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ABSTRACT
Named Entity Recognition (NER) is a challenging and widely stud-
ied task that involves detecting and typing entities in text. So far,
NER still approaches entity typing as a task of classification into
universal classes (e.g. date, person, or location). Recent advances in
natural language processing focus on architectures of increasing
complexity that may lead to overfitting and memorization, and thus,
underuse of context. Our work targets situations where the type of
entities depends on the context and cannot be solved solely by mem-
orization. We hence introduce a new task: Dynamic Named Entity
Recognition (DNER), providing a framework to better evaluate the
ability of algorithms to extract entities by exploiting the context.
The DNER benchmark is based on two datasets, DNER-RotoWire
and DNER-IMDb. We evaluate baseline models and present experi-
ments reflecting issues and research axes related to this novel task.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; • Nat-
ural language processing → Information extraction;
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1 INTRODUCTION
Information extraction (IE) is a widely studied subfield of natural
language processing (NLP) that aims to extract structured infor-
mation from text. The task of Named Entity Recognition (NER)
[16–18] is dedicated to recognize and classify entities (e.g. people,
places, dates). NER usually constitutes the foundation of IE systems
and strongly impacts the performance of higher-level tasks such as
the extraction of relations between entities or the construction of
knowledge graphs [19].
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Recent advances in artificial intelligence address NER as a se-
quence modeling task in which each word of an input text is asso-
ciated with a predefined class. State-of-the-art solutions are formu-
lated through a deep learning framework using specifically designed
architectures such as biLSTM-CRF [18] and transformers [1]. These
models are tested on reference benchmarks [38, 41].

Some variations of the NER task have been proposed to handle
more difficult scenarios and solve specific issues: Entity Disam-
biguation [33] aims at segmenting entities and linking them to
a knowledge base; Entity matching [5] aims at predicting if two
detected entities refer to the same singularity.

These different tasks (including NER) share a common drawback:
they all consider an entity as a universal concept, linked to a single
class, even if it may appear in different surface forms and contexts.
This limits the potential of the information extracted which could
be useful for more elaborated downstream tasks. As an example,
assuming a text relating facts of theAmazon company, our objective
is to introduce a variability depending on the context, which might
be in this case, for instance, its different roles of seller/buyer. Indeed,
Amazon is likely to sell a product to an individual person but buy
from another company. Moreover, typing an entity to a single class
–in the vast majority of cases– makes memorization a competitive
approach, as shown in [4, 37].

To address the contextualization of entity type and limit mem-
orization effects, we design in this paper a specific task, called
Dynamic Named Entity Recognition (DNER), in which entity labels
are sample-dependent. It consists in detecting and categorizing en-
tities whose type varies from one sample to another and addresses
more abstract concepts (e.g. winning/loosing teams in a basketball
match). Related tasks encompass Entity-Aspect Linking (EAL) task
[25] in which labels are constrained by fine-grained concepts in a
knowledge base, Semantic Role Labeling (SRL) [20] in which labels
correspond to roles payed by tokens in their context (verb, subject...)
or Event Extraction (EE) [45] in which a token describing an event
(called a trigger) is extracted and linked to associated parameters
(defined by the 5W1H Who, What, Whom, When, Where and How).
Our scenario is different as the class is not specifically constrained
by a knowledge base (as in EAL) or need not to be associated to
explicit mentions in the input text (as in SRL or EE). The fact that la-
bels are sample dependent ensures that a DNER system will be able
to take better advantage of the sentence context and should there-
fore be more efficient on never seen entities and more transferable
to new test data.

With this in mind, we propose two datasets, DNER-RotoWire
and DNER-IMDb. The first one is derived from the academic
dataset RotoWire [43], which contains data pairs with NBA match
statistics and associated summaries. Our goal is to detect players
and classify them as winners or losers based on the summary. The
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second dataset is based on the IMDb website from which we ex-
tracted movie synopses and the associated ordered list of actors.
The objective is to classify the actors according to their credit order
(1,2,3,4...). For both datasets, we ensure that entities are classified
differently across several samples to make the decision context-
dependent. Our contribution is threefold:
● DNER task formalization (Section 3): we formalize the task

of Dynamic Named Entity Recognition, including also the simplest
task of Dynamic Named Entity Typing. We also detail the main
associated challenges.
●DNEREvaluation framework (Sections 4 and 5): we present

the built datasets, DNER-RotoWire and DNER-IMDb, and intro-
duce a benchmark with metrics and a set of baselines.
● Experiments (Section 6): we conduct a series of preliminary

experiments to evaluate the difficulty of the task. We outline in-
sights reflecting the potential of the task in terms of model design.
Our evaluation framework (datasets, metrics, baselines) is available
at https://github.com/Kawatami/DNER.

2 RELATEDWORK
Initial works in NER relied on hand-crafted features and rule-based
algorithms [2, 14]. They mainly suffered from maintenance issues,
lack of flexibility and thus high adaptation cost [7], leading the
community to explore statistical approaches [40]. This marked a
turning point in terms of performance, especially with the introduc-
tion of the IOB scheme (later extended to IOBES), which allowed the
NER task to be treated as a sequence labeling problem [26]. Early
proposals were divided into sequence modeling approaches (Hid-
den Markov Model) [6] and classical discriminators relying on rich
contextual features [3, 32]. In this context, the CRF –conditional ran-
dom field– [17], despite the cost of the Viterbi inference, received
much attention [22, 23].

The growing interest in deep learning over the last 10 years [9]
had led to significant advances. First deep-NER models [8, 13, 27,
28, 36] exploited the semantics introduced by word representations
[9, 24]. Huang et al. [13] introduced the biLSTM-CRF model which
quickly became a standard architecture with a powerful bidirec-
tional recurrent neural network preceding a CRF layer to model
label dependencies. This backbone has been successively improved
by the incorporation of representations at the level of characters
[18] and then tokens. Finally efforts have been made toward a bet-
ter exploitation of additional supervision from eternal source of
information [12, 34, 44].

These progresses have pushed the community to design more
challenging NER tasks such as Entity-Aspect Linking, Event Ex-
traction [25] or take over Semantic Role Labeling [20]. These tasks
require to exploit the context either by establishing a link to a
knowledge base or bound tokens between them with links having
a special semantic. These scenarios do not encompass real-life situ-
ations where one can deduce entity roles not explicitly described
in the input (the role is not part of a knowledge base nor can be
represented as a link between two tokens following the predicate-
argument structure) and might vary according to the context (such
as winner/loser in basketball matches, buyer/seller in contracts,
etiologic/symptomatic treatments in medical reports).

Recently, contextualized word representation models, such as
BERT [11], have disrupted the NER task. This contextualization
allows disambiguation of words while allowing a very efficient
fine-tuning on most NLP tasks [15, 42], and leads to better perfor-
mances in the case of NER [1]. In addition, the very fine modeling
of the dependencies in the self-attention layers made it possible
to dispense with the costly output CRF layer [37]. Those modern
language models offered a lot of opportunities [31]: their extraction
abilities improved transfer learning on NER [30], even in the more
difficult setting in which the target domain was only associated
with distant supervision [21].

Recent studies show that the complexity of those architectures
enables them to encode information as a knowledge base [29].
Those capacities also raise new questions: regarding entities, what
is the balance between memorization and extraction? From an even
more general point of view, is memorization necessary -to integrate
prior knowledge- or simply a phenomenon of over-fitting that must
be limited? Historical datasets implicitly emphasize memorization
capabilities by sharing an important part of the entity set between
the training and the test set [4]. This phenomenon can be set aside
either by designing a non-overlapping dataset [10] or by investi-
gating transfer between datasets [37]. All these works around the
notion of generalization in NER serve as a basis of reflection for
this article. The current performances of language models push us
to test more and more ambitious problems, this is the position of
this article.

3 THE DNER TASK & CHALLENGES
Traditionally NER is formulated as sequence tagging task [13, 18].
Inspired by this formulation, we consider a supervised text 𝑇 de-
scribing a single event (a basketball match or a film synopsis) in
which entities (and by extension all their mentions) assume a sin-
gle class within it. The text itself can be decomposed as a tuple
𝑇 = (𝑋,𝑌):
● 𝑋 corresponds to the raw textual data, split in 𝑁 tokens:

𝑋 = {𝑥1, . . . , 𝑥𝑖 , . . . , 𝑥𝑁 }, each token being drawn from a vocab-
ulary 𝒳 .
● The entities are not nested, each corresponds to a consistent

block of index 𝐼 = (︀𝑖 ∶ 𝑖 + 𝑗⌋︀.
●𝒱 which corresponds to the set of possible tags associated to en-

tities. For our two proposed datasets, we define𝒱 = {𝑤𝑖𝑛𝑛𝑒𝑟, 𝑙𝑜𝑠𝑒𝑟}
and 𝒱 = {1, 2, 3, 4}, respectively. Note that these labels are not nec-
essarily explicitly associated to any token in the input text 𝑋 .
● 𝑌 stands for the set of IOBES labels associated with tokens

mentions within T: 𝒴 = {𝑦1, . . . ,𝑦𝑖 , . . . ,𝑦𝑁 }.
For the datasets proposed, we define𝒴 = {(︀𝐵, 𝐼, 𝐸, 𝑆⌋︀−𝑤𝑖𝑛𝑛𝑒𝑟, (︀𝐵, 𝐼, 𝐸, 𝑆⌋︀−

𝑙𝑜𝑠𝑒𝑟,∅} or𝒴 = {(︀𝐵, 𝐼, 𝐸, 𝑆⌋︀−1, (︀𝐵, 𝐼, 𝐸, 𝑆⌋︀−2, (︀𝐵, 𝐼, 𝐸, 𝑆⌋︀−3, (︀𝐵, 𝐼, 𝐸, 𝑆⌋︀−
4,∅}). Thus, 𝒴 is an extension of the label set 𝒱 dedicated to the
label sequence tagging task.

3.1 Tasks
Based on these notations, we formalize two tasks to introduce two
levels of difficulty for both datasets. We distinguish the DNET task
from the DNER one, starting with the simplest. Please note that all
metrics will be defined at the entity level.

https://github.com/Kawatami/DNER
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Figure 1: RotoWire preprocessed samples for the DNER task. Players highlighted in green are winners, and those in red are
losers. Both samples mention the player "Lebron James" but with different labels.

Dynamic Named Entity Typing - DNET.
This task consists in classifying an already identified span of tokens
indexed by 𝐼 . Thus, we design a function 𝑓𝑑𝑛𝑒𝑡 that makes a decision
for a single entity mention within the given a context 𝑋 , 𝑓𝑑𝑛𝑒𝑡 ∶
𝒳

𝑁
× 𝐼 → 𝒱 .

Dynamic Named Entity Recognition - DNER.
This task corresponds to the complete NER, including both span
identification and label assignation. The task is thus formalized as
a sequence tagging: 𝑓𝑑𝑛𝑒𝑟 ∶ 𝒳

𝑁
→ 𝒴

𝑁 .

3.2 Challenges
Having the task formalization in mind, we can outline the different
challenges of DNET and DNER:
● Label variability: an entity may have different labels depending

on the sample, making the context influential and decreasing the in-
formativeness of the entity’s surface form. Typically, two basketball
teams play each other several times, possibly with different results.
The challenge is then to focus on the language elements designating
the winners and losers but not on the team membership, which
would lead to overfitting. It is worth noting that while NER may
also assume such variability in principle it is not constrained by
design and is empirically rarely found (e.g., 97.49% of entities in
OntoNote are associated to a single label).
● Label consistency: an entity may be mentioned several times

in a text 𝑋 , possibly in slightly varying forms. It is important to
maintain label consistency per entity during the inference process.
For basketball matches, if a player is one of the winners, all his
mentions must be labeled accordingly in the same sample.This chal-
lenge is also found for the NER task to a lesser extent: in the case
of DNER it become crucial as the label variability takes a greater
importance.
● Out-of-scope entities and distant supervision: the set 𝑌 of labels

does not necessarily provide supervision for all of the named en-
tities. For example, in basketball matches, we focus only on the
players while other entities are likely to appear, in particular the
coaches of both teams. This raises the question for the task and
the metrics: do we need to detect this type of entity? If so, how
do we label them? In this article, we focus primarily on the two
aforementioned challenges and use common NER metrics. We leave
the in-depth analysis of this challenge for future work.

4 DNER DATASETS
In this section, we describe the construction process and bias anal-
ysis of the two introduced datasets.

4.1 DNER-RotoWire
Construction and statistics. The Rotowire dataset [43] consists

of pairs of tabular data (match statistics) and English summaries
written by sport reporters. The primary goal of this dataset is to
provide a benchmark for data-to-text generation models. To fit with
the DNET and DNER tasks, we reprocessed the RotoWire dataset
by identifying players as entities and denoting whether they belong
to the winning or the losing team (a sample is provided in Figure 1).
The procedure is done via regexp following the distant supervision
paradigm which may introduce noise in the datasets, particularly,
when names vary between tabular data and summaries; for instance,
our script is designed to handle partial mentions (mentioning only
the last name) but shows limitations when dealing with nicknames
which would require an external knowledge base to be handled
correctly.

Finally, to allow fair comparison between models, particularly
Transformer-based approaches that aremostly limited to 512 tokens,
we truncate summaries at this size limit. This implies that only 1.48
entities are removed on average per summary1.

To measure the impact of the context memorization, we design a
specific pipeline to split the dataset into train/test sets inspired by
[37]. The goal is to separate test samples according to the increasing
level of difficulty. Samples might share common properties (such
as the teams involved in basketball matches) that a model could
overfit and thus, bias its performance. To measure this phenomenon
we divide the tests to measure performances in situations where
the context (e.g., the team) have been seen and not seen during
training. For this dataset we define the test set Seen as samples in
which both involved teams are seen during training, Unseen when
both teams are unseen during training, and Seen/Unseen for which
only one team is seen during training. For more details about the
splitting procedure, see section 5.

Dataset statistics are provided in Table 1, in the resulting sets we
observe an imbalance in the class distribution towards winners (55%
versus 45%), thus better performances are expected for this class.
1Both the truncated and the full version of the datasets will be provided.
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(b) Player relative position distribution according to their labels.
Winning players tend to be mentioned earlier.

Figure 2: Analysis of popularity and relative position bias in the DNER-Rotowire dataset.

Set Samples Entities Entity tokens Winner Loser
Train 1532 14202 24940 0.54 0.46
Validation 511 4615 8086 0.53 0.47
Seen (test) 511 4748 8360 0.54 0.46
Seen/Unseen (test) 1996 18293 31776 0.53 0.47
Unseen (test) 303 2721 4674 0.54 0.46

Table 1: DNER-RotoWire statistics. Entities refers to the
number of entity mentions, Entity tokens to the number of
tokens associated to entity mentions. ColumnsWinner and
loser mention the proportion of each label category.

XXXXXXXSource
Target Train Validation Seen Seen/Unseen Unseen

Train 100 96.71 97.05 98.82 20.484
Validation 99.28 100 97.50 98.84 19.60
Seen (test) 99.22 96.80 100 98.79 21.89

Seen/Unseen (test) 70.72 67.97 66.68 100 59.43
Unseen (test) 40.94 37.11 35.51 99.52 100

Table 2: Proportion of common players between sets in
DNER-RotoWire. From the source (rows) that appear in the
target (column).

We checked the label variability of entities (main hypothesis of the
proposed DNER task): we found that over 44579 total mentions,
44212 (99.17%) belonged to players with variable labels and 367
(0.82%) with constant ones. Complementary statistics about the sets
are available in Table 2.

Bias analysis. We investigate here the potential bias behind the
entities regarding our DNER task. Specifically, we consider two
features:
● Popularity: some players are more popular than others, mainly

due to their performances. This might impact the results of matches
in which they play and lead to an over-citation ratio in summaries.
● Position in the narrative of summaries: It seems that sport jour-

nalists tend to present the facts/players of the winning team first,
then those of the losing team.

In Figure 2 (a), we provide a visual representation of the popular-
ity bias regarding players’ labels. The popularity is estimated by the
ratio of a player’s mentions over the total mentions in the dataset.
Quartiles are then extracted to group players within four groups
ranging from low to high popularity. We can observe a relative

equal balancing between losing and winning mentions when play-
ers are not very popular (three first quartiles) and an unbalancing
toward winning players for the most popular players.

Figure 2 (b) depicts the label distributions according to their
relative position. Positions are normalized to range within (︀0, 1⌋︀
(beginning/end of the text), and grouped within 50 bins. Each dis-
tribution mode reflects the position bias: the winning players tend
to be mentioned earlier on average.

These analyses show the importance for future models to lever-
age the textual context to deal with label variability and avoid any
bias towards popularity and position.

4.2 DNER-IMDb
We provide the DNER-IMDb dataset with the two goals: 1) adding
more variability in terms of vocabulary and 2) increasing the diffi-
culty of the task with more output classes and uncertain labels.

Construction and statistics. IMDb23 is an online database related
to media content. We focus on movies, characterized by two main
pieces of information that we use for the DNER task:
● Movie synopses: these are short English descriptions of movies.

Synopses mention fictional characters, their importance and behav-
ior in the films, and the relationships between the characters. A
movie may have several synopses.
● Character meta-data: character information, including the ac-

tors playing those roles and their credit rank.
To fit with our objective of dynamic labeling, we replace fictional

characters with actor names. Indeed, an actor will appear in several
movies, probably with different labels. For instance, Bruce Willis
played as first credited character in "Die Hard" but fourth in "Pulp
Fiction" (see Figure 3). Once the substitution is done, the designed
task is to identify the credit order of all actors given a synopsis.

In practice, we built the DNER-IMDb dataset with a raw database
of 245,404 movie synopses. The labels range from the first credited
actor to the eighth, but less than 1% of the samples have more
than 4 credited actors. We only retain films with no more than
4 credited actors, produced between 1970 and 2021, and with a
minimum of 600 views on the IMDb site. This ensures that synopses
are written in a modern style with sufficient metadata about the
2https://www.imdb.com/interfaces/
3https://rapidapi.com/apidojo/api/imdb8 (as of 27/01/2022)

https://www.imdb.com/interfaces/
https://rapidapi.com/apidojo/api/imdb8
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Figure 3: IMDb preprocessed samples for the DNER task. In movies Die Hard (left) and Pulp Fiction (right), actors are colored
w.r.t. their labels. Red, blue, green, and yellow labels are resp. for first, second, third and fourth actors.

Set # samples # Entity # Tokens credit 1 credit 2 credit 3 credit 4
Train 13328 90726 185850 39.50% 24.76% 21.97% 13.75%
Validation 1725 12008 24557 37.40% 24.14% 23.55% 14.89%
Seen (test) 805 5450 11176 39.68% 23.92% 23.43% 12.95%
Unseen (test) 4030 27346 56038 39.38% 24.11% 22.60% 13.89%

Table 3: Sample, entity and token counts for DNER-IMDb. Entity label distribution for every set.
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(a) Credit order statistics w.r.t. popularity. Popular actors tend to take
first and second place in the credit while being less expected to be in
third and fourth.
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(b) Actor relative position distribution according to their labels. First
credited actors tend to be cited more often earlier in the summary.

Figure 4: Analysis of popularity and relative position bias in the DNER-IMDb dataset.

actors. Moreover, actor names explicitly mentioned in the synopsis
are removed (e.g. "F.B.I. trainee Clarice Starling (Jodie Foster)
works hard [...]" - The Silence of the Lambs). Then, we replace the
names of the characters with the names of the actors using regular
expressions. There are still a few improperly formatted samples;
the main errors being (1) the mismatch between the characters’
surface forms provided by the IMDb database and that found in
the synopsis, resulting in inconsistent or partial permutations, and
(2) mentions of characters without associated data. Similarly as in
DNER-RotoWire, we restricted the synopsis length to 512 tokens.
We observed that synopses are very short on average therefore the
size limit of 512 tokens has almost no impact here.

The construction of the training and test sets follows a similar
procedure for the DNER-RotoWire dataset (see Section 5). As sam-
ples are only described by unique movie titles on the synopsis level
(and not two teams for a match summary in the DNER-RotoWire
dataset), the procedure is simplified as no seen/unseen set is pro-
duced.

The resulting dataset consists of 44,189 samples (a sample is
provided in Figure 3) with synopses averaging 106.89 words in
length and 4.59 actormentions. Dataset statistics are given in Table 3
and complementary statistics are available in Table 4. To assess the
label variability hypothesis, we estimate the distribution of actors’

XXXXXXXXXSource
Target Train Validation Seen Unseen

Train 100 19.13 20.76 20.76
Validation 95.76 100 30.57 43.83
Seen (test) 97.47 52.37 100 50.34

Unseen (test) 54.84 23.12 15.50 100
Table 4: Proportion of common actors between sets inDNER-
IMdB. From the source (rows) that appear in the target (col-
umn).
mentions w.r.t. their number of different associated labels in the
ground truth. Although there is an important number of mentions
related to actors with the same label (23.9%), we measure that most
mentions are associated with entities with multiple labels (18.7%
have 2 labels, 26% have 3 labels, and 31.4% have 4 labels).

Bias analysis. This dataset shares common similarities with
DNER-RotoWire regarding biases. We hypothesize that an actor
also has a popularity factor and a position in synopses that might
influence the decision process as well. Many movie synopses start
by mentioning the first character (e.g. "Mr. Cobb a unique con
artist can enter anyone’s dreams [...]" - Inception) which constitutes
a potential bias. Actors’ relative positions have been analyzed in Fig-
ure 4 (a). We notice that first credited actors are usually mentioned
earlier, specifically at the very beginning of synopses. This effect
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occurs for all classes, with less impact on other credit orders. Except
for the beginning of synopses, we observe a homogeneous distribu-
tion of the position across labels. Similarly to DNER-RotoWire, we
analyzed the popularity bias in Figure 4 (b). The popularity of each
actor is estimated by the ratio of her/his mentions over the number
of mentions in the ground truth. We can observe that the number
of mentions for classes 1 and 2 increases with the popularity level
while it remains stable or decreases for classes 3 and 4. This means
that popular actors are more likely to be assigned to first or second
credited roles than to be assigned to last credited ones. However,
when actors are not really popular, they can be uniformly assigned
to any roles in the credit order.

As for the DNER-RotoWire, this bias analysis reinforces our
intuition that models need to focus on language elements to avoid
learning by heart bias and not being robust to label variability.

5 TEST SET CONSTRUCTION PROCEDURE
To measure the impact of context memorization, we design a spe-
cific pipeline for splitting the datasets into train/test sets. We make
the hypothesis that current architecture such as LSTM or trans-
former are complex enough to retain entities/labels association
via overfitting and not solely on context analysis. To measure this
phenomenon we divide the tests to measure performances in sit-
uations where the context is known and unknown. The first set
hold samples with context seen during training, we expect the best
performances as this set share most of its entities with the training
set (see Table 2 and 4) which facilitates the segmentation process,
in addition, a model may overfit on datasets biases previously men-
tioned in section 4.1 and 4.2. The second set holds data without
any common context with the training data, we expect a decrease
in performances as a model cannot overfit on the context in this
case in addition to be exposed to never seen entities. We, therefore,
build sets to dispose of seen and unseen contexts in the test set
regarding those which compose the train set. The splitting pipeline
is illustrated in Figure 5 and includes the following main steps:

● The set of context (teams and movie titles) is split into
TrainV0 and TestV0u (75%/25%). TestV0u is considered as
the set including "unseen context".
● The TrainV0 is split into two new sets TrainV1 and TestV0s
(75%/25%). TestV0s represents the set of "seen context" while
TrainV1 corresponds to the training contexts.
● A final step is necessary to aggregate these sets at the sanple
level. To do so, we process the list of samples and assign
to the training fold if the current context belong to the set
TrainV1 and to the test fold otherwise. From the TrainV1, we
split into final train/validation sets on the basis of 80%/20%.
For context in the test set, we distinguish two situations :
"unseen" if the context belong to the set TestV0u and "seen"
if the context belong to TestV0s. Therefore, the "seen" test
set is guaranteed to hold sample sharing context with ones
found in the train set.

Please note that depending on the data at hand a context might
be defined by one property such as unique movie title in the case of
DNER-IMDb. But several properties might take place in for other
data such as DNER-RotoWire.

Context list (NBA teams / movies)

Train V1

Test V0uTrain V0

Test V0s

Samples (NBA matches / synopses)

Train Validation Seen Samples
overlap Unseen
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Figure 5: Data splitting procedure for set creation.

6 EXPERIMENT PROTOCOL
Baselines. We propose a set of baselines inspired by state-of-the-

art NER architectures, which rely on Transformers supplemented
either by a classical discriminator or a CRF layer for difficult cases
[35].

For the simpler DNET task, we design a lightweight architecture
that first encodes the texts at the token level. Since the entities are
composed of a variable number of tokens, an aggregation problem
must be solved before the classification stage. In their work, [39]
study several approaches to compute such representation rang-
ing from token selection, pooling, or attention. Their experiments
highlight that the best is task-dependent, but the max-pooling pro-
cedure is very robust across a wide range of tasks. Thus, we use it
to compute the representations of spans associated to the entities.

For both DNET and DNER, we also consider a supplementary
feature modeling the general context. By exploiting the advantages
of the BERT architecture, we integrate the special CLS token into
the classifier features. We believe that this additional information
can potentially be useful for our task-specific challenges such as
label consistency or business knowledge modeling.

As a result, we consider 4 baselines for DNER and 2 for DNET:
●BERT-Linear: token representations are contextualized through

BERT and then classified using a linear layer.
● BERT-CLS: as BERTLinear with the additional CLS token

concatenated to each word representation before classification.
● BERT-CRF: following the SOTA in transfer NER, we propose

to add a CRF output layer to explicitly model label dependencies.
This architecture is dedicated to the sequence labeling task and
therefore not suited for the simple CNET task.
● BERT-CLS-CRF: as BERT-CRF with the additional CLS token.
A visual representation of baseline models is provided in Figure 6.

Metrics. To measure the quality of the entity classification, we
make use of 𝜇𝐹1. In the case of the DNER task, the entities are
extracted via the IOBES scheme in the case where it is well format-
ted (BEGIN token followed by INSIDE and finally END or just a
SINGLE token), the entity labels are extracted via the associated
class from 𝒱 .

To measure our ability to detect entities (whatever their classes),
we provide a span quality metric, Entity. For each entity belong-
ing to the associated reference summary, we compare each entity
boundaries in the reference summary with boundaries from the
begin and end tokens. If boundaries match, the entity has been
correctly detected. We then estimate the F1 score.
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Models Set
RotoWire IMDb

DNET DNER Entity DNET DNER Entity

BERT-Linear

Seen 0.81 0.66 0.86 0.67 0.36 0.58
Seen/Unseen 0.81 0.65 0.85 - - -

Unseen 0.80 0.63 0.81 0.45 0.31 0.56

BERT-CLS

Seen 0.81 0.67 0.88 0.69 0.37 0.60
Seen/Unseen 0.81 0.68 0.87 - - -

Unseen 0.80 0.67 0.85 0.46 0.32 0.58

BERT-CRF

Seen - 0.67 0.90 - 0.60 0.94
Seen/Unseen - 0.67 0.88 - - -

Unseen - 0.66 0.87 - 0.52 0.92

BERT-CLS-CRF

Seen - 0.61 0.82 - 0.56 0.90
Seen/Unseen - 0.61 0.81 - - -

Unseen - 0.60 0.79 - 0.48 0.88

Table 5: Experiment results. The 𝜇𝐹1 score is reported for both datasets and tasks.

RotoWire IMDb
Model Set GT All W L GT All 1 2 3 4

Bert-Linear

S 5.44% 17.69% 14.61% 21.87% 0% 7.24% 4.47% 6.27% 11.11% 9.92%
S/U 4.64% 20.88% 17.52% 26.15% - - - - - -
U 2.63 % 20.54% 17.96% 26.31% 0.31% 8.64% 5.59% 10.05% 12.02% 9.20%

Bert-CLS

S 5.44% 13.27% 9.23% 18.75% 0% 5.01% 3.68% 3.76% 7.20% 7.14%
S/U 4.64% 18.27% 13.40% 25.92% - - - - - -
U 2.63% 10.81% 7.81% 17.54% 0.31% 5.68% 4.58% 6.41% 6.43% 6.25%

Table 6: Inconsistency analysis statistics. Entity with a single mention are ignored. S stands for the seen test set, S/U for the
seen/unseen test set and U for the unseen

Entity with
property 1

Entity with
property 2

Token
Contextualization

Entity classification

Context
vector

Transformers 

Linear 
MLP 

Entity with
property 1

Entity with
property 2

Token
Contextualization

Token classification

Context
vector

Transformers 

MLP 
CRF 

MaxPool over Time

(a) DNET architecture (b) DNER architecture

Figure 6: Baseline architectures

To measure the entity consistency (challenges in Section 3.2),
we design the inconsistency metric. It compares the labels of all
mentions of the same entity within a sample. If an entity obtains
the same label for all its mentions, the incoherence metric is equal
to 0. Otherwise, its value is 1. This metric is then aggregated over
all multi-mentioned entities4 of all samples.

7 BENCHMARK RESULTS
RotoWire - DNET. In this experiment, the goal is to classify

player contextualized representations within two categories:winner
and loser. Results are shown in Table 5 (left).

We logically observe a decrease in performance when the diffi-
culty increases from Seen to Unseen. Even if the difference is limited,
4For clarity, all entities that are mentioned only once are removed from the calculations.

it is easier for a model to decide if some properties of the context
have already been seen during training. Our two baselines perform
similarly. We can observe in Table 6 (left) the label inconsistency
metric. The effect of remote supervision is visible on the ground
truth with an inconsistency that varies from 2.63% to 5.44%. This
error is amplified by the model whose inconsistencies rise to 20.54%
(unseen test set) for BERT-Linear. This indicates that the consis-
tency challenge is difficult to meet without explicit modeling of
team membership constraints. It is interesting to note that the intro-
duction of a general context (CLS) enables the model to significantly
reduce inconsistencies (10.81% for the unseen test set).

RotoWire - DNER. All DNER results are shown in table 5 (right).
The first conclusion from this table is that the CLS token provides a
performance gain compared to the baseline Bert-Linear architecture.
This is consistent with the experiments with DNET, where the CLS
token exhibited better robustness to inconsistency. This effect could
be of greater magnitude due to the IOBES scheme, which requires
the classification of a larger number of classes. BERT-CRF performs
better in entity recognition, which is easily explained by the CRF
layer effectively maintaining label coherence. This suggests that the
CRF helps in maintaining such a factor, but is not able to correctly
analyze a context. The combination of the CLS token and the CRF
layer generally performs well, but the added complexity could
trigger an overfitting effect. This confirms our suspicions about the
added difficulty of our proposed task.

The best baseline (BERT-CLS) proposes an average F1 perfor-
mance of 0.67, mainly due to errors in typing and precision issues;
although interesting, it is clear that the many challenges mentioned
in Section 3.2 must be addressed in a specific way to cope with the
difficulty of the DNER task.

IMDb - DNET. On these data, the scores are globally worse than
on RotoWire (Table 5 (right)). This is easily explained by a change
from 2 to 4 classes. The loss of performance by going from seen
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to unseen is much more marked than on RotoWire with more
than 22 points of 𝜇𝐹1 on average: the memorization effect brings
information for all the entities with a single class.

In terms of labeling inconsistencies (Table 6 (right)), the problem
is virtually absent from the ground truth. On the test data, the
inconsistencies rise to 8.64%. While this figure again shows the
need to specifically address this issue, it is still far below that of
RotoWire. This difference is easily explained: the number of entities
per document is much lower on IMDb (4 against 9 on average on
unseen) and this intrinsically reduces the risk of inconsistencies.

IMDb - DNER. Entity detection is better on IMDb than on Ro-
toWire, but it relies heavily on the CRF layer. The overall improve-
ment is probably due to the artificial aspect of the dataset, where
entities always have the same surface forms and to the overlap rate
between learning and testing (54.84%, even on unseen movies).

We then return to the conclusion of the previous section: once
detected, entities are hard to categorize. The difference between
seen and unseen films is very large (6 𝜇𝐹1 points on average) and
the overall performance tops out at 0.60 of 𝜇𝐹1.

8 CONCLUSION
This paper introduces the Dynamic Named Entity Recognition
(DNER) task which aims at detecting entities and classifying them
in a frame where labels are dynamic. This task raises several chal-
lenges such as label variability, label consistency and taking into
account entity position or popularity bias. We provide benchmarks
in the form of two supervised datasets associated with test sets of
increasing difficulty. These benchmarks are provided with metrics
and referencemodels to ensure reproducibility and to encourage the
emergence of new models to address the specific challenges of the
task. Indeed, despite a reference architecture based on transformers,
our analyses show that the DNER task is particularly difficult and
the results obtained can be improved. The presented datasets were
designed for experimental purposes and might not be relevant for
real world applications.
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