Zikang Dong 
  
ON THE DISTRIBUTION OF LARGE VALUES OF |ζ(σ + it)|

Keywords: Mathematics Subject Classification. 11M06, 11N37. Key words and phrases. Extreme values, Distribution function, Riemann zeta function. 1

We investigate the distribution of large values of the Riemann zeta function ζ(s) in the strip 1 2 < ℜe s < 1. For any fixed ℜe s = σ ∈ ( 1 2 , 1), we obtain an improved distribution function of large values of |ζ(σ + it)|, holding in the same range as that given by Lamzouri. 1 1-σ log

Introduction

Throughout this article, σ will denote any fixed number in ( 12 , 1), ζ(s) the Riemann zeta function and log j the j-th iterated logarithm. Firstly we make a brief review of the extreme values of |ζ(σ + it)| as t varies. In 1928, Titchmarsh [START_REF] Titchmarsh | On an inequality satified by the zeta-function of Riemann[END_REF] showed that for any ε > 0, we have lim sup t→∞ log |ζ(σ + it)| (log t) 1-σ-ε = ∞. In 1972, Levinson [9] replaced (log t) ε by log 2 t, by showing that for sufficiently large T we have max

t∈[0,T ] log |ζ(σ + it)| ≫ (log T ) 1-σ log 2 T .
In 1977, Montgomery [START_REF] Montgomery | Extreme values of the Riemann zeta function[END_REF] showed that max t∈[0,T ] log |ζ(σ + it)| ⩾ ν(σ) (log T ) 1-σ (log 2 T ) σ , (1. [START_REF] Aistleitner | Lower bounds for the maximum of the Riemann zeta function along vertical lines[END_REF] where ν(σ) = 1 20 (σ -1 2 ) 1/2 unconditionally, and ν(σ) = 1 20 on assuming the Riemann hypothesis. This quantity (log T ) 1-σ /(log 2 T ) σ is conjectured to be the true order of magnitude of max t∈[0,T ] log |ζ(σ + it)|. More precisely, we believe the following inequality holds: max t∈[0,T ] log |ζ(σ + it)| ≍ σ (log T ) 1-σ (log 2 T ) σ • Thus, the only improvement of (1.1) we could expect is to get larger values of ν(σ). We refer to [START_REF] Aistleitner | Lower bounds for the maximum of the Riemann zeta function along vertical lines[END_REF][START_REF] Bondarenko | Note on the resonance method for the Riemann zeta function, 50 years with Hardy spaces[END_REF].

In 2011, applying a method of Granville and Soundararajan [START_REF] Granville | The Riemann Zeta Functionn and Related Themes: Papers in Honour of Professor K. Ramachandra[END_REF] to investigate the distribution of values of |ζ(1 + it)|, Lamzouri [START_REF] Lamzouri | On the distribution of extreme values of Zeta and L-functions in the stip 1/2 < σ < 1[END_REF] Then there exists a positive constant c(σ) such that we have

(1.3) Φ T (τ ) = exp -(τ log σ τ ) 1 1-σ a 0 + O 1 √ log τ + (τ log τ )
uniformly in the range 1 ≪ τ ⩽ c(σ)(log T ) 1-σ / log 2 T , where a 0 will be defined later in (1.4). Despite the maximum of the range of τ being much less than (1.1), the distribution function (1.3) has more significance. If (1.3) were to persist to the end of the viable range, then we could get a conjectural value of max t∈[T,2T ] log |ζ(σ + it)|. More precisely, we have Lamzouri's conjecture (see [START_REF] Lamzouri | On the distribution of extreme values of Zeta and L-functions in the stip 1/2 < σ < 1[END_REF]):

max t∈[T,2T ] log |ζ(σ + it)| = {c(σ) + o(1)} (log T ) 1-σ (log 2 T ) σ
holds for T → ∞, where c(σ) := C 0 σ 2σ (1 -σ) 1-σ and C 0 will be defined in (3.2). Note that this conjecture also implies the upper bound of |ζ(σ + it)|. For more work concerning it, we refer to [START_REF] Chandee | Bounding |ζ( 1 2 + it)| on the Riemann Hypothesis[END_REF][START_REF] Cheng | An explicit upper bound for the Riemann zeta-function near the line σ = 1[END_REF][START_REF] Ford | Vinogradov's integral and bounds for the Riemann zeta function[END_REF][START_REF] Richert | Zur Abschätzung der Riemannschen Zetafunktion in der Nähe der Vertikalen σ = 1[END_REF][START_REF] Titchmarsh | The theory of the Riemann zeta-function, 2nd edn[END_REF].

In this article, we aim to improve the distribution function (1.3). We have a higher order expansion in the exponent, which is inspired by the work in [START_REF] Wu | Note on a paper by A[END_REF].

Theorem 1.1. Let σ ∈ ( 1 2 , 1
) be a fixed real number. Let Φ T (τ ) be defined in (1.2). Then there exists a sequence of polynomials with real coefficients {a n (•)} n⩾0 with deg(a n ) ⩽ n, and a constant c(σ) > 0, such that for any integer N ⩾ 1, we have

Φ T (τ ) = exp -(τ log σ τ ) 1 1-σ N n=0 a n (log 2 τ ) (log τ ) n + O log 2 τ log τ N +1 + (τ log τ ) 1 1-σ log T σ-1 2 uniformly for T → ∞ and 1 ≪ τ ⩽ c(σ)(log T ) 1-σ / log 2 T
, where the implied constant depend on N and σ. Especially, we have

a 0 := σ 2σ C σ 0 (1 -σ) 2σ-1 1/(1-σ) (1.4)
with C 0 defined in (3.2).

The main new ingredient for the proof of Theorem 1.1 is Proposition 4.1 below, which gives a better approximation of the distribution function of the short Euler products:

(1.5) Φ T (τ ; y) := 1 T meas t ∈ [T, 2T ] : log |ζ(σ + it; y)| > τ ,
where

ζ(σ + it; y) := p⩽y 1 - 1 p σ+it -1 .
We refer to [START_REF] Mine | Large deviations for values of L-functions attached to cusp forms in the level aspect[END_REF] for similar work on L-functions attached to cusp forms.

Preliminary lemmas

Firstly, we will show the relationship between sums attached to the divisor function and the Bessel function by two asymptotic formulas. These will be used in the progress of calculating the moments of the short Euler products for the Riemann zeta function and the Dirichlet L-functions. One should pay attention that here k is not necessarily an integer.

The modified Bessel function I 0 (t) of order 0 is defined by

(2.1) I 0 (t) := 1 0 exp(t cos(2πθ)) dθ = ∞ n=0 (t/2) 2n (n!) 2 • It's not difficult to see that log I 0 (t) ≪ t 2 (0 ⩽ t < 1), (2.2) log I 0 (t) ≪ t (t ⩾ 1), (2.3) (log I 0 (t)) ′ ≪ min{1, |t|}. (2.4) Lemma 2.1. Let σ ∈ ( 1 2 , 1
) be a fixed real number. For any prime p and positive number k, we have

ν⩾0 d k/2 (p ν ) 2 p 2νσ = I 0 k p σ exp O σ k p 2σ , (2.5) ν⩾0 d k/2 (p ν ) 2 p 2νσ = exp O σ k p σ (p ⩽ k 1/σ ), (2.6)
where the implied constants depend on σ only.

Proof. See also of [START_REF] Granville | The Riemann Zeta Functionn and Related Themes: Papers in Honour of Professor K. Ramachandra[END_REF]Lemma 4]. Writing e(θ) := e 2πiθ , then

1 - e(θ) p σ -k = 1 - e(θ) p σ -k/2 1 - e(-θ) p σ -k/2 = ν⩾0 ν ′ ⩾0 d k/2 (p ν )d k/2 (p ν ′ )e((ν -ν ′ )θ) p (ν+ν ′ )σ •
Thus we can derive that

ν⩾0 d k/2 (p ν ) 2 p 2νσ = 1 0 1 - e(θ) p σ -2(k/2) dθ = 1 0 1 - 2 cos(2πθ) p σ + 1 p 2σ -k/2 dθ = 1 0 exp - k 2 log 1 - 2 cos(2πθ) p σ + 1 p 2σ dθ.
This implies (2.5) thanks to the formula log(1 

+ t) = t + O(t 2 ) (|t| ⩽ 2 -1/2
1 p σ = x 1-σ (1 -σ) log x + O x 1-σ (1 -σ) 2 (log x) 2
uniformly for x → ∞ and 1 2 < σ < 1, where the implied constant is absolute. Proof. This is equation (2.1) of [START_REF] Lamzouri | On the distribution of extreme values of Zeta and L-functions in the stip 1/2 < σ < 1[END_REF]. See also [START_REF] Bondarenko | Note on the resonance method for the Riemann zeta function, 50 years with Hardy spaces[END_REF]Lemma 6], [START_REF] Norton | Upper bounds for sums of powers of divisor functions[END_REF]Lemma 3.1], and [2, Lemma 3.3]. □

We need to approximate Riemann zeta function ζ(s) by its short Euler product. The following lemma shows that when ζ(s) has no zero in a good region, it can be approximated well by its short Euler product. Lemma 2.3. Let σ 0 ∈ [ 1 2 , 1) be a fixed number. Let y ⩾ 2 and |t| ⩾ y + 3 be real numbers and suppose that the rectangle {z : σ 0 < ℜe z ⩽ 1 and |ℑm z -t| ⩽ y + 2} is free of zeros of ζ(z). Then for any σ 0 < σ ⩽ 2 and |ξ -t| ⩽ y, we have

| log ζ(σ + iξ)| ≪ (log |t|) log(e/(σ -σ 0 )).
Further for σ 0 < σ ⩽ 1, we have

log ζ(σ + it) = y n=2 Λ(n) n σ+it log n + O log |t| (σ 1 -σ 0 ) 2 y σ 1 -σ ,
where σ 1 := min σ 0 + (log y) -1 , 1 2 (σ + σ 0 ) . The implied constants depend on σ 0 at most. Proof. See [7, Lemma 1]. □

With the help of Lemma 2.3, as well as a result of zero density estimate for the Riemann zeta-function ζ(s), we can approximate ζ(s) by its short Euler product mostly often. Of course, here the short Euler product is a bit "long", that means y needs to be relatively large. Otherwise, the error term will be too large to make sense. Lemma 2.4. Let σ ∈ ( 1 2 , 1) be a fixed number and 0 < a(σ

) < 1 2 (σ -1 2 ) < 2/(σ -1 2 ) < A(σ). Then for T → ∞ and (log T ) A(σ) ⩽ y ⩽ T a(σ)
the asymptotic formula

log ζ(σ + it) = y n=2 Λ(n) n σ+it log n + O y -1 2 (σ-1 2 ) (log y) 2 log T holds for all t ∈ [T, 2T ] except for a set of measure at most O(T 1-1 2 (σ- 1 
2 ) y(log T ) 5 ), where the implied constants depend on σ at most. Proof. This is essentially [7, Lemma 2] while we restrict (log

T ) A(σ) ⩽ y ⩽ T a(σ) such that both the error term O(y -1 2 (σ-1 2 ) (log y) 2 log T ) and the measure T 1-1 2 (σ-1
2 ) y(log T ) 5 make sense. We replace the term O(y

-1 2 (σ-1 2 ) (log T ) 3 ) in [7, Lemma 2] by O(y -1 2 (σ-1 2 ) (log y) 2 log T ).
The proof has no difference from that of [7, Lemma 2]. □

In order to approximate ζ(s) by its "shorter" Euler product, we need the following moment evaluation for the sum over complex power of primes between two large numbers y and z, where y can be relatively smaller.

Lemma 2.5. Let σ ∈ ( 1 2 , 1) be a fixed number. Then we have

1 T 2T T y⩽p⩽z 1 p σ+it 2k dt ≪ k y⩽p⩽z 1 p 2σ k + 1 T 1 3
for 2 ⩽ y ⩽ z and all integers 1 ⩽ k ⩽ (log T )/(3 log z), where the implied constant depends on σ at most.

Proof. This is [START_REF] Lamzouri | On the distribution of extreme values of Zeta and L-functions in the stip 1/2 < σ < 1[END_REF]Lemma 4.2]. □ Using Lemma 2.4, we can give a generalization of Lemma 2.3. Here y can be as small as log T .

Lemma 2.6. Let σ ∈ ( 1 2 , 1) be a fixed number, and let c j (σ) be some suitable positive constants depending on σ.

Let T ⩾ 2, log T ⩽ y ⩽ (log T ) 2/(σ-1 2 ) and c 1 (σ)(log 2 T / log T ) 2 ⩽ λ ⩽ (log T ) 1 2 /(y σ-1 2 log 2 T ). Then we have | log ζ(σ + it) -log ζ(σ + it; y)| ⩽ 2λ for all t ∈ [T, 2T ] except for a set of measure at most O(T exp(-4e -1 (σ -1 2 )λ 2 y 2σ-1 log y)).
Proof. Noticing that

p⩽z, p ν >z 1 νp νσ ⩽ p⩽z, ν⩾2 (p ν /z) σ-1 2 νp νσ = 1 z σ-1 2 p⩽z, ν⩾2 1 νp ν/2 ≪ 1 z σ-1 2 p⩽z 1 p ≪ log 2 z z σ-1 2 , we can write 2⩽n⩽z Λ(n) n σ+it log n = p ν ⩽z 1 νp ν(σ+it) = p⩽z ν⩾1 1 νp ν(σ+it) + O log 2 z z σ-1/2 = log ζ(1 + it; z) + O log 2 z z σ-1 2 .
Using this and Lemma 2.4 with y = z = (log T ) 6/(σ-1 2 ) , we obtain

log ζ(1 + it; z) + O log 2 z z σ-1 2 = log ζ(1 + it) + O (log z) 2 log T z 1 2 (σ-1 2 )
i.e.

(2.7)

ζ(1 + it) = ζ(1 + it; z) 1 + O log 2 T log T 2 for all t ∈ [T, 2T ] but at most a set of measure of (2.8) T 1-1 2 (σ-1 2 ) z(log T ) 5 ≪ T 1-1 4 (σ-1 2 ) . Then we use Lemma 2.5 to approximate ζ(σ + it; z) by ζ(σ + it; y) since ζ(σ + it; z) = ζ(σ + it; y) exp y⩽p⩽z 1 p σ+it + O 1 p 2σ . Choosing k = (4e -1 (σ - 1 
2 )λ 2 y 2σ-1 log y , which satisfies the condition in Lemma 2.5, then by this lemma we have

1 T 2T T y⩽p⩽z 1 p σ+it 2k dt ≪ k y⩽p⩽z 1 p 2σ k + 1 T 1 3 ≪ k (σ -1 2 )y 2σ-1 log y k + 1 T 1 3 • So the frequency of t ∈ [T, 2T ] such that | log ζ(σ + it; z) -log ζ(σ + it; y)| > 2λ is less than (2.9) 1 T 2T T 1 2λ y⩽p⩽z 1 p σ+it 2k dt ≪ k 4(σ -1 2 )λ 2 y 2σ-1 log y k + (2λ) -2k T -1 3 . Since λ > c 1 (σ)(log 2 T / log T ) 2 , we have | log ζ(σ + it) -log ζ(σ + it; y)| ⩾ | log ζ(σ + it; z) -log ζ(σ + it; y)| -| log ζ(σ + it; z) -log ζ(σ + it)| ⩾ 2λ + O((log 2 ) 2 /(log T ) 2 ) > λ.
By (2.8) and (2.9), the frequency of t ∈

[T, 2T ] such that | log ζ(σ + it) -log ζ(σ + it; y)| > 2λ is less than, thanks to our choice of k, ≪ k 4(σ -1 2 )λ 2 y 2σ-1 log y k + 1 (2λ) 2k T 1 3 + 1 T 1 4 (σ-1 2 ) ≪ e -k + (2λ) -2k T -1 4 (σ-1 2 ) .
This implies the required result, since our hypothesis on (λ, y) garanties

(2λ) -2k T -1 4 (σ-1 2 ) ⩽ T -1 8 (σ-1 2 ) ⩽ exp(-4e -1 (σ -1 2 )λ 2 y 2σ-1 log y).
Combining this with the first step, Lemma 2.6 follows. □

Moments of the short Euler products

In this section, we will evaluate the k-th moment of the short Euler product ζ(σ + it; y) by proving the following proposition, which is important for the proof of Theorem 1.1. It has a higher order expansion in the exponent, which is an improvement of equation (4.2) in [START_REF] Lamzouri | On the distribution of extreme values of Zeta and L-functions in the stip 1/2 < σ < 1[END_REF].

Proposition 3.1. Let σ ∈ ( 1 2 , 1
) be a fixed constant and let N be a non-negative integer. Then we have

1 T 2T T |ζ(σ + it; y)| k dt = exp k 1/σ log k N n=0 C n (log k) n + O 1 (log k) N +1 + k 1/σ y 2σ-1
uniformly for

(3.1) T ⩾ 3 and ky 1-σ ⩽ 1 8 (1 -σ) log T, where (3.2) C n := ∞ 0 (log t) n t 1/σ+1 log I 0 (t) dt (n ⩾ 0)
and I 0 (t) is the Bessel function given by (2.1). Especially, we have C 0 > 0.

The integer n ⩾ 1 is called y-friable if the largest prime factor P (n) of n is less than y (P (1) = 1 by convention). Denote by S(y) the set of y-friable integers. We will show that, in the expansion of the k-th moment of ζ(σ + it; y), the diagonal terms lead to the main term, while the off-diagonal terms contribute to the error term. Again we strengthen that, k is not necessarily an integer. Lemma 3.2. Let σ ∈ ( 1 2 , 1) be a fixed constant. Then we have 1

T 2T T |ζ(σ + it; y)| k dt = n∈S(y) d k/2 (n) 2 n 2σ + O exp - log T 4 log y ,
uniformly for (T, y, k) in (3.1), where the implied constant depends on σ only.

Proof. This is a special case of Proposition 4.1 of [START_REF] Lamzouri | On the distribution of extreme values of Zeta and L-functions in the stip 1/2 < σ < 1[END_REF]. □

Now we are ready to prove Proposition 3.1. Proof of Proposition 3.1. In view of Lemma 3.2, it is sufficient to show that

(3.3) n∈S(y) d k/2 (n) 2 n 2σ = exp k 1/σ log k N n=0 C n (log k) n + O 1 (log k) N +1 + k 1/σ y 2σ-1
.

Firstly, we note that (3.3) is trivial if y ⩽ k 1/σ . In fact, since the divisor function is multiplicative, by (2.6) of Lemma 2.1 we have n∈S(y)

d k/2 (n) 2 n 2σ = p⩽y ν⩾0 d k/2 (p ν ) 2 p 2νσ = exp O p⩽k 1/σ k p σ = exp O k 1/σ log k .
Now we treat the case of y > k 

d k/2 (n) 2 n 2σ = p⩽k 1/(2σ) exp O k p σ k 1/(2σ) <p⩽y I 0 k p σ exp O k p 2σ = exp O σ,N k 1/σ (log k) N +2 k 1/(2σ) <p⩽y I 0 k p σ ,
where the last equation holds since

p⩽k 1/(2σ) k p σ ≪ k (k 1/(2σ) ) 1-σ log k 1/(2σ) ≪ k 1/2+1/(2σ) log k ≪ σ,N k 1/σ (log k) N +2
and

k 1/(2σ) <p⩽y k p 2σ ≪ k 1/(2σ) log k ≪ σ,N k 1/σ (log k) N +2 •
Next we evaluate the second factor on the right-hand side de (3.4). Taking the logarithm of this factor and using the prime number theorem, we have (3.5) log

k 1/(2σ) <p⩽y I 0 k p σ = y k 1/(2σ) log I 0 k u σ dπ(u) = M + E,
where

M := y k 1/(2σ) log I 0 k u σ du log u , E := y k 1/(2σ) log I 0 k u σ dO ue -c √ log u .
In view of (2.2) and (2.3), we always have log I 0 (t) ≪ t 2 (t ⩾ 0). Thus using this bound and (2.4), we can derive that (3.6)

E = log I 0 k u σ O ue -c √ log u y k 1/(2σ) - y k 1/2σ log I 0 k u σ ′ O ue -c √ log u du ≪ k y σ 2 y e c ′ √ log y + k 1/2+1/(2σ) e c ′ √ log k + k k 1/σ k 1/(2σ) e -c √ log u u σ du + k 2 y k 1/σ e -c √ log u u 2σ du ≪ k 1/σ y 2σ-1 k 1/σ e -c ′ √ log y + k 1/2+1/(2σ) e -c ′ √ log k + k 1/σ e -c ′ √ log k ≪ k 1/σ log k k 1/σ y 2σ-1 log k e c ′ √ log y + k -(1/σ-1)/2 log k e c ′ √ log k
. This is acceptable, since y ⩾ k 1/σ . In order to calculate the main term of (3.5), setting t = k/u σ , and integrating by substitution, then we have

M = k 1/σ k 1/2 k/y σ log I 0 (t) t 1/σ+1 log(k/t) dt = k 1/σ log k k 1/2 k/y σ log I 0 (t) t 1/σ+1 1 1 -log t/ log k dt.
For k/y σ ⩽ t ⩽ k 1/2 , we can write

1 1 -log t/ log k = N n=0 (log t) n (log k) n + O σ,N (log t) N +1 (log k) N +1 . Thus M = k 1/σ log k N n=0 C n (k, y) (log k) n + O 1 (log k) N +1
, where

C n (k, y) := k 1/2
k/y σ (log t) n t 1/σ+1 log I 0 (t) dt and we have used (2.2)-(2.3) to bound

k 1/2 k/y σ (log t) N +1 t 1/σ+1 log I 0 (t) dt ≪ 1 k/y σ (log t) N +1 t 1/σ-1 dt + k 1/2 1 (log t) N +1 t 1/σ dt ≪ σ,N 1.
On the other hand, we enlarge the integral interval to (0, ∞), and use the definition of C n , then the main term of the last formula is

C n (k, y) = C n -C n
where

C n := k/y σ 0 + ∞ k 1/2 (log t) n t 1/σ+1 log I 0 (t)dt ≪ k/y σ 0 (-log t) n t 1/σ-1 dt + ∞ k 1/2 (log t) n t 1/σ dt ≪ σ,N k 1/σ y 2σ-1 (log(y σ /k)) n + (log k) n k (1/σ-1)/2 , thanks to (2.2)-(2.3). It follows that C n (log k) n ≪ k 1/σ y 2σ-1 log(y σ /k) log k n + 1 k (1/σ-1)/2 ≪ k 1/σ y 2σ-1 + 1 (log k) N +1 , since log(y σ /k) log k n ≪ σ,N 1 if y ⩽ k 2/σ
and otherwise we have

k 1/σ y 2σ-1 log(y σ /k) log k n ⩽ k 1/σ k 2/σ 2σ-1 log((k 2/σ ) σ /k) log k n ≪ 1 (log k) N +1 • Thus (3.7) M = k 1/σ log k N n=0 C n (log k) n + O σ,N 1 (log k) N +1 + k 1/σ y 2σ-1
. Now the required (3. In this section, we aim to prove the following proposition.

Proposition 4.1. Let σ ∈ ( 1 2 , 1) be a fixed constant and let N ⩾ 1 be an integer and let c 0 = c 0 (σ, N ) be a large positive constant depending on (σ, N ). Then we have

Φ T ((1 + ε 0 )τ ; y) ⩽ exp -(τ log σ τ ) 1 1-σ N n=0 a n (log 2 τ ) (log τ ) n + O(ε 0 ) ⩽ Φ T ((1 -ε 0 )τ ; y)
uniformly for

(4.1) T → ∞, log T ⩽ y ⩽ (log T ) 2 , 1 ≪ τ ⩽ c(σ) log 2 T log T y 1-σ 1-σ σ
, where c(σ) is a positive constant depending only on σ,

(4.2) ε 0 = ε 0 (τ, y) = c 0 log 2 τ log τ N +1 + (τ log τ ) 1 1-σ y σ-1 2 ,
the polynomials a n (•) is the same as in Theorem 1.1 and the implied constant is absolute.

4.1. Two preliminary lemmas. The following lemma relates the moments of the short Euler products to the distribution function.

Lemma 4.2. Let σ ∈ ( 1 2 , 1) be a fixed constant. For any non-negative integer N , we have

∞ -∞ Φ T (t; y)ke kt dt = exp k 1/σ log k N n=0 C n (log k) n + O 1 (log k) N +1 + k 1/σ y 2σ-1
uniformly for (T, y, k) in (3.1), where C n is defined in (3.2) and the implied constant depends only on N and σ. 

Proof. Since

4.3) τ = k 1/σ-1 σ log k N +1 n=0 a n (log k) n (k → ∞),
then there is a sequence of polynomials

{b n (•)} n⩾0 with deg(b n ) ⩽ n and b 0 = σ 1-σ such that (4.4) log k = (log τ ) N n=0 b n (log 2 τ ) (log τ ) n + O log 2 τ log τ N +1
, where the implied constant depends on the sequence {a n } n⩾0 and N .

Proof. We prove it by recurrence. Firstly, taking logarithm of both sides in (4.3), we have

(4.5) log τ = 1 -σ σ log k -log σ -log 2 k + log N +1 n=0 a n (log k) n .
From this we derive that

log(τ log τ ) = 1 -σ σ log k + O σ (1) and (4.6 
) log k = σ 1 -σ log(τ log τ ) + O σ (1) = σ 1 -σ (log τ ) 1 + log 2 τ + O σ (1) log τ ,
which is the case for N = 0. Now assume we already have

log k = (log τ ) m n=0 b n (log 2 τ ) (log τ ) n + O log 2 τ log τ m+1 ,
for some m < N . Inserting this into (4.5), it follows that

log τ = 1 -σ σ log k -log σ -log (log τ ) m n=0 b n (log 2 τ ) (log τ ) n + O log 2 τ log τ m+1 + log N +1 n=0 a n (log τ ) m n=0 b n (log 2 τ ) (log τ ) n + O log 2 τ log τ m+1 -n
, from which we derive that

1 -σ σ log k = (log τ ) 1 + log σ + log 2 τ log τ + 1 log τ log m n=0 b n (log 2 τ ) (log τ ) n + O log 2 τ log τ m+1 - 1 log τ log N +1 n=0 a n (log τ ) m n=0 b n (log 2 τ ) (log τ ) n + O log 2 τ log τ m+1 -n
.

By expansion of the log-terms, we can obtain

1 -σ σ log k = (log τ ) m+1 n=0 b * n (log 2 τ ) (log τ ) n + O log 2 τ log τ m+2 with some polynomials b * n (log 2 τ ) of deg(b * n ) ⩽ n and of b * 0 = 1. Thus Lemma 4.3 follows from recurrence. □ 4.2.
Proof of Proposition 4.1. Let {a n } n⩾0 be a real sequence depending on σ, which will be chosen later. It is clear that there is a large constant t 0 = t 0 (σ) such that the function

t → t 1/σ-1 σ log t N +1 n=0 a n (log t) n
is strictly increasing on [t 0 , ∞). Thus we choose a unique k such that

(4.7) τ = k 1/σ-1 σ log k N +1 n=0 a n (log k) n •
Noticing that (4.6) and (4.1) imply that

ky 1-σ ≪ σ (τ log τ ) σ 1-σ y 1-σ ≪ σ log T y 1-σ y 1-σ ⩽ 1 8 (1 -σ) log T,
we can apply Lemma 4.2 to write

(4.8) ∞ -∞ Φ T (t; y)ke kt dt = exp k 1/σ log k 2N +1 n=0 C n (log k) n + O σ,N (R 2N +2 (k, y)) ,
where

R 2N +2 (k, y) := 1 (log k) 2N +2 + k 1/σ y 2σ-1
.

We choose (4.9)

ε = A 1 (log k) N +1 + k 1/σ y σ-1 2 ∈ (0, 10 -2022 ) (k ⩾ k 0 ),
where A = A(σ, N ) and k 0 = k 0 (σ, N ) are large constants depending on (σ, N ), and let

k 1 := (1 + ε)k, k 2 := (1 -ε)k, τ 1 := 1 + ε 2σ τ, τ 2 := 1 - ε 2σ τ.
When t ⩽ τ 2 , we have Using (4.8) and noticing that R 2N +2 (k 2 , y) ≪ σ,N R 2N +2 (k, y), we have

kt ⩽ (k -k 2 )(τ 2 -t) + kt = (k -k 2 )τ 2 + k 2 t = εkτ 2 + k 2 t.
∞ -∞ e k 2 t Φ T (t; y)dt = exp k 1/σ 2 log k 2 2N +1 n=0 C n (log k 2 ) n + O σ,N (R 2N +2 (k, y)) .
Inserting this into (4.10) and using the definition of τ 2 with (4.7), then we have

(4.11) τ 2 -∞ e kt Φ T (t; y)dt ⩽ exp k 1/σ log k {S 1 + S 2 + O σ,N (R 2N +2 (k, y))} ,
where

S 1 := ε σ 1 - ε 2σ N +1 n=0 a n (log k) n , S 2 := (1 -ε) 1/σ 1 + log(1 -ε)/ log k 2N +1 n=0 C n (log k) n 1 (1 + log(1 -ε)/ log k) n •
The first part S 1 can be calculated easily, using the choice of ε, as (4.12)

S 1 = ε σ N +1 n=0 a n (log k) n - ε 2 2σ 2 a 0 + o σ,N (R 2N +2 (k, y)).
In order to calculate the second part S 2 , we take Taylor series for log(1-ε), use the geometric sries formula, and put all infinitesimal of higher order than R 2N +2 into the error term, then we have

S 2 = 1 - ε σ + ε 2 2σ 1 σ -1 1 + ε log k 2N +1 n=0 C n (log k) n 1 + nε log k + o σ,N (R 2N +2 (k, y)) = 1 - ε σ + ε log k + ε 2 2σ 2 - ε 2 2σ 2N +1 n=0 C n (log k) n 1 + nε log k + o σ,N (R 2N +2 (k, y)).
We separate the same part as in the exponent of (4.12) from the above formula, and again put all the infinitesimal of higher order than R 2N +2 into the error term, then we can write

(4.13) S 2 = 2N +1 n=0 C n (log k) n + ε 2 2σ 2 C 0 - ε 2 2σ C 0 +- ε σ + ε σ C 0 N +1 n=1 σnC n-1 -C n (log k) n +o σ,N (R 2N +2 (k, y)).
Combining (4.12) and (4.13), we have

S 1 + S 2 = 2N +1 n=0 C n (log k) n + ε σ N +1 n=1 a n + σnC n-1 -C n (log k) n + ε σ - ε 2 2σ 2 (a 0 -C 0 ) - ε 2 2σ C 0 + o σ,N (R 2N +2 (k, y)).
Choosing a 0 = C 0 and a n = C n -σnC n-1 for n ⩾ 1, we find that

S 1 + S 2 = 2N +1 n=0 C n (log k) n - ε 2 2σ C 0 + o σ,N (R 2N +2 (k, y)).
Inserting this into (4.11), and using (4.8), then we have

τ 2 -∞ e kt Φ T (t; y)dt ⩽ exp k 1/σ log k - ε 2 2σ C 0 + 2N +1 n=0 C n (log k) n + O σ,N (R 2N +2 (k, y)) = exp k 1/σ log k - ε 2 2σ C 0 + O σ,N (R 2N +2 (k, y)) ∞ -∞
e kt Φ T (t; y)dt.

By the choice of the value of ε (A = A(σ, N ) is a suitably large constant), and C 0 > 0, we can obtain

τ 2 -∞ e kt Φ T (t; y)dt ⩽ 1 4 ∞ -∞
e kt Φ T (t; y)dt.

Similarly, we have

∞ τ 1 e kt Φ T (t; y)dt ⩽ 1 4 ∞ -∞
e kt Φ T (t; y)dt.

Thus combining the above two inequalities we have

1 2 ∞ -∞ e kt Φ T (t; y)dt ⩽ τ 1 τ 2 e kt Φ T (t; y)dt ⩽ ∞ -∞
e kt Φ T (t; y)dt.

So thanks to (4.8), we can get the asymptotic formula for the integral over (τ 2 , τ 1 ):

(4.14) τ 1 τ 2 e kt Φ T (t; y)dt = exp k 1/σ log k 2N +1 n=0 C n (log k) n + O(R 2N +2 (k, y)) .
On the other hand, since Φ T (t; y) is decreasing in t, we have

(τ 1 -τ 2 )e kτ 2 Φ T (τ 1 ; y) ⩽ τ 1 τ 2 e kt Φ T (t; y)dt ⩽ (τ 1 -τ 2 )e kτ 1 Φ T (τ 2 ; y).
By the choice of the values of τ 1 and τ 2 , the above inequality is

(4.15) ετ σ e kτ (1-ε 2σ ) Φ T ((1 + ε 2σ )τ ; y) ⩽ τ 1 τ 2 e kt Φ T (t; y)dt ⩽ ετ σ e kτ (1+ ε 2σ ) Φ T ((1 -ε 2σ )τ ; y).
In view of (4.7), it is easy to see that

σ ετ e -kτ (1± ε 2σ ) = exp log σ ετ -kτ {1 + O(ε)} = exp - k 1/σ σ log k N +1 n=0 a n (log k) n + O(ε) .
Combining this with (4.14) and (4.15), it follows that

σ ετ e -kτ (1± ε 2σ ) τ 1 τ 2 e kt Φ T (t; y)dt = exp - k 1/σ σ log k N n=0 a n -σC n (log k) n + O(ε) .
Back to (4.15), we get

(4.16) Φ T ((1 + ε 2σ )τ ; y) ⩽ exp - k 1/σ σ log k N n=0 a n -σC n (log k) n + O(ε) ⩽ Φ T ((1 -ε 2σ )τ ; y).
Recall that Lemma 4. With the help of these formulas, after some computations of Taylor's expansions we easily see that there are a sequence of polynomials {a n (•)} n⩾0 * with deg(a n ) ⩽ n and a positive constant c 0 = c 0 (σ, N ) depending on (σ, N ) such that (4.17 where ε 0 is given as in (4.2). Inserting (4.17) into (4.16) and using the fact that the function t → Φ T (t; y) is decreasing with (4.18), we obtain the required result. This completes the proof. □ * The value of a 0 follows easily from b 0 = σ 1-σ in Lemma 4.3. □

  established the distribution of large values of |ζ(σ + it)| as t varies in [T, 2T ]. Let T be sufficiently large. We define the distribution function by (1.2) Φ T (τ ) := 1 T meas t ∈ [T, 2T ] : log |ζ(σ + it)| > τ .

3 ) 4 . 1 - 1 p σ+it - 1 ,

 3411 follows from (3.4), (3.5), (3.6) and (3.7). □ Proof of Theorem 1.Recall that we have define the short Euler products by ζ(σ + it; y) := p⩽y 1 and its distribution function Φ T (τ ; y) := 1 T meas t ∈ [T, 2T ] : log |ζ(σ + it; y)| > τ .

Lemma 4 . 3 . 2 , 1 )

 4321 + it; y)|) k dt, the required result of Lemma 4.2 follows from Proposition 3.1 immediately.□ Let σ ∈ ( 1 be a fixed constant. Let {a n } n⩾0 be a sequence of real numbers and N ⩾ 0 be an integer. If

(

  

e

  kt Φ T (t; y)dt ⩽ e εkτ 2 ∞ -∞e k 2 t Φ T (t; y)dt.

  log(τ log τ ) + O σ (1).

) k 1/σ σ log k N n=0 a

 n=0 n -σC n (log k) n + O(ε) = (τ log σ τ ) log 2 τ ) (log τ ) n + O(ε 0 ) and (4.18) ε/(2σ) ⩽ ε 0 ,

4. 3 . 2 ,.)c 2 0 log y log τ (τ log σ τ ) 1 1.

 321 End of the proof of Theorem 1.1. Let η := c 0 (τ log τ )where c 0 = c 0 (σ, N ) be a large positive constant given as in Proposition 4.1. Applying Lemma 2.6 with λ = ητ , we can obtain (4.19) Φ T (τ ) = Φ T (τ (1 ± η); y) + O exp -(4e) -1 (σ -On the other hand, noticing that η ⩽ ε 0 and that Φ T (t; y) is decreasing in t, (4.19) and Proposition 4.1 imply that (4.20)Φ T (τ ) = exp -(τ log σ τ ) log 2 τ ) (log τ ) n + O(ε 0 ) + O exp -(4e) -1 (σ -= exp -(τ log σ τ ) 1 1-σ N n=0 a n (log 2 τ ) (log τ ) n + O(ε 0 ) ∆(τ, y), uniformly for T → ∞, log T ⩽ y ⩽ (log T ) 2 , 1 ≪ τ ⩽ cy) := 1 + O exp -(4e) -1 (σ -1 2 -σ + O σ,N (τ log σ τ )Since c 0 is suitably large, we have, with choice of y = log T ,∆(τ, log T ) = 1 + O exp -(8e) -1 (σ -1 2 )c 2 0 (τ log σ τ ) 1 1-σ = exp exp -(8e) -1 (σ -1 2 )c 2 0 (τ log σ τ ) 1 1-σ = exp O (τ log σ τ ) 1 1-σ ε 0 (τ, log T )uniformly for T → ∞ and 1 ≪ τ ⩽ c(σ)(log T ) 1-σ / log 2 T . Inserting this into (4.20), we obtain the result of Theorem 1.1.

  1/σ . As before, by Lemma 2.1 we can write

	(3.4)	n∈S(y)
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