for July precipitation. The coefficient of variation (CV) diagnostic is added, and
there is no trend diagnostic for precipitation

can conveniently select the most appropriate method for their specific applications. Thus, 549

we recommend incorporating this synthetic comparison, along with other diagnostics like 550

geographical information, as a vital complement when evaluating B-C methods. 551

5 Conclusions 552

B-C techniques become more and more important as they are essential to exploit climate 553

change simulations. In particular, the climate impact studies measuring the socio-economic 554

consequences of climate change require calibrated data in many fields (e.g. energy, agricul- 555

ture, hydrology, water management). A correction technique often has two goals: (1) to make 556

the climate simulations more realistic by bringing them closer to observations in a historical 557

record; (2) to preserve the climate change signal that is provided by the model simulations. 558

Each technique will make a particular compromise between these two aspects. The compro- 559

mise will be dictated by the statistical properties that climate scientists want to obtain on the 560

correction data. However, one of the main challenges for climate scientists is determining 561

which methods are likely to yield realistic results in advance of future data availability. This 562

requires a thorough understanding of the underlying reasons for biases (i.e. structural or 563

parametric factors) and the fundamental assumptions of the correction methods most appli- 564

cable to a given situation (Maraun and Widmann 2018). While certain applications may be 565
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Fig. 7 Performance of six B-C
methods on the climate change
signals D between the future
(2066–2099) and historical
(1981–2014) periods, for
temperature and precipitation.
The Root Mean Square Error
(RMSE) between the raw model
change (DMod ) and calibrated
change (DCal ) for different
moments of the distribution in
addition to trends are presented
here. This score is computed over
all pixels shown in Fig. 5 (Europe
and part of northern Africa) for
monthly adjustment. All the
months—January (J), February
(F), · · · , December (D)—are
presented
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justifiably addressed by mapping simulated values onto the same corrected values regardless 566

of their temporal context, other applications require deciding whether to preserve or modify 567

the trend (Teutschbein and Seibert 2013; Maraun et al. 2017; Maraun and Widmann 2018). 568

Furthermore, verifying the credibility of any trend modifications made is crucial. 569

Available B-C methods have become more complex, and it is more difficult for the user to 570

choose and decide which one to use. Therefore, an up-to-date synthetic review of available 571

methods was necessary. This paper tried to do so by presenting in a pedagogic way the 572

available methods, emphasising the main ideas, the mathematical formulas, the pertinent 573

references, and their advantages and drawbacks. 574

It is not easy to judge if one method is better than another. For instance, it is possible to 575

obtain a method that makes the climate simulations closer to the observations; however, this 576

does not mean that the obtained transformation will be correct in the future, and no direct 577

evaluation can be done. Thus, diagnostics need to check both the proximity of the simulations 578

to the observations and the preservation of climate change information. Several diagnostics 579

were introduced for that reason to measure the impact of using one technique over another, 580

such as climate change signals in the mean, standard deviation, skewness, or trend. 581

For the three B-C approaches (i.e. direct, delta, and combined), experiments have been 582

conducted for temperature and precipitation (two variables with a very different nature) over 583

Europe. These experiments were considered using monthly data, but a daily scale would 584

be necessary if the important statistical property was related to, for instance, the number 585

of hot days or rain intensity. Our diagnostics can show the limitations and advantages of 586

each approach. Overall, the combined approach seems to be a good candidate when having 587

a credibly simulated trend because it preserves the climate change signals well. 588

6 Perspectives and discussions 589

Numerous perspectives can be considered and discussed: 590

B-C and downscaling In the literature, the B-C of climate model simulations is often associ- 591

ated with a downscaling (from a coarse resolution grid of the model to a higher resolution of 592

the observations) (Volosciuk et al. 2017; Gutièrrez et al. 2019; Widmann et al. 2009; Maraun 593

et al. 2019). Resolutions of 1km can sometimes be attained. Simple regression models have 594

been traditionally used to downscale model simulations in weather forecasting, and this has 595

been naturally extended to climate simulations. Downscaling, in this context, means that 596

the spatial patterns present in the historical record are projected to the future. This can be 597

a good thing, but it can be dangerous too because high-resolution patterns might be related 598

to, for instance, land use, which can be completely different in the future. Dissociating the 599

downscaling and the calibration can therefore be beneficial. 600

B-C andmodel errors B-C can sometimes be used to correct important issues in the climate 601

model. For example, a climate oscillation pattern in the model could not be well located 602

compared to real observations (Flato et al. 2013). Using a B-C model to correct such defi- 603

ciencies is too large a stretch of what can be asked to simple statistical models (Dosio 2016; 604

Doblas-Reyes et al. 2021). It is illusory to as to a simple regression model, at the pixels level, 605

to fix a complex physical model. Therefore, B-C should not be used to pretend to correct 606

such important climate features. 607
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How to evaluate a B-C? It is not easy to see if a B-C method is of good quality or not. For608

instance, it can perform well for the historical record but not be adequate for the future that609

cannot be evaluated (Teutschbein and Seibert 2012). There is even the risk of getting too610

close to the observations to the detriment of what is done in the future (i.e. this issue is called611

“over-training” in machine learning theory). The solution proposed here is to use a large set612

of diagnostics showing the properties of the original and the calibrated data and decide if613

these diagnostics are satisfactory for the application that has been considered.614

B-C of extreme values The B-C of extreme values is a challenging problem for several615

reasons. First, the definition of extremes is tricky: it can be based on quantile information616

(highest and lowest values at the 5 or 10% level), a number of (rain/hot) days higher than617

a threshold, a frequency of occurrence of a particular event, etc. Each extreme definition618

would require a particular diagnostic tool, a particular transfer function for the B-C. For619

particular aspects of extreme cases, hand-tailored models need to be designed. Second, a620

statistical method such as a B-C is mainly driven by the most common events in the database621

used to set it up, not by the rarest extreme events. Therefore, the applicability of the B-C622

model to extreme values can be questionable and erroneous. Third, future extreme values623

in climate simulations can extend beyond the observed ranges in the historical record used624

to set up the B-C. This out-of-range will jeopardise the applicability of the B-C model for625

future scenarios. Delta methods utilise relative changes and can overpass this problem, but626

direct and combined approaches can suffer from such issues. In this case, some form of627

extrapolation, e.g. proposed by Wood et al. (2004); Themeßl et al. (2012), could help deal628

with these outside values. Finally, extremes are even more vivid for climate simulations on a629

daily scale, as the extreme definition is even more complex and comparing observations and630

model outputs will be very challenging.631

B-C of multivariate The B-C methods proposed in this paper deal with marginal distri-632

butions, meaning that the adjustment was made independently in each considered variable633

(e.g. temperature or precipitation), ignoring the influence of all other variables (or locations)634

(Maraun 2012). This approach risks breaking the link between the climate variables and635

introducing physical inconsistencies. A good measure of the dependency among climatic636

variables could help reduce this problem (Dosio and Paruolo 2011). Several studies recently637

suggested using a multivariate method dealing with the joint distributions of the climate vari-638

ables (Maraun 2016). Such methods aim at adjusting the joint distributions without breaking639

the dependency structure between the variables (Vrac and Friederichs 2015; Cannon 2016;640

Vrac 2018.) However, most multivariate methods are bivariate as they conserve the depen-641

dency between two variables only. More variables could theoretically be considered when642

adjusting joint distributions, but ultimately, all the climate variables should be included. In643

this case, the statistical model would become a full climate model, and this ambitious task644

is obviously not possible. This multivariate aspect is a fundamental limitation of the calibra-645

tion principle: between a practical but very simplistic transformation and a more complex646

statistical model that is unattainable.647

Artificial Intelligence (AI) in B-C AI and, more specifically, machine learning techniques648

are vastly spreading in the Geoscience discipline (Lary et al. 2016). These types of data-649

driven techniques could potentially be used to calibrate climate simulations. In fact, AI and650

traditional techniques are regressionmodels based on a learning database, equivalent to a B-C651

transfer function set up on the historical record. For instance, Neural Networks (NN) (Bishop652

1995) have the advantage of being non-linear models, which could be helpful to represent653
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quantile-based transfer functions, potentially non-parametric, with no required hypothesis in 654

the distributions. This NN representation richness and flexibility can be an advantage, but it is 655

dangerous too because what has been done in the B-C is less controlled and understood. The 656

non-linearity of AI models also means that the NN transformation would be state-dependent, 657

which could be an exciting feature of the B-C. Furthermore, NN deals extremely well with 658

multivariate relationships, but again this can be risky as inferring multivariate relationships 659

from data can be driven by most representative cases, at the detriment to the rarest cases. 660

This could conduct the B-C to smooth out the climate simulations and simplify multivariate 661

relationships among climate variables. 662

B-C for impact assessments Understanding the principles and fundamental assumptions of 663

B-C methods is essential; however, it is still very challenging to adjust climate model bias 664

for impact assessment studies for many reasons (Teutschbein and Seibert 2012; Galmarini 665

et al. 2019). B-C techniques, often applied independently on limited variables (Hawkins et al. 666

2013; Vrac and Friederichs 2015; François et al. 2020), present a considerable obstacle for 667

impact models that are non-linear and sensitive to variable inconsistencies (Asseng et al. 668

2013), leading to non-realistic solutions. Assessing sensitivity in impact models to various 669

B-C techniques and identifying appropriate methods for integrating climate predictions and 670

projections present significant challenges. Collaboration among climate scientists, impact 671

modellers, statisticians, and regional climate experts is crucial to effectively address these 672

challenges and enhance the accuracy of impact assessments (Galmarini et al. 2019). 673
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