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Introduction

The study of the value distribution of the Riemann zeta function ζ(s) can date back to the early twentieth century when Bohr showed that for any z ∈ C * and ε > 0, there are infinitely many s's with 1 < ℜe s < 1 + ε such that ζ(s) = z. Later in 1932, Bohr and Jessen [START_REF] Bohr | Über die Werteverteilung der Riemannnschen Zetafunktion[END_REF] showed that log ζ(σ + it) has a continuous distribution on the complex plane for any σ > 1 2 . In this article, we focus on the values of ζ(s) on the 1-line (i.e. the right borne of the crtical strip). The values on the 1-line have much significance. For example, the fact that ζ(1 + it) ̸ = 0 implies the prime number theorem. The extreme values of ζ(1 + it) has been widely investigated. In 1925, Littlewood [START_REF] Littlewood | On the Riemann zeta-function[END_REF] showed that there exist arbitrarily large t for which

|ζ(1 + it)| ⩾ {1 + o(1)}e γ log 2 t.
Here and throughout, we denote by γ the Euler constant and by log j the j-th iterated logarithm. In 1972, Levinson [9] improved the error term from o(log 2 t) to O(1):

|ζ(1 + it)| ⩾ e γ log 2 t + O [START_REF] Aistleitner | Extreme values of the Riemann zeta function on the 1-line[END_REF].

In 2006, Granville and Soundararajan [START_REF] Granville | The Riemann Zeta Functionn and Related Themes: Papers in Honour of Professor K. Ramachandra[END_REF] got a much stronger result max t∈ [1,T ] |ζ(1 + it)| ⩾ e γ {log 2 T + log 3 T -log 4 T + O(1)} holds for sufficiently large T . Then in 2019, Aistleitner, Mahatab, and Munsch [START_REF] Aistleitner | Extreme values of the Riemann zeta function on the 1-line[END_REF] canceled the term log 4 T :

(1. [START_REF] Aistleitner | Extreme values of the Riemann zeta function on the 1-line[END_REF] max

t∈[ √ T ,T ] |ζ(1 + it)| ⩾ e γ {log 2 T + log 3 T + O(1)}.
This bound is best possible up to the error term O(1), since in [START_REF] Granville | The Riemann Zeta Functionn and Related Themes: Papers in Honour of Professor K. Ramachandra[END_REF], Granville and Soundararajan conjectured that where C 0 is some absolute constant (see (1.5) below). This conjecture was based on some analysis on the following distribution function they introduced in [START_REF] Granville | The Riemann Zeta Functionn and Related Themes: Papers in Honour of Professor K. Ramachandra[END_REF]: define for T > 1,

(1.3) Φ T (τ ) := 1 T meas t ∈ [T, 2T ] : |ζ(1 + it)| > e γ τ .
Then they proved the asymptotic formula in the logarithm of the distribution function

Φ T (τ ) = exp - 2e τ -C 0 -1 τ 1 + O 1 √ τ + e τ log T (1.4)
valid uniformly for 1 ⩽ τ < log 2 T -20, where (1.5) C j := 

I 0 (t) := ∞ n=0 (t/2) n (n!) 2 •
The distribution function (1.4) describes the frequency with which each large value is attained. Obviously, the maximum of the range of τ is much less than the large value (1.1). However, if (1.4) were to persist to the end of the viable range, then we could get (1.2). The method to prove (1.4) was also ajusted to apply to the distribution of values on the 1-line of other L-functions. Also in [START_REF] Granville | The Riemann Zeta Functionn and Related Themes: Papers in Honour of Professor K. Ramachandra[END_REF], Granville and Soundararajan showed that the distribution of the Dirichlet L-functions in the character-aspect has the same form as (1.4). This result can be used to study the distribution of large character sums, see [START_REF] Bober | The distribution of the maximum of character sums[END_REF] and [START_REF] Bober | The frequency and the structure of large character sums[END_REF]. In 2003, Granville and Soundararajana [START_REF] Granville | The distribution of values of L(1, χ d )[END_REF] established the distribution of the Dirichlet L-functions of quadratic characters L(1, χ d ), which proves part of Montgomery and Vaughan's conjecture in [START_REF] Montgomery | Extreme values of the Riemann zeta function[END_REF]. In 2007, Wu [START_REF] Wu | Note on a paper by A[END_REF] improved this result by giving a high order expansion in the exponent of the distribution function. In 2008, Liu, Royer and Wu [START_REF] Liu | On a conjecture of Montgomery-Vaughan on extreme values of automorphic L-functions at 1, Anatomy of integers[END_REF] gave the distribution of a kind of symetric power L-functions. In 2010, Lamzouri [START_REF] Lamzouri | Distribution of values of L-functions at the edge of the critical strip[END_REF] studied a generalized L-function which can cover the results of [START_REF] Granville | The distribution of values of L(1, χ d )[END_REF][START_REF] Liu | On a conjecture of Montgomery-Vaughan on extreme values of automorphic L-functions at 1, Anatomy of integers[END_REF]. Again concerning the Riemann zeta function, in 2008 Lamzouri [START_REF] Lamzouri | The two-dimensional distribution of values of ζ(1+it)[END_REF] generalize (1.4) to the joint distribution of arg ζ(1 + it) and |ζ(1 + it)|.

Inspired by the result of Wu [START_REF] Wu | Note on a paper by A[END_REF], the aim of this paper is to get an improvement of (1.4), which presents a higher order expansion in the exponent.

Theorem 1.1. There is a sequence of real numbers {a j } j⩾1 such that for any integer J ⩾ 1 we have

Φ T (τ ) = exp - 2e τ -C 0 -1 τ 1 + J j=1 a j τ j + O J 1 τ J+1 + e τ log T uniformly for T → ∞ and 1 ⩽ τ ⩽ log 2 T -20, where C 0 is defined as in (1.5). Moreover, a 1 = 2(1 + C 0 -C 1 ).
Our main new ingredient for the proof of Theorem 1.1 is Proposition 5.1 below, which gives a better approximation of the distribution function of the short Euler products:

(1.7) Φ T (τ ; y) := 1 T meas t ∈ [T, 2T ] : |ζ(1 + it; y)| > e γ τ ,
where

(1.8) ζ(s; y) := p⩽y (1 -p -s ) -1 .
For this, it is necessary to improve Theorem 3 of [START_REF] Granville | The Riemann Zeta Functionn and Related Themes: Papers in Honour of Professor K. Ramachandra[END_REF] (see Propositions 3.1 and 4.1 below).

Preliminary lemmas

Let k ⩾ 1 be a positive integer. Define d k (n) by the relation

(2.1) ζ(s) k = n⩾1 d k (n)n -s (ℜe s > 1).
Firstly, we quote the following asymptotic formulae of sums attached to the divisor function d k (n) and the Bessel function I 0 (t) to show their correlation.

Lemma 2.1. For any prime p and positive integer k, we have

ν⩾0 d k (p ν ) 2 p 2ν = I 0 2k p exp O k p 2 , (2.2) min(1, p/k) 50 1 - 1 p -2k ⩽ ν⩾0 d k (p ν ) 2 p 2ν ⩽ 1 - 1 p -2k , (2.3)
where I 0 (t) is the Bessel function as defined in (1.6).

Proof. This is [START_REF] Granville | The Riemann Zeta Functionn and Related Themes: Papers in Honour of Professor K. Ramachandra[END_REF]Lemma 4]. □

In order to approximate the Riemann zeta function ζ(s) by its truncated Euler product ζ(s; y) defined by (1.8), we need the following evaluation for moments of the sum over complex power of primes between two large numbers. Proof. This is [5, Lemma 3]. □

The following lemma is an approximation of ζ(s) by ζ(s; y). Proof. This is essentially [5, Proposition 1] while we erase restrictions of the upper bound of y.

In fact, the truncated Euler product with larger length would provide a better approximation of the zeta function. □

An asymptotic developement

The integer n ⩾ 1 is called y-friable if the largest prime factor P (n) of n is less than y (P (1) = 1 by convention). Denote by S(y) the set of y-friable integers and define

(3.1) D k (y) := n∈S(y) d k (n) 2 /n 2 .
The aim of this section is to prove the following proposition, which is an improvement of the second part of Theorem 3 in [START_REF] Granville | The Riemann Zeta Functionn and Related Themes: Papers in Honour of Professor K. Ramachandra[END_REF]. Our improvement is double: a higher order expansion in the exponent and a larger domain of y.

Proposition 3.1. Let A > 1 be a positive number and let J ⩾ 0 be an integer. We have

D k (y) = p⩽k 1 - 1 p -2k exp 2k log k J j=0 C j (log k) j + O A,J 1 (log k) J+1 + k y
uniformly for k ⩾ 2 and 2k ⩽ y ⩽ k A , where the C j is defined as in (1.5) and the constant implied depends on A and J only.

Proof. Firstly we have trivially

(3.2) √ k<p⩽y exp O k p 2 = e O( √ k) , p⩽ √ k min(1, p/k) 50 = e O( √ k) .
Secondly, by Lemma 2.1, we can write

(3.3) D k (y) = p⩽ √ k 1 - 1 p -2k √ k<p⩽y I 0 2k p e O( √ k) = p⩽k 1 - 1 p -2k Π 1 Π 2 e O( √ k) ,
where

Π 1 := √ k<p⩽k 1 - 1 p 2k I 0 2k p and Π 2 := k<p⩽y I 0 2k p .
In order to evaluate Π 1 , we apply the formula log(1

+ t) = t + O(t 2 ) (|t| ⩽ 1 2
) and the first estimate in (3.2) to obtain

Π 1 = exp √ k<p⩽k log I 0 2k p - 2k p + O √ k .
Recall the prime number theorem

π(u) := p⩽u 1 = u 2 du log u + O(ue -2c √ log u ).
Then we can derive that

(3.4) √ k<p⩽k log I 0 2k p - 2k p = k √ k log I 0 2k u - 2k u dπ(u) = k √ k log I 0 (2k/u) -2k/u log u du + O ke -c √ log k .
By putting t = 2k/u and using the fact that

1 1 -t = J j=0 t j + O J (t J+1 ) (|t| ⩽ 1 2 ),
we can derive that the integral in (3.4) is equal to

2k log k 2 √ k 2 log I 0 (t) -t t 2 (1 -log(t/2) log k ) dt = 2k log k J j=0 C * j (k) (log k) j + O J C * J+1 (k) (log k) J+1 , (3.5)
where

C * j (k) := 2 √ k 2 log t 2 j log I 0 (t) -t t 2 dt. Since log I 0 (t) = t + O(log t) for t ⩾ 2, we have ∞ 2 √ k log t 2 j log I 0 (t) -t t 2 dt ≪ ∞ √ k (log t) j+1 t 2 dt ≪ j (log k) j+1 √ k ,
which implies that

C * j (k) = C * j + O j (log k) j+1 √ k with C * j := ∞ 2 log t 2 j log I 0 (t) -t t 2 dt.
Combining this with (3.4) and (3.5), we obtain

√ k<p⩽k log I 0 2k p - 2k p = 2k log k J j=0 C * j (log k) j + O J 1 (log k) J+1
.

Therefore we derive that

(3.6) Π 1 = exp 2k log k J j=0 C * j (log k) j + O J 1 (log k) J+1 .
For Π 2 , by the prime number theorem, we have similarly

k<p⩽y log I 0 2k p = y k log I 0 2k u du log u + O ke -c √ log k = 2k log k J j=0 C * * j (log k) j + O k y + O ke -c √ log k ,
where

C * * j := 2 0 log t 2 j log I 0 (t) t 2 dt.
Here we have used the inequality log I 0 (t) ≪ t 2 for 0 ⩽ t < 2 to evaluate the truncated integral that 2k/y 0 log t 2

j log I 0 (t) t 2 dt ≪ k/y 0 (log t) j dt ≪ A,j k(log k) j y •
Therefore we derive that , respectively. In this section, we shall evaluate the 2k-th moment of ζ(1 + it; y) by proving the following proposition. This is essentially the first part of Theorem 3 in [START_REF] Granville | The Riemann Zeta Functionn and Related Themes: Papers in Honour of Professor K. Ramachandra[END_REF]. The main difference is a slightly enlarged length of the short Euler products, which is important for the proof of Theorem 1.1. Proposition 4.1. Let A > 0 be a constant. Then we have

(3.7) Π 2 = exp 2k log k J j=0 C * * j (log k) j + O A,J
1 T 2T T |ζ(1 + it; y)| 2k dt = D k (y) 1 + O A exp - log T 2(log 2 T ) 4
uniformly for

(4.1)      T ⩾ T 0 (A), e 2 log T ⩽ y ⩽ (log T )(log 2 T ) A , k ∈ N ∩ [2, (log T )/(e 10 log(y/ log T ))],
where the implied constant and the constant T 0 (A) depend on A only.

We show that for k and y in (4.1), the diagonal terms lead to the main term, while the offdiagonal terms only contribute to the error term. For this, we need to establish a preliminary lemma.

4.1.

A preliminary lemma. If 2 ⩽ k ⩽ 10 6 , we write I 0 = (k, y], I 1 = (1, k] and J = 0. When k > 10 6 , we take J = ⌊4(log 2 k)/ log 2⌋ and devide (1, 

y] into J + 2 intervals (1, y] = I 0 ∪ I 1 ∪ • • • ∪ I J+1 ,
where I 0 := (k, y], I j := (k/2 j , k/2 j-1 ] (1 ⩽ j ⩽ J) and

I J+1 := (1, k/2 J ] ⊂ (1, 2k/(log 2 k) 4 ].
For each j ∈ {0, 1, . . . , J + 1}, we use S(I j ) to represent the set of all positive integers which have prime divisors only in I j (1 ∈ S(I j ) by convention). Recall that S(y) is the set of y-friable integers. Thus

(4.2) n ∈ S(y) ⇔ n uniquely = n 0 • • • n J+1 with n j ∈ S(I j ) (0 ⩽ j ⩽ J + 1). Set (4.3) D k,j := h∈S(I j ) d k (h) 2 /h 2 such that (4.4) D k (y) = D k,0 D k,1 • • • D k,J+1 .
We have the following lemma.

Lemma 4.2. Let G 0 := T 1/5 and G j := T 1/(5j 2 ) (j ⩾ 1). Then we have (4.5)

g∈S(I j ), g>G j 2 ω(g) g h∈S(I j ) d k (gh)d k (h) h 2 ⩽ D k,j exp - log T (log 2 T ) 4
for (T, y, k) in (4.1) and 0 ⩽ j ⩽ J + 1, where ω(n) denotes the number of distinct prime factors of n.

Proof. This is essentially [5, Lemma 5]. The difference is that the upper bound of y is shifted from (log T )(log 2 T ) 4 to (log T )(log 2 T ) A with arbitrary A > 0. Note that this change is harmless to the range of k, since whether y = (log T )(log 2 T ) 4 or y = (log T )(log 2 T ) A , it does not influence the upper bound of k:

(4.6) k ⩽ log T e 10 log(y/ log T ) ⩽ log T e 10 log(e 2 log T / log T ) = log T 2e 10 •
So this makes no difference so that we can follow Granville and Soundararajan's procedure.

Here we reproduce thier proof for convenience of the reader. Denote by S k (I j ) the member on the left-hand side of (4.5).

Firstly we consider the case of 1 ⩽ j ⩽ J + 1. For δ = 1/(2 j/2 log k), by Rankin's trick and exchanging the order of the sums, we have

(4.7) S k (I j ) ⩽ 1 G δ j g∈S(I j ) 2 ω(g) g 1-δ h∈S(I j ) d k (gh)d k (h) h 2 = 1 G δ j h∈S(I j ) d k (h) h 1+δ g∈S(I j ) 2 ω(g) d k (gh) (gh) 1-δ •
The inner sum is over part of S(I j ), so for any h ∈ S(I j ) we have

g∈S(I j ) 2 ω(g) d k (gh) (gh) 1-δ ⩽ g∈S(I j ) 2 ω(gh) d k (gh) (gh) 1-δ ⩽ g∈S(I j ) 2 ω(g) d k (g) g 1-δ • Thus (4.8) S k (I j ) ⩽ 1 G δ j h∈S(I j ) d k (h) h 1+δ g∈S(I j ) 2 ω(g) d k (g) g 1-δ = 1 G δ j p∈I j 1 - 1 p 1+δ -k 2 1 - 1 p 1-δ -k -1 ⩽ 1 G δ j p∈I j 2 1 - 1 p -2k Ξ j (p) -k with Ξ j (p) := 1 - 1 p 1+δ 1 - 1 p 1-δ 1 - 1 p -2 = 1 - p(p δ + p -δ -2) (p -1) 2 •
Noticing that p ∈ I j with 1 ⩽ j ⩽ J + 1, we have p ⩽ k. Thus by the first inequality in (2.3) of Lemma 2.1, we can derive that (4.9) We choose δ = 1/(2 j/2 log k). For 1 ⩽ j ⩽ J + 1, we have

p∈I j 1 - 1 p -2k ⩽ D k,j p∈I j 50k p , while (4.10) Ξ j (p) = 1 - 2p (p -1) 2 ∞ n=1 (δ log p) 2n (2n)! ⩾ 1 - 2p(δ log p) 2 (p -1) 2 ∞ n=1 2 -j(n-1) (2n)! ⩾ 1 - c(2δ log p) 2 p • with c := ∞ n=1 2 -(n-1) ( 
p∈I j log 100k p + √ 3k(2δ log p) 2 p ⩽ log 100k k/2 j + √ 3k(2δ log(k/2 j )) 2 k/2 j 2(k/2 j-1 ) log(k/2 j-1 )
⩽ (j log 2 + 2 log 10 + 4

√ 3) 4k 2 j log k ⩽ 50jk 2 j log k ⩽ 25j log T
2 j e 10 log k ⩽ 25 log T 2 j/2 j 2 e 6 log k thanks to (4.6) and the inequality j 3 ⩽ e 4 2 j/2 (j ⩾ 1). Thus (4.12)

log 1 G δ j + p∈I j log 100k p + √ 3k(2δ log p) 2 p ⩽ - 1 -125e -6 5j 2 2 j/2 • log T log k ⩽ - 1 -125e -6 5J 2 2 J/2 • log T log k ⩽ - log T (log k) 4 ⩽ - log T (log 2 T ) 4
for (T, y, k) in (4.1) and 1 ⩽ j ⩽ J + 1. Inserting (4.12) into (4.11), then 1 ⩽ j ⩽ J + 1 we have

S k (I j ) ⩽ D k,j exp - log T (log 2 T ) 4 .
Thus the lemma in this case follows.

When j = 0, by Rankin's trick and the trivial inequality

d k (gh) ⩽ d k (g)d k (h), we have for any 0 < δ < 1 (4.13) S k (I 0 ) ⩽ D k,0 G δ 0 g∈S(I 0 ) 2 ω(g) d k (g) g 1-δ = D k,0 G δ 0 p∈I 0 2 1 - 1 p 1-δ -k -1 .
For k < p ⩽ y, we have the upper bound

2 1 - 1 p 1-δ -k -1 ⩽ 2 exp 2k p 1-δ -1 ⩽ exp 3k p 1-δ ⩽ exp 3ky δ log k • log p p .
Inserting this into (4.13) and using [13, Theorem I. As in [START_REF] Granville | The Riemann Zeta Functionn and Related Themes: Papers in Honour of Professor K. Ramachandra[END_REF], we shall prove a more general result: Let A > 0 be a constant and R ⊂ {0, 1, . . . , J + 1}. Then we have

(4.14) 1 T 2T T |ζ(1 + it; R)| 2k dt = D k (R) 1 + O A exp - log T 2(log 2 T ) 4
uniformly for (T, y, k) in (4.1), where

(4.15) I R := r∈R I r , ζ(s; R) := p∈I R (1 -p -s ) -1 , D k (R) := n∈S(I R ) d k (n) 2 /n 2
and the implied constant depends on A only. We shall prove (4.14) by induction on the cardinal of R. The case of R = ∅ (i.e. |R| = 0) is trivial, since ζ(s; ∅) = 1 = D k (∅). Now we suppose that (4.14) holds for all proper subset of R and prove that it is true for R.

Firstly, in view of (4.2), we have

(4.16) 1 T 2T T |ζ(1 + it; R)| 2k dt = m,n∈S(I R ) d k (m)d k (n) mn 1 T 2T T n m it dt = mr,nr∈S(Ir) r∈R r∈R d k (m r )d k (n r ) m r n r 1 T 2T T r∈R n r m r it dt.
Denote g j = lcm(m j , n j ) gcd(m j , n j ) and h j = gcd(m j , n j ).

Using the principle of inclusion-exclusion, we divide the sum in (4.16) into two parts where the G j is defined as in Lemma 4.2.

In the first sum, the case g r = 1 (r ∈ R) counts the diagonal terms and leads to the main term

n∈S(I R ) d k (n) 2 /n 2 = D k (R).
Otherwise, we have r∈R (m r /n r ) ̸ = 1. Therefore by g r ⩽ G r we have

log r∈R m r n r = log r∈R m r /h r n r /h r ⩾ log 1 + r∈R g -1 r ≫ r∈R G -1 r .
Thus in these terms we have

1 T 2T T r∈R m r n r it dt ≪ 1 T log r∈R m r n r -1 ≪ 1 T 2/5 •
Therefore the sum over these terms is

≪ 1 T 2/5 m,n∈S(I R ) d k (m)d k (n) mn ≪ 1 T 2/5 p∈I R 1 - 1 p -2k
.

By (2.3) in Lemma 2.1 and the inequality -log(1 -t) ⩽ 2t (0 ⩽ t ⩽ 1 2 ), we have p∈I R 1 - 1 p -2k ⩽ p∈I R p⩽k 50k p ν⩾0 d k (p ν ) 2 p 2ν p∈I R k<p⩽y 1 - 1 p -2k ⩽ D k (R) exp p⩽k log 50k p + k<p⩽y 4k p ⩽ D k (R) exp 10k log k log 25y k .
Therefore, the contribution of the first sum in (4.17) is (4.18) mr,nr∈S(Ir) gr⩽Gr ∀r∈R

= D k (R) + O D k (R) T 2/5 exp 12k log k log 25y k = D k (R) 1 + O 1 T 1/3
for (T, y, k) as in (4.1). Now consider the second sum in (4.17). For a given non-empty subset W ⊂ R, we have and the definition of its distribution function:

d k (m w )d k (n w ) m w n w • (4.20) For any multiplicative function f , we have f (m)f (n) = f (lcm(m, n))f (gcd(m, n)). While the number of (m, n) such that gcd(m, n)/lcm(m, n) = g, gcd(m, n) = h is 2 ω(g) .
W⊂R W̸ =∅ D k (W) 1 T 2T T |ζ(1 + it; R∖W)| 2k dt exp - log T (log 2 T ) 4 .
Φ T (τ ; y) := 1 T meas t ∈ [T, 2T ] : |ζ(1 + it; y)| > e γ τ .
The aim of this section is to prove the following result.

Proposition 5.1. Let A > 0 be any constant and let J ⩾ 1 be an integer, and ε satisfying (5.10). Then we have

(5.1) Φ T (τ + ε; y) ⩽ exp - 2e τ -C 0 -1 τ 1 + J j=1 a j τ j + O J 1 τ J+1 + e τ y ⩽ Φ T (τ -ε; y) uniformly for (5.2) T ⩾ T 0 (A), e 2 log T ⩽ y ⩽ (log T )(log 2 T ) A , 2 ⩽ τ ⩽ log 2 T -20,
where the a j and C 0 are the same as in Theorem 1.1, T 0 (A) is a positive constant depending on A and the implied constant depends on A and J at most.

5.1. Two preliminary lemmas. In the following lemma, we will see the correlation between the distribution function and the moments of the short Euler products:

Lemma 5.2. Let A > 0 be any constant and let J ⩾ 1 be an integer. Then we have

(5.3) ∞ 0 Φ T (t; y)t 2κ-1 dt = (log κ) 2κ 2κ exp 2κ log κ J j=0 C j (log κ) j + O A,J κ y + 1 (log κ) J+1
uniformly for

(5.4) T ⩾ 2, e 2 log T ⩽ y ⩽ (log T )(log 2 T ) A , 2 ⩽ κ ⩽ (log T )/(e 10 log(y/ log T )),
where the C j are defined as in (1.5) and the implied constant depends on A and J at most.

Proof. For any κ > 0, we have

∞ 0 Φ T (u; y)u 2κ-1 du = 1 T ∞ 0 2T T e -γ |ζ(1+it;y)|>u 1 dt u 2κ-1 du = 1 T 2T T e -γ |ζ(1+it;y)| 0 u 2κ-1 du dt = 1 T 2T T 1 2κ (e -γ |ζ(1 + it; y)|) 2κ dt,
i.e.

(5.5) 2κ

∞ 0 Φ T (t; y)t 2κ-1 dt = e -2κγ T 2T T |ζ(1 + it; y)| 2κ dt. Now (5.
3) follows from Propositions 3.1 and 4.1 when κ is an integer. Next let κ / ∈ N be a real number verifying (5.4). There is a unique integer k verifying (5.4) such that k -1 < κ < k. The formula (5.5) with κ = 1 2 and [5, Theorem 3] imply that

∞ 0 Φ T (u; y) du = e -γ T 2T T |ζ(1 + it; y)| dt ⩽ e -γ 1 T 2T T |ζ(1 + it; y)| 4 dt 1/4 ≪ 1.
Now for any b > a > 0, by the Hölder inequality, it follows that

∞ 0 Φ T (t; y)t a dt ⩽ ∞ 0 Φ T (t; y) dt 1-a/b ∞ 0 Φ T (t; y)t b dt a/b
.

Thus there are two absolute positive constants C and D such that

∞ 0 Φ T (t; y)t a dt ⩽ C ∞ 0 Φ T (t; y)t b dt a/b , ∞ 0 Φ T (t; y)t b dt ⩾ D ∞ 0 Φ T (t; y)t a dt b/a
.

Applying the first inequality with (a, b) = (2κ -1, 2k -1) and the second inequality with (a, b) = (2k -3, 2κ13) respectively, we can obtain that

D ∞ 0 Φ T (t; y)t 2(k-1)-1 dt 2κ-1 2k-3 ⩽ ∞ 0 Φ T (t; y)t 2κ-1 dt ⩽ C ∞ 0 Φ T (t; y)t 2k-1 dt 2κ-1 2k-1
.

On the other hand, seting f (u

) := 2u log u J j=0 C j (log u) j , then f ′ (u) = -2 log u J j=0 jC j (log u) j . Thus (5.6) f (k -1) = f (κ) + O(1) and f (k) = f (κ) + O(1).
Now we can obtain (5.3) for κ / ∈ N by substituting (5.3) for integers k -1 and k and by using (5.6). This completes the proof of Lemma 5.2. □ Lemma 5.3. Let {a j } j⩾0 be a sequence of real numbers and J ⩾ 0 be an integer. If

(5.7) τ = log κ + a 0 + J j=1 a j (log κ) j + O J 1 (log κ) J+1 (k → ∞),
then there is a sequence of real numbers {b j } j⩾0 such that

(5.8) log κ = τ + b 0 + J j=1 b j τ j + O J 1 τ J+1 (τ → ∞).
Further we have b 0 = -a 0 and b 1 = -a 1 .

Proof. We shall reason by recurrence on J. Taking J = 0 in (5.7), we have

τ = log κ + a 0 + O 1 log κ (k → ∞).
From this we easily deduce that

log κ = τ -a 0 + O 1 τ (τ → ∞).
This is (5.8) with J = 0 and b 0 = -a 0 . Suppose that (5.9)

τ = log κ + J+1 j=0 a j (log κ) j + O J 1 (log κ) J+3 (k → ∞).
Clearly this implies (5.7). Thus according to the hypothesis of recurrence, (5.8) holds. Using (5.8) and (5.9); we can derive that

log κ = τ -a 0 + J+1 j=1 a j (log κ) j + O J 1 τ J+2 = τ -a 0 + J+1 j=1 a j τ j 1 + J+2-j d=1 b d-1 τ d + O J 1 τ J+2-j -j + O J 1 τ J+2 .
This implies the required result via the Taylor development of (1 -t) -j . □ 5.2. Proof of Proposition 5.1. Let ε ∈ [c(log κ) -J-1 , 9c(log κ) -J-1 ] be a parameter to be chosen later, where c is a large constant. Without loss of generality, we can suppose (5.10) ε ⩽ (log κ) -J , ε 2 ⩽ (log κ) -J-1

for k ⩾ k 0 , where κ 0 = κ 0 (c) is a constant depending c. Put K = κe ε . Noticing that ( t τ +ε ) 2K-2κ ⩾ 1 for t ⩾ τ + ε, we have 2κ

∞ τ +ε Φ T (t; y)t 2κ-1 dt ⩽ (τ + ε) 2κ-2K 2K ∞ 0 Φ T (t; y)t 2K-1 dt .
From this and Lemma 5.2, we deduce that (5.11)

∞ τ +ε Φ T (t; y)t 2κ-1 dt ∞ 0 Φ T (t; y)t 2κ-1 dt ⩽ exp 2(g(K, τ ) -g(κ, τ )) + O J κ 2 y + κ (log κ) J+3
uniformly for (T, y, κ) in (5.4) above, where (5.12) g(κ, τ

) := -κ log τ + ε log κ + κ log κ J+1 j=0 C j (log κ) j •
Let τ 0 = τ 0 (c, J) be a suitable constant depending on c and J. For τ 0 ⩽ τ ⩽ log 2 T -20, take κ = κ τ such that (5.13)

τ = log κ + a 0 + J+1 j=1 a j (log κ) j ,
where the a j = a j (C 0 , . . . , C j ) are constants to be determined later. Our choice of τ 0 guarantees that τ ⩾ τ 0 ⇒ κ ⩾ κ 0 , which guarantees that (5.14) ε ⩽ 9c(log κ) -J-1 ⩽ (log κ) -J and ε 2 ⩽ 81c 2 (log κ) -2J-2 ⩽ (log κ) -2J-1 .

These bounds will be used often and all implied constants in the O-symbol is independent of c. In view of (5.13) and the Taylor formula, we can write

g(κ, τ ) = -κ log 1 + a 0 + ε log κ + 1 log κ J+1 j=1 a j (log κ) j + κ log κ J+1 j=0 C j (log κ) j = -κ a 0 -C 0 + ε log κ + a 1 -a 2 0 -C 1 + a 0 ε (log κ) 2 + J+1 j=2 a j -a * j -C j (log κ) j+1 + O J 1 (log κ) J+3 ,
where the a * j = a * j (a 0 , . . . , a j-1 ) are constants depending on a 0 , . . . , a j-1 . Take

a 0 = C 0 + 1, a 1 = C 2 0 + C 0 + C 1 + 2, a j = a * j (a 0 , . . . , a j-1 ) + C j (2 ⩽ j ⩽ J + 1). Thus g(κ, τ ) = -κ 1 + ε log κ + a 1 -a 2 0 -C 1 + a 0 ε (log κ) 2 + O J κ (log κ) J+3 . Let T := log K + a 0 + J+1 j=1 a j (log K) j , then g(K, T) = -K 1 + ε log K + a 1 -a 2 0 -C 1 + a 0 ε (log K) 2 + O J κ (log κ) J+3 .
From these, we easily deduce that

g(K, T) -g(κ, τ ) = -K 1 + ε log K - 1 + ε log κ + a 1 -a 2 0 -C 1 + a 0 ε (log K) 2 - a 1 -a 2 0 -C 1 + a 0 ε (log κ) 2 -(K -κ) 1 + ε log κ + a 1 -a 2 0 -C 1 + a 0 ε (log κ) 2 + O J κ (log κ) J+3 .
Using (5.14), a simple computation shows that (5.15)

g(K, T) -g(κ, τ ) = K (1 + ε)ε (log K) log κ + (a 1 -a 2 0 -C 1 + a 0 ε)ε log(Kκ) (log K) 2 (log κ) 2 -(K -κ) 1 + ε log κ + a 1 -a 2 0 -C 1 + a 0 ε (log κ) 2 + O J κ (log κ) J+3 = e ε εκ (log κ) 2 -(e ε -1)κ 1 + ε log κ + a 1 -a 2 0 -C 1 (log κ) 2 + O J κ (log κ) J+3 .
On the other hand, in view of (5.12), we have

∂g ∂τ (κ, τ ) = - κ τ + ε • Thus we have, for some η κ ∈ (τ, T), (5.16 
)

g(K, τ ) -g(K, T) = ∂g ∂τ (K, η κ )(τ -T) ⩽ εK τ + ε 1 + O J 1 (log κ) 2 = εe ε κ log κ 1 - a 0 log κ + O J κ (log κ) J+3 .

Writing

g(K, τ ) -g(κ, τ ) = g(K, T) -g(κ, τ ) + g(K, τ ) -g(K, T)

and using (5.15) and (5.16), we can derive that

g(K, τ ) -g(k, τ ) ⩽ -(a 1 -a 2 0 -C 1 )(e ε -1) + C 0 εe ε κ (log κ) 2 -(e ε -1 -ε) κ log κ + O J κ (log κ) J+3 ⩽ -(a 1 -a 2 0 -C 1 + C 0 ) εκ (log κ) 2 + O J κ (log κ) J+3 = - εκ (log κ) 2 + O J κ (log κ) J+3 , thanks to the choice of a 1 = a 2 0 + C 1 -C 0 + 1 = C 2 0 + C 0 + C 1 + 2.
Thus the inequality (5.11) can be written as

∞ τ +ε Φ T (t; y)t 2κ-1 dt ∞ 0 Φ T (t; y)t 2κ-1 dt ⩽ exp - 2εκ (log κ) 2 + O J κ 2 y + κ (log κ) J+3
for τ 0 ⩽ τ ⩽ log 2 T -20 and κ = κ τ . This implies that (5.17) uniformly for (T, y, κ) in (5.3) above and (5.4).

On the other hand, in view of the fact that Φ T (t; y) is decreasing in t, we have Since τ = log κ + J+1 j=0 a j /(log κ) j and ε ≍ (log κ) -J-1 , it follows that .

where the a j are constants ( a 1 = a 1 + a 2 0 ). From This implies the required result by choosing y = min{(log T )τ 2J+2 , (log T ) 2 /e 10+τ }. □

|ζ( 1

 1 + it)| = e γ {log 2 T + log 3 T + C 0 + 1 -log 2 + o(1)},

Lemma 2 . 2 .

 22 Let {b(p)} p primes be a complex sequence. Then we have T ⩾ 8, 2 ⩽ y ⩽ z ⩽ T 1/3 and all integers 1 ⩽ k ⩽ log T /(3 log z), where the implied constant is absolute.

Lemma 2 . 3 .

 23 Let T ⩾ 2 and y ⩾ log T . Then we haveζ(1 + it) = ζ(1 + it; y) 1 + O (log T )/y log 2 Tfor all t ∈ [T, 2T ] except for a set of measure at most O(T exp{-(log T )/(50 log 2 T )}).

□ 4 .

 4 Now Proposition 3.1 follows from (3.3), (3.6) and (3.7) with C j = C * j + C * * j . Moments of the short Euler products Let ζ(s; y) and D k (y) be defined as in (1.8) and (3.1)

5 . 1 Firstly

 51 it; R∖W)| 2k dt ≪ D k (R∖W). (4.23) Then noticing that D k (W)D k (R∖W) = D k (R), (4.22) is bounded by (4.24) 2 L+1 D k (R) exp -log T (log 2 T ) 4 ≪ D k (R) exp -log T 2(log 2 T ) 4 since 2 L+1 ≪ exp(2 log 2 k) ≪ exp(2 log 3 T ). Now the desired result follows from (4.18) and (4.24). □ Proof of Theorem 1.we recall the definition of of the short Euler products ζ(s; y)

( 5 .

 5 20) Φ T (τ + ε; y)(τ -ε) 2κ-1 ⩽ 2k τ +ε τ -ε Φ T (t; y)t 2κ-1 dt ⩽ Φ T (τ -ε; y)(τ + ε) 2κ-1

5 . 3 .

 53 (5.19)-(5.21), we can deduce thatΦ T (τ + ε; y) ⩽ exp -2κ log κ 2 + J j=1 a j -C j (log κ) j + O J κ y + 1 (log κ) J+1 ⩽ Φ T (τ -ε; y).Since τ = log κ + J j=0 a j /(log κ) j , we can apply Lemma 4.2 to write2κ log κ = 2e τ -C 0 -1+ J j=1 b j /τ j τ + J j=0 b j /τ j 19)-(5.21), we obtain (5.22) Φ T (τ + ε; y) ⩽ exp -2e τ -C 0 (τ -ε; y)witha 1 = 2b ′ 1 + c 1 = 2(b 1 -b 0 ) + a 1 -C 1 = 2(-a 1 + a 0 ) + a 1 + a 2 0 -C 1 = 2a 0 -a 1 + a 2 0 -C 1 = 2a 0 -(a 2 0 + C 1 ) + a 2 0 -C 1 = 2a 0 -2C 1 = 2(1 + C 0 -C 1 ).End of the proof of Theorem 1.1. By Lemma 2.3, we can derive that (5.23) Φ T (τ ) = Φ T (τ + O(ε + η); y) + O(exp(-(log T )/(50 log 2 T )) with η := (log T )/y. Combining (5.22) and (5.23), we can obtain Φ T

  2n)! < 16 31 . Combining (4.8)-(4.10) and using the inequality -log(1 -t) ⩽ √ 3t (0 ⩽ t ⩽ 2 -1/2 c), we can derive that

	(4.11)	S k (I j ) ⩽ D k,j exp log	1 G δ j	+	p∈I j	log	100k p	+	√ 3k(2δ log p) 2 p	.

  Taking δ = 1/(10 log 2 T ) and noticing that t → (t/ log t) log(25y/t) is increasing in I 0 , we deduce, for (T, y, k) in (4.1),

	ky δ log k	log	25y k	⩽	e 1/5 (log T )/(e 10 log(y/ log T )) log((log T )/(e 10 log(y/ log T )))	log	25e 10 y log T	log	y log T
				⩽	10e 1/5 log T e 10 log((log T )/(e 10 log(y/ log T )))
				⩽	20e 1/5 log T e 10 log 2 T	•		
	Inserting this into the preceding inequality, we have
				S k (I 0 ) ⩽ D k,0 exp -δ log G 0 +	20e 1/5 log T e 10 log 2 T
	for (T, y, k) in (4.1). Now the result of Lemma 4.2 follows by recalling that G 0 = T 1/5 . □
	4.2. Proof of Proposition 4.1.				
										1.7] in form
					k<p⩽y	log p p	⩽ log	25y k	,
	we can derive that						
					S k (I 0 ) ⩽	D k,0 G δ 0	exp	3ky δ log k	log	25y k	.

  Observe that the integral does not depend on w, so we can change the order of sum and integral. Further, we have

		mw,nw∈S(Iw)	w∈W	d k (m w )d k (n w ) m w n w	=	w∈W mw,nw∈S(Iw)
		gw>Gw										gw>Gw
		∀w∈W									
					d k (m r )d k (n r )						n r
		mr,nr∈S(Ir)	r∈R∖W	m r n r		r∈R∖W	m r
		∀ r∈R∖W									
	mr,nr∈S(Ir), ∀ r∈R		r∈R	d k (m r )d k (n r ) m r n r	1 T	T	2T	r∈R	n r m r	it	dt
	gw>Gw,∀w∈W									
	=	mw,nw∈S(Iw)	w∈W	d k (m w )d k (n w ) m w n w	1 T	T	2T	w∈W	n w m w	it	|ζ(1 + it; R∖W)| 2k dt,
		gw>Gw									
		∀w∈W									
	which is bounded by									

it = |ζ(1 + it; R∖W)| 2k . where ζ(s; R∖W) is defined as in (4.15). Thus the inner sum in (4.17) gives mw,nw∈S(Iw) gw>Gw ∀w∈W w∈W d k (m w )d k (n w ) m w n w 1 T 2T T |ζ(1 + it; R∖W)| 2k dt. (4.19)

  2κ-1 dt, provided the constant c is convenably large and y ⩾ κ(log κ) J+3 . Similarly(5.18) 

					0	τ -ε	Φ T (t; y)t 2κ-1 dt ⩽	1 4	0	∞	Φ T (t; y)t 2κ-1 dt.
	From (5.17) and (5.18), we deduce that
	1 2	0	∞	Φ T (t; y)t 2κ-1 dt ⩽	τ +ε τ -ε	Φ T (t; y)t 2κ-1 dt ⩽	0	∞	Φ T (t; y)t 2κ-1 dt.
	Combining this with Lemma 5.2 leads to
				τ +ε					
					Φ T (t; y)t 2κ-1 dt	
		τ -ε					
	(5.19)	=	(log κ) 2κ 2κ	exp	2κ log κ	J j=0	C j (log κ) j + O J	κ y	+	1 (log κ) J+1

∞ τ +ε Φ T (t; y)t 2κ-1 dt ⩽ 1 4 ∞ 0 Φ T (t; y)t
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