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Abstract 17 

Climate variability threatens food system stability, particularly among smallholders in developing 18 

countries who depend on rainfed agriculture. Farm diversification could be a relevant adaptation 19 

strategy in this context as a greater number of species or a more even distribution of crops is 20 

postulated to have a stabilizing effect on farm output as compared to a homogeneous farm. In this 21 

study, we aimed to explore relationships between climate variability, agricultural diversity, and crop 22 

yield stability. We used agriculture-focused panel data from Ethiopian households surveyed over four 23 

waves from 2011 to 2018 and two climate datasets to derive measures of long- and short-term climate 24 

variability. In a twofold analytical approach, we used mixed effects models to separately model (i) 25 

farm richness and pastoralism prevalence with climate variability as predictors, and (ii) crop yield 26 

stability with diversity, farm input, and climate characteristics as predictors. We found that farm 27 

diversity is highest in areas with high temperature variability, or low rainfall variability. This held even 28 

when excluding pastoralists households, who have naturally lower diversity. We further showed that 29 

pastoralism is least common in areas with high temperature variability and low month-to-month 30 

rainfall variability. Both crop richness and crop evenness positively affected temporal yield stability, 31 

with each showing a greater effect than irrigation, fertilizer, and pesticide usage. Together, these 32 

findings suggest that shifts in typical ranges of climate variability could destabilize farm-level crop yield 33 

for smallholders by limiting diversification opportunities. Our findings highlight the need for 34 

researchers and policymakers to consider not only the direct effects of climate variability on crop yield, 35 

but also its indirect effects on yield stability caused by increasingly limited adaptation choices. 36 

 37 
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Introduction 39 

Ensuring food stability under increased climate variability is a priority for food security and livelihoods, 40 

especially in lower-income and low-latitude tropical countries, which are likely to be hit hardest by 41 

the effects of climate change (Rosenzweig and Parry 1994; Rosenzweig et al. 2014; Callahan and 42 

Mankin 2022). In particular, there is medium to high confidence that climate change has already 43 

increased heat waves and droughts in sub-Saharan Africa, with detrimental impacts on agricultural 44 

productivity and efficiency (Otto et al. 2018; Chiang et al. 2021; Trisos et al. 2022). Increases in climate 45 

variability are responsible for both a large proportion of global yield variability in several prominent 46 

crops (Ray et al. 2015), and a reduction in national temporal yield stability as a result of destabilizing 47 

individual crop yields (Mahaut et al. 2021). Livestock is also at risk of increasing climate variability. For 48 

example, higher drought frequency can increase mortality and decrease productivity (Herrero et al. 49 

2010; Godde et al. 2019). Smallholders are especially vulnerable to increased climate variability due 50 

to their high dependence on agriculture for their livelihoods, their strong orientation towards rainfed 51 

agricultural systems, and their often-limited capacity to cope and adapt to shocks (Ochieng et al. 2020; 52 

FAO 2021). Among the global pastoral communities, those that are currently the most socio-53 

economically vulnerable are expected to also experience the most damaging vegetation trends for 54 

livestock production (Sloat et al. 2018; Godde et al. 2020). Such findings highlight the need among 55 

smallholders to adopt adaptation strategies that minimize crop and livestock production risks, stabilize 56 

yields, and thus improve food security. 57 

 58 

Diversification has been suggested as a risk management strategy to adapt to climate variability and 59 

shocks. It involves increasing the variety, balance, or disparity of crops or livestock activities, which 60 

broadens the farm system's range of ecological responses to adverse conditions (Stirling 2007; Lin 61 

2011). Both crop and livestock diversification can generally increase food security (Waha et al. 2022) 62 

although the degree to which it improves food security may be limited to a threshold (Das and Ganesh-63 

Kumar 2018; Waha et al. 2018; Parvathi 2018). This indicates that finding the best levels for each type 64 

of diversity may be preferred over maximizing all aspects of diversity (Renard & Tilman, 2019). Benefits 65 

of diversification for food security include pest and disease suppression (Lin 2011), reduced income 66 

variability and greater market opportunities (Bellon et al. 2020; Mzyece and Ng’ombe 2021), reduced 67 

poverty (Michler and Josephson 2017), and lower downside risk exposure for crop income (Bozzola 68 

and Smale 2020). Such benefits may not always outweigh the resources required for smallholders to 69 

implement and maintain diversification strategies, such as the financial costs, extra labour, and 70 

knowledge (Rosa-Schleich et al. 2019). However, the ability to optimize diversification based on the 71 

farmer’s specific needs makes it a promising candidate for adaptation to climate variability.  72 
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 73 

While initial evidence and theory suggests a general positive effect of diversification on food security, 74 

the specific effects of diversification on temporal yield stability are still poorly understood (Beillouin 75 

et al. 2019), especially at the household level and over multiple years to decadal time scales. Literature 76 

to date offers some informative theory and observations pertaining to the effect of diversity on 77 

stability over time. For example, crop diversification at the national level stabilizes food production 78 

among many countries (Renard and Tilman 2019), including several in sub-Saharan Africa. This may 79 

be explained by the results of Mahaut et al. (2021), who found that the average yield stability of 80 

individual crops and asynchronization of yield fluctuations are both important determinants for 81 

national food production stability, and that crop diversification may improve the latter. Cereal 82 

intercropping with legumes was also found to significantly reduce the high instability of cereal yields 83 

in tropical regions (Raseduzzaman and Jensen 2017). Exploring the diversity-stability relationship at 84 

the household level with panel data can provide valuable additional insights. Indeed, as drivers of 85 

stability can depend on spatial scale (Shanafelt et al. 2015; Egli et al. 2021), household level analyses 86 

are imperative to forming valid conclusions about smallholder adaptation strategies. Moreover, the 87 

conditions faced by a household may differ significantly based on the unique combination of issues 88 

from the local scale to the global scale (Urruty et al. 2016). This heterogeneity in household responses 89 

is not considered in national-level or regional-level studies. 90 

 91 

Here, we aim to explore the relationships between climate variability, farm diversity, and temporal 92 

yield stability with a case study in Ethiopia, using household survey panel data from rural smallholders. 93 

We accomplish this through two interrelated aims. Firstly, we aim to better understand the nature of 94 

the relationship between observed climate variability and farm diversity. Secondly, we aim to 95 

investigate any association between farm diversity and temporal yield stability. In addressing these 96 

aims, we make the following hypotheses: diversity is non-linearly associated with climate variability, 97 

such that diversity is highest at a moderate range, and lowest at the extremes of climate variability; 98 

farm livestock orientation is positively associated with climate variability; and temporal yield stability 99 

is positively associated with diversity. 100 

 101 

Data 102 

Household survey data 103 

The World Bank's Living Standard's Measurement Study Integrated Surveys on Agriculture is a 104 

collection of agriculture-focused household surveys which provide comprehensive panel data across 105 
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several countries in sub-Saharan Africa. We used the Ethiopia panel dataset, which contains four 106 

waves pertaining to the primary harvest season, also called the Meher season, in 2011, 2013, 2015, 107 

and 2018 (Central Statistics Agency of Ethiopia 2011, 2013, 2015, 2018). 108 

 109 

The analysis was disaggregated into two distinct parts corresponding to the aims of this study, and 110 

each part uses different survey waves. Firstly, we analyzed the relationship between farm diversity 111 

and climate variability using cross-sectional household survey data from wave 4 in 2018. Secondly, we 112 

used household survey data from previous waves 1 to 3 to perform a longitudinal analysis investigating 113 

the effect of diversity on temporal yield stability. The latest survey wave from 2018 is a refreshed 114 

sample, and so it was not possible to link at the household level with the previous waves (CSA and 115 

World Bank 2021). Moreover, using wave 4 for the first objective rather than wave 1 to 3 ensured that 116 

the analysis was representative for all regions sampled. Indeed, the survey design for wave 1 to 3 was 117 

not intended to provide regional representativity across all regions. 118 

 119 

We considered only rural households, and only those households that harvested crops in the most 120 

recent Meher season, or owned livestock in the past 12 months. Crop yields vary a lot from year to 121 

year and between different regions (Fig. 1a). Due to the survey design, the distribution of households 122 

within and across each region Ethiopia’s largest administrative division is largely dependent on 123 

population density (Fig. 1b). For example, for wave 4, 1562 out of the 2521 rural households used in 124 

our analysis are from Tigray, Amhara, Oromia, or the Southern Nations, Nationalities, and Peoples’ 125 

Region. The remaining households come from the other six, typically smaller, regions. Notable 126 

exceptions to this are Somali and Afar, both rather large pastoral/agro-pastoral regions, with 49 and 127 

268 households respectively. The first three waves have a different distribution, due to the refreshed 128 

sampling for wave 4 (CSA and World Bank 2021). The World Bank’s GPS anonymization process sees 129 

each household take the coordinates of its kebele – Ethiopia’s smallest administrative division - which 130 

is then randomly offset by 0-5km, with 1% of kebeles being offset by an additional 0-10km. Each 131 

kebele’s GPS coordinate is guaranteed to be within its correct zone - Ethiopia's second-largest 132 

administrative division (CSA and World Bank 2021). 133 

 134 
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 135 

Fig. 1: Temporal yield stability in Ethiopia across three survey waves (2011 to 2015) for four selected crops (a) and location of 136 

surveyed households in the four most populated regions and present in all three waves 1 to 3 and after filtering (b).  137 

 138 

For the longitudinal analysis, we filtered livestock-only households from the sample (due to data 139 

constraints) so that it only contains crop-growing and mixed crop-livestock households present for all 140 

three waves. Hence, three of the regions had very few households. the number of households per 141 

kebele was no longer ten as per the sample design, but instead averaged six households per kebele. 142 

The sample sizes for each part of the analysis, following filtering, are illustrated in Fig. 2. 143 

 144 

 145 

Fig. 2: Sample filtering and resulting sample size for each part of the study. It was necessary to filter households primarily to 146 

remove those that did not participate in agricultural activities, or that did not harvest any of the major 23 crops in all waves. 147 

 148 
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Climate data 149 

For precipitation, we used CHIRPS with daily precipitation data from 1981 to present at a 0.05 degrees 150 

resolution grid (Funk et al. 2015). We also used the Climate Research Unit's climate dataset, CRU TS 151 

v4.05, which has monthly observations from 1901 to 2020 of both precipitation and temperature at a 152 

0.5 degrees resolution (Harris et al. 2020). This climate data was extracted at geographic locations 153 

closest to the anonymized GPS coordinates provided in the household survey data. 154 

 155 

We calculate climate variability using the coefficient of variation (CV) of precipitation and temperature 156 

measures commonly used to capture climate variability in agriculture. We considered two different 157 

time periods for these measures. Firstly, short-term month-to-month variability was calculated from 158 

monthly temperature and rainfall in the year prior to the survey year, to capture climate 159 

characteristics in the most recent season. Secondly, long-term annual variability was calculated using 160 

mean annual temperature and total annual rainfall, in the 30-year time period prior to the survey year. 161 

We initially considered additional climate variability measures but have not included in the results due 162 

to their high collinearity with 30-year climate variability. These measures were 10-year climate 163 

variability, annual variability of the long rainy season only (June – Sept), and annual variability of the 164 

short rainy season only (Feb – May). 165 

 166 

We also calculated the Standardized Precipitation-Evapotranspiration Index (SPEI) for September in 167 

the year of each survey using the CRU dataset (Beguería et al. 2014). As the index uses both 168 

temperature and precipitation in its derivation, we used the CRU data for both the precipitation and 169 

temperature. This was calculated on a 3-month timescale from July to September. September is the 170 

last month of the long rainy season, which corresponds to the Meher season (Temam et al. 2019). 171 

From this, we derived a drought index by the number of times in the past 10 years that SPEI was less 172 

than -1.28, following Bozzola and Smale (2020). Positive SPEI values indicate water excess and 173 

negative SPEI values indicate water deficiency. The value -1.28 indicates severe drought events by 174 

approximately corresponding to the lower 10% tail of the SPEI probability distribution function. Based 175 

on this index, 7% of wave 4 households had no droughts, 82% had one drought, and 11% had two 176 

droughts in the long rainy season during the past 10 years. These are potentially from the major 177 

2011/12 and 2015/16 droughts in Ethiopia (Funk et al. 2019). 178 

 179 

Farm diversity 180 
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Diversity was captured in several ways. Species richness was defined for crops by the number of 181 

different species planted by the household in the latest cropping season, and for livestock by the 182 

number of different types owned by the household in the past 12 months. The livestock types included 183 

cattle, goat, sheep, camel, equine, chicken, and bee. Farm richness was derived as the sum of crop 184 

and livestock richness. From these richness measures, we also derived a farm specialization variable. 185 

Households with zero livestock richness were classified as crop-only, households with zero crop 186 

richness were classified as livestock-only, and the rest were classified as mixed.  187 

 188 

Although richness measures are the simplest measures for diversity, they do not account for 189 

differences in field area usage, and thus implicitly assume equal importance of each species in a 190 

household's farming activities. We incorporated land usage using the effective diversity indices. For a 191 

household with 𝑛 unique crops, let 𝑝𝑖  be the proportion of cultivated land for crop 𝑖 ∈ {1, . . . , 𝑛}. The 192 

Shannon diversity index provides a measure of crop evenness, the degree to which all cultivated 193 

species are equally abundant (Shannon 1948). It is given by,  194 

− ∑ 𝑝𝑖

𝑛

𝑖=1

ln 𝑝𝑖 195 

The Simpson diversity index provides a measure of crop dominance, the degree to which a small 196 

subset of crop species takes up most of the cultivated area (Simpson 1949). It is given by, 197 

∑ 𝑝𝑖
2

𝑛

𝑖=1

 198 

Finally, as a simple measure of land use diversity, we calculated the Berger-Parker diversity index, 199 

given by max 𝑝𝑖, which is simply proportion of cultivated land of the dominant crop. Although this 200 

measure is biased towards species richness, it has the advantage of being more easily interpreted. 201 

Following Jost (2006), these three measures were transformed to get the effective diversity, which 202 

has more desirable properties compared to the raw measures. Most diversity measures for the 203 

households included in waves 1 to 3 tend to be highest in the south-west of Ethiopia (Fig. 3). 204 

 205 
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 206 

Fig. 3: Spatial distribution of effective diversity measures for the filtered households surveyed in waves 1 to 3. They are 207 

represented here as median diversity at the district level - Ethiopia's third largest administrative division after region and 208 

zone. 209 

 210 

Temporal yield stability 211 

Caloric yield was used as a measure of average household-level crop yield. Twenty-three crops were 212 

used to derive caloric yield; these were maize, sorghum, teff, wheat, barley, millet, oats, rice, lineseed, 213 

ground nuts, nueg, rapeseed, sesame, sunflower, fenugreek, horse beans, haricot beans, field peas, 214 

chick peas, lentils, vetch, white lupin (locally called “gibto”), and soya beans. These crops were 215 

selected because they were the most comparable across waves; data collection differences made 216 

other crops unreliable for comparison across waves. To calculate a total yield across all crops, yields 217 

were converted to caloric yield using caloric content (FAO 2001) and aggregated from field to 218 

household level via an area-weighted mean. Specifically, for a given household ℎ in wave 𝑡 with crops 219 

𝑖, the area-weighted mean caloric yield 𝑌ℎ,𝑡, is given by, 220 

𝑌ℎ,𝑡 =
∑ kcal𝑖𝑖 × harvest𝑖

∑ area𝑖𝑖
 221 

 222 

There is a multitude of yield stability measures defined in the literature, of which we chose six to use 223 

in our analysis. A detailed theoretical background on stability analysis is given the separately 224 

(Supplementary Information S11), which highlights why it is important to consider several alternative 225 
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measures in yield stability analyses. The yield stability measure most commonly used in the literature, 226 

and thus considered in this study, is the inverse CV 𝑆ℎ. It is given by, 227 

𝑆ℎ =
μℎ

σℎ
 228 

Equation 1 229 

where μℎ is the temporal mean and σℎ is the temporal standard deviation of caloric yield of household 230 

ℎ. Dividing by the mean gives the variability per unit of yield. Taking the inverse is merely to change 231 

interpretation from instability to stability. In addition to this measure, we implemented the alternative 232 

CV 𝑆ℎ, given by, 233 

𝑆ℎ = √exp σℎ
⋆ − 1 234 

where σℎ
⋆  is the standard deviation of the log-transformed yields for each wave. This is more 235 

appropriate for variables following a log-normal distribution, as might be the case with caloric yield. 236 

To control for the effect of any yield trend over time, another two stability measures were created by 237 

detrending the CV with respect to the household’s temporal trend, as well as the temporal trend of 238 

the kebele in which the household is situated. These were derived similarly to Equation 1, but instead 239 

using a standard deviation of the residuals of a simple linear regression fit of the yield over time. We 240 

also calculated a stability measure based on power law residuals, as proposed by Döring et al. (2015), 241 

albeit in the context of the single-species yield. This measure sets a household's stability equal to its 242 

residual in the power model of yield variance on yield mean for all households, which reduces to, 243 

log(σh
2) = α log(μh) + β 244 

This is essentially a measure of deviation from the conditional mean yield of all households. Finally, 245 

we implemented a proportional variability index, given in our case by, 246 

𝑆ℎ = 1 −
1

3
(

min(𝑌ℎ,1, 𝑌ℎ,2)

max(𝑌ℎ,1, 𝑌ℎ,2)
+

min(𝑌ℎ,2, 𝑌ℎ,3)

max(𝑌ℎ,2, 𝑌ℎ,3)
+

min(𝑌ℎ,1, 𝑌ℎ,3)

max(𝑌ℎ,1, 𝑌ℎ,3)
) 247 

which is a non-parametric alternative to the CV for yield stability (Heath 2006). This has the advantage 248 

of not being heavily skewed, and ranging between 0 and 1. 249 

 250 

Statistical modeling 251 

For each analysis, we used a mixed effects model with a random effect for kebele. Survey data tends 252 

to exhibit at least one level of clustering, based on the response variable (Rabe-Hesketh and Skrondal 253 

2006). Ethiopian kebeles, being the smallest administrative division, are subject to similar exogenous 254 

factors. By using a mixed effects model with a kebele-level random effect, the within-kebele 255 

heterogeneity can be distinguished from the between-kebele heterogeneity, allowing us to determine 256 

whether kebeles respond in similar ways to exogenous factors such as climate variability. Although 257 



10 

 

higher administrative divisions were also considered for random effects in a nested multi-level 258 

structure, the intra-class correlations were extremely low for these levels, and they were thus omitted. 259 

All models were implemented in R v4.1.3 (R Core Team 2020) using the lme4 package (Bates et al. 260 

2015). 261 

 262 

1.1 Climate variability and diversification 263 

For the cross-sectional analysis, we used a generalized linear mixed effects model with a random effect 264 

for kebele (Equation 2). Farm richness was modeled as Poisson-distributed, with precipitation and 265 

temperature variability as predictors. Temperature and precipitation are not independent predictors, 266 

but are inherently statistically associated (Table A3 in the Appendix). We do not remove one or the 267 

other from the model as they have different relevance for agriculture and differ in the magnitude and 268 

direction of effect on agriculture. In addition, an indicator variable was created to distinguish some 269 

high-leverage Somali households located in areas with extreme precipitation variability. A separate 270 

model was fitted to mixed, crop-only and livestock-only households, as well as a model for all 271 

households pooled together. The variables used in this model are summarized in Table A1 in the 272 

Appendix.  273 

 274 

Farm richnessℎ|ϵ𝑘 ∼ Poisson(𝑒β𝘛𝑥ℎ+ϵ𝑘) 275 

ϵ𝑘 ∼ N(0, σ𝐾
2 ) 276 

Equation 2 277 

 278 

To test the hypothesis that diversity is low in the extremes of climate variability, we used quadratic 279 

polynomials of climate variability as predictors. Where a variable’s quadratic term has a significant 280 

and negative parameter estimate, the log-mean of farm richness is sufficiently modelled by an 281 

inverted parabola, which has a single peak. We analytically optimized those parameter estimates to 282 

determine the precise climate variability at which diversity is highest. If this peak occurs at a non-283 

extreme climate variability, as determined by a percentile range, then diversity is lower at the 284 

extremes of climate variability in the observed data and the hypothesis is supported. A disadvantage 285 

of this methodology is that quadratics are symmetric about the peak, which may lead to under-fitting 286 

of a more complex relationship. Although other models such as splines may better capture a non-287 

linear relationship, this would likely be limited by the availability of accurate climate data. 288 

 289 

To determine whether the proportion of livestock-only households increases as climate variability 290 

increases, we implemented a mixed effects logistic regression model with the climate variability 291 
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measures as fixed effects, and kebele as a random effect (Equation 3). For the predictors that give 292 

significant and positive parameter estimates, the model supports the hypothesis that the proportion 293 

of livestock-only households increases as climate variability increases. The indicator for the high-294 

leverage households used in the previous model was similarly used in this model. 295 

 296 

logit ℙ(Livestock orientedℎ)|ϵ𝑘, ϵ𝑟 = β𝘛𝑥ℎ + ϵ𝑘 + ϵ𝑟 297 

ϵ𝑘 ∼ N(0, σ𝐾
2 ) 298 

ϵ𝑟 ∼ N(0, σ𝑅
2 ) 299 

Equation 3 300 

 301 

Temporal yield stability 302 

Similar to the cross-sectional analysis, temporal yield stability was modelled using a mixed effects 303 

model with a random effect for kebele (Equation 4). However, this model considered all available 304 

predictors as fixed effects (Table A4 in the Appendix), using variable selection procedures to reduce 305 

model size. An interaction between the diversity variable and log-transformed field area was added 306 

to examine the relationship between these variables. Exploratory analysis did not reveal large 307 

differences in slope or intercept estimates among groups, so no additional random effects were 308 

added. All numeric predictors were scaled and centred. To normalize residuals, the response variable 309 

was Box-Cox transformed, where the power parameter was calculated using the full model with 310 

kebele instead treated as a fixed effect. For robustness, we fit the same model to all six of our stability 311 

measures. The following results and discussion pertain only to the model which uses stability 312 

measured by Equation 1 – the inverse CV of caloric yield. This measure resulted in the most ideal 313 

diagnostics including normally-distributed and heteroscedastic residuals. It is also the more commonly 314 

used measure in the literature, which can aid with interpretability. The results for the models using 315 

the other stability measures are reported separately (Supplementary Information S1-6). 316 

 317 

Stabilityℎ|α𝑘, ϵℎ = β𝘛𝑥ℎ + α𝑘 + ϵℎ 318 

α𝑘 ∼ N(0, σ𝐾
2 ) 319 

ϵℎ ∼ N(0, σ2) 320 

Equation 4 321 

 322 

Variable selection first involved developing a list of potential drivers of yield stability. We then 323 

manually inspected and eliminated variables with extreme collinearity or extreme imbalance. This was 324 

followed by backwards elimination using Akaike Information Criterion penalty. During backwards 325 
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elimination, several variables were exempt from elimination for conditioning or for interest in the 326 

study. Namely, we retained agro-ecological zone, region, dominant crop, diversity variables, irrigation, 327 

fertilizer usage, and pesticide usage. Fertilizer usage was measured as the proportion of applied area, 328 

whereas irrigation and pesticide were measured as binary indicators of their usage on any field since 329 

the proportion of applied area for irrigation and pesticide was extremely skewed. After variable 330 

selection, 20 predictors remained in total. 331 

 332 

The yield stability measures were derived at the household-level and encompassed all waves, whereas 333 

the predictors were often defined at lower levels and were wave-specific. This is a case of the micro-334 

macro problem, whereby the response variable is not on the lowest level of analysis. Although 335 

predictors at the household-level and above can be handled by the usual mixed effects model 336 

framework, predictors at lower levels require further consideration. Therefore, we aggregated plot-337 

level and field-level predictors to the household-level via area-weighted sums for continuous 338 

variables, indicators for binary variables, and most common values for categorical variables. Following 339 

this, we aggregated time-varying predictors across the three waves via the arithmetic mean for 340 

continuous variables, and most common values for binary and categorical variables. Temporal 341 

aggregation in this manner limits the ability to distinguish household heterogeneity. However, this 342 

trade-off was necessary to analyse stability, a temporal phenomenon, using only three waves. 343 

Furthermore, aggregating via simple means results in similar statistical performance to more complex 344 

methods (Foster-Johnson and Kromrey 2018). 345 

 346 

Due to the collinearity of the diversity variables, they were used separately in three distinct models 347 

rather than combined into a single model. Collinearity of the other variables was not a problem, 348 

indicated by variance inflation factors lower than two for each variable. Farm richness, Shannon 349 

diversity, and Berger-Parker diversity were chosen for continued analysis, and the results and 350 

discussion pertain only to the three models using these variables. The variables used in the models 351 

are summarized in Table A2 in the Appendix. The results for the models using the other diversification 352 

measures are reported separately (Supplementary Information S1-6). 353 

 354 

Results 355 

Climate variability and diversification 356 

We observed the following characteristics of smallholder diversity in this part of the analysis using the 357 

wave 4 household survey for 2018/2019. Livestock-only households, making up 16% of all surveyed 358 
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households, are dominated primarily by goat-herders. Mixed households, which make up 74% of all 359 

households, tend to favor cattle herding, and most often have maize, teff, or sorghum as their 360 

dominant crop by area. Crop-only households, which make up the remaining 10% of all households, 361 

most often have maize, coffee or sorghum as their dominant crop by area. This minority of households 362 

also tends to have lower crop diversity than mixed households, indicating that the tendency to 363 

specialize by way of only crop-farming is perhaps associated with the tendency to specialize within the 364 

cropping activities. Conversely, diversification by the ownership of livestock is perhaps coupled with 365 

diversification within cropping activities. Among the households that cultivate crops, 11% reported 366 

having only one crop. This behaviour is more likely for crop-only households, and results in a Shannon 367 

diversity and Simpson diversity of one for those households. Farm diversity differs geographically, 368 

where the Southern Nations, Nationalities, and Peoples' Region, Amhara, and Benchsangul Gumuz 369 

were the three regions with the highest diversity. The former had an average Shannon diversity of 370 

3.69, which is equivalent to 3.69 equally abundant crops on the average farm in this region. As 371 

expected, the two regions that are primarily livestock-only, Afar and Somali, also had the lowest 372 

diversity. 373 

 374 

Climate variability significantly affects farm richness for both mixed and specialized (crop- or livestock-375 

only) farm types. Specifically, results from the farm richness models (Equation 2) indicated that climate 376 

variability predictors were statistically significant in the linear term1 for all but the livestock-only 377 

model's annual rain variability (Table 1). For the pooled, mixed and crop-only household models, rain 378 

variability was negatively associated with farm richness and temperature variability was positively 379 

associated with farm richness. This holds for both month-to-month and annual variability. The 380 

livestock-only model showed the opposite trends, with households in areas with higher rain variability 381 

predicted to have higher diversity, and households in lower temperature variability predicted to have 382 

higher diversity. Climate variability explained 27% of the spatial variance in farm richness among 383 

households. This was derived by pseudo-𝑅2 measures (Nakagawa and Schielzeth 2013). The variance 384 

explained was significantly lower for the mixed (𝑅2 = 0.13), crop-only (𝑅2 = 0.19), and livestock-only 385 

models (𝑅2 = 0.16). When also considering the kebele random effect, 58% of variance in farm 386 

 

1 As polynomial terms are only approximately orthogonal in Poisson mixed effects models, this is not necessarily 

indicative of the linear model with non-significant quadratic terms removed. To ensure model outcomes were 

similar, we refit the models with the non-significant quadratic terms removed. Statistical significance of 𝑝 <

0.05 was maintained and signs of the estimates were the same for all but annual rain CV in the crop-only model. 

These results are reported separately (Supplementary Information S7-10). 
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richness was explained for the pooled model, with a decrease for the mixed (𝑅2 = 0.42), crop-only 387 

(𝑅2 = 0.38), and livestock-only models (𝑅2 = 0.25). 388 

 389 

Predictors 

Pooled Mixed Crop-only Livestock-only 

Log-Mean (SE) p-value Log-Mean (SE) p-value Log-Mean (SE) p-value Log-Mean (SE) p-value 

Intercept 1.76 (0.02) *** 1.99 (0.02) *** 1.21 (0.05) *** 0.94 (0.05) *** 

Month-to-month rain 

CV 
-4.69 (1.71) *** -3.99 (1.25) *** -3.83 (1.27) *** 3.48 (1.19) *** 

Month-to-month rain 

CV2 
2.61 (1.37) * 1.47 (1.07)  2.06 (0.99) ** -0.80 (1.07)  

Annual rain CV -12.43 (2.00) *** -3.00 (1.45) ** -2.45 (1.23) ** -0.13 (1.30)  

Annual rain CV2 -1.87 (1.87)  -0.55 (1.56)  -0.93 (0.88)  -1.50 (1.29)  

Month-to-month 

temp. CV 
4.90 (1.72) *** 2.79 (1.36) ** 2.56 (1.26) ** -2.93 (1.20) ** 

Month-to-month 

temp. CV2 
1.86 (1.44)  0.97 (1.05)  -0.48 (0.96)  -1.67 (1.22)  

Annual temp. CV 8.90 (1.52) *** 5.70 (1.03) *** 1.83 (0.86) ** -6.56 (1.46) *** 

Annual temp. CV2 -1.20 (1.54)  -1.82 (1.00) * -1.25 (0.75) * 0.52 (1.51)  

Random Effects         

𝜎2 0.16  0.13  0.26  0.35  

𝜎𝐾
2 0.12  0.07  0.08  0.04  

ICC 0.42  0.34  0.24  0.10  

Marginal R2 0.272  0.132  0.192  0.162  

Conditional R2 0.581  0.424  0.382  0.246  

***p<0.01, **p<0.05, *p<0.1, blank = not significant 

Table 1: Results of the Poisson mixed effects model for the relationship between climate variability and farm richness. 390 

 391 

In some cases, we observed non-linear relationships between climate variability and (log-)mean 392 

diversity that is indicative of a modeled peak value for farm richness. Negative quadratic parameter 393 

estimates were observed for annual temperature variability in the mixed and crop-only household 394 

models, albeit at the 0.1 significance level (Table 1). This suggests that there exists a certain annual 395 

temperature variability where diversity is highest. However, the maximum diversity predicted by the 396 

modelled polynomial was beyond the 90th percentile of the observed data, at a CV of ~0.027 and 397 

~0.024 for the mixed and crop-only household models respectively (Figure A1 in the Appendix). Hence, 398 

for crop-only and mixed households, this result means that diversity is highest at high annual 399 

temperature variability, and lowest at low annual temperature variability, with no peak in the middle 400 

of the range. 401 

 402 
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The logistic regression model for livestock-only farms (Equation 3Erreur ! Source du renvoi 403 

introuvable.) showed that these farms are more common in regions with high annual rainfall 404 

variability. The model also had significant parameter estimates for temperature variability (Table 2).  405 

The negative estimate for annual temperature variability implies that livestock-oriented farms 406 

become less common in climates with greater annual temperature variability. This conversely suggests 407 

that they become more common in climates with a lower mean annual temperature due to the 408 

negative correlation between temperature's variability and mean (Spearman's ρ =  −0.81, 𝑝 <409 

0.001) (Table A3). The model also had a high intra-class correlation (𝐼𝐶𝐶 =  0.77) that is dominated 410 

by the variance attributable to between-kebele differences. This means that the propensity for a 411 

household to be livestock-oriented appears to be more dependent on the kebele than to the fixed 412 

effects or the region. The high intra-class correlation is reflected in the model's conditional explained 413 

variance (conditional 𝑅2 = 0.87), which is significantly lower when kebele isn't taken into account 414 

(marginal 𝑅2 = 0.44). 415 

 416 

Predictors 

Pooled 

Estimate (SE) p-value 

Intercept -4.92 (0.73) *** 

Month-to-month rain CV 1.06 (0.59) * 

Annual rain CV 2.58 (0.66) *** 

Month-to-month temp. CV -1.23 (0.44) *** 

Annual temp. CV -1.72 (0.50) *** 

Random Effects   

𝜎2 3.29  

𝜎𝐾
2 9.76  

𝜎𝑅
2 1.41  

ICC 0.770  

Marginal R2 0.436  

Conditional R2 0.872  

***p<0.01, **p<0.05, *p<0.1 

Table 2: Results of the logistic regression mixed effects model for livestock-only farm presence. 417 

 418 

Temporal yield stability 419 

Temporal yield stability between 2011 and 2015 in Ethiopia had a median of 1.76. To give an example 420 

of this, a household with a stability of 1.76, or equivalently an inverse CV of 1.76−1 = 0.57, could have 421 

a mean caloric yield in 1 year that was similar to its average over the three waves, with the other 2 422 

years having a caloric mean yield 43% higher and 43% lower than the average. There are also marked 423 
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regional differences in typical stability. Temporal yield stability was typically highest among 424 

households in Benshangul Gumuz and Amhara, with a median yield stability of 2.43 and 1.99 425 

respectively. Benshangul Gumuz is a sub-humid region in the Western Ethiopian lowlands with 426 

primarily maize/sorghum mixed systems. The least stable regions were Dire Dawa and the Southern 427 

Nations, Nationalities, and Peoples' Region, with a median yield of 1.20 and 1.53 respectively. Dire 428 

Dawa is a small semi-arid region in the lowlands of Eastern Ethiopia. All households in this region had 429 

sorghum as their dominant crop. Oromiya had the largest range of stability values, from 0.61 to 56.1, 430 

possibly due to its greater geographical extent and sample size. Furthermore, households in sub-431 

humid climates were more stable than households in humid and semi-arid climates, where the median 432 

yield stability was 1.90 for the former, and 1.69 and 1.65 for the latter two respectively. All 433 

aforementioned descriptive results hold when considering mean, instead of median, as the measure 434 

of central tendency. 435 

 436 

Model results for the yield stability analysis (Equation 4) show that farm richness and Shannon 437 

diversity were significant positive predictors of stability (𝑝 <  0.01, Fig. 4, Table A5 in the Appendix). 438 

The estimate for Berger-Parker diversity was also positive and significant (𝑝 <  0.01), indicating that 439 

households which dedicate a higher proportion of crop area to the dominant crop species tend to 440 

have lower overall yield stability. This result generally held true when introducing an interaction effect 441 

between this variable and the dominant crop type. This indicates that the effect of Berger-Parker 442 

diversity is not just a function of characteristics of specific crops. Only for perennials as the dominant 443 

crop type did the effect of the Berger-Parker diversity on yield stability become negative. Crop richness 444 

and Simpson diversity gave similarly positive and significant parameter estimates to the models 445 

presented here, although livestock richness was a poor predictor for caloric yield stability both in 446 

isolation and when coupled with crop richness (Supplementary Information S1-6). Finally, the 447 

interaction between diversity and field area was not significant at the 0.05 significance level, although 448 

it was significant at the 0.1 level for the farm richness model. This model had a significant negative 449 

parameter estimate for field area, although it was smaller in magnitude than the effect of farm 450 

richness.  451 

 452 
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 453 

Fig. 4: Results of mixed effects model for three temporal yield stability models with different diversity measures. Dots 454 

represent parameter point estimates and lines represent 95% confidence intervals. Significant parameter estimates are those 455 

with confidence intervals that are non-overlapping with the vertical zero line. 456 

 457 

Parameter estimates for non-diversity predictors were mostly similar across the three models (Fig. 4, 458 

Table A5 in the Appendix). The strongest non-diversity predictor of household yield stability was the 459 

proportion of harvested area to planted area, which was statistically significant and similar in 460 

magnitude to the effect of farm richness. The number of pasture fields was also statistically significant 461 

and positively associated with stability, as was cattle headcount albeit to a lesser extent. The 462 

proportion of area with organic fertilizer was negatively associated with stability, although not at the 463 

0.05 significance level for one of the models. At the 0.1 level, the average temperature in the wettest 464 

quarter was the strongest negative predictor of stability. The region and dominant crop conditioning 465 

variables were significant at the 0.05 level. Intra-class correlation was low, at about 18% for all models, 466 

so stability can be quite different for households within the same kebele (Table A5 in the Appendix). 467 

The explained variance was similar for all models, with a marginal and conditional pseudo-𝑅2 of 0.157 468 

and 0.315 respectively for the farm richness model. Models using the other stability measures 469 

performed similarly (Supplementary Information S1-6). 470 

 471 
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2 Discussion 472 

2.1 Climate variability and diversification 473 

We expected diversity to be low when climate variability is either very high or very low. This is because 474 

i) highly variable climates may limit growth and development of a number of crops (Waha et al. 2018) 475 

making high crop richness less economically viable, and ii) low variability could be more supportive of 476 

intensive monocropped farming systems (Howden et al. 2010). We find here that only climate 477 

variables taken together conform to the hypothesis. Diversity is generally lowest when precipitation 478 

variability is high and when temperature variability is low. Due to the strong negative correlation 479 

between annual temperature variability and annual mean temperature (Table A3 in the Appendix), 480 

the results also suggest that diversity is lower in warmer areas. This opposes the findings of Ochieng 481 

et al. (2020) in rural Kenyan households, which found that diversification is more widespread in 482 

warmer climates. 483 

 484 

There are two possible explanations for this result. Firstly, the results of the logistic regression model 485 

showed that pastoralism is more prevalent in warmer areas with low annual temperature variability 486 

(Table 2). Hence, the lower diversity that is observed at the lower end of temperature variability may 487 

in fact be due to the higher frequency of livestock-oriented households, which have a low diversity 488 

overall. Secondly, the result could be explained by the characteristics of precipitation in areas with 489 

low annual temperature variability, where temperature variability is positively correlated with 490 

precipitation (Table A3 in the Appendix). Past studies show that bioclimatic variables related to 491 

precipitation were most important in Ethiopian land suitability simulations (Evangelista et al. 2013). 492 

Moreover, precipitation was often a more important factor than temperature for crop land suitability 493 

in Ghana (Chemura et al. 2020). Hence, the low diversity in areas with low temperature variability 494 

could be due to the more pervasive effects of low precipitation. Due to the limitations of observational 495 

data, any conclusions as to the causality or relative importance of either factor would need to come 496 

from external sources, such as field experiments. 497 

 498 

An important caveat regarding interpretation of the month-to-month climate variability results is that 499 

our measure is not the average variability within all years – it is only the monthly variability that was 500 

observed in the year prior to the year of the surveys. In this context, we can consider two possible 501 

household response types to climate variability: an adaptation response to persistently high 502 

variability, and a reactionary response to recently high variability. The former is more likely captured 503 

with our measure of annual variability derived from the past 30 years. However, the latter cannot be 504 
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captured with our measure of month-to-month variability in the past year. The month-to-month 505 

measure only allows us to compare recent variability between households, rather than comparing a 506 

household’s recent variability to its norm. By keeping this in mind, we can put our results for this part 507 

of the study into the proper context. 508 

 509 

Temporal yield stability 510 

Our results show a general positive association between diversity and temporal yield stability. This 511 

aligns with theoretical and observational arguments from the literature suggesting that crop 512 

diversification can lead to more stable yields (Tilman et al. 1998; Urruty et al. 2016; Liu et al. 2019; 513 

Renard and Tilman 2019; Hufnagel et al. 2020). The effect of crop area distribution on stability is less 514 

often studied, so the observed significant positive effect of Shannon diversity is an informative 515 

outcome. Moreover, the positive effect of Berger-Parker diversity, albeit lower in magnitude than 516 

Shannon diversity, suggests that the area of the dominant crop is an important factor for yield stability, 517 

supporting the findings of Mahaut et al. (2021). As for the random effect for kebele, the models’ low 518 

intraclass correlation means that households within the same kebele do not have similar stability 519 

relative to households from other kebeles. This is surprising since yield stability is very likely 520 

dependent on exogenous factors, such as weather shocks, which are essentially equal among all 521 

households within a kebele but highly varied between kebeles. It is possible that this is due to including 522 

region and agro-ecological zone as conditioning variables in the models, which might to some extent 523 

negate the effect of exogenous variables. Nevertheless, the overall effect of diversity on temporal 524 

yield stability is clear in our results, which suggests that it may be an important factor in achieving 525 

food system stability. 526 

 527 

Several unexpected effects were observed in the yield stability model. Firstly, irrigation and inorganic 528 

fertilizer usage were not significant determinants of stability, and organic fertilizer was a negative 529 

determinant of stability. This is despite evidence that both irrigation and fertilizer use have a positive 530 

effect on both yield and yield stability (Sánchez 2010; Knapp and van der Heijden 2018; Renard and 531 

Tilman 2019; Egli et al. 2021). To account for potential interaction between these variables and 532 

droughts, which may affect the efficacy of irrigation and fertilizer, we also tested the model with these 533 

interaction terms included, but the results were similar. Not observing any effect in our models may 534 

be a result of diluting the variables when temporally aggregating during data preprocessing, as we had 535 

to create one variable from each time-varying variable per household from the data over all three 536 

waves. Recall bias could have also influenced the reporting on agricultural inputs (Dillon et al. 2021). 537 

Secondly, the drought index had a positive effect on stability, although it was not a significant effect. 538 



20 

 

This would imply that households with a more frequent past occurrence of droughts are also more 539 

stable. One possible explanation for this is that the likelihood of droughts itself acts as a driver for 540 

adaptation measures. This is supported by findings that past climate shocks is a positive predictor of 541 

diversification in Namibian households (Mulwa and Visser 2020). As a result, there is an increased 542 

adaptive capacity among farms in areas that have experienced droughts in the past decade, and the 543 

overall stability for these households may benefit from this even during times without drought. This 544 

explanation is not examined further in this study but stands as an avenue for future work. 545 

 546 

The role of livestock in yield stability may require a more complex approach than that taken here. 547 

Literature suggests that livestock production can be more resilient to high climate variability than crop 548 

production (Godde et al. 2021), which may also be inferred from our logistic regression model results 549 

(the “Climate variability and diversification” section). However, our models also showed that the 550 

number of livestock types owned by the household was not associated with yield stability. This could 551 

be because we did not incorporate livestock yield (e.g., meat, milk, eggs) into a single measure of 552 

overall food yield for the household. Thus, the only mechanism by which livestock diversification could 553 

increase yield stability in this model is through the indirect effects of livestock ownership, such as 554 

manure usage for soil fertility, and draught power. Furthermore, the selling of livestock to cope with 555 

shocks is an adaptation strategy which is more likely to be reflected in an income response variable 556 

than a yield response variable. Although our results did not support the implicit hypothesis that 557 

livestock diversification increases yield stability, it is quite possible that consideration of farm stability 558 

as a whole, including livestock production stability, would provide more informative outcomes. 559 

 560 

Future research could investigate the diversity-stability relationship across the broad range of farm 561 

typologies to discover which farm types are best suited to diversification as a stability-enhancing 562 

solution. Similarly, a more crop-centric approach to stability analysis, for example looking at the yield 563 

stability of farms growing specific combinations of crops, may highlight synergistic crop species and 564 

thus help to synthesize conclusions regarding several diversification strategies simultaneously. We 565 

further note that stability as measured here did not consider macro-nutrients or micro-nutrients of 566 

crops. Given that caloric yield stability may differ from protein, carbohydrate and fat stability in terms 567 

of the response to diversification (Egli et al. 2021), as well as the importance of micro-nutrient 568 

availability in food security for subsistence households (Sibhatu et al. 2015), follow-up studies using 569 

this aspect of crop stability are desirable. Finally, to bolster conclusions drawn in this study, we 570 

recommend continued data sharing and collection for ongoing household survey panels with a strong 571 

focus on accuracy and consistency between waves. 572 
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 573 

Barriers to implementation 574 

Several barriers can make farm diversification difficult or infeasible for smallholders. Some of these 575 

barriers include an increasingly variable climate, climate change driven changes in land suitability for 576 

crops (Evangelista et al. 2013; Chemura et al. 2020), lack of finance and knowledge (Ochieng et al. 577 

2017), and a lack of investment in research, machinery, and infrastructure (Hufnagel et al. 2020). 578 

Furthermore, the benefits of diversification may not always outweigh the resources required for 579 

smallholders to implement and maintain diversification strategies, such as the financial costs, extra 580 

labor, and knowledge (Rosa-Schleich et al. 2019). 581 

 582 

The extensive review by Lin (2011) describes several other barriers, including a lack of policy 583 

incentives, a disproportionate focus on biotech solutions, and the misconception that monocropped 584 

systems result in far greater yields. This is followed by a proposal of key strategies for overcoming 585 

these barriers, including implementation or improvement of crop and landscape simulation models, 586 

stakeholder-based participatory research, and farm income support systems (Lin 2011). In addition, 587 

access to climate information has been suggested as a strategy for opening up diversification 588 

opportunities by giving households the information needed to strategically attenuate the effects of 589 

climate change (Mulwa and Visser 2020). Our study provides more reason to invest in the 590 

aforementioned strategies to overcome barriers of implementation, thereby giving more smallholders 591 

the option to diversify and stabilize caloric yield. 592 

 593 

When considering the role of diversification as an adaptation strategy for climate variability, it is 594 

important to weigh up any benefits with the possibility of failure under changing climatic conditions, 595 

and to do so in comparison to alternative adaptation strategies. For example, implementing or 596 

improving irrigation systems in areas with high precipitation variability is an alternative adaptation 597 

strategy which is very likely to help smallholders combat droughts and improve agricultural resilience 598 

(Temam et al. 2019). However, even if this is estimated to be a more effective long-term solution, the 599 

adoption of irrigation systems among smallholders is a multifaceted problem that could be far more 600 

difficult to overcome than the challenges of diversification (Asrat and Anteneh 2019). Moreover, 601 

although irrigation can improve stability, irrigation alone may not be enough to counteract climate 602 

variability (Mahaut et al. 2021). Therefore, the decision to diversify needs to balance the trade-off 603 

between risk reduction from climate challenges, the difficulties of choosing the right diversification 604 

strategies, and the economic constraints. 605 

 606 
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Conclusion 607 

This study asked several questions on the relationship between farm-level diversity, climate variability, 608 

and temporal yield stability in Ethiopia and for different types of farming households. Our findings 609 

suggests that certain ranges of climate variability could destabilize household crop yield by limiting 610 

diversification opportunities. 611 

 612 

Farm richness is lowest at high precipitation variability, which indicates higher risks for water shortage, 613 

and is maximized at high annual temperature variability in temperate climate zones. For pastoralists, 614 

the trend was opposite, and their prevalence increases with annual precipitation variability, and 615 

decreases with annual and month-to-month temperature variability.  616 

 617 

Temporal yield stability increases with farm richness and crop evenness. This relationship supersedes 618 

the effect of other variables including farm inputs and the distance to markets. However, several 619 

variables do have a strong positive effect on stability, including the proportion of harvested to planted 620 

area and the number of pasture fields. Temporal yield stability has little dependence on locality, 621 

meaning that households in close proximity aren’t necessarily going to have similar yield stability.  622 

 623 

These findings indicate that diversification opportunities for crop-growing households are highest in 624 

areas where short- and long-term rainfall variability is not excessively high, and that diversity in many 625 

forms may have a stabilizing effect on crop yields. This suggest that, for rural farming households in 626 

Ethiopia, certain ranges of climate variability could destabilize household crop yield by limiting 627 

diversification opportunities. We expect similar conclusions from other African countries with a 628 

comparable economic and climatic context to Ethiopia, but this requires further testing. There is, 629 

however, a major data challenge in assessing temporal yield stability empirically on the household 630 

level. Yield stability is vital for smallholders in developing countries, where the impact of poor crop 631 

seasons creates major threats to food security. Therefore, we suggest that researchers and policy-632 

makers consider not only the direct effects of climate change on crop yield, but also its indirect effects 633 

on yield stability caused by increasingly limited adaptation choices. 634 

 635 

  636 
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Appendix 797 

Variable 

Pooled (N=2521) Mixed (N=1859) Crop-only (N=255) Livestock-only (N=407) 

Mean SD Min. Max. Mean SD Min. Max. Mean SD Min. Max. Mean SD Min. Max. 

Farm richness 6.539 3.798 1.000 24.00 7.795 3.506 2.000 24.00 3.584 2.354 1.000 12.00 2.658 1.417 1.000 6.000 

Month-to-month 

rain CV 
1.063 0.279 0.560 1.883 1.036 0.274 0.560 1.883 1.013 0.296 0.560 1.883 1.215 0.237 0.640 1.756 

Annual rain CV 0.132 0.044 0.059 0.376 0.121 0.032 0.059 0.376 0.118 0.029 0.059 0.205 0.190 0.054 0.059 0.376 

Month-to-month 

temp. CV 
0.072 0.019 0.030 0.110 0.071 0.018 0.033 0.110 0.068 0.019 0.036 0.108 0.077 0.020 0.030 0.108 

Annual temp. CV 0.020 0.003 0.009 0.029 0.021 0.003 0.009 0.029 0.020 0.003 0.014 0.029 0.017 0.003 0.009 0.026 

Table A1: Descriptive statistics of variables used in the analysis of diversification and climate variability, disaggregated by 798 

farm specialization. 799 

 800 

Variable Description Summary 

Continuous predictors  Mean SD Min. Median Max. 

Farm richness Sum of crop species and livestock types 9.728 3.433 1.667 9.333 22.667 

Shannon diversity Crop evenness measure based on proportion of area used 

by each crop species 
3.750 1.364 1.000 3.598 9.148 

Berger-Parker 

diversity 

Inverse proportion of the farm’s total harvested area under 

the primary crop 
2.204 0.624 1.000 2.163 4.941 

Field area Total field area (ha) of the farm 1.933 4.798 0.021 1.333 143.377 

Harvested:planted 

area 

Proportion of harvested area relative to planted area 
0.624 0.189 0.001 0.648 1.000 

Planted area Proportion of the farm’s total field area planted in the most 

recent 
0.806 0.162 0.231 0.851 1.139 

Pasture fields Number of pasture fields owned by the household 0.897 1.033 0.000 0.667 7.667 

Intercropping Proportion of harvested area that had multiple crops in one 

plot 
0.847 0.224 0.000 0.961 1.000 

Inorganic fertilizer Proportion of cultivated area with inorganic fertilizer 

applied 

(urea or DAP) 

0.371 0.324 0.000 0.309 1.620 

Organic fertilizer Proportion of cultivated area with organic fertilizer applied 

(manure, compost, or other) 
0.226 0.229 0.000 0.153 1.060 

Avg. rain in wettest 

qtr. 

Average total rainfall (mm) in the wettest quarter, based 

on the past 30 years 
629.343 205.820 184.000 595.833 1177.333 

Avg. temp. in wettest 

qtr. 

Average monthly temperature (◦C) in the wettest quarter, 

based on the past 30 years 
184.193 28.713 106.000 183.000 268.000 

Annual rain variability Coefficient of variation of total annual precipitation (mm), 

based on the past 30 years 
0.119 0.030 0.065 0.113 0.223 
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Annual temp. 

variability 

Coefficient of variation of average annual temperature 

(◦C), based on the past 30 years 
0.020 0.003 0.013 0.020 0.028 

Drought index Number of times in the past 10 years the SPEI3 index was 

below -1.28 in the last month of the Meher season 
1.081 0.290 0.333 1.000 1.667 

Cattle owned Number of cattle owned by the household at the time of 

the 

survey 

4.281 3.640 0.000 3.667 44.333 

Goats sold Number of goats sold by the household in the past 12 

months from the survey 
0.334 0.792 0.000 0.000 7.667 

Distance to market Distance from household to nearest major market (km) 59.886 39.328 2.900 55.433 221.867 

Categorical predictors  Count     

Region Ethiopia’s largest administrative division 8     

Agro-ecological zone Climatic zone, aggregated to aridity description only 3     

Dominant crop Crop with the highest planted area in the most recent 

Meher season 
12     

Binary predictors  % True     

Irrigation Indicates whether irrigation was used on any field 2     

Pesticide Indicates whether pesticide, herbicide, or fungicide was 

used on any plot 
2     

Response  Mean SD Min. Median Max. 

Stability Inverse coefficient of variation of crop caloric yield 

(kcal/ha) over the three survey waves 
2.757 3.539 0.612 1.757 56.050 

Table A2: Descriptive statistics of variables used in the analysis of temporal yield stability. 801 

 802 

 Annual temp. variability Total annual precipitation Annual precipitation variability 

Mean annual temperature -0.81, p < 0.001 -0.42, p < 0.001 0.26, p < 0.001 

Annual temp. variability - 0.37, p < 0.001 -0.35, p < 0.001 

Total annual precipitation - - -0.84, p < 0.001 

Table A3: Spearman's 𝜌 and significance levels for correlations between 30-year climate variability measures. 803 

 804 

Diversification Farm characteristics Farm inputs Livestock Climate Location and landscape 

Crop richness Dominant crop Irrigation usage Cattle12345 Annual rain mean Region 

Livestock richness 
Dominant crop 

harvest 

Organic fertilizer 

usage 
Goat12345 Annual rain CV Agro-ecological zone 

Farm richness Dominant crop area 
Inorganic fertilizer 

usage 
Sheep12345 Annual temp. mean Elevation 

Shannon index Subdominant crop Pesticide usage Camel12345 Annual temp. CV Distance to nearest road 

Simpson index 
Subdominant crop 

harvest 

Has intercropped 

plots 
Equid13 

Month-to-month rain 

mean 
Distance to nearest market 

Berger-Parker 

index 

Subdominant crop 

area 
 Chicken134 

Month-to-month rain 

CV 
Distance to nearest town 
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Farm 

specialization 
Field area  Beehive1 

Month-to-month 

temp. mean 
Topographic wetness index 

 Cultivated area   
Month-to-month 

temp. CV 
Workability 

 Harvested area   
Avg. rain in wettest 

qtr. 
Nutrient availability 

 Pasture area   
Avg. temp. in wettest 

qtr. 
Nutrient retention 

 Damaged area   Drought index Rooting conditions 

 Number of fields   SPEI3 Root oxygen availability 

 Field steepness   Reported drought Excess salts 

    Reported flood Toxicity 

    Reported heavy rains  

Note: 1owned, 2milked, 3sold, 4slaughtered, 5milk yield 

Table A4: Complete list of variables considered for the temporal yield stability model. 805 

 806 
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 807 

Figure A1: Predicted farm richness (blue) for month-to-month rain variability (a,e,i,m), annual rain variability (b,f,j,n), month-808 

to-month temperature variability (c,g,k,o), and annual temperature variability (d,h,l,p). Turning points are indicated (red) 809 

where applicable. Results are shown for the pooled households model (a,b,c,d), the mixed households model (e,f,g,h), the 810 

crop-only households model (i,j,k,l), and the livestock-only households model (m,n,o,p). Data points are plotted (black), and 811 

vertical dotted lines indicate the 10th and 90th percentiles of the observed data. Please note the different scales used for the 812 

y-axis. 813 

 814 

Predictors 

Farm richness Shannon diversity Berger-Parker diversity 

Estimate (SE) p-value Estimate (SE) p-value Estimate (SE) p-value 

Intercept 0.77 (0.09) *** 0.71 (0.09) *** 0.69 (0.09) *** 

Irrigation -0.02 (0.05)  0.00 (0.05)  0.00 (0.05)  

Pesticide 0.03 (0.04)  0.04 (0.04)  0.04 (0.04)  

Organic fertilizer -0.04 (0.02) ** -0.03 (0.02) ** -0.03 (0.02) * 

Inorganic fertilizer 0.03 (0.02)  0.03 (0.02)  0.03 (0.02)  

Intercropped 0.02 (0.02)  0.02 (0.02)  0.01 (0.02)  

Distance to market 0.02 (0.02)  0.02 (0.02)  0.02 (0.02)  
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Cattle owned 0.04 (0.02) ** 0.04 (0.02) ** 0.04 (0.02) ** 

Goats sold -0.02 (0.01)  -0.01 (0.01)  -0.01 (0.01)  

Field area -0.05 (0.02) ** -0.03 (0.02)  -0.02 (0.02)  

Harvested_planted_ratio 0.09 (0.02) *** 0.09 (0.02) *** 0.08 (0.02) *** 

Planted_area 0.03 (0.02)  0.03 (0.02) * 0.03 (0.02) ** 

Pasture_fields 0.06 (0.02) *** 0.06 (0.02) *** 0.06 (0.02) *** 

Droughts 0.02 (0.02)  0.02 (0.02)  0.02 (0.02)  

Annual rain variability -0.04 (0.03)  -0.05 (0.03)  -0.04 (0.03)  

Annual temp. variability -0.04 (0.03)  -0.03 (0.03)  -0.02 (0.03)  

Avg. rain in wettest qtr. -0.04 (0.03)  -0.03 (0.03)  -0.03 (0.03)  

Avg. temp in wettest qtr. -0.06 (0.03) ** -0.06 (0.03) * -0.05 (0.03) * 

Diversity 0.09 (0.02) *** 0.07 (0.02) *** 0.05 (0.02) *** 

Diversity × Field area -0.02 (0.01) * -0.01 (0.01)  -0.01 (0.01)  

Conditioning variables       

Region  ***  **  ** 

Agro-ecological zone       

Dominant crop  **  **  ** 

Random Effects       

𝜎2 0.16  0.16  0.16  

𝜎𝐾
2 0.04  0.04  0.04  

ICC 0.19  0.18  0.18  

Marginal R2 0.157  0.153  0.149  

Conditional R2 0.315  0.308  0.305  

Note: LRT with Satterthwaite approximations. ***p<0.01, **p<0.05, *p<0.1, blank = not significant 

Table A5: Mixed effects model results for temporal yield stability, with farm richness, Shannon diversity, or Berger-Parker 815 

diversity as diversification measures. 816 


