1	SUPPLEMENTARY INFORMATION
2	
3	
4	
5	
6	Structural and functional diversity of type IV secretion systems
7	
8	
9	Tiago R. D. Costa ^{1, *} , Jonasz B. Patkowski ¹ , Kévin Macé ^{2,4} , Peter J. Christie ^{3, *} and Gabriel Waksman ^{2, *}
10	
11 12	² Institute of Structural and Molecular Pielogy, Department of Life Sciences, Imperial College, London, SW / 2A2, UK.
13	and Molecular Genetics. McGovern Medical School at UTHealth, Houston, TX, USA.
_0 14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30 21	
31 22	
22 22	
33 34	
35	
36	Supplementary Table 1. Structures of the T4SS protein components and their subcomplexes solved
37	by electron-microscopy, x-ray crystallography and NMR.
38	
39	
40	Supplementary Text Box 1. Spatiotemporal studies of T4SSs
41	
42	
43	Supplementary Text Box 2. Translocation Signals
44	
45 46	Complementary Taut Day 2. Diversification of all conferences all spins for establish west of the set
40 17	supplementary lext Box 3. Diversification of pill or cell surface adhesins for establishment of target
47 79	
40 10	
73	

50 Supplementary Table 1. Structures of the T4SS protein components and their subcomplexes solved by

51 electron-microscopy, x-ray crystallography and NMR.

52

	Protein nomenclature							Entries		_	
Bacteria	Plasmid Genome Encoded	Subcomplex	Original	VirB homologue	Subunits	Method	Resolution	EMDB	PDB	Ref	
			TrwH	VirB7	14						
Escherichia coli	R388	OMCC (O-laver)	TrwF	VirB9	14	cryo-EM	2.6 Å	12707	703J	1	
			TrwE	VirB10	14						
Frank a sink in and i	R388	OMCC	TrwF	VirB9	16	514	24	42700	7027	1	
Escherichia coli		(I-layer)	TrwE	VirB10	16	Cryo-Eivi	3.1 A	12708	/031		
Frank a statute and t	5200	CL-II	TrwJ	VirB5	5	514	2 7 Å	42700	7001	1	
Escherichia coli	R388	Stalk	Trwl	VirB6	5	Cryo-EM	3.7 A	12709	7030		
Escherichia coli	R388	Arches	TrwG	VirB8	3x6	cryo-EM	6.2 Å	13767	7Q1V	1	
			TrwM	VirB3	1x6						
Escherichia coli	R388	IMC	TrwK	VirB4	2x6	cryo-EM	3.8 Å	12933	70IU	1	
			TrwG	VirB8	4x6						
Escherichia coli	R388	ATPases	TrwK	VirB4	6	cryo-EM	4.2 Å	12716	7042	1	
	R388		TrwH	VirB7	14						
Escherichia coli		OMCC (O-laver)	TrwF	VirB9	14	cryo-EM	8.5 Å	2233	3ZBI	1	
		(O kayer)	TrwE	VirB10	14						
Fook originalise on li	R388	OMCC	TrwF	VirB9	14	amua 514	12 Å	2222	2)/D///	1	
Escherichia coli		(I-layer)	TrwE	VirB10	14	CI YO-EIVI	12 A	2232	ZYPW		
Escherichia coli	R388	ATPase	TrwB	VirD4	6	X-ray	3.0 Å	-	1GKI 1E9R 1E9S 1GL6 1GL7	2	
Escherichia coli	R388	Relaxosome	TrwC	Tral	1	X-ray	2.0 Å	-	10MH	2	
Escherichia coli	R388	Relaxosome	TrwC	Tral	1	X-ray	2.5 Å	-	4PCB	3	
Escherichia coli	R388	Other	ArdC	-	1	X-ray	2.7 Å	-	6SNA	4	
Escherichia coli	R388	IMC	-	-	-	NS	28 Å	3585	-	5	
Escherichia coli	R388	IMC Stalk Arches OMCC	-	-	-	NS	20 Å	2567	-	6	
Escherichia coli	R388	ATPase	TrwK	VirB4	6	NS	20 Å	5505	-	7	
Escherichia coli	R388	Relaxosome	TrwC	VirD2	1	X-ray	2.5 Å	-	4PCB	3	
			TraN	VirB7	14						
Escherichia coli	pKM101	OMCC (O-laver)	TrwO	VirB9	14	X-ray	2.6 Å	-	3JQO	8	
		(O kayer)	TrwF	VirB10	14						
Escherichia coli	pKM101	Pilus	TraM	VirB2	multi	Cryo-EM	3.0 Å	27023	8CW4	9	
Escherichia coli	pKM101	Stalk OMCC	-	-	-	Cryo-ET	38 Å	24098	-	10	
Escherichia coli	pKM101	IMC Arches	-	-	-	Cryo-ET	43 Å	24100	-	10	
Escherichia coli	pKM101	омсс	-	-	-	NS	20 Å	2136 2137	-	11	

Escherichia coli	pKM101	омсс	-	-	-	Cryo-EM	15 Å	5031 5032 5033 5034 5035	-	12
Escherichia coli	pKM101	Arches	TraE	VirB8	2	X-ray	2.4 Å	-	5197	13
Escherichia coli	pKM101	Arches	TraE	VirB8	2	X-ray	2.6 Å	-	5WIC 5WII 5WIO 5WIP	14
Escherichia coli	pKM101	Stalk-Pilus	TraC	VirB5	1	X-ray	3.0 Å	-	1R8I	15
Escherichia coli	pKM101	Relaxosome	Tral	VirD2	1	X-ray	2.1 Å	-	8A1B 8A1C	16
			TraO	VirB9	1					17
Escherichia coli	pKM101	OMCC	TraN	VirB7	1	NMR	-	-	20FQ	
Escherichia coli	F-plasmid	Pilus	TraA	VirB2	multi	Cryo-EM	5.0 Å	4044 4046	5LER 5LFB	18
Escherichia coli	F-plasmid	Stalk OMCC	-	-	-	Cryo-ET	23 Å	9344	-	19
Escherichia coli	F-plasmid	IMC Arches	-	-	-	Cryo-ET	24 Å	9347	-	19
			TraA	VirB2	multi					
Escherichia coli	F-plasmid	Pilus MS2 phage	MS2 maturation protein	-	1	Cryo-EM	6.2 Å	9397	6NM5	20
Escherichia coli	F-plasmid	Regulation	FinO	-	1	X-ray	2.0 Å	-	1DVO	21
Escherichia coli	F-plasmid	Regulation	TraJ	-	2	X-ray	1.6 Å	-	4KQD	22
Escherichia coli	F-plasmid	Relaxosome	Tral	VirD2	2	X-ray	2.4 Å	-	3FLD	23
Escherichia coli	F-plasmid	Relaxosome	Tral	VirD2	1	X-ray	2.6 Å	-	1P4D	24
Escherichia coli	F-plasmid	Relaxosome	Tral	VirD2	1	X-ray	2.7 Å	-	2A0I	25
Escherichia coli	F-plasmid	Relaxosome	Tral	VirD2	1	X-ray	2.4 Å	-	2Q7T- 2Q7U	26
Escherichia coli	F-plasmid	Relaxosome	TraM	-	4	X-ray	2.6 Å	_	3D8A	27
	·	ATPase	TraD	VirD4	4	·				
Escherichia coli	F-plasmid	Relaxosome	TraM	-	8	X-ray	3.1 Å	-	4QPQ 4QPO	28
Escherichia coli	F-plasmid	Relaxosome	Tral	VirD2	1	NMR	-	BMRB 16971	2L8B	29
Escherichia coli	F-plasmid	Relaxosome	TraM	_	1	NMR	-	BMRB 4584	1DP3	30
		OMCC	TraB	VirB10	17		•			31
Escherichia coli	pED208	(I-ring)	TraV	VirB7	17	Cryo-EM	3.3 A	12962	70KN	
Franka status - M	- 50000	OMCC	TraB	VirB10	17		2.0 ²	24772	7SPJ	32
Escherichia coli	pED208	(O-layer)	TraV	VirB7	17	Cryo-EM	3.U A	24770 24768	7SPC	
			TraB	VirB10	13					
Escherichia coli	pED208	OMCC (Q-ring)	TraK	VirB9	26	Cryo-EM	3.4 Å	12963	70КО	31
		/ه'···· مـ ر	TraV	VirB7	26					
Eccharichia!:	rED300	OMCC	TraB	VirB10	26		20%	24769	5197 5WIC 5WIC 5WIC 5WID 5WID 1R81 8A1B 8A1C 2OFQ 4 5LER 5LFB 4 7 6NM5 1DV0 4KQD 3FLD 1P4D 2Q7T- 2Q7U 3D8A 4QPQ 8 1DP3 2 7OKN 2 7OKN 2 7OKN 3 7OKN	32
ESCHERICHIA COII	ped208	(I-layer)	TraK	VirB9	26	CI YO-EIVI	3.0 A	24771		

			TraV	VirB7	26					
Escherichia coli	pED208	Pilus	TraA	VirB2	multi	Cryo-EM	3.6 Å	4042	5LEG	18
Escherichia coli	pED208	Relaxosome	TraM	-	8	X-ray	2.9 Å	-	30N0 30MY	33
Escherichia coli	R64	ARCHES	TraM	VirB8	1	X-ray	1.5 Å	-	3WZ3	34
Escherichia coli	R1	Relaxosome	Tral	VirD2	1	Cryo-EM	3.9 Å	3601	5N8O	35
Escherichia coli	R1	Relaxosome	Tral	VirD2	1	X-ray	1.9 Å	-	4LOJ	36
Escherichia coli	pCU1	Relaxosome	Tral	VirD2?	1	X-ray	2.3 Å	-	3L57 3L6T	37
Escherichia coli	R1162	Relaxosome	Tral	VirD2	1	X-ray	2.1 Å	-	2NS6	3
Agrobacterium tumefaciens	Ti-Plasmid	Pilus	VirB2	VirB2	multi	Cryo-EM	3.5 Å	28657	8EXH	9
Agrobacterium tumefaciens	Ti-Plasmid	Pilus	VirB2	VirB2	multi	Cryo-EM	3.5 Å	28957	8FAI	38
Agrobacterium tumefaciens	Ti-Plasmid	омсс	-	-	-	NS	21 Å	3725	-	39
Agrobacterium tumefaciens	Ti-Plasmid	Arches	VirB8	VirB8	2	X-ray	2.2 Å	-	2CC3	40
Klebsiella pneumoniae	pKpQIL	Pilus	TraA	VirB2	multi	Cryo-EM	3.9 Å	22460	7JSV	41
Klabsialla anoumoniao	nKnOll	Mating	TraN	-	1		λ	25567	7671	42
Kiedsiena priedmoniae	ρκραιτ	pair	OmpK36	-	3	CI YO-EIVI	2.7 A	25507	/ 521	
Salmonella enterica serovar Typhimurium	pSLT	Regulation	TraJ	-	2	X-ray	1.7 Å	-	4EW7	22
			DotL	VirD4	1					
			DotM	-	1					
Legionella pneumophila	Genome	Effector	DotN	-	1	cryo-EM	3.7 Å	10350) 6SZ9	43
prediricprind		recruitment	DotY	-	1					
			DotZ	-	1					
			DotL	VirD4	1					
Legionella		ATDasa	DotM	-	1				SLEG 3ON0 3WZ3 5N80 4L0J 3L57 3L67 2NS6 8EXH 8FAI 2CC3 7JSV 4EW7 6SZ9 7OVB 7UPS 6EXB 5X1U 5X1H 5X1E	
	Genome	ATPase Effector	DotM DotN	-	1 1	cryo-EM	3.6 Å	13083		44
pneumophila	Genome	ATPase Effector recruitment	DotM DotN DotY	-	1 1 1	cryo-EM	3.6 Å	13083	70VB	44
pneumophila	Genome	ATPase Effector recruitment	DotM DotN DotY DotZ	- - -	1 1 1 1	cryo-EM	3.6 Å	13083	70VB	44
prieumophila Legionella pneumophila	Genome	ATPase Effector recruitment Effector recruitment	DotM DotN DotY DotZ DotY		1 1 1 1	cryo-EM X-ray	3.6 Å 2.4 Å	-	70VB 7UPS	44
prieumophila Legionella pneumophila Legionella pneumophila	Genome Genome Genome	ATPase Effector recruitment Effector recruitment Effector recruitment	DotM DotN DotY DotZ DotY DotM	- - - - - -	1 1 1 1 1 1	cryo-EM X-ray X-ray	3.6 Å 2.4 Å 1.8 Å	-	70VB 7UPS 6EXB	44 45 46
prieumophila Legionella pneumophila Legionella pneumophila Legionella pneumophila	Genome Genome Genome Genome	ATPase Effector recruitment Effector recruitment Effector recruitment Effector recruitment	DotM DotN DotY DotZ DotY DotM DotM	- - - - - -	1 1 1 1 1 1 1	cryo-EM X-ray X-ray X-ray	3.6 Å 2.4 Å 1.8 Å 1.8 Å	13083 - - -	70VB 7UPS 6EXB 5X1U	44 45 46 47
Legionella pneumophila Legionella pneumophila Legionella pneumophila Legionella pneumophila	Genome Genome Genome Genome Genome	ATPase Effector recruitment Effector recruitment Effector recruitment Effector recruitment	DotM DotN DotY DotZ DotY DotM DotM DotN	- - - - - -	1 1 1 1 1 1 1 1 1	cryo-EM X-ray X-ray X-ray X-ray	3.6 Å 2.4 Å 1.8 Å 1.8 Å 3.0 Å	13083 - - - -	70VB 7UPS 6EXB 5X1U 5X1H	44 45 46 47 47
Legionella pneumophila Legionella pneumophila Legionella pneumophila Legionella pneumophila Legionella Legionella	Genome Genome Genome Genome Genome	ATPase Effector recruitment Effector recruitment Effector recruitment Effector recruitment Effector recruitment	DotM DotN DotY DotZ DotY DotM DotM DotN DotL	- - - - - - - VirD4	1 1 1 1 1 1 1 1 1 1 1	cryo-EM X-ray X-ray X-ray X-ray	3.6 Å 2.4 Å 1.8 Å 1.8 Å 3.0 Å	13083 - - - -	70VB 7UPS 6EXB 5X1U 5X1H	44 45 46 47 47 47
Legionella pneumophila Legionella pneumophila Legionella pneumophila Legionella pneumophila Legionella pneumophila	Genome Genome Genome Genome Genome	ATPase Effector recruitment Effector recruitment Effector recruitment Effector recruitment Effector recruitment	DotM DotN DotY DotZ DotY DotM DotM DotN DotN DotL DotN	- - - - - - - VirD4 -	1 1 1 1 1 1 1 1 1 1 1 1 1	cryo-EM X-ray X-ray X-ray X-ray X-ray	3.6 Å 2.4 Å 1.8 Å 1.8 Å 3.0 Å 1.8 Å	13083 - - - - - - -	70VB 7UPS 6EXB 5X1U 5X1H 5X42	44 45 46 47 47 47
Legionella pneumophila Legionella pneumophila Legionella pneumophila Legionella pneumophila Legionella pneumophila	Genome Genome Genome Genome Genome	ATPase Effector recruitment Effector recruitment Effector recruitment Effector recruitment ATPase Effector recruitment	DotM DotN DotY DotZ DotY DotM DotM DotM DotN DotL DotL	- - - - - - VirD4 - VirD4	1 1 1 1 1 1 1 1 1 1 1 1 1	cryo-EM X-ray X-ray X-ray X-ray X-ray	3.6 Å 2.4 Å 1.8 Å 1.8 Å 3.0 Å 1.8 Å	13083 - - - - -	70VB 7UPS 6EXB 5X1U 5X1H 5X42	44 45 46 47 47 47
Legionella pneumophila Legionella pneumophila Legionella pneumophila Legionella pneumophila Legionella pneumophila	Genome Genome Genome Genome Genome Genome	ATPase Effector recruitment Effector recruitment Effector recruitment Effector recruitment ATPase Effector recruitment	DotM DotN DotY DotZ DotY DotM DotM DotM DotN DotL DotL DotL IcmS	- - - - - - - VirD4 - VirD4 - VirD4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	cryo-EM X-ray X-ray X-ray X-ray X-ray X-ray	3.6 Å 2.4 Å 1.8 Å 1.8 Å 3.0 Å 1.8 Å 2.0 Å	13083 - - - - - -	70VB 7UPS 6EXB 5X1U 5X1H 5X42 5X1E	44 45 46 47 47 47 47
Legionella pneumophila Legionella pneumophila Legionella pneumophila Legionella pneumophila Legionella pneumophila	Genome Genome Genome Genome Genome Genome	ATPase Effector recruitment Effector recruitment Effector recruitment Effector recruitment ATPase Effector recruitment	DotM DotN DotY DotZ DotY DotM DotM DotM DotN DotL DotN DotL IcmS IcmW	- - - - - - - VirD4 - VirD4 - VirD4 -		cryo-EM X-ray X-ray X-ray X-ray X-ray X-ray	3.6 Å 2.4 Å 1.8 Å 1.8 Å 3.0 Å 1.8 Å 2.0 Å	13083 - - - - - -	70VB 7UPS 6EXB 5X1U 5X1H 5X42 5X1E	44 45 46 47 47 47 47

pneumophila	Genome	ATPase Effector	IcmS	-	1					
		recruitment	IcmW	-	1					
			LvgA	-	1					
			DotL	VirD4	1					
Legionella pneumonhila	Genome	Effector	IcmS	-	1	X-ray	2.6 Å	-	5XNB	48
pricumoprina		recruitment	IcmW	-	1					
			DotL	VirD4	1					
		ΔΤΡαςe	IcmS	-	1					
Legionella pneumophila	Genome	Effector	IcmW	-	1	X-ray	2.8 Å	-	7BWK	49
p		recruitment	LvgA	-	1					
			VpdB	-	1					
			DotG	VirB10	16 18					
			DotH	VirB9	13 18					
			DotD	VirB7	26		4.6 Å	24018	7MUQ	
			DotF	-	31					
Legionella pneumophila	Genome	OMCC	DotC	-	13	cryo-EM				50
			DotK	-	13					
			Dis1	-	13					
			Dis2	-	13					
			Dis3	-	13					
Leaionella	_		IcmR	-	1					51
pneumophila	Genome	Other	IcmQ	-	1	X-ray	2.4 A	-	4EYY	51
Legionella pneumophila	Genome	омсс	-	-	-	Cryo-ET	40 Å	0566	-	52
Legionella pneumophila	Genome	ОМСС	-	-	-	Cryo-ET	30 Å	8566 8568 8569	-	53
Legionella pneumophila	Genome	Arches	Dotl	VirB8	1	X-ray	3.5 Å	-	3WZ4 3WZ5	34
Legionella pneumophila	Genome	ATPase	DotB	VirB11	6	X-ray	3.2 Å	-	6GEB	54
Coxiella burnetii	Genome	OMCC	-	-	-	Cryo-ET	11 Å	27105	-	55
Brucella suis	Genome	ATPase	VirB11	VirB11	6	X-ray	2.6 Å	-	2GZA	56
Brucella suis	Genome	Arches	VirB8	VirB8	2	X-ray	2.4 Å	-	2BHM	57
Brucella suis	Genome	Arches	VirB8	VirB8	1	X-ray	2.6 Å	-	4AKY	58
Brucella suis	Genome	Arches	VirB8	VirB8	1	X-ray	2.3 Å	-	4AKZ	58
Bartonella tribocorum	Genome	Arches	VirB8	VirB8	2	X-ray	2.9 Å	-	4MEI	59
Bartonella birtlesii	Genome	Arches	VirB8	VirB8	2	X-ray	1.4 Å	-	4JF8	59
Bartonella grahamii	Genome	Arches	VirB8	VirB8	2	X-ray	2.6 Å	-	4KZ1	59
Bartonella grahamii	Genome	Arches	VirB8	VirB8	2	X-ray	2.0 Å	-	4NHF	59
Bartonella quintana Toulouse	Genome	Arches	VirB8	VirB8	1	X-ray	1.7 Å	-	4LSO	59
Rickettsia typhi	Genome	Arches	VirB8	VirB8	2	X-ray	2.0 Å	-	403V	59
			Cag3	-	70					
Helicobacter pylori	Genome	ne OMCC (O-layer)	CagM	-	28	cryo-EM	3.4 Å	22081	6X6S	60
			CagY	VirB10	14					

			CagX	VirB9	14						
			CagT	VirB7	28						
Holicobastar pulari	_	OMCC	CagY	VirB10	17		0			60	
Helicobacter pylori	Genome	(I-layer)	CagX	VirB9	17	cryo-EM	3.5 A	20021	6X6J	00	
Helicobacter pylori	Genome	ATPase	Cagα	VirB11	2	X-ray	2.5 Å	-	1G60	61	
Helicobacter pylori	Genome	ATPase	Cagα	VirB11	2	X-ray	2.8 Å	-	1NLY	62	
	Genome		Cagα	VirB11	6		- · *			63	
Helicobacter pylori		ATPase	HP1451	-	2	X-ray	2.4 A	-	2PT7	05	
	Genome		Cagβ	VirD4	1		•			64	
Helicobacter pylori		ATPase	CagZ	-	1	X-ray	2.1 A	-	6JHO	04	
Helicobacter pylori	Genome	OMCC	CagY	VirB10	2	X-ray	3.0 Å	-	2BHV	57	
Helicobacter pylori	Genome	OTHER	CagD	-	2	X-ray	2.8 Å	-	3CWY	65	
Helicobacter pylori	Genome	OTHER	CagS	-	1	X-ray	2.3 Å	-	2G3V	66	
Helicobacter pylori	Genome	Stalk-Pilus	CagL	VirB5	1	X-ray	2.2 Å	-	3ZCI	67	
Helicobacter pylori	Genome	Stalk-Pilus	CagL	VirB5	1	X-ray	3.3 Å	-	3ZCJ	67	
Helicobacter pylori	Genome	Stalk-Pilus	CagL	VirB5	1	X-ray	2.2 Å	-	4CII	68	
Helicobacter pylori	Genome	Stalk-Pilus	CagL	VirB5	1	X-ray	2.3 Å	-	4X5U	69	
Helicobacter pylori	Genome	Arches	CagV	VirB8	2	X-ray	1.9 Å	-	6IQT	70	
Helicobacter pylori	Genome	IMC	-	-	-	Cryo-ET	48 Å	0634	-	19	
Helicobacter pylori	Genome	OMCC- Stalk-Arches	-	-	-	Cryo-ET	40 Å	0635	-	19	
Helicobacter pylori	Genome	OMCC- Stalk- Arches-IMC	-	-	-	Cryo-ET	68 Å	7475	-	71	
Helicobacter pylori	Genome	OMCC- Stalk-Arches	-	-	-	Cryo-ET	39 Å	7474	-	71	
			VirB7	VirB7	14						
Xanthomonas citri	Genome	Genome	OMCC	VirB9	VirB9	14	Cryo-EM	3.3 Å	0089	6GYB	72
			VirB10	VirB10	14						
	Genome	OMCC	VirB7	VirB7	1			BMRB-		73	
Xantnomonas citri		(O-layer)	VirB9	VirB9	1	NIVIK	-	25512	2N01		
Xanthomonas citri	Genome	OMCC (O-layer)	VirB7	VirB7	1	NMR	-	BMRB- 17257	2L4W	74	
Yersinia pseudotuberculosis	Genome	ATPase	DotB	VirB11	6	X-ray	2.8 Å	-	6GEF	54	
Bacillus subtilis	pLS20	Relaxosome	Aux2	TraM	4	X-ray	1.9 Å	-	7QNQ 7NUV	75	
Clostridium perfringens	pCW3	Relaxosome	ТсрК	-	2	X-ray	2.5 Å	-	5VFY 5VFX	76	
Enterococcus faecalis	pCF10	Arches	VirB8	VirB8	2	X-ray	1.8 Å	-	7AED	77	
Enterococcus faecalis	pIP501	Arches	VirB8	VirB8	2	X-ray	2.5 Å	-	4EC6	78	
Enterococcus faecalis	pIP501	OMCC (O-layer)	TraK	VirB7	1	X-ray	3.0 Å	-	4HIC	79	
Enterococcus faecalis	pIP501	Regulator	TraN	-	1	X-ray	2.0 Å	-	6G1T	80	

Enterococcus faecalis	pCF10	Relaxosome	PcfF	-	2	X-ray	1.9 Å	-	6QEQ	81
Enterococcus faecalis	Genome	Arches	TraH	VirB8	1	NMR	-	BMRB- 26518	5AIW	82
Streptococcus thermophilus	ICEst3	Arches	OrfG	VirB8	1	X-ray	1.8 Å	-	6ZGN	83
Thermoanaerobacter pseudethanolicus	Genome	ATPase	VirB4	VirB4	1	X-ray	2.4 Å	-	4AG5 4AG6	11
Pyrobaculum calidifontis	Genome	Pilus	TedC	VirB2	multi	Cryo-EM	4.0 Å	27413	8DFT	84
Aeropyrum pernix	Genome	Pilus	CedA1	VirB2	multi	Cryo-EM	3.3 Å	27414	8DFU	84

'-' indicates not identified or not available. OMCC, outer-membrane core complex; IMC, inner-membrane

complex

57 Supplementary Text Box 1. Spatiotemporal studies of T4SSs

58 In conjunction with the recent advances in structural definition of T4SSs, fluorescence microscopy approaches 59 are supplying exciting new insights into dynamic processes associated with T4SS assembly, spatial 60 organization, and substrate translocation in living cells. This is perhaps best exemplified by recent studies of the *L. pneumophila* Dot/Icm system, which has been shown to localize at bacterial cell poles⁸⁵. Remarkably, by 61 62 introducing an mreB mutation to alter L. pneumophila cell morphologies from rod to round, the Dot/Icm 63 machine was delocalized and also no longer translocated T4SS substrates. Consistently, in Legionella-infected 64 mouse macrophages, the secreted substrate SdeC localizes in the host cytoplasm immediately adjacent to the 65 polar-localized T4SS_{Dot/Icm}. These and other findings established that polar secretion of T4SS_{Dot/Icm} substrates is 66 absolutely required for successful L. pneumophila replication and infection of host cells⁸⁵.

67

68 A recent study using cryo-focused ion beam (cryo-FIB) milling, CryoET, and confocal laser scanning 69 fluorescence microscopy analyses confirmed and extended these findings by showing that, within the L. 70 pneumophila-containing vacuole (LCV) which is the replicative niche for the infecting bacteria, L. pneumophila 71 cells are tethered to the LCV membrane by polar-localized and actively-secreting machines⁸⁶. Moreover, two 72 proteins, DotU and IcmF, were determined to be responsible for T4SS_{Dot/Icm} polar localization⁵². Interestingly, 73 these proteins are not components of other T4SSs, but instead are TssL and TssM homologs associated with 74 Type 6 Secretion Systems (T6SSs), which play central roles in early steps of machine assembly. While TssL and 75 TssM are critical for T6SS assembly, they do not localize at cell poles, suggesting that the T4SS_{Dat/Icm} 76 appropriated these components and further adapted them for spatial positioning of the T4SS_{Dot/Icm}.

77

78 The obligate intracellular pathogen C. burnetii also deploys a Dot/Icm system for translocation of effectors into 79 host cells during infection^{87,88}. C. burnetii undergoes a biphasic life cycle between a metabolically inactive, 80 environmentally stable small cell variant (SCV) and a large replicative cell variant (LCV) form within the host. 81 During its infectious cycle, C. burnetii lives within the Coxiella-containing vacuole (CCV) that has attributes of a 82 mature phagolysosome. Recently, C. burnetii cells and their polar-localized Dot/Icm machines were visualized 83 at different developmental states in situ by cryo-FIB milling and CryoET imaging⁵⁵. These images showed that 84 the Dot/Icm complex assembles as the bacteria transition from the infectious SCV to the replicative LCV form, 85 likely in response to environmental cues within the CCV. Interestingly, besides harboring LCVs and SCVs, the 86 CCV also contains a population of intermediate-sized cells. On detailed examination of the three morphological 87 variants, the authors postulated that LCV - SCV - LCV transitions occur rapidly and are characterized by stacking 88 and unstacking of the IM at specific sites within the cell. These structural rearrangements in the IM are 89 envisioned to accommodate changes in cell sizes accompanying the LCV to SCV developmental transitions⁵⁵. 90

91 The R388-encoded T4SS similarly localizes at the poles of *E. coli* cells, but, intriguingly, only upon contact of 92 donor with recipient cells⁸⁹. In the absence of recipient cell contact, fluorescently-tagged versions of TrwB 93 T4CP, VirB4-like TrwK ATPase, and TrwC relaxase, are distributed around the cell, but upon donor-recipient 94 contact, all three proteins relocalize to cell poles in areas of close juxtaposition to recipient cells⁸⁹. These 95 findings indicate that T4SS_{R388} components must sense a contact-dependent signal and respond by 96 redistributing to build the intact T4SS_{R388} machine at the mating junction for plasmid transfer. 97

98 In contrast to the above, the F-encoded T4SS preferentially localizes at the quarter positions of rod-shaped cells and are excluded from cell poles⁹⁰. Visualization of T4SS_F spatial organization was achieved with 99 100 fluorescently-tagged single-stranded-binding protein Ssb, which binds the T-strand transfer intermediate. 101 When produced in donors or recipients, tagged Ssb was shown to form fluorescent foci at the mating junction, 102 reflecting the transient accumulation of the processed T-strand in donors and its delivery to recipient cells. 103 Interestingly, while T4SS_Fs localize at the quarter positions of donor cells, T-strands preferentially enter 104 through the poles of recipient cells, suggestive of specific receptor - ligand interactions that dictate the 105 formation of mating junctions between distinct sites within donor and recipient cells. These investigators 106 further defined the time course of protein production by F-encoded genes in new transconjugants, showing 107 that proteins encoded by genes located in the leading region of the plasmid (the first region to enter new 108 transconjugants) are produced soon after T-strand acquisition from single-stranded promoters. However, 109 genes encoding the T4SS machinery (the last region to enter new transconjugants) are produced only from 110 double-stranded promoters once the T-strand is converted to the double-stranded plasmid. Together, these 111 elegant studies spatiotemporally choreographed the sequence of events associated with the entire 112 conjugation process and provided new insights into the interplay between plasmid reestablishment and 113 plasmid gene expression in new transconjugants⁹⁰.

114

115 Fluorescent tags also have been used to monitor translocation of protein substrates, such as the VirE2 effector through the T4SS_{Agro} during A. tumefaciens infection of plant cells or the CagA oncoprotein through the T4SS_{Cag} 116 into gastric epithelial cells⁹¹⁻⁹³. Other types of tags, including adenylate cyclase, TEM β -lactamase, or the Cre 117 recombinase are also widely deployed in screens aimed at identifying new effectors delivered into bacterial or 118 eukaryotic cells during infection ⁹⁴⁻⁹⁶. Besides monitoring substrate flow, tags such as dihydrofolate reductase 119 120 (DHFR), ubiquitin or GFP that fold rapidly and are resistant to unfolding have been used to characterize the 121 substrate processing requirements for transfer through the L. pneumophila Dot/Icm system, the T4SS_{R388} conjugation machine, and the H. pylori Cag systems ^{93,97}. Invariably, these studies have shown that unfolding 122 123 resistant moieties block transit of the tagged secretion substrates, supporting a conclusion that secretion 124 substrates are obligatorily unfolded prior to export through T4SSs.

125

126 Supplementary Text Box 2. Translocation signals

127 T4SS secretion substrates carry sequence or structural signatures marking them for recruitment to the VirD4-128 like T4CP for translocation. These translocation signals (TSs) vary considerably and for many substrates are not 129 yet defined. For conjugative transfer, components of the relaxosome assembled at the origin-of-transfer (oriT) 130 sequence of mobile elements mediate the T4CP interaction. Relaxases responsible for oriT nicking to initiate 131 transfer carry internal or C-terminal TSs. Examples of the former include relaxases associated with the F, R388, RSF1010 plasmids, which carry conserved TSs in the middle of the protein⁹⁸⁻¹⁰¹. By contrast, the VirD2 relaxase 132 associated with the A. tumefaciens VirB/VirD4 system possesses a C-terminal TS with an overall hydrophilic 133 character and enrichment of positively-charged residues ¹⁰². Relaxases also can have a combination of internal 134 135 and C-terminal TSs that endow promiscuous transfer of the associated mobile element through different 136 T4SSs. R388-encoded TrwC, for example, relies on distinct TSs to engage with the R388-encoded TrwB T4CP for 137 translocation through the T4SS_{R388} T4CP or the VirD4 T4CP for translocation through a Bartonella henselae VirB/VirD4 effector translocator system ¹⁰³. Other components of the relaxosome also can promote 138 relaxosome - T4CP docking, as exemplified by the accessory factors TraM, TrwA, and TraK associated 139 respectively with the F, R388, and pKM101 transfer systems ^{27,104-106}. 140

141

142 Protein substrates of T4SSs also carry distinct types of TSs. These can consist of internal motifs, short C-143 terminal charged or hydrophobic motifs, or larger C-proximal domains. Examples of the latter include a 144 conserved XVIPCD motif associated with toxic effectors translocated through the Xanthomonas spp. interbacterial killing systems ¹⁰⁷. The XVIPCD motif recently was shown to bind the AAD of the VirD4 T4CP¹⁰⁸. In 145 146 Bartonella spp., Bartonella effector proteins (Beps) are delivered to eukaryotic cells via C-proximal BID (Bep 147 intracellular delivery) domains. These domains adopt a conserved structural fold of an extended 4-helix 148 bundle, which mediates T4CP binding and is structurally similar to C-terminal α -helical domains of TraM homotetramers that bind TraD T4CPs in F systems ^{104,109-111}. Some effectors contain several BID domains, and 149 some BID domains can function dually by mediating the effector - T4CP interaction, and then upon 150 translocation, binding protein targets to disrupt cellular functions and aid in infection ¹¹². 151

- 152 In the Dot/Icm system, which to date is the most prolific of the T4SS effector translocators^{113,114}, effectors 153 154 carry at least three types of TSs. First, effectors such as RalF can harbor C-terminal TSs enriched in hydrophobic residues. These TSs are thought to mediate contacts with the DotL T4CC independently of the 155 IcmS/IcmW/LvgA adaptor complexes¹¹⁵. Second, effectors such as SidM can harbor TSs consisting of a 156 157 negatively charged C-terminal glutamate-rich E-block (EExxE) motif required for docking with the T4CC, potentially through contacts with the positively charged cytoplasmic domain of DotM ^{43,116}. Lastly, effectors 158 159 such as VpdB, SidH, SetA and PieA, carry a characteristic FxxxLxxxK motif that mediates binding with the IcmSW-associated LvgA adaptor complex^{49,104}. In view of the large numbers of Dot/Icm effectors and the 160 161 importance of temporal control in regulating effector translocation, other TSs clearly exist whose 162 characterization awaits further study.
- 163
- 164

165 Supplementary Text Box 3. Diversification of pili or cell surface adhesins for establishment of target cell 166 contacts

167 There is growing evidence for widespread diversification of T4SS-associated pili or pilins during the evolution 168 of pathogen–host relationships¹⁰⁴. *Bartonella spp.* carry two general types of T4SS loci, VirB/VirD4-like systems

- 169 responsible for effector translocation and Trw systems that lack VirD4-like proteins ¹¹¹. The Trw systems have
- 170 the coding capacity for multiple allelic variants of pilin subunits suggestive of production of alternative forms

- of surface-exposed pilins or pili (Figure 4). It is postulated that the variant pili/ pilins facilitate interactions with
 different receptors displayed by erythrocytes, either within the reservoir host population (e.g., different blood
 group antigens) or among different reservoir hosts ¹¹¹.
- 174

175 The H. pylori T4SS_{Cag} also elaborates extracellular appendages, but their assembly and production require 176 different T4SS components than established for the conjugative pili (Figure 4). Production of Cag pili requires core VirB-like subunits and Cag-specific proteins, but strikingly does not require the VirB2 pilin-like subunit CagC or the VirB10-like OMCC subunit CagY ¹¹⁷⁻¹¹⁹. Also, in contrast to conjugative pili, several Cag subunits 177 178 179 including a domain of CagY, other Cag proteins (CagI, CagH, CagL), and even the CagA substrate, have been shown to localize with these extracellular appendages ^{71,120-125}. The surface display of CagL, CagI, CagY, and 180 181 CagA appears to be biologically relevant in view of evidence that these subunits bind integrin receptors on host gastric cell surfaces ^{122-124,126}. Nevertheless, the high-resolution structural determination of the pilus-like 182 structures of the Cag system is still lacking and these appendages were not observed to be physically attached 183 184 to the Cag machinery ⁷¹. In addition to these pilus-like structures, it is interesting to note that H. pylori cells 185 also produce larger appendages on their cell surfaces called sheathed tubes, which have a size of 186 approximately 37 nm. However, it remains uncertain whether the assembly of these structures is mediated by 187 the T4SS_{Cag}. A recent study suggests that there may not be a direct correlation between the formation of membrane tubes and the presence of the Cag system¹²³. 188

189

190 Besides pili or other appendages, many T4SSs alternatively rely on surface adhesins to promote target cell 191 contacts. In F systems, for example, TraN subunits are not core VirB/VirD4 components but nevertheless 192 contribute to efficient plasmid transfer and production of F pili. TraN subunits have long been known to contribute to stabilization of mating pairs^{16,127,128}, an activity attributed to a central extracellular domain that 193 binds outer membrane proteins (OMPs) displayed by recipient cells ^{42,127,128}. Recently, extracellular domains of 194 195 TraN subunits from different F plasmids were shown to adopt distinct structures that confer binding to 196 different target cell OMPs (Figure 4). In a large-scale analysis of TraN proteins, TraN subunits were assigned 197 into 4 distinct classes, α , β , γ , or δ based on predicted structures of the extracellular domains. Experimental 198 studies further established that TraN subunits of the α , β , γ , or δ classes respectively bind OmpW, OmpK36, 199 OmpA, or OmpW. Enterobacterial species encode different OMP receptors, leading the authors to propose 200 that distinct TraN - OMP interactions play important roles in determining the dissemination and, ultimately, 201 the host ranges of F plasmids among different members of the Enterobacteriaceae⁴². 202

In the pKM101 system, the VirB5-like subunit TraC is predicted to form part of the central stalk as shown for its counterpart in the closely related $T4SS_{R388}$ machine (Figure 4)¹. TraC also is exported to the cell surface independently of the T4SS_{pKM101} machine, where it interacts with another pKM101-encoded protein termed Pep, resulting in assembly of higher order complexes appearing as distinct foci or patches around the cell¹²⁹. These cell surface complexes function as adhesins to promote efficient pKM101 transfer through the T4SS_{pKM101}. Thus, a pilus-tip adhesin can be alternatively routed to the cell surface to promote interbacterial adherence independently of the conjugative pilus.

210

Other surface proteins functionally interact with but are not part of the T4SS. In *H. pylori*, at least two OMPs function as adhesins to facilitate delivery of the CagA substrate through the T4SS_{Cag} into gastric cells (Figure 4)¹³⁰. One termed BabA promotes CagA delivery to target cells through binding of blood group antigens ¹³¹. Another, HopQ, binds a group of host cell receptors designated as carcinoembryonic antigen-related cell adhesion molecule family (CEACAMs) ¹³². Through their capacities to promote *H. pylori* binding and T4SS_{Cag}mediated CagA translocation to specific host cell types, these and other OMPs are implicated as important virulence factors related to gastroduodenal diseases.

218 219

221

220 Supplementary References

- Macé, K. *et al.* Cryo-EM structure of a type IV secretion system. *Nature* 607, 191-196 (2022).
 <u>https://doi.org:10.1038/s41586-022-04859-y</u>
 Rivera-Calzada, A. *et al.* Structure of a bacterial type IV secretion core complex at subnanometre
- 2242Rivera-Calzada, A. et al. Structure of a bacterial type IV secretion core complex at subnanometre225resolution.TheEMBOJournal32,1195-1204(2013).226https://doi.org/10.1038/emboj.2013.58

- Monzingo, A. F., Ozburn, A., Xia, S., Meyer, R. J. & Robertus, J. D. The Structure of the Minimal Relaxase Domain of MobA at 2.1 Å Resolution. *Journal of molecular biology* 366, 165-178 (2007).
 https://doi.org/10.1016/j.jmb.2006.11.031
- 2304González-Montes, L., del Campo, I., Garcillán-Barcia, M. P., de la Cruz, F. & Moncalián, G. ArdC, a231ssDNA-binding protein with a metalloprotease domain, overpasses the recipient hsdRMS restriction232system broadening conjugation host range. PLOS Genetics 16, e1008750 (2020).233https://doi.org:10.1371/journal.pgen.1008750
- Redzej, A. *et al.* Structure of a VirD4 coupling protein bound to a VirB type IV secretion machinery.
 The EMBO Journal 36, 3080-3095 (2017). <u>https://doi.org/10.15252/embj.201796629</u>
- 236
 6
 Low, H. H. et al. Structure of a type IV secretion system. Nature 508, 550-553 (2014).

 237
 https://doi.org:10.1038/nature13081
- Peña, A. *et al.* The Hexameric Structure of a Conjugative VirB4 Protein ATPase Provides New Insights
 for a Functional and Phylogenetic Relationship with DNA Translocases*. *Journal of Biological Chemistry* 287, 39925-39932 (2012). <u>https://doi.org/10.1074/jbc.M112.413849</u>
- 2418Chandran, V. et al. Structure of the outer membrane complex of a type IV secretion system. Nature242462, 1011-1015 (2009). https://doi.org:10.1038/nature08588
- 2439Amro, J. *et al.* Cryo-EM structure of the Agrobacterium tumefaciens T-pilus reveals the importance of
positive charges in the lumen. *Structure* **31**, 375-384 (2023). https://doi.org/10.1016/j.str.2022.11.007
- Khara, P., Song, L., Christie, P. J. & Hu, B. In Situ Visualization of the pKM101-Encoded Type IV
 Secretion System Reveals a Highly Symmetric ATPase Energy Center. *mBio* 12, e0246521 (2021).
 https://doi.org:10.1128/mBio.02465-21
- Walldén, K. *et al.* Structure of the VirB4 ATPase, alone and bound to the core complex of a type IV secretion system. *Proceedings of the National Academy of Sciences* 109, 11348-11353 (2012).
 <u>https://doi.org:doi:10.1073/pnas.1201428109</u>
- Fronzes, R. *et al.* Structure of a Type IV Secretion System Core Complex. *Science* 323, 266-268 (2009).
 <u>https://doi.org:doi:10.1126/science.1166101</u>
- 25313Casu, B. et al. Structural Analysis and Inhibition of TraE from the pKM101 Type IV Secretion System*.254Journal of Biological Chemistry291, 23817-23829255https://doi.org/10.1074/jbc.M116.753327
- Casu, B., Arya, T., Bessette, B. & Baron, C. Fragment-based screening identifies novel targets for inhibitors of conjugative transfer of antimicrobial resistance by plasmid pKM101. *Scientific Reports* 7, 14907 (2017). <u>https://doi.org:10.1038/s41598-017-14953-1</u>
- 259 15 Yeo, H.-J., Yuan, Q., Beck, M. R., Baron, C. & Waksman, G. Structural and functional characterization of 260 the VirB5 protein from the type IV secretion system encoded by the conjugative plasmid pKM101. 261 Proceedings of the National Academy of Sciences 100, 15947-15952 (2003). 262 https://doi.org:doi:10.1073/pnas.2535211100
- Achtman, M., Morelli, G. & Schwuchow, S. Cell-cell interactions in conjugating Escherichia coli: role of
 F pili and fate of mating aggregates. J Bacteriol 135, 1053-1061 (1978).
 https://doi.org:10.1128/jb.135.3.1053-1061.1978
- Bayliss, R. *et al.* NMR structure of a complex between the VirB9/VirB7 interaction domains of the pKM101 type IV secretion system. *Proceedings of the National Academy of Sciences* 104, 1673-1678 (2007). <u>https://doi.org:doi:10.1073/pnas.0609535104</u>
- 269 18 Costa, T. R. D. *et al.* Structure of the Bacterial Sex F Pilus Reveals an Assembly of a Stoichiometric
 270 Protein-Phospholipid Complex. *Cell* 166, 1436-1444 e1410 (2016).
 271 https://doi.org:10.1016/j.cell.2016.08.025
- Hu, B., Khara, P. & Christie, P. J. Structural bases for F plasmid conjugation and F pilus biogenesis in
 <i>Escherichia coli</i>>. Proceedings of the National Academy of Sciences 116, 14222-14227 (2019).
 https://doi.org:doi:10.1073/pnas.1904428116
- 20 Meng, R. *et al.* Structural basis for the adsorption of a single-stranded RNA bacteriophage. *Nature* 276 *Communications* 10, 3130 (2019). <u>https://doi.org:10.1038/s41467-019-11126-8</u>
- 21 Ghetu, A. F., Gubbins, M. J., Frost, L. S. & Glover, J. N. M. Crystal structure of the bacterial conjugation 278 repressor FinO. *Nature Structural Biology* 7, 565-569 (2000). <u>https://doi.org:10.1038/76790</u>
- Lu, J., Wu, R., Adkins, J. N., Joachimiak, A. & Glover, J. N. M. Crystal Structures of the F and pSLT
 Plasmid TraJ N-Terminal Regions Reveal Similar Homodimeric PAS Folds with Functional
 Interchangeability. *Biochemistry* 53, 5810-5819 (2014). https://doi.org.10.1021/bi500244m

- 23 Guogas, L. M., Kennedy, S. A., Lee, J.-H. & Redinbo, M. R. A Novel Fold in the Tral Relaxase–Helicase C 283 Terminal Domain Is Essential for Conjugative DNA Transfer. *Journal of molecular biology* 386, 554-568
 284 (2009). <u>https://doi.org/10.1016/j.jmb.2008.12.057</u>
- 28524Datta, S., Larkin, C. & Schildbach, J. F. Structural insights into single-stranded DNA binding and
cleavage by F factor Tral. *Structure* **11**, 1369-1379 (2003).
- 25 Larkin, C. *et al.* Inter- and Intramolecular Determinants of the Specificity of Single-Stranded DNA
 288 Binding and Cleavage by the F Factor Relaxase. *Structure* 13, 1533-1544 (2005).
 289 <u>https://doi.org:10.1016/j.str.2005.06.013</u>
- Lujan, S. A., Guogas, L. M., Ragonese, H., Matson, S. W. & Redinbo, M. R. Disrupting antibiotic
 resistance propagation by inhibiting the conjugative DNA relaxase. *Proceedings of the National Academy of Sciences* 104, 12282-12287 (2007). https://doi.org/doi/10.1073/pnas.0702760104
- 29327Lu, J. et al. Structural basis of specific TraD-TraM recognition during F plasmid-mediated bacterial294conjugation.MolecularMicrobiology70,89-99(2008).295https://doi.org/10.1111/j.1365-2958.2008.06391.x
- 28 Peng, Y. *et al.* Mechanistic Basis of Plasmid-Specific DNA Binding of the F Plasmid Regulatory Protein,
 297 TraM. *Journal of molecular biology* 426, 3783-3795 (2014).
 298 <u>https://doi.org/10.1016/j.jmb.2014.09.018</u>
- 2929Wright, N. T. et al. Solution structure and small angle scattering analysis of Tral (381–569). Proteins:300Structure, Function, and Bioinformatics80, 2250-2261 (2012).301https://doi.org/10.1002/prot.24114
- 30 Stockner, T. *et al.* Solution Structure of the DNA-Binding Domain of TraM. *Biochemistry* 40, 3370-3377
 303 (2001). <u>https://doi.org:10.1021/bi002031c</u>
- 30431Amin, H., Ilangovan, A. & Costa, T. R. D. Architecture of the outer-membrane core complex from a305conjugative type IV secretion system. Nature Communications 12, 6834 (2021).306https://doi.org:10.1038/s41467-021-27178-8
- 307 32 Liu, X., Khara, P., Baker, M. L., Christie, P. J. & Hu, B. Structure of a type IV secretion system core
 308 complex encoded by multi-drug resistance F plasmids. *Nature Communications* 13, 379 (2022).
 309 <u>https://doi.org:10.1038/s41467-022-28058-5</u>
- Wong, J. J., Lu, J., Edwards, R. A., Frost, L. S. & Glover, J. M. Structural basis of cooperative DNA
 recognition by the plasmid conjugation factor, TraM. *Nucleic acids research* **39**, 6775-6788 (2011).
- 31234Kuroda, T. et al. Molecular and structural analysis of Legionella DotI gives insights into an inner313membrane complex essential for type IV secretion. Scientific Reports 5, 10912 (2015).314https://doi.org:10.1038/srep10912
- 31535Ilangovan, A. et al. Cryo-EM Structure of a Relaxase Reveals the Molecular Basis of DNA Unwinding316duringBacterialConjugation.Cell169,708-721.e712(2017).317https://doi.org/10.1016/j.cell.2017.04.010
- 31836Redzej, A. et al. Structure of a translocation signal domain mediating conjugative transfer by type IV319secretionsystems.MolecularMicrobiology89,324-333(2013).320https://doi.org/10.1111/mmi.12275
- 37 Nash, R. P., Habibi, S., Cheng, Y., Lujan, S. A. & Redinbo, M. R. The mechanism and control of DNA
 322 transfer by the conjugative relaxase of resistance plasmid pCU1. *Nucleic Acids Research* 38, 5929-5943
 323 (2010). <u>https://doi.org:10.1093/nar/gkq303</u>
- 32438Kreida, S. *et al.* Cryo-EM structure of the Agrobacterium tumefaciens T4SS-associated T-pilus reveals325stoichiometricprotein-phospholipidassembly.Structure(2023).326https://doi.org:10.1016/j.str.2023.02.005
- 39 Gordon, J. E. *et al.* Use of chimeric type IV secretion systems to define contributions of outer
 membrane subassemblies for contact-dependent translocation. *Mol Microbiol* 105, 273-293 (2017).
 https://doi.org:10.1111/mmi.13700
- 330 40 Bailey, S., Ward, D., Middleton, R., Grossmann, J. G. & Zambryski, P. C. <i>Agrobacterium 331 tumefaciens</i> VirB8 structure reveals potential protein–protein interaction sites. 332 Proceedings of the National Academy of Sciences 103, 2582-2587 (2006). 333 https://doi.org:doi:10.1073/pnas.0511216103
- 33441Zheng, W. et al. Cryoelectron-Microscopic Structure of the pKpQIL Conjugative Pili from Carbapenem-335ResistantKlebsiellapneumoniae.Structure28,1321-1328.e1322(2020).336https://doi.org:10.1016/j.str.2020.08.010
- Low, W. W. *et al.* Mating pair stabilization mediates bacterial conjugation species specificity. *Nature Microbiology* 7, 1016-1027 (2022). <u>https://doi.org:10.1038/s41564-022-01146-4</u>

- 33943Meir, A. *et al.* Mechanism of effector capture and delivery by the type IV secretion system from340Legionella pneumophila. Nature Communications 11, 2864 (2020). https://doi.org:10.1038/s41467-341020-16681-z
- 342 44 Mace, K. *et al.* Proteins DotY and DotZ modulate the dynamics and localization of the type IVB
 343 coupling complex of Legionella pneumophila. *Mol Microbiol* **117**, 307-319 (2022).
 344 https://doi.org:10.1111/mmi.14847
- 34545Chung, I. Y. W. & Cygler, M. Structural study of Legionella pneumophila effector DotY (Lpg0294), a346component of the Dot/Icm type IV secretion system. Acta Crystallographica Section F 78, 276-280347(2022). https://doi.org:doi:10.1107/S2053230X22006604
- 34846Meir, A., Chetrit, D., Liu, L., Roy, C. R. & Waksman, G. Legionella DotM structure reveals a role in
effector recruiting to the Type 4B secretion system. Nature Communications 9, 507 (2018).350https://doi.org:10.1038/s41467-017-02578-x
- 47 Kwak, M. J. *et al.* Architecture of the type IV coupling protein complex of Legionella pneumophila. *Nat* 352 *Microbiol* 2, 17114 (2017). <u>https://doi.org:10.1038/nmicrobiol.2017.114</u>
- 35348Xu, J. et al. Structural insights into the roles of the IcmS–IcmW complex in the type IVb secretion354system of Legionella pneumophila. Proceedings of the National Academy of Sciences 114, 13543-35513548 (2017).
- 35649Kim, H. *et al.* Structural basis for effector protein recognition by the Dot/Icm Type IVB coupling357protein complex. Nature communications 11, 1-11 (2020).
- 35850Sheedlo, M. J. *et al.* Cryo-EM reveals new species-specific proteins and symmetry elements in the359Legionella pneumophila Dot/Icm T4SS. *eLife* **10**, e70427 (2021). https://doi.org/10.7554/eLife.70427
- 36051Farelli, Jeremiah D. et al. IcmQ in the Type 4b Secretion System Contains an NAD⁺361Binding Domain. Structure 21, 1361-1373 (2013). https://doi.org:10.1016/j.str.2013.05.017
- 36252Ghosal, D. et al. Molecular architecture, polar targeting and biogenesis of the Legionella Dot/Icm363T4SS. Nat Microbiol 4, 1173-1182 (2019). https://doi.org/10.1038/s41564-019-0427-4
- Ghosal, D., Chang, Y. W., Jeong, K. C., Vogel, J. P. & Jensen, G. J. In situ structure of the Legionella
 Dot/Icm type IV secretion system by electron cryotomography. *EMBO Rep* 18, 726-732 (2017).
 <u>https://doi.org:10.15252/embr.201643598</u>
- Frevost, M. S. & Waksman, G. X-ray crystal structures of the type IVb secretion system DotB ATPases.
 Protein Sci 27, 1464-1475 (2018). <u>https://doi.org:10.1002/pro.3439</u>
- Park, D., Steiner, S., Shao, M., Roy, C. R. & Liu, J. Developmental Transitions Coordinate Assembly of
 the Coxiella burnetii Dot/Icm Type IV Secretion System. *Infect Immun* 90, e0041022 (2022).
 <u>https://doi.org:10.1128/iai.00410-22</u>
- Hare, S., Bayliss, R., Baron, C. & Waksman, G. A Large Domain Swap in the VirB11 ATPase of Brucella suis Leaves the Hexameric Assembly Intact. *Journal of molecular biology* 360, 56-66 (2006).
 https://doi.org/10.1016/j.jmb.2006.04.060
- Terradot, L. *et al.* Structures of two core subunits of the bacterial type IV secretion system, VirB8 from
 Strucella suis</i>
 i>Brucella suis</i>
 and ComB10 from <i>Helicobacter pylori</i>
 Proceedings of the National Academy of Sciences 102, 4596-4601 (2005). https://doi.org.doi:10.1073/pnas.0408927102
- 37858Smith, Mark A. et al. Identification of the Binding Site of Brucella VirB8 Interaction Inhibitors.379Chemistry& Biology19,1041-1048(2012).380https://doi.org/10.1016/j.chembiol.2012.07.007
- 38159Gillespie, J. J. et al. Structural Insight into How Bacteria Prevent Interference between Multiple382Divergent Type IV Secretion Systems. mBio 6, e01867-01815 (2015).383https://doi.org:doi:10.1128/mBio.01867-15
- 38460Sheedlo, M. J. *et al.* Cryo-EM reveals species-specific components within the Helicobacter pylori Cag385type IV secretion system core complex. *Elife* **9** (2020). https://doi.org:10.7554/eLife.59495
- 38661Yeo, H.-J., Savvides, S. N., Herr, A. B., Lanka, E. & Waksman, G. Crystal Structure of the Hexameric387Traffic ATPase of the Helicobacter pylori Type IV Secretion System. Molecular Cell 6,3881461-1472 (2000). https://doi.org:10.1016/S1097-2765(00)00142-8
- Savvides, S. N. *et al.* VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. *EMBO J.* 22, 1969-1980 (2003).
- Hare, S. *et al.* Identification, structure and mode of action of a new regulator of the Helicobacter
 pylori HP0525 ATPase. *The EMBO Journal* 26, 4926-4934 (2007).
 https://doi.org/10.1038/sj.emboj.7601904
- 39464Wu, X. et al. Mechanism of regulation of the Helicobacter pylori Cagβ ATPase by CagZ. Nature395Communications 14, 479 (2023). https://doi.org:10.1038/s41467-023-36218-4

- 39665Cendron, L. *et al.* The Helicobacter pylori CagD (HP0545, Cag24) Protein Is Essential for CagA397Translocation and Maximal Induction of Interleukin-8 Secretion. Journal of molecular biology 386,398204-217 (2009). https://doi.org/10.1016/j.jmb.2008.12.018
- 39966Cendron, L. *et al.* The crystal structure of CagS from the Helicobacter pylori pathogenicity island.400*Proteins* **69**, 440-443 (2007). https://doi.org:10.1002/prot.21576
- 40167Barden, S. et al. A Helical RGD Motif Promoting Cell Adhesion: Crystal Structures of the
Helicobacter pylori Type IV Secretion System Pilus Protein CagL. Structure 21, 1931-1941
(2013). https://doi.org/10.1016/j.str.2013.08.018
- 40468Barden, S. et al. Structure of a three-dimensional domain-swapped dimer of the Helicobacter pylori405type IV secretion system pilus protein CagL. Acta Crystallographica Section D 70, 1391-1400 (2014).406https://doi.org:doi:10.1107/S1399004714003150
- 40769Bonsor, D. A. *et al.* Integrin Engagement by the Helical RGD Motif of the Helicobacter408pylori CagL Protein Is Regulated by pH-induced Displacement of a Neighboring Helix *. *Journal*409of Biological Chemistry **290**, 12929-12940 (2015). https://doi.org:10.1074/jbc.M115.641829
- 41070Wu, X. et al. Crystal structure of CagV, the Helicobacter pylori homologue of the T4SS protein VirB8.411The FEBS Journal 286, 4294-4309 (2019). https://doi.org/10.1111/febs.14971
- 41271Chang, Y. W., Shaffer, C. L., Rettberg, L. A., Ghosal, D. & Jensen, G. J. In Vivo Structures of the413Helicobacter pylori cag Type IV Secretion System. Cell Rep 23, 673-681 (2018).414https://doi.org:10.1016/j.celrep.2018.03.085
- 41572Sgro, G. G. *et al.* Cryo-EM structure of the bacteria-killing type IV secretion system core complex from416Xanthomonas citri. Nat Microbiol **3**, 1429-1440 (2018). https://doi.org/10.1038/s41564-018-0262-z
- 417 73 Oliveira, Luciana C. et al. VirB7 and VirB9 Interactions Are Required for the Assembly and Antibacterial 418 24, Activity of а Туре IV Secretion System. Structure 1707-1718 (2016). 419 https://doi.org:10.1016/j.str.2016.07.015
- 42074Souza, D. P. et al. A Component of the Xanthomonadaceae Type IV Secretion System Combines a421VirB7 Motif with a N0 Domain Found in Outer Membrane Transport Proteins. PLOS Pathogens 7,422e1002031 (2011). https://doi.org:10.1371/journal.ppat.1002031
- 423 75 Crespo, I. *et al.* Structural and biochemical characterization of the relaxosome auxiliary proteins
 424 encoded on the Bacillus subtilis plasmid pLS20. *Computational and Structural Biotechnology Journal*425 20, 757-765 (2022). <u>https://doi.org/10.1016/j.csbj.2021.12.041</u>
- 42676Traore, D. A. K. *et al.* Crystal structure of TcpK in complex with oriT DNA of the antibiotic resistance427plasmid pCW3. Nature Communications 9, 3732 (2018). https://doi.org:10.1038/s41467-018-06096-2
- 42877Jäger, F., Lamy, A., Sun, W.-S., Guerini, N. & Berntsson, R. P. A. Structure of the enterococcal T4SS429protein PrgL reveals unique dimerization interface in the VirB8 protein family. Structure **30**, 876-430885.e875 (2022). https://doi.org:10.1016/j.str.2022.03.013
- 43178Goessweiner-Mohr, N. *et al.* The 2.5 Å Structure of the Enterococcus Conjugation432Protein TraM resembles VirB8 Type IV Secretion Proteins *. Journal of Biological433Chemistry 288, 2018-2028 (2013). https://doi.org:10.1074/jbc.M112.428847
- 43479Goessweiner-Mohr, N. *et al.* The type IV secretion protein TraK from the Enterococcus conjugative435plasmid pIP501 exhibits a novel fold. Acta Crystallographica Section D 70, 1124-1135 (2014).436https://doi.org:doi:10.1107/S1399004714001606
- 43780Kohler, V. et al. TraN: A novel repressor of an Enterococcus conjugative type IV secretion system.438Nucleic Acids Research 46, 9201-9219 (2018). https://doi.org:10.1093/nar/gky671
- 43981Rehman, S. et al. Enterococcal PcfF Is a Ribbon-Helix-Helix Protein That Recruits the Relaxase PcfG440Through Binding and Bending of the oriT Sequence. Frontiers in Microbiology 10 (2019).441https://doi.org:10.3389/fmicb.2019.00958
- 442 82 Fercher, C. *et al.* VirB8-like protein TraH is crucial for DNA transfer in Enterococcus faecalis. *Scientific* 443 *Reports* 6, 24643 (2016). <u>https://doi.org:10.1038/srep24643</u>
- 44483Cappele, J. et al. Structural and Biochemical Analysis of OrfG: The VirB8-like Component of the445Conjugative Type IV Secretion System of ICESt3 From Streptococcus thermophilus. Frontiers in446Molecular Biosciences 8 (2021). https://doi.org:10.3389/fmolb.2021.642606
- 44784Beltran, L. C. *et al.* Archaeal DNA-import apparatus is homologous to bacterial conjugation machinery.448Nature Communications 14, 666 (2023). https://doi.org:10.1038/s41467-023-36349-8
- 449 85 Jeong, K. C., Ghosal, D., Chang, Y. W., Jensen, G. J. & Vogel, J. P. Polar delivery of Legionella type IV
 450 secretion system substrates is essential for virulence. *Proc Natl Acad Sci U S A* **114**, 8077-8082 (2017).
 451 <u>https://doi.org:10.1073/pnas.1621438114</u>

- 45286Bock, D. *et al.* The Polar Legionella Icm/Dot T4SS Establishes Distinct Contact Sites with the Pathogen453Vacuole Membrane. *mBio* **12**, e0218021 (2021). https://doi.org/10.1128/mBio.02180-21
- 45487Mahapatra, S. et al. Coxiella burnetii Employs the Dot/Icm Type IV Secretion System to Modulate Host455NF-kappaB/RelAActivation.FrontCellInfectMicrobiol6,188(2016).456https://doi.org:10.3389/fcimb.2016.00188
- 457 88 Long, C. M. et al. Contributions of lipopolysaccharide and the type IVB secretion system to Coxiella 458 efficacy reactogenicity. NPJ burnetii vaccine and Vaccines 6, 38 (2021). 459 https://doi.org:10.1038/s41541-021-00296-6
- 46089Carranza, G. et al. Monitoring Bacterial Conjugation by Optical Microscopy. Front Microbiol 12,461750200 (2021). https://doi.org/10.3389/fmicb.2021.750200
- 46290Couturier, A. et al. Real-time visualisation of the intracellular dynamics of conjugative plasmid463transfer. Nat Commun 14, 294 (2023). https://doi.org/10.1038/s41467-023-35978-3
- 46491Luo, Z. Q. & Isberg, R. R. Multiple substrates of the Legionella pneumophila Dot/Icm system identified465by interbacterial protein transfer. *Proc Natl Acad Sci U S A* **101**, 841-846 (2004).
- 466 92 Li, X., Yang, Q., Tu, H., Lim, Z. & Pan, S. Q. Direct visualization of Agrobacterium-delivered VirE2 in recipient cells. *The Plant journal : for cell and molecular biology* **77**, 487-495 (2014).
 468 <u>https://doi.org:10.1111/tpj.12397</u>
- 46993Lettl, C., Haas, R. & Fischer, W. Kinetics of CagA type IV secretion by Helicobacter pylori and the470requirement for substrate unfolding. Mol Microbiol 116, 794-807 (2021).471https://doi.org:10.1111/mmi.14772
- 472 94 Chen, C. *et al.* Large-scale identification and translocation of type IV secretion substrates by Coxiella
 473 burnetii. *Proceedings of the National Academy of Sciences of the United States of America* 107, 21755474 21760 (2010). <u>https://doi.org:10.1073/pnas.1010485107</u>
- Schindele, F., Weiss, E., Haas, R. & Fischer, W. Quantitative analysis of CagA type IV secretion by
 Helicobacter pylori reveals substrate recognition and translocation requirements. *Mol Microbiol* 100, 188-203 (2016). https://doi.org:10.1111/mmi.13309
- 478 96 Al Mamun, A. A. M., Kishida, K. & Christie, P. J. Protein Transfer through an F Plasmid-Encoded Type IV
 479 Secretion System Suppresses the Mating-Induced SOS Response. *mBio* 12, e0162921 (2021).
 480 https://doi.org:10.1128/mBio.01629-21
- 48197Trokter, M. & Waksman, G. Translocation through the conjugative Type 4 secretion system requires482unfolding of its protein substrate. J Bacteriol (2018). https://doi.org:10.1128/JB.00615-17
- 48398Lang, S. et al. Molecular recognition determinants for type IV secretion of diverse families of
conjugative relaxases. Mol Microbiol 78, 1539-1555 (2010). https://doi.org:10.1111/j.1365-2958.2010.07423.x
- 48699Dostál, L., Shao, S. & Schildbach, J. F. Tracking F plasmid Tral relaxase processing reactions provides487insight into F plasmid transfer. Nucleic Acids Research 39, 2658-2670 (2011).488https://doi.org:10.1093/nar/gkq1137
- 489 100 Alperi, A. et al. A translocation motif in relaxase TrwC specifically affects recruitment by its 490 conjugative IV secretion J Bacteriol 195, 4999-5006 (2013). type system. 491 https://doi.org:10.1128/jb.00367-13
- 492101Meyer, R. Mapping Type IV Secretion Signals on the Primase Encoded by the Broad-Host-Range493Plasmid R1162 (RSF1010). J Bacteriol 197, 3245-3254 (2015). https://doi.org/10.1128/jb.00443-15
- 494102Vergunst, A. C. *et al.* Positive charge is an important feature of the C-terminal transport signal of the495VirB/D4-translocated proteins of Agrobacterium. *Proc Natl Acad Sci U S A* **102**, 832-837 (2005).496<u>https://doi.org:10.1073/pnas.0406241102</u>
- 497103Fernández-González, E. et al. Transfer of R388 derivatives by a pathogenesis-associated type IV498secretion system into both bacteria and human cells. J Bacteriol 193, 6257-6265 (2011).499https://doi.org:10.1128/jb.05905-11
- 500104Meir, A., Macé, K., Vegunta, Y., Williams, S. M. & Waksman, G. Substrate recruitment mechanism by
gram-negative type III, IV, and VI bacterial injectisomes. *Trends Microbiol* (2023).502https://doi.org:10.1016/j.tim.2023.03.005
- 503105Tato, I. *et al.* The ATPase activity of the DNA transporter TrwB is modulated by protein TrwA:504implications for a common assembly mechanism of DNA translocating motors. J Biol Chem 282,50525569-25576 (2007).
- 506106Li, Y. G. & Christie, P. J. The TraK accessory factor activates substrate transfer through the pKM101507type IV secretion system independently of its role in relaxosome assembly. Mol Microbiol 114, 214-508229 (2020). https://doi.org:10.1111/mmi.14507

- 509
 107
 Sgro, G. G. et al. Bacteria-Killing Type IV Secretion Systems. Front Microbiol 10, 1078 (2019).

 510
 https://doi.org:10.3389/fmicb.2019.01078
- 511 108 Oka, G. U. et al. Structural basis for effector recognition by an antibacterial type IV secretion system. 512 of the National Academy of Sciences 119, Proceedings e2112529119 (2022). 513 https://doi.org:doi:10.1073/pnas.2112529119
- 514109Siamer, S. & Dehio, C. New insights into the role of Bartonella effector proteins in pathogenesis. Curr515Opin Microbiol 23, 80-85 (2015). https://doi.org:10.1016/j.mib.2014.11.007
- 516110Stanger, F. V. *et al.* The BID Domain of Type IV Secretion Substrates Forms a Conserved Four-Helix517Bundle Topped with a Hook. *Structure* **25**, 203-211 (2017). https://doi.org:10.1016/j.str.2016.10.010
- 518111Wagner, A. & Dehio, C. Role of distinct type-IV-secretion systems and secreted effector sets in host
adaptation by pathogenic Bartonella species. Cell Microbiol 21, e13004 (2019).520https://doi.org:10.1111/cmi.13004
- Wagner, A., Tittes, C. & Dehio, C. Versatility of the BID Domain: Conserved Function as Type-IV Secretion-Signal and Secondarily Evolved Effector Functions Within Bartonella-Infected Host Cells.
 Front Microbiol 10, 921 (2019). <u>https://doi.org:10.3389/fmicb.2019.00921</u>
- 524113Qiu, J. & Luo, Z.-Q. Legionella and Coxiella effectors: strength in diversity and activity. Nature Reviews525Microbiology 15, 591-605 (2017). https://doi.org:10.1038/nrmicro.2017.67
- 526114Lockwood, D. C., Amin, H., Costa, T. R. D. & Schroeder, G. N. The Legionella pneumophila Dot/Icm527type IV secretion system and its effectors. *Microbiology (Reading)*168 (2022).528https://doi.org:10.1099/mic.0.001187
- 529115Nagai, H. et al. A C-terminal translocation signal required for Dot/Icm-dependent delivery of the530Legionella RalF protein to host cells. Proceedings of the National Academy of Sciences 102, 826-831531(2005).
- Huang, L. *et al.* The E Block motif is associated with Legionella pneumophila translocated substrates.
 Cellular microbiology 13, 227-245 (2011).
- 534 117 Shaffer, C. L. *et al.* Helicobacter pylori exploits a unique repertoire of type IV secretion system
 535 components for pilus assembly at the bacteria-host cell interface. *PLoS pathogens* 7, e1002237
 536 (2011). <u>https://doi.org:10.1371/journal.ppat.1002237</u>
- Johnson, E. M., Gaddy, J. A., Voss, B. J., Hennig, E. E. & Cover, T. L. Genes required for assembly of pili
 associated with the Helicobacter pylori cag type IV secretion system. *Infect Immun* 82, 3457-3470
 (2014). <u>https://doi.org:10.1128/IAI.01640-14</u>
- 540119Barrozo, R. M. *et al.* Functional Plasticity in the Type IV Secretion System of Helicobacter pylori. *PLOS*541*Pathogens* 9, e1003189 (2013). https://doi.org:10.1371/journal.ppat.1003189
- 542120Kwok, T. *et al.* Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 449,543862-866 (2007).
- 544121Rohde, M., Puls, J., Buhrdorf, R., Fischer, W. & Haas, R. A novel sheathed surface organelle of the545*Helicobacter pylori cag* type IV secretion system. *Mol. Microbiol.* **49**, 219-234 (2003).
- 546122Jimenez-Soto, L. F. *et al. Helicobacter pylori* type IV secretion apparatus exploits beta1 integrin in a547novelRGD-independentmanner.*PLoSPathog***5**, e1000684 (2009).548https://doi.org:10.1371/journal.ppat.1000684
- 549 123 Backert, S. & Tegtmeyer, N. Type IV Secretion and Signal Transduction of Helicobacter pylori CagA 550 with Cell Receptors. Toxins through Interactions Host (Basel) 9 (2017). 551 https://doi.org:10.3390/toxins9040115
- 552 124 Conradi, J. et al. An RGD helper sequence in CagL of Helicobacter pylori assists in interactions with 553 and Front Cell Infect Microbiol integrins injection of CagA. 2, 70 (2012). 554 https://doi.org:10.3389/fcimb.2012.00070
- Kumar, N., Shariq, M., Kumari, R., Tyagi, R. K. & Mukhopadhyay, G. Cag type IV secretion system: Cagl independent bacterial surface localization of CagA. *PLoS One* 8, e74620 (2013).
 <u>https://doi.org:10.1371/journal.pone.0074620</u>
- Koelblen, T. *et al.* Molecular dissection of protein-protein interactions between integrin α5β1 and the
 Helicobacter pylori Cag type IV secretion system. *Febs j* 284, 4143-4157 (2017).
 https://doi.org:10.1111/febs.14299
- 127 Klimke, W. A. & Frost, L. S. Genetic analysis of the role of the transfer gene, traN, of the F and R100-1
 plasmids in mating pair stabilization during conjugation. *J Bacteriol* 180, 4036-4043 (1998).
 https://doi.org:10.1128/jb.180.16.4036-4043.1998

- 564128Klimke, W. A. *et al.* The mating pair stabilization protein, TraN, of the F plasmid is an outer-membrane565protein with two regions that are important for its function in conjugation. *Microbiology (Reading)*566**151**, 3527-3540 (2005). https://doi.org:10.1099/mic.0.28025-0
- 567 129 Gonzalez-Rivera, C. *et al.* Two pKM101-encoded proteins, the pilus-tip protein TraC and Pep, 568 assemble on the Escherichia coli cell surface as adhesins required for efficient conjugative DNA 569 transfer. *Mol Microbiol* **111**, 96-117 (2019). https://doi.org:10.1111/mmi.14141
- 570 130 Xu, C., Soyfoo, D. M., Wu, Y. & Xu, S. Virulence of Helicobacter pylori outer membrane proteins: an updated review. *Eur J Clin Microbiol Infect Dis* **39**, 1821-1830 (2020). <u>https://doi.org:10.1007/s10096-</u>
 572 020-03948-y
- 573131Ishijima, N. et al. BabA-mediated adherence is a potentiator of the Helicobacter pylori type IV574secretion system activity. J Biol Chem286, 25256-25264 (2011).575https://doi.org:10.1074/jbc.M111.233601
- 576132Javaheri, A. *et al.* Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with
human CEACAMs. *Nat Microbiol* 2, 16189 (2016). https://doi.org:10.1038/nmicrobiol.2016.189
- 578