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Abstract 

 

Few research works tackled the testing of noise annoyance models proposed in the 

literature by considering a new set of survey data. This lack contributes to limit the effect of 

endeavors in noise annoyance prediction. This lack is observed for both annoyance models 

built from field data and laboratory data. Different reasons might explain this. In the case of 

annoyance models based on psychoacoustic indices accounting for annoying auditory 

sensations, their relevance was highlighted in laboratory conditions as they might increase the 

part of explained variance of annoyance. But the use of these indices in field studies leads to 

issues. Actually, audio recordings are needed for their calculation, making too tedious their 

use in large-scale studies. This work proposed a methodology, and its testing, to estimate 

various psychoacoustic and noise indices from the A-weighted equivalent sound pressure 

level, LAeq, of different transportation noise sources. The transportation noise sources were 

urban and suburban road traffic noise, urban railway noise, and aircraft noise in cities close 

to French international airports. A database of index values has been built from various 

recordings of these transportation noise sources. From the database, relationships between the 

various indices and LAeq of the transportation noise sources were built, and satisfactorily tested 

by cross-validation. These relationships might be of interest for field studies dealing with 

transportation noise assessment. In the current study, the relationships were used to estimate 

variables of noise annoyance models based on different psychoacoustic and noise indices. The 

proposed relationships enabled the assessment of the prediction quality of these models also 

based on individual noise sensitivity. The comparison of their prediction quality with the one 

of noise annoyance models solely based on the day-evening-night level, Lden, and of a model 

based on both noise sensitivity and the day-night level, Ldn, highlighted an improvement of 

the correlation coefficients between the predicted and the field measured annoyance ratings 
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with a ratio of 2 for the best enhancement. Such a ratio was observed as the correlation 

coefficient obtained for models solely based on Lden were weak. The results stated the interest 

of the proposed index relationships to be used in the investigation of improving noise 

annoyance models in future annoyance field studies.  

 

Keywords: Psychoacoustic index, noise annoyance, road noise, railway noise, aircraft 

noise 

 

1. Introduction 

 

Environmental noise is an important health issue in industrial countries. Assessments in 

western Europe place the burden of disease due to traffic-related environmental noise as the 

second highest one after air pollution. Annoyance is one of the most important reactions 

among populations exposed to environmental noise (WHO Regional Office for Europe, 2011; 

World Health Organization, 2018).  

The European Commission’s Position paper on EU noise indicators (European 

Commission, 2000) recommended to consider the day-evening-night level, Lden index, as a 

common noise indicator for reporting data on environmental noise exposure outside 

dwellings, for managing annoyance, sleep disturbance and also other noise-related health 

effects of environmental noise. The European Directive 2002/49/EC (European Commission, 

2002) makes it mandatory for European cities with more than 100,000 inhabitants to produce 

strategic noise maps for each type of transportation noise. These maps characterize noise 

exposure using Lden. These maps constitute a useful tool for managing environmental noise. 

They are also used to estimate the number of Disability-Adjusted Life Years (DALYs), i.e. 

healthy years of life lost from environmental noise in western European countries (World 

Health Organization, 2011). Lden index is used in exposure-effect relationships to estimate 

health effect, such as the percentage of people highly annoyed by a noise source (e.g. 

Miedema and Oudshoorn, 2001; World Health Organization, 2018). As pointed out in (World 

Health Organization, 2018), the best noise indicator from a scientific point of view is the one 

that best performs in predicting the effect of interest, but there are various criteria that may 

influence the choice of an indicator, such as being easy to be calculated (World Health 

Organization, 2018). Nevertheless, the choice of a mean energy-based index is often 

questioned to account for noise annoyance felt by the population (e.g. Lercher et al., 2013), 

and the sole mean sound level is known to partly explain the variance of annoyance (e.g. 

Babisch et al., 2009).  Actually, such an index does not account alone for various acoustical 

features from the spectral or temporal content, which are well-known to be annoying in case 

of different environmental noises (e.g. Torija et al., 2011; Lercher et al., 2013; Schäffer et al., 

2018). It is also well-known that non-acoustical factors also influence noise annoyance, such 

as noise sensitivity (e.g. Guski, 1999; van Kamp et al., 2004). Different works have built noise 

annoyance models considering multilevel regression to investigate the influence of various 

acoustical factors, such as psychoacoustic indices (e.g. Boucher et al., 2019), and non-

acoustical factors, such as noise sensitivity (e.g. Miedema and Vos, 2003), with the aim of 



 

enhancing noise annoyance models. These contributions highlight relevant variables which 

might be considered with or instead of an energy-averaged index. Few works considered the 

testing of noise annoyance models proposed in the literature by using a new set of survey data 

(e.g. Lechner et al., 2019a), and more rarely the testing of models considering other variables 

than the sole energy-averaged index. The lack of model testing necessarily contributes to limit 

the long-term goal of improving noise annoyance prediction. In the case of psychoacoustic 

indices used to account for annoying auditory sensations in noise annoyance models, their 

relevance is demonstrated under controlled conditions, but their use in field studies leads to 

issues, as for most of them audio recordings are needed for their calculation. This might be 

an important limitation to test noise annoyance models based on such indices. To overcome 

such a difficulty, Gille and Marquis-Favre (2019) proposed a methodology to estimate 

different psychoacoustic indices highlighted to be relevant for urban road and aircraft noise 

annoyance models. But the direct testing of such a methodology using a new set of index 

values was not proposed as a significant database of index values is needed to establish and 

test the methodology. 

In the current work, a methodology is proposed to estimate various psychoacoustic and 

noise indices from the A-weighted equivalent sound pressure level, LAeq, of different 

transportation noise sources. This was carried out for urban and suburban road traffic noise, 

railway traffic noise in urban areas, and aircraft noise in cities in the vicinity of French 

international airports. To achieve this goal, a database of index values has been built from 

various recordings of the transportation noise sources. Using a new set of field index data, the 

current study assessed by cross-validation the prediction quality of the estimation of the 

psychoacoustic and noise indices from LAeq of the transportation noise sources. From the new 

set of field index data, the methodology proposed in Gille and Marquis-Favre (2019) to 

estimate psychoacoustic indices was also assessed. The obtained relationships between the 

various indices and LAeq of the transportation noise sources might be of interest for field 

studies assessing transportation noise sources in urban areas. In the current work, these 

relationships were used to test noise annoyance models, based on noise sensitivity and various 

psychoacoustic and noise indices, proposed in the literature (Gille and Marquis-Favre, 2019; 

Trollé et al., 2014; Vallin et al., 2018). Prediction quality assessment was carried out using 

survey data. This allowed to compare these annoyance models to other annoyance models 

from the literature solely based on Lden, or based on Ldn and noise sensitivity. The paper is 

organized as followed: section 2 presents the socio-acoustic survey; section 3 is dedicated to 

the construction and testing of the relationships between LAeq of the transportation noise 

sources and different psychoacoustic and noise indices; section 4 presents the testing of 

psychoacoustic index-based annoyance models proposed in the literature and their 

comparison with annoyance models solely based on Lden or on Ldn and noise sensitivity. Then 

results are discussed, and conclusions are given. 

 

 

 



 

2. The socio-acoustic survey  

 

The socio-acoustic survey was carried out during the autumn of 2012 by Ecotière et 

al. (2015) in 8 French cities to study different combined transportation noise sources. The 

transportation noise sources assessed were road traffic, railway traffic and aircraft noises. The 

sampling of the respondents was random in the survey areas. The respondents were 

interviewed face-to-face using a 30-minute questionnaire. In the current study, the main 

characteristics of the survey are briefly summarized hereafter from published articles 

(e.g. Gille et al., 2017). 

 

2.1 The questionnaire 

The questionnaire was in French (Cf. Ecotière et al., 2015) and organized with questions 

about (Cf. Gille et al., 2017): 

-     Housing; 

-  Neighborhood; 

-     Global outdoor sound environment; 

- Annoyance due to each transportation noise under study (depending on the city of 

residence); 

-    Annoyance due to the combined transportation noise sources (depending on the city 

of residence); 

-    Non-acoustical factors, such as the self-reported noise sensitivity. 
 

The questions about noise annoyance complied with ISO/TS 15666:2003 (2003). 

Respondents were asked to give an annoyance rating due to the mentioned noise 

source(s) on a continuous scale ranging from “0” to “10”, with 11 evenly spaced 

numerical labels and two verbal labels at both ends (“not at all” and “extremely”). A 

similar continuous scale was used to assess the self-reported noise sensitivity in general 

(Ecotière et al., 2015; Gille et al., 2017). 

 

2.2 Study population 

 A total of 823 people, between 18 and 80 years old, and living permanently in their 

dwelling for at least one year, were successfully interviewed (Cf. Gille et al., 2017). Their 

socio-demographic characteristics are given in Table 1.  

 

Table 1. Socio-demographic characteristics of the studied population (Cf. Gille et 

al., 2017). 

 

 N (%) Mean ±SD(Min-Max) 

Gender 

   Male 

   Female 

 

48.5% 

51.5% 

 

Age  46 ±16.9 (18-80) years 



 

Length of residence  13.4±14.1(1-77) years 

Occupation   

   Working 

   Non-working 

      Retired 

      Student 

      Unemployed 

      Housewife 

      Disabled 

 

55.9% 

44.1% 

22.7% 

4.9% 

7.4% 

6.7% 

1.2% 

 

 
Noise sensitivity ratings highlighted that 70.5% of respondents reported themselves 

to be sensitive or highly sensitive to noise in general (Cf. Marquis-Favre et al., 2021), 

with a 50 % cut-off point.  The value is equal to 27.6% for respondents reported to be 

highly sensitive to noise in general, with a 72% cut-off point. These values showed the 

importance of this individual predisposition regarding reaction to noise among the 

population. 

 

2.3. Noise exposures 

Noise exposures studied during the socio-acoustic survey were expressed in terms 

of Lden from the French strategic noise maps available in 2012 and based on the European 

Directive 2002/49/CE guidelines. Noise maps were available for each single transportation 

noise exposure for each city of the survey. Table 2 presents the different transportation noise 

exposures, the number of respondents and Lden range per noise exposure (Cf. Gille et al., 

2017).  

 
Table 2. Noise exposure expressed in Lden (dB(A)) and the number of respondents 

in each of the 8 cities of the survey (Ecotière et al., 2015; Gille et al., 2017). Road: 

Road traffic; Rail: Railway; Air: Aircraft; 1: city exposed to Orly airport noise; 2: 

city exposed to Roissy-Charles-de-Gaulle airport noise. 
 

City 

(population sample size) 

Lden 

Road 

Lden 

Railway 

Lden 

Aircraft 

 dB(A) dB(A) dB(A) 

Bourg Les Valence (82)   58.0 to 80.8 58.1 to 77.4  

Caluire (79)   55.6 to 78.0 45.6 to 82.2 no exposure 

Lyon 6 (140)   48.4 to 74.2 40.6 to 83.6  

Paray-Vieille-Poste1 (153) 

 

49.9 to 77.9  42.0 

 

 

 

 no exposure  

  Saint Brice-sous-Forêt2 (59) 53.7 to 67.5  52.0 to 54.0 



 

Goussainville2 (96) 

Villeneuve-Le-Roi1 (25) 

 

 

Below 55, 

not studied 

52.0 to 72.0 

49.0 to 60.0 

52.0 to 72.0 

49.0 to 60.0 

Villeneuve-Saint-Georges1 (189) 42.3 to 79.3 43.2 to 80.8 44.7 to 62.8 

Respondent number per exposure 702 611 522 

 

As there were no variations in aircraft noise Lden for respondents from the city of Paray-

Vieille-Poste, aircraft noise exposure from this city was not considered in the following. Thus, 

the sample size of respondents exposed to aircraft noise exposure dropped to 369. 

 

2.4. Correlation coefficients between annoyance and two factors collected during the survey 

In order to use these survey data for testing literature noise annoyance models, a 

correlation analysis was carried out between Lden and noise annoyance ratings, and also 

between noise annoyance and noise sensitivity ratings gathered during the survey. Table 3 

displays the correlation coefficients. 

 

Table 3. For each type of transportation noise exposure, correlation coefficients r 

between annoyance ratings and the corresponding noise index Lden, and correlation 

coefficients r between annoyance and noise sensitivity ratings. Road: Road traffic; 

Rail: Railway; Air: Aircraft. p <0.001. *: sample without the data from Paray-

Vieille-Poste city. 

 

Transportation Sample size 

r between annoyance 

ratings and Lden 

r between annoyance and 

noise sensitivity ratings 

Road 702 0.17 0.37 

Rail 611 0.23 0.35 

Air 369* 0.21 0.46 

 

Correlation analysis highlighted significant but weak correlation coefficient values 

between annoyance and Lden, and emphasized better correlation coefficient values between 

annoyance and noise sensitivity ratings. 

 

 



 

3. Construction of index relationships from LAeq of the noise sources and their 

testing 

 

3.1 Index database from field audio recordings 

After the socio-acoustic survey, Bruitparif involved in the consortium of the survey 

(Ecotière et al., 2015) performed audio recordings in the 5 cities around Paris at receiver 

points located in the area of the survey using ICP microphones. The locations of the receiver 

points were in the vicinity of dwellers or in their property (e.g. microphones attached with a 

pole to the façade of their dwellings facing a main road or railway tracks; Bruitparif’s car with 

its microphone attached on the top of a vertical pole, and parked in streets of dwellers exposed 

to aircraft noise). The different recordings carried out during many days accounted for the 

exposure of dwellers in the area of the survey. From these recordings, audio excerpts with 

noise events from each studied transportation noise were selected by ENTPE with the criterion 

to be free from other noise sources. Road traffic in these cities was urban traffic (50 km/h 

speed limit) or suburban traffic (speed variation from traffic lights up to road portions limited 

at 90 km/h). The road traffic was composed of different types of vehicles (powered-two-

wheelers, buses, heavy, and light vehicles) at different driving conditions (acceleration, 

deceleration, constant speed). Audio excerpts corresponded to road traffic noise and to 

isolated noise events due to vehicle pass-bys. Railway traffic in these urban areas 

corresponded to train pass-bys at low speeds. Audio excerpts depended on the type of trains 

(intercity train, high-speed train (TGV) at low speed, suburban train and freight train), and 

could correspond to one train pass-by or to railway traffic composed of different simultaneous 

train pass-bys. Audio excerpts for aircraft noise corresponded to takeoffs and landings of 

aircrafts as the studied cities were close to two international airports, Orly and Roissy-

Charles-de-Gaulle airports. Psychoacoustic and noise indices were calculated for these 

different noise sources. The calculations were carried out at ENTPE using MATLAB and 

dBSonic software (ACOEM - Cf. 01dB-Metravib, 2005). All calculated indices are hereafter 

described in subsections dedicated to each noise exposure. This endeavor led to an index 

database per city and noise exposure as displayed in Table 4 with the A-weighted equivalent 

sound pressure level LAeq range of corresponding noise exposure. Each index database size is 

defined by the number of transportation noise excerpts. These different index databases 

provided data 1) to determine relationships between LAeq of each noise source and 

psychoacoustic and noise indices, and 2) to test by cross-validation the built relationships 

considering the index values from the field recordings. 

 

 

 

 

 

 

 

 



 

Table 4. Index databases stemming from field audio recordings carried out in 5 cities 

of the survey around Paris. LAeq (dB(A)) of the audio excerpts and index database 

size defined by the number of identifiable noise event excerpts. Road: urban or 

suburban road traffic; Rail: urban railway; Air: Aircraft; 1: city exposed to Orly 

airport noise; 2: city exposed to Roissy-Charles-de-Gaulle airport noise. 
 

  Index databases from field audio recordings 

Cities concerned by the 

audio excerpts 

Road traffic noise 

excerpts 

LAeq dB(A) 

{index database 

size} 

Railway traffic noise 

excerpts 

LAeq dB(A)  

{index database size} 

Aircraft noise 

excerpts 

LAeq dB(A)  

{index database 

size} 

Paray-Vieille-Poste 1 

(PVP) 

40 to 84.7 

{120} No exposure 

No index 

calculation 

Saint-Brice-sous-Forêt2 

(SBF) 

55.8 to 80.4 

{125} No exposure 

55 to 85 

{64} 

Goussainville2 (GOUS)  No exposure 

55.5 to 87.5 

{80} 

55 to 70 

{51} 

Villeneuve Le Roi1 

(VLR)  No exposure 

67.2 to 88.9 

{82} 

60 to 80 

{50} 

Villeneuve-Saint-

Georges1 (VSG) 

61.6 to 84.7 

{286} 

65.5 to 84.9 

{15} 

65 to 85 

{19} 

 

In the following subsections, methodology used to determine relationships between LAeq 

and psychoacoustic and noise indices, and then for testing the proposed relationships is 

detailed for road traffic noise exposure. Same methodology has been used for railway noise 

and aircraft noise index relationships. Psychoacoustic and noise indices under study are 

variables of noise annoyance models built in laboratory conditions and proposed in the 

literature. Validated relationships for these indices will enable, in this work, noise annoyance 

models to be tested by using the socio-acoustic survey data. Construction and testing of the 

relationships are presented per noise exposure in the following subsections. 

 

 

3.2 Urban road traffic noise indices 

Gille and Marquis-Favre (2019) showed that some psychoacoustic and noise indices may 

be of interest to be used in urban road traffic noise annoyance models. These indices are mean 

Zwicker’s loudness denoted later by N, the derivative of loudness over time σ’(N) and URA 

an indicator proposed by Klein et al. (2015) for urban road traffic noise annoyance. These 

indices appear to be useful to account for annoyance due to various vehicles of urban road 

traffic (e.g. powered-two-wheelers, buses, heavy vehicles and light vehicles). Hereafter, σ’(N) 

and URA are shortly described. 

• Derivative of loudness over time σ’(N) 

σ’(N) index proposed by Gille et al. (2016a) accounts for the irregular and regular fluctuation 

of loudness N over time. It is defined as follows: 



 

𝜎′(𝑁) = √
1

𝑇
∫ (

𝑑𝑁

𝑑𝑡
)

2

𝑑𝑡
𝑇

0

 (1) 

 

• Urban Road vehicle pass-by noise Annoyance, denoted by URA 

URA is a regression relationship using the indices N, msputt,10, mnas,10 and TETC (Klein et al., 

2015). This aggregated index reports on the perceived acoustic intensity, and on sensations 

related to amplitude modulations and spectral content. 

 

𝑈𝑅𝐴 = 0.50 ∙ 𝑁 + 2.85 ∙ 𝑚𝑠𝑝𝑢𝑡𝑡,10 + 3.51 ∙ 𝑚𝑛𝑎𝑠,10 + 0.026 ∙ 𝑇𝐸𝑇𝐶16−24 − 0.79 (2) 

Total energy of the tonal components within critical bands from 16 to 24 Barks, denoted by 

TETC16-24, is an index which accounts for tonal components at high frequencies. The general 

formula is as follows (Cf. Trollé et al., 2014; Trollé et al., 2015): 

𝑇𝐸𝑇𝐶𝑧1− 𝑧2
= 10 ∙ 𝑙𝑜𝑔10 (∫ 10

𝐿(𝑧)
10⁄ 𝑑𝑧

𝑧2

𝑧1−1

) (3) 

With L(z) the maximal level (across time) of the tonal components as a function of the critical-

band rate z, integrated from z1 to z2 Barks. It has been originally proposed by Trollé and his 

colleagues (Trollé et al., 2014; Trollé et al., 2015) within the critical bands from 12 to 24 Barks. 

Klein and his colleagues (2015) have proposed for the urban road traffic noise to use this index 

within the critical bands from 16 to 24 Barks, and denoted by TETC16-24.  

Sputtering index msputt and nasal modulation index mnas enable to characterize amplitude 

modulation due to urban road traffic noise (Klein et al., 2015). Sputtering modulation index 

msputt accounts for modulation frequencies up to 100Hz: 

𝑚𝑠𝑝𝑢𝑡𝑡𝑖
= [

2 ∙ |𝑃𝑚𝑎𝑥(2 − 100𝐻𝑧)|

𝑃(0)
] (4) 

 

With P(0) the dc component of the signal and Pmax the highest modulation component in the 

frequency range from 2 to 100 Hz within a time frame i. 

Nasal modulation index mnas accounts for modulation at higher frequencies:  

𝑚𝑛𝑎𝑠𝑖
= [

2 ∙ |𝑃𝑚𝑎𝑥(100 − 200𝐻𝑧)|

𝑃(0)
] (5) 

 

with P(0) the dc component and Pmax the strongest modulation frequency component in the 

range from 100 to 200 Hz, within a time frame i. 

The indices msputt,10 and mnas,10 correspond to the values of the indices which are exceeded in 

10% of the time. They are respectively related to sensations of amplitude modulations at 

modulation frequency below 100 Hz (i.e. low-frequency modulation) and at modulation 

frequency between 100 and 200 Hz (Cf. the associated verbatim data “Scooter with a noise like 

a buzzing of a wasp” collected in the study of Klein et al., 2015). 

 

 

  



 

3.2.1 Construction of road traffic noise index relationships 

The index database from Villeneuve-Saint-Georges city was considered to investigate the 

trend of N, URA and σ’(N) index values displayed versus LAeq values for the 286 audio excerpts 

of the corresponding urban road traffic noise. For the 3 indices, their values displayed versus 

values of LAeq evolves exponentially (as illustrated in Figure 1 for loudness values).  

  
Figure 1. Loudness N values versus the values of LAeq for the 286 audio excerpts 

stemming from recordings carried out in Villeneuve-Saint-Georges city. The curve 

displays the exponential trend of the data. 

 

For each of the 3 indices N, URA and σ’(N), exponential regressions were built 

between their respective values and LAeq values. The corresponding equations are 

given in Table 5.   

 

Table 5. Index relationships between LAeq of urban road traffic noise sources and 

psychoacoustic and noise indices. These exponential regressions were built from the 

urban road traffic index database of Villeneuve-Saint-Georges (VSG). (p-values: 

p<0.001. For 95 % confidence intervals, see Appendix A.1). 

 

   𝑁 = 0.24 ∙ 𝑒0.065∙𝐿𝐴𝑒𝑞  

   𝑈𝑅𝐴 = 0.184 ∙ 𝑒0.0607∙𝐿𝐴𝑒𝑞 

   𝜎′(𝑁) = 1.55 ∙ 𝑒0.0599∙𝐿𝐴𝑒𝑞  

 

One may wonder whether the relationship obtained for loudness is relevant when 

compared to the well-known Stevens’ equation (Stevens, 1955), and defined in the following 

as a function of sound pressure:  

𝑁 = 𝑘 ∙ 𝑝0.6 (6) 

 

The obtained relationship of loudness in the current study is in the form of the equation: 

𝑦 = 𝐾 ∙ 𝑒𝑏∙𝐿𝐴𝑒𝑞 (7) 
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The transformation of Eq. (7) into an equation written as Stevens’ one led to the following 

expression: 

                                  𝑦 =
𝐾

𝑒
20∙𝑏∙𝑙𝑜𝑔𝑝𝑟𝑒𝑓

∙ 𝑝𝐴

20∙𝑏

ln (10)           (8) 

 

with pA the A-weighted sound pressure and pref the reference sound pressure equal to 2.10–5 
Pa. 

The value of 
20∙𝑏

ln (10)
 is equal in the current work to 0.564. The two equations are therefore 

very close. The slight difference in the exponent of pressure can be due to the facts: 1) complex 

sounds, with time-varying spectral content, were considered in this work, whereas the 

Stevens’ equation was determined for pure tones, and 2) the A-weighted sound pressure was 

considered whereas the pressure was not weighted in Stevens’ equation.  

 

3.2.2 Testing of the built road traffic noise index relationships  

Prediction intervals were used to assess prediction quality of the built exponential 

relationships. Details for prediction intervals are described in Annex A.1.  

Testing of the relationships built for urban road traffic noise indices is presented hereafter 

by comparing the built relationships (Cf. their exponential expression given in Table 5) to 

index values from two new datasets: 1) another urban road traffic noise recorded in the city 

of Paray-Vieille-Poste (Cf. Figure 2), and 2) a suburban road traffic noise recorded in the city 

of Saint-Brice-sous-Forêt (Cf. Figure 3). 

 

* Testing of the index relationships using the urban road traffic index database from 

Paray-Vieille-Poste (PVP) city 
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Figure 2. Testing of index relationships using the urban road traffic index database from PVP 

city. -: built index relationship (Cf. Table 5);  - - - : 95% prediction intervals (Cf. Annex A.1); 

.
: index values from PVP index database. a) N index; b) URA index; c) σ’(N) index. 

 

* Testing of the index relationships using the suburban road traffic index database from 

Saint-Brice-sous-Forêt (SBF) city 
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Figure 3. Testing of the index relationships using the suburban road traffic index database 

from SBF city. -: built index relationship (Cf. Table 5);  - - - : 95% prediction intervals (Cf. 

Annex A.1); .: index values from SBF index database. a) N index; b) URA index; c) σ’(N) 

index. 

Index relationships built for N and URA from the urban road traffic noise source LAeq at 

VSG city globally allow a good prediction of N and URA for another urban road traffic noise 

(PVP city – Cf. Figure 2), and also for a suburban road traffic noise (SBF city – Cf. Figure 3). 

Index relationships built for σ’(N), derivative of loudness over time, allow in general a good 

prediction of this index for another urban road traffic noise (PVP – Cf. Figure 2), but the 

prediction quality may fail for a suburban road traffic noise (SBF – Cf. Figure 3) at high values 

of LAeq. It seems that the relationship of the index accounting for fluctuation and built from 

audio excerpts of urban road traffic (i.e. with 50 km/h speed limit) fails to account for strong 

amplitude fluctuations present in the suburban road traffic noise in which vehicle speed 

variation might be higher from traffic lights to a maximum speed equal to 90 km/h. 

Thus, the relationship for this index has also been built in this study from suburban road 

traffic noise of SBF index database, its equation is given as follows (p<0.001; Appendix A.1 

gives 95 % confidence interval information): 

                                              𝜎′(𝑁) = 0.90 ∙ 𝑒0.070∙𝐿𝐴𝑒𝑞    (9) 

 

This equation built from noise of suburban road traffic (with 90km/h speed limit) of SBF 

index database has been tested using noise of urban road traffic (i.e. with 50km/h speed limit) 

of VSG index database. Due to index databases available, it was not possible to test this 

equation for another suburban road traffic noise. Figure 4 displays the results of the testing. 

Most of the index values from VSG index database are within the prediction intervals. This 

relationship tested for VSG urban road traffic noise seems to lead to a good prediction quality. 

The location of the points from VSG index database close to the lower 95% prediction interval 

curve might be explained by the difference of the speed limits of the respective road traffics 

used for the relationship determination and testing. 
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Figure 4. The σ’(N) index relationship built from the suburban road traffic noise of SBF 

index database and tested using urban road traffic of VSG index database. -: built index 

relationship (Cf. Eq.(9));  - - - : 95% prediction intervals (Cf. Annex A.1); .: index values 

from VSG index database.  

 

The different index relationships proposed for urban and suburban road traffic noise are 

summed up in Table 6.  

 

Table 6. Index relationships between LAeq of urban and suburban road traffic noise 

sources and psychoacoustic and noise indices. (p-values: p<0.001. Appendix A.1 

displayed information for 95 % confidence and prediction intervals). 

 

 

  𝑁 = 0.24 ∙ 𝑒0.065∙𝐿𝐴𝑒𝑞  

  𝑈𝑅𝐴 = 0.184 ∙ 𝑒0.0607∙𝐿𝐴𝑒𝑞 

  𝜎′(𝑁) = 1.55 ∙ 𝑒0.0599∙𝐿𝐴𝑒𝑞  for urban road traffic 

  𝜎′(𝑁) = 0.90 ∙ 𝑒0.070∙𝐿𝐴𝑒𝑞   for suburban road traffic 
 

 

These index relationships can be used to account for psychoacoustic and noise index 

estimation from noise source LAeq in field studies dealing with urban and suburban road traffic 

noise assessment (e.g. soundscape, annoyance). In section 4, the relationships will be used to 

define variables of road traffic noise annoyance models proposed by Gille and Marquis-Favre 

(2019).  

 

3.2.3 Testing of index relationships proposed in the literature 

In this section, the proposed relationships are compared with those built in Gille and 

Marquis-Favre (2019) for urban road traffic noise following a different methodology. These 

relationships were built from 120 pass-by noises at PVP city. Each index relationship resulted 
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from the average of 120 relationships. Each of the 120 relationships had been built by varying 

the mean sound pressure level of a pass-by noise among the 120 excerpts. The averaged index 

relationships are given in Table 7. 

 

Table 7. Index relationships between psychoacoustic indices and urban road traffic 

noise source LAeq built from the methodology proposed in Gille and Marquis-Favre 

(2019) for urban road traffic noise from PVP city.  

 

𝑁 = 23.99 ∙ 𝑒(0.0747∙(𝐿𝐴𝑒𝑞−71.1))
 

𝑈𝑅𝐴 = 13.29 ∙ 𝑒(0.0528∙(𝐿𝐴𝑒𝑞−71.1)) 
 

𝜎′(𝑁) = 113.87 ∙ 𝑒(0.0568∙(𝐿𝐴𝑒𝑞−71.1))  

  

 

The relationships were tested using VSG and SBF index databases. As the variance and 

covariance matrices for the relationships were not known, the testing of these relationships 

was classically carried out by calculating the correlation coefficient r, the slope and intercept 

of the simple regression line drawn between predicted index values and index values 

stemming from the index databases. For a perfect prediction, r, slope and intercept have to be 

respectively equal to 1, 1 and 0.  Correlation coefficient, slope and intercept, are given in 

Table 8, for the three relationships tested using two sets of data. 

 

Table 8: Results for Gille and Marquis-Favre (2019) relationships built from PVP index 

database, and tested using VSG and SBF index databases. p <0.001. 

Databases used for the 

testing 

Index 

relationships 

Correlation 

coefficient 
Slope Intercept 

Urban road traffic 

noise 

(VSG) 

N  0.92  1.01  -0.29 

URA  0.91 0.69 3.86 

σ’(N)  0.96 0.91 15.26 

Suburban road traffic 

noise (SBF) 

N  0.98  1.00 -1.10 

URA  0.97  0.79 1.72 

σ’(N)  0.92 0.58 30.67 

 

For a comparison with the relationships proposed in the current study, the testing carried 

out in section 3.2.2 is expressed in Table 9 in terms of correlation coefficients between 

predicted index values and index values from the index databases.  

 

 

Table 9: The current index relationships built from VSG index database (Cf. Table 5) and 

tested using PVP and SBF index databases. p <0.001. 

Databases used for the 

testing 

Index 

relationships 

Correlation 

coefficient 
Slope intercept 

Urban road traffic 

noise (PVP) 

N 0.93  0.93  3.42 

URA  0.93  0.93  2.19 

σ’(N)  0.93 0.90 14.11 



 

Suburban road traffic 

noise 

(SBF) 

N 0.98  0.90  1.56  

URA  0.97 0.94  0.33  

σ’(N)  0.92 0.58 25.92 

 

These results depict a same order of magnitude and a similar precision between 

relationships from Gille and Marquis-Favre (2019) and those constructed following the 

methodology proposed in the current work. Testing of Gille and Marquis-Favre’s 

relationships (2019), carried out in the current work, highlights the validity of the method 

proposed in Gille and Marquis-Favre (2019) in order to build relationships between LAeq of 

urban road traffic noise sources and psychoacoustic and noise indices. The testing of these 

relationships and of the relationships proposed in the current work (Cf. sections 3.2.2) shows 

a good prediction quality, and indicates their use for field studies dealing with urban and 

suburban road traffic noise assessment (e.g. soundscape, annoyance). 

 

3.3 Railway traffic noise indices 

Methodology detailed in the previous section for road traffic noise indices has been 

applied to construct and to test the relationships between noise indices and railway noise LAeq. 

Thus, results of the main steps are given in this section after the presentation of the railway 

noise indices under consideration. The indices were highlighted in Trollé et al. (2014; 2015) 

dealing with tramway noise, and Vallin et al. (2018) dealing with different types of trains in 

urban areas. These works carried out in laboratory conditions considered different indices in 

multilevel noise annoyance models and showed an enhancement of the explained variance in 

comparison with the one from noise annoyance models solely based on mean sound pressure 

level. The noise indices, denoted by TETC, Lfluc and σ’(L,T), are presented hereafter.  

 

• Total energy of the tonal components in critical bands: TETC12-24 and TETC16-24 

TETC12-24 was proposed by Trollé et al. (2014; 2015) to be used in a tramway noise annoyance 

model to account for annoying sensations at high frequencies such as squeal noise. The index 

stems from Eq. (3) with an integration from 12 to 24 Barks. This index was also used to account 

for annoying sensations evoked by railway noise by Sharp et al. (2014). The index TETC16-24 , 

with an integration from 16 to 24 Barks, was used by Vallin et al. (2018) to account for 

annoying high frequency content due to different types of trains (intercity trains, suburban 

trains, freight trains, etc.) in urban areas. 

• Fluctuation index Lfluc  

Lfluc is an index accounting for irregular temporal amplitude fluctuations. Vallin et al. (2018) 

defined this index as the arc length of the instantaneous A-weighted level LA(t), sampled 

every 2 ms and with a normalized duration between 0 and 1: 

𝐿𝑓𝑙𝑢𝑐 = ∫ ‖
𝑑𝐿𝐴

𝑑𝑡
‖ 𝑑𝑡 = ∫ √1 + (

𝑑𝐿𝐴

𝑑𝑡
)

2

𝑑𝑡
1

0

1

0

 (10) 

This index may account for sensations evoked by irregular variations in amplitude. 

 



 

• Fluctuation duration-related σ’(LA,T) 

 This index accounts for amplitude fluctuations due to train pass-bys, and considers the pass-by 

noise duration T (Vallin et al., 2018): 

𝜎′(𝐿𝐴, 𝑇) = √∫ (
𝑑𝐿𝐴

𝑑𝑡
)

2

𝑑𝑡
𝑇

0

 (11) 

This index may account for sensations due to regular and irregular variations in amplitude. 

 

3.3.1 Construction of railway traffic noise index relationships 

Methodology proposed and tested in section 3.2 for road traffic noise was applied in this 

section on railway index databases to build and test index relationships. Index databases 

presented in Table 4 for railway noise exposure were divided into two index databases, one 

for the relationship construction, and one for the relationship testing. Due to the small sample 

size of the railway index databases (Cf. Table 4), the index database stemming from the cities 

Villeneuve-Le-Roi and Goussainville, denoted later by VLR+GOUS, was used for the 

construction of the relationships between the noise indices and the railway noise source LAeq. 

Index database from Villeneuve-Saint-Georges (VSG) city was considered to test the built 

index relationships. 

VLR+GOUS index database enabled to investigate the trend of the index values versus 

LAeq values. Variation of the indices Lfluc and 𝜎′(𝐿, 𝑇) versus LAeq evolved exponentially, 

whereas TETC indices displayed a linear variation versus the mean sound pressure level. 

Relationships were thus an exponential function of LAeq, for Lfluc and 𝜎′(𝐿, 𝑇),  and a linear 

function of LAeq for TETC indices. The equations are presented in Table 10. 

 

Table 10. Index relationships between noise indices and railway traffic noise source 

LAeq. The relationships were built from the VLR+GOUS railway traffic index 

database. (p-values: p<0.05. For 95 % confidence intervals, see Appendix A.2). 

 

   𝑇𝐸𝑇𝐶12−24 = −10.61 + 1.35 ∙ 𝐿𝐴𝑒𝑞 

   𝑇𝐸𝑇𝐶16−24 = 28.3 + 0.70 ∙ 𝐿𝐴𝑒𝑞 

   𝐿𝑓𝑙𝑢𝑐 = 22.69 ∙ 𝑒0.031∙𝐿𝐴𝑒𝑞 

   𝜎′(𝐿, 𝑇) = 96.45 ∙ 𝑒0.003∙𝐿𝐴𝑒𝑞 

 

3.3.2 Testing of the built railway traffic noise index relationships  

Testing of the built index relationships (expression given in Table 10) was carried out 

considering their respective 95% prediction intervals (Cf. Appendix A.2) using railway noise 

index database obtained from the audio excerpts from VSG city (Cf. Figure 5). 



 

 
 

 

 
 

 

Figure 5. Testing of index relationships using VSG railway traffic noise index database. 

 -: built index relationship (Cf. Table 10);  - - - : 95% prediction intervals (Cf. Annex A.2); 

.
: index values from VSG index database. a) TETC12-24 index; b) TETC16-24 index; c) Lfluc 

index; d) σ’(L,T) index. 

 

Despite the small size of railway index databases compared to the ones available for road traffic 

noise (Cf. Table 4), construction and testing of railway index relationships lead to a satisfactory 

prediction quality, with most of the index values from VSG index database within the 95% 

prediction intervals (Cf. Figure 5). 
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3.4 Aircraft noise indices 

Methodology presented in section 3.2 for road traffic noise is considered in this section 

for aircraft noise index databases in order to build and test index relationships. For aircraft 

noise, some psychoacoustic indices have been shown to be interesting for noise annoyance 

modeling (Cf. Gille and Marquis-Favre, 2019). The indices are: 

• mean loudness denoted by N,  

• total loudness exceeded 10% of the time N10,  

• derivative of loudness over time σ’(N) (Cf. Eq. 1),  

• N1-12 mean specific loudness integrated between Barks 1 and 12, to account for low and 

medium frequency content of aircraft noise, 

• total energy of the tonal components (Cf. Eq. 3), TETC13-18 within the critical bands 

from 13 to 18 Barks, to account for annoying tonal components in aircraft noise at high 

frequencies.  

 

3.4.1 Construction of aircraft noise index relationships 

From Table 4, two index databases were respectively considered for the construction and 

the testing of the index relationships. Due to the small size of aircraft index databases, index 

database stemming from the cities Villeneuve-Le-Roi, Goussainville and Saint-Brice-sous-

Forêt (later denoted by VLR+GOUS+SBF) was used for the construction of the relationships. 

Index database from Villeneuve-Saint-Georges (VSG) city was considered for testing the built 

index relationships. 

As in sections 3.2 and 3.3, relationships based on loudness were well approximated by 

an exponential function of LAeq, whereas TETC index was a linear function of the mean sound 

pressure level. The obtained relationships are displayed in Table 11. 

 

Table 11. Index relationships between indices and aircraft noise source LAeq. The 

relationships were built from the aircraft noise index database (VLR+ GOUS+SBF). 

(p-values: p<0.05. For 95 % confidence intervals, see Appendix A.3). 

 

 𝑁 = 0.10 ∙ 𝑒0.075∙𝐿𝐴𝑒𝑞   

 𝑁10 = 0.59 ∙ 𝑒0.056∙𝐿𝐴𝑒𝑞   

 
𝜎′(𝑁) = 0.59 ∙ 𝑒0,072∙𝐿𝐴𝑒𝑞  

𝑁1−12 = 0.17 ∙ 𝑒0.065∙𝐿𝐴𝑒𝑞 

 

 𝑇𝐸𝑇𝐶13−18 = −36.17 + 1.78 ∙ 𝐿𝐴𝑒𝑞  

 

 

Comparison of the loudness relationship to the equation from Stevens (1955) obtained 

between loudness and the pressure of pure tones following the rationale described in section 

3.2.1 led to a coefficient equal to 0.65 for aircraft noise loudness which is close to 0.6, the one 

in Stevens’ equation.  

 



 

3.4.2 Testing of the built aircraft noise index relationships  

VSG aircraft noise index database was used for testing the proposed aircraft noise index 

relationships. 
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Figure 6. Testing of index relationships using VSG aircraft noise index database. 

 -: Built index relationship (Cf. Table 11);  - - - : 95% prediction intervals (Cf. Annex A.3); .: 

index values from VSG index database. a) N index; b) N10 index; c) σ’(N) index; d) N1-12 

index; e) TETC13-18 index. 

As in the case of railway noise (section 3.3), construction and testing of the aircraft noise 

index relationships lead to a satisfactory prediction quality despite the small size of the 

available index databases (Cf. Table 4). 

 

3.4.3 Testing of other index relationships proposed in the literature 

As in section 3.2.3 for road traffic index relationships, aircraft index relationships might 

be compared with those proposed in the literature. Actually, Gille and Marquis-Favre (2019) 

proposed relationships to estimate psychoacoustic indices from LAeq of aircraft noise 

following a methodology based on the determination of a relationship per source (Cf. section 

3.2.3 detailing the methodology), i.e. per flyover, and the final proposed relationship obtained 

by averaging the coefficients of the different relationships determined for flyovers recorded 

in the survey area close to airport Orly during takeoffs and landings (see Gille and Marquis-

Favre, 2019). The proposed averaged index relationships are reminded in Table 12.  
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Table 12. Index relationships proposed in Gille and Marquis-Favre (2019) for 

aircraft traffic noise. 

 

𝑁 = 14.83 ∙ 𝑒(0.0676∙(𝐿𝐴𝑒𝑞−68.1))
 

𝑁10 = 25.78 ∙ 𝑒(0.0647∙(𝐿𝐴𝑒𝑞−68.1))
 

 

𝜎′(𝑁) = 75.52 ∙ 𝑒(0.0591∙(𝐿𝐴𝑒𝑞−68.1)) 

𝑁1−12 = 11.58 ∙ 𝑒(0.0656∙(𝐿𝐴𝑒𝑞−68.1))
 

𝑇𝐸𝑇𝐶13−18 = 53.7 + 0.5980 ∙ (𝐿𝐴𝑒𝑞 − 68.1) 

 

  

 

These relationships were tested in the current work using VSG index database, by 

calculating the correlation coefficient r, the slope and intercept of the simple regression line 

drawn between predicted index values and index values stemming from VSG index database 

(Cf. Table 13). For a perfect prediction, r, slope and intercept have to be respectively equal to 

1, 1 and 0.  

 

Table 13: Results for Gille and Marquis-Favre’s relationships tested using VSG index 

database. p <0.001. 

Database used for the 

testing 

Index 

relationships 

Correlation 

coefficient 
Slope intercept 

aircraft noise 

(VSG) 

N  0.92  0.96  -5.08 

N10  0.97 0.96 -0.28 

σ’(N) 0.98  0.92 -3.64 

N1-12 0.83 1.08 15.26 

TETC13-18 0.84 0.29 33.29 

 

For a comparison of these results with the relationships proposed in the current study, the 

testing carried out in section 3.4.2 is expressed in Table 14 in terms of correlation coefficients 

between the predicted index values and the index values from the index database.  

 

Table 14: The current index relationships tested using VSG index database. p <0.001. 

Database used for the 

testing 

Index 

relationships 

Correlation 

coefficient 
Slope intercept 

aircraft noise 

(VSG) 

N  0.92 1.34  -10.64 

N10  0.97 0.78  5.71 

σ’(N) 0.98 1.35  -44.44  

N1-12 0.83 1.34 -4.41 

TETC13-18 0.84 0.87 24.43  

 

The comparison between Gille and Marquis-Favre’s relationships (2019) and the current 

proposed relationships, showed a similar prediction quality when they were both tested using 

a new index database. As in the case of road traffic noise index relationships from Gille and 

Marquis-Favre (2019), the current study has enabled the validity of the methodology proposed 

in Gille and Marquis-Favre (2019) to determine relationships between psychoacoustic indices 



 

and LAeq of noise sources to be pointed out. The good prediction quality of these relationships 

and the relationships proposed in the current work indicates their potential relevance to be 

used in field studies dealing with noise environment assessment such as soundscape or 

annoyance field studies. 

 

4. Testing of annoyance models from the literature 

 

4.1 Noise annoyance models from the literature under consideration 

The different noise annoyance models considered in this work stemmed from the 

literature. They were built using multilevel regression analysis, either from survey data, or 

from laboratory data. They are summarized with their respective references in the following 

subsections per type of transportation noise sources. 

 

4.1.1 Road traffic noise annoyance models from the literature 

A road traffic noise annoyance model based on Lden was tested in the current study, this 

model stemmed from (Miedema and Oudshoorn, 2001). The other road traffic noise 

annoyance models considered in this work were based on the different indices presented in 

section 3.2. They were built from annoyance and noise sensitivity data collected in laboratory 

conditions considering different simulated urban road traffic noise exposures (Gille and 

Marquis-Favre, 2019). The annoyance models are presented in Table 15 hereafter.  

 

Table 15: Lden-based model from (Miedema and Oudshoorn, 2001), and different urban road 

traffic noise annoyance models based on noise sensitivity and indices from (Gille and 

Marquis-Favre, 2019). Aj: noise annoyance response of the individual j; sensj: noise 

sensitivity of the individual j. 

 

Name of Models Index(ices)  Annoyance model equation 

Lden-based model Lden 𝐴𝑗=2.22∙Lden – 106.97 

LAeq rand LAeq 𝐴𝑗 = 1.31 + 0.54 ∙ 𝑠𝑒𝑛𝑠𝑗 + 0.34 ∙ (𝐿𝐴𝑒𝑞 − 56.3) 

N mod N 𝐴𝑗 = 2.25 + 0.47 ∙ 𝑠𝑒𝑛𝑠𝑗 + (0.35 + 0.05 ∙ 𝑠𝑒𝑛𝑠𝑗) ∙ (𝑁 − 5.67) 

URA mod URA 𝐴𝑗 = 2.32 + 0.50 ∙ 𝑠𝑒𝑛𝑠𝑗 + (0.67 + 0.09 ∙ 𝑠𝑒𝑛𝑠𝑗) ∙ (𝑈𝑅𝐴 − 4.74) 

LD rand N, σ’(N) 
𝐴𝑗 = 3.04 + 0.34 ∙ 𝑠𝑒𝑛𝑠𝑗 + 0.39 ∙ (𝑁 − 5.67) + 0.05 ∙ (𝜎’(𝑁)

− 33.49) 

URAD fix 
URA, 

σ’(N) 

𝐴𝑗 = 2.11 + 0.45 ∙ 𝑠𝑒𝑛𝑠𝑗 + 0.37 ∙ (𝑈𝑅𝐴 − 4.74) + 0.08 ∙ (𝜎’(𝑁)

− 33.49) 

 

4.1.2 Railway noise annoyance models from the literature 

A railway noise annoyance model based on Lden was considered in the current study, this 

model was proposed by Miedema and Oudshoorn (2001). Other railway noise annoyance 



 

models considered in this work were based on the different indices presented in section 3.3. 

These annoyance models were built from annoyance and noise sensitivity data collected in 

laboratory conditions, simulating tramway noise exposure (Trollé et al., 2014; Trollé et al., 

2015) or different railway noise exposures in urban areas (e.g. freight train, intercity train, 

suburban train, high-speed train (TGV) passing-by at low speed - Vallin et al., 2018). The 

model equations are presented in Table 16.  

 

Table 16: Lden-based model from (Miedema and Oudshoorn, 2001), and urban railway noise 

annoyance models based on noise sensitivity and different indices and proposed by Trollé et 

al. (2014; 2015) and Vallin et al. (2018). Aj: noise annoyance response of the individual j; 

sensj: noise sensitivity of the individual j. 
 

Name of 

Models 

Index(ices)  Annoyance model equation 

Lden-based 

model 

Lden 𝐴𝑗=2.10∙Lden - 110.09 

 

HF-Fluc. 

Duration 

 
Vallin et al. 

(2018) 

LAeq , 

𝑇𝐸𝑇𝐶16−24 , 
𝜎′(𝐿, 𝑇) 

𝐴𝑗 = 1.893 + 0.458 ∙ 𝑠𝑒𝑛𝑠𝑗 + (0.032 + 0.014 ∙ 𝑠𝑒𝑛𝑠𝑗)

∙ (𝐿𝐴𝑒𝑞 − 57.5) 

           + 0.08 ∙ (𝑇𝐸𝑇𝐶16−24 − 50) + 0.014 ∙ (𝜎′(𝐿, 𝑇) − 348.5) 

HF-Fluc. 

 
Vallin et al. 

(2018) 

LAeq , 
𝑇𝐸𝑇𝐶16−24 , 

𝐿𝑓𝑙𝑢𝑐 

𝐴𝑗 = 1.893 + 0.458 ∙ 𝑠𝑒𝑛𝑠𝑗 + (0.035 + 0.014 ∙ 𝑠𝑒𝑛𝑠𝑗)

∙ (𝐿𝐴𝑒𝑞 − 57.5) 

 + 0.084 ∙ (𝑇𝐸𝑇𝐶16−24 − 50) + 0.003 ∙ (𝐿𝑓𝑙𝑢𝑐 − 146.9) 

MTW 

 
Trollé et al. 

(2014;2015) 

LAeq , 

𝑇𝐸𝑇𝐶12−24 
  𝐴𝑗 = 1.98 + 0.431 ∙ 𝑠𝑒𝑛𝑠𝑗 + 0.158 ∙ (𝐿𝐴𝑒𝑞 − 57.5) 

+ 0.148 ∙ (𝑇𝐸𝑇𝐶12−24 − 46.1) 

 

 

4.1.3 Aircraft noise annoyance models from the literature 

For aircraft noise, the models under consideration in the current work were a model based 

on Lden proposed by (Miedema and Oudshoorn (2001), a model based on noise sensitivity and 

the day-night level, Ldn from (Miedema and Vos, 2003), and different annoyance models 

based on the different indices introduced in section 3.4. The latter were determined from 

annoyance and noise sensitivity data collected under laboratory conditions (Gille and 

Marquis-Favre, 2019) simulating noise exposures in cities close to international airports in 

France. Equations of all these models from the literature are given in Table 17. 

 

 

 

 



 

Table 17: Lden-based model from (Miedema and Oudshoorn, 2001), noise sensitivity and Ldn-

based model from (Miedema and Vos, 2003), and annoyance models based on noise 

sensitivity and indices (Gille and Marquis-Favre, 2019). Aj: noise annoyance response of the 

individual j; sensj: noise sensitivity of the individual j. 
 

Name of 

Models 

Index(ices)  Annoyance model equation 

Lden-based 

model 

Lden 𝐴𝑗=2.17∙Lden - 91.42 

 

Noise 

sensitivity 

and Ldn-based 

model 

Ldn 𝐴𝑗=2.41∙Ldn +0.0084 ∙ Ldn ∙sensj – 98.3 

LAeq rand LAeq   𝐴𝑗 = 2.03 + 0.30 ∙ 𝑠𝑒𝑛𝑠𝑗 + 0.21 ∙ (𝐿𝐴𝑒𝑞 − 49.3) 

N rand N  𝐴𝑗 = 2.89 + 0.24 ∙ 𝑠𝑒𝑛𝑠𝑗 + 0.39 ∙ (𝑁 − 7.05) 

N10 rand N10  𝐴𝑗 = 3.56 + 0.28 ∙ 𝑠𝑒𝑛𝑠𝑗 + 1.14 ∙ (𝑁10 − 5.18) 

𝜎’(N) mod 𝜎’(N) 𝐴𝑗 = 1.53 + 0.39 ∙ 𝑠𝑒𝑛𝑠𝑗 + (0.08 + 0.01 ∙ 𝑠𝑒𝑛𝑠𝑗)

∙ (𝜎′(𝑁) − 22.64) 

LMLHT fix N1-12, TETC13-18 𝐴𝑗 = 1.43 + 0.40 ∙ 𝑠𝑒𝑛𝑠𝑗 + 0.87 (𝑁1−12 − 2.67)

+ 0.06 (𝑇𝐸𝑇𝐶13−18 − 44.5) 

 

4.2 Testing of noise annoyance models using the French survey data 

Annoyance models from the literature and summarized in section 4.1. have been tested 

considering their respective equation displayed in Tables 15 to 17 and using the French survey 

data presented in section 2, without the constant aircraft noise exposure for PVP city (cf. 

section 2.3). For the model testing carried out in this work, the variable sensj in the literature 

models (Cf. Tables 15 to 17) was replaced by noise sensitivity measured during the survey. 

For the testing of Miedema and Vos‘s model (2003), the relation Lden = Ldn + 1.2 was used as 

the one considered in the literature (e.g. Miedema and Oudshoorn, 2001).  The variables given 

by the different psychoacoustic and noise indices (Cf. Tables 15 to 17) were estimated using 

the relationships proposed in section 3 and Lden from noise maps considered during the survey 

(Cf. section 2.3). For use of the relationships, an approximation as the one made in the 

literature (e.g. Nguyen et al., 2012) was done by replacing LAeq by values of Lden. This strong 

approximation concerns all short-term LAeq used in this study. 

Prediction quality of these noise annoyance models was assessed by calculating the 

correlation coefficient r, the slope and intercept of the simple regression line drawn between 

the predicted and the long-term noise annoyance measured during the survey. For a perfect 

prediction, r, slope and intercept have to be respectively equal to 1, 1 and 0. The results are 

presented in Table 18. 

 

 

 



 

Table 18: Testing of noise annoyance models from the literature, using measured noise 

sensitivity and Lden from the survey data. r: correlation coefficient between predicted and 

measured annoyance ratings. Slope and intercept from the line drawn between predicted and 

measured annoyance ratings. p <0.001. 
 

Models from the literature 

(Cf. Equations in Tables 15 

to 17) 

and numbers of respondents 

per noise exposure from the 

survey 

r between 

predicted and field 

measured 

annoyance 

  

Slope 

 

Intercept 

Road (702 respondents)    

Lden-based model 0.17 0.05 1.6 

LAeq rand 0.32 0.4 3.5 

N mod 0.34  0.9 7.7 

URA mod 0.33  0.8 6.9 

LD rand 0.26  0.6 8.6 

URAD fix 0.28 0.6 7.2 

Railway (611 respondents)    

Lden-based model 0.23  0.09 -0.8 

HF-Fluctuation Duration 0.42  0.3 4.9 

HF-Fluctuation 0.41  0.3 4.8 

MTW 0.35 0.4 8.8 

Aircraft (369 respondents)    

Lden-based model 0.21  0.9 23.6 

Noise sensitivity and Ldn-

based model 

0.26  1.3 33.4 

LAeq rand 0.45 0.2 3.6 

N rand 0.41 0.2 3.0 

N10 rand 0.28 0.5 11.5 

𝜎’(N) mod 0.43  0.4 2.8 

LMLHT fix 0.38  0.4 5.7 

 



 

For information, testing of the urban road traffic noise annoyance model, LD rand, based 

on noise sensitivity and σ’(N), led to the same prediction quality whatever the urban or the 

suburban road traffic noise relationship considered to estimate σ’(N) (Cf. the two proposed 

relationships for σ’(N) in Table 6). This was certainly due to the fact that the road traffic noise 

in the survey under consideration was mainly composed of urban road traffic noise, and thus 

less adapted to assess a potential benefit of σ’(N) relationship proposed for suburban road 

traffic noise. 

Comparison of the testing of the different literature models has overall highlighted that 

the models originally built in laboratory conditions, and involving noise sensitivity, 

psychoacoustic, noise indices such as short-term LAeq, display a better prediction quality 

compared to models solely based on the long-term mean-energy index Lden, and also to the 

model based on both noise sensitivity and Ldn for aircraft noise. The estimation of the different 

indices from Lden of the survey data seems then to be interesting for such an application of 

environmental noise impact assessment. The prediction quality of models solely based on Lden 

was expected thanks to the correlation coefficients obtained in section 2.4 between the survey 

variables. The prediction quality of the model based on both the energy-based index Ldn and 

noise sensitivity was expected to be higher due to the good correlation obtained in section 2.4 

between noise sensitivity and aircraft annoyance from the survey. In contrarily, the prediction 

quality of this model is close to the one of the model solely based on Lden. The same stands 

for the aircraft annoyance model based on the psychoacoustic index N10 and noise sensitivity: 

the perceived sound intensity (i.e. loudness) exceeded 10 % of the time does not bring a great 

improvement compared to Ldn used in a model also based on noise sensitivity. 

Comparison of the prediction quality among the different models based on noise 

sensitivity and psychoacoustic and noise indices has enabled to highlight differences between 

the different models proposed in the literature. For railway noise annoyance models, the 

model originally proposed for tramway noise (i.e. light train - Cf. Trollé et al., 2014; Trollé 

et al., 2015) has a weaker prediction quality than models proposed for various types of trains 

passing-by in urban areas (suburban train, intercity train, TGV at low speed, freight train). 

For urban road traffic noise, models based on LAeq or mean loudness of the pass-bys, or on 

URA, seem to be interesting for further use in field studies. For aircraft noise annoyance, 

models based on LAeq, mean loudness, or the temporal derivative of loudness σ’(N) of the 

flyovers, seem to be also interesting for further use in field studies. Concerning the 

comparison of aircraft and road traffic noise annoyance models based on noise sensitivity, it 

seems that their initial construction in laboratory conditions places the model based on both 

noise sensitivity and short-term LAeq of the noise sources (e.g. road vehicle traffic, aircraft fly-

overs) in the best ranking of the different models tested, even with LAeq index roughly 

approximated by Lden for the testing.  

 

5. Discussion 

 

This work proposed relationships between various indices and the A-weighted sound 

pressure level of different transportation noise sources. The various indices were 



 

psychoacoustic and noise indices highlighted in previous studies to be relevant to account for 

short-term annoyance assessed in laboratory conditions. Using an index database obtained 

from field audio recordings, construction and testing of the index relationships proposed in 

the current work were successful. Thus, the relationships might be useful in large-scale studies 

dealing with environmental noise assessment. In the current study, it was proposed to use 

these relationships to investigate the potential benefit of considering various psychoacoustic 

and noise indices in the long-term goal of enhancing the prediction of annoyance due to 

transportation noise. To achieve this goal, annoyance models from the literature based on 

noise sensitivity and these indices were under consideration. French survey data were used to 

assess the prediction quality of the annoyance models.  

The brief analysis of the survey data highlighted that 27.6% of the respondents declared 

themselves to be highly sensitive to noise, and 70% of them to be sensitive or highly sensitive 

to noise. These results were in line with findings from the literature (e.g. van Kamp et al., 

2004; Lechner et al., 2019b). Correlation coefficients between annoyance and Lden of the 

French survey were weak in comparison with some findings from the literature (e.g. Brink, 

2014), but they were in agreement with some results observed in the literature, even for wide 

ranges of Lden (e.g. results from the project HYENA dealing with road traffic noise annoyance 

in Athens and cited by Guski et al., 2017). From correlation analysis between annoyance and 

noise exposures of the French survey, it appeared that the ranking of the different 

transportation noise sources in terms of correlation coefficients was in agreement with the 

ranking of transportation noise sources in terms of explained variance calculated between 

annoyance and noise exposure from 41 surveys (Brink, 2014). Correlation coefficients 

between annoyance and noise sensitivity were in line with findings from the literature (e.g. 

Ryu and Jeon, 2011). These correlation coefficients were also in line with the structural 

equation analysis carried out on the data of this French survey, highlighting the great 

contribution of noise sensitivity to annoyance models (Cf. Gille et al., 2017). 

From the index database built from field audio recordings, the index relationships 

proposed in the current study were tested by cross-validation. Their testing highlights a good 

prediction quality. The index database has also enabled to test and validate the relationships 

proposed by Gille and Marquis-Favre (2019) to estimate psychoacoustic and noise indices 

from LAeq of road and aircraft noise sources by following a different approach for the 

relationship construction. Comparison of their approach and the one proposed in the current 

work was carried out by testing the respective relationships by cross-validation. The 

comparison highlights a similar good prediction quality of the respective relationships. These 

two approaches validated for different environmental noises might be of interest to be 

considered for other environmental noises (e.g. industrial noises, unmanned aerial vehicles, 

etc.) in order to estimate, from LAeq of the noise sources under study, various psychoacoustic 

and noise indices which might highlight relevant acoustic features of the noises. 

Testing of noise annoyance models using field data has highlighted that, for all 

transportation noise exposures, the models solely based on Lden from Miedema and Oudshoorn 

(2001) present smaller prediction quality than models based on noise sensitivity and various 

psychoacoustic and noise indices estimated from noise map Lden (Cf. Table 18). 



 

For urban road traffic noise annoyance, results obtained by Gille and Marquis-Favre 

(2019) highlighted that models based on psychoacoustic indices seemed to fit better to the 

laboratory data than a model based on LAeq and noise sensitivity. Actually, the model LD rand 

displayed a very good adjustment quality (see Gille and Marquis-Favre, 2019), but in the 

current work this model was not among the models with the best prediction quality when 

tested using field data. A possible reason of this weaker performance might be the fact that 

this model might suffer from a double effect of index approximation as it was based on two 

psychoacoustic indices and noise sensitivity compared to other models based on noise 

sensitivity and one estimated index only (Cf. Table 15). The weaker prediction quality for this 

tested model was in line with its prediction quality when tested using a smaller set of survey 

data in (Gille and Marquis-Favre, 2019). The same remark stands for the model URAD fix, 

also based on two psychoacoustic indices, in comparison with models based on noise 

sensitivity and one estimated index (e.g. mean loudness N or LAeq). In the results of the current 

testing, the model based on noise sensitivity and short-term LAeq of the noise sources, which 

seemed to have a relatively weak adjustment quality in laboratory conditions (Cf. Gille and 

Marquis-Favre, 2019) presents a good prediction quality and thus, might be interesting for 

future consideration in field studies. Such a result is in line with the findings from Gille and 

Marquis-Favre (2019) when the testing of this model using survey data was compared to the 

other proposed models. Loudness or URA indicator used with noise sensitivity within 

annoyance models also seems to be relevant to be considered in future field studies dealing 

with urban road traffic noise annoyance.  

For railway noise annoyance, the two models built in laboratory conditions for different 

types of trains passing-by in urban areas (intercity train, suburban train, etc. – Cf. Vallin et al. 

2018) seem to perform better than a model proposed for tramway pass-bys (Cf. Trollé et al. 

2014; Trollé et al. 2015), when they were tested using survey data including various types of 

trains in urban areas such as suburban train. One reason may be due to the fact that the light 

train noise due to tramway was not present in the survey area and the corresponding index 

database (Cf. section 3.1). It has to be highlighted that the different models based on noise 

sensitivity and various estimated psychoacoustic and noise indices accounting for annoying 

sensations perform better than a model solely based on Lden.  

For aircraft noise annoyance, the different noise annoyance models based on noise 

sensitivity and various psychoacoustic and noise indices lead to a better prediction quality 

than the model solely based on Lden (Miedema and Oudshoorn, 2001) and a model based on 

noise sensitivity and the day-night level Ldn (Miedema and Vos, 2003). It has to be highlighted 

that for aircraft noise, road traffic noise and railway noise, models based on noise sensitivity 

and Lden, and built by Gille et al. (2016b) from the current survey data, did not show a better 

adjustment quality than models solely based on Lden (Cf.  Gille et al., 2016b). Surprisingly, 

the aircraft annoyance model, based on noise sensitivity and the percentile loudness N10, does 

not display an interesting prediction quality. The aircraft annoyance model LMLHT fix, based 

on two psychoacoustic indices with the weakest adjustment quality in (Gille and Marquis-

Favre, 2019), appears to be interesting in terms of prediction quality when tested using survey 

data. Other models based on noise sensitivity and one index (short-term LAeq, mean loudness 

N, or its temporal derivative 𝜎’(N)) also show a good prediction quality.  



 

From this current attempt in the long-term goal of enhancing noise annoyance models by 

proposing relationships between psychoacoustic indices and LAeq of transportation noise 

sources, it seems relevant to consider noise sensitivity, the various indices and their related 

index relationships for future investigations in field studies dealing with annoyance model 

enhancement.  

A limitation of the work is, as mentioned earlier, due to the rough approximation of 

replacing short-term LAeq of noise events or of traffic by the long-term mean-energy index 

Lden. Such an extrapolation might be enhanced for some specific applications in soundscape 

or in field studies dealing with annoyance by defining expressions between short-term LAeq 

and noise map Lden for the areas studied. Another limitation of the current work might be the 

proposed index relationships with a validity limited to some study areas. Actually, the 

relationships have been built from audio recordings carried out in different cities close to 

Paris. Thus, their use for very different study areas (e.g. with different traffics, different 

topographies) would be an extrapolation. But the extrapolation can be estimated by 

considering new audio recordings and new testing of the index relationships. In case of no 

validity of the proposed relationships, new index relationships might be built from the new 

audio recordings following the methodology proposed and validated in the current work. 

Another limitation of the current study is to consider annoyance models built from laboratory 

data. But this limitation has allowed to highlight the good prediction quality of models built 

from short-term LAeq in comparison with models built from long-term index such as Lden or 

Ldn.  

Perspectives to this work would be to consider index relationships in order to build 

multilevel annoyance models based on noise sensitivity, psychoacoustic indices and short-

term LAeq from survey data with an important sample size, and then to test these new 

annoyance models using new sets of survey data in order to assess their prediction quality in 

comparison to the one of models solely based on Lden. This would allow to assess whether it 

would be a benefit to consider the various studied variables to enhance field annoyance 

prediction. 

 

6. Conclusion 

 

This study proposed a methodology to estimate different psychoacoustic and noise 

indices from the knowledge of the A-weighted equivalent sound pressure level of different 

transportation noise sources. For this estimation, a database of index values has been built 

from audio recordings of road traffic noise, railway noise, and aircraft noise in different 

French cities. From the index database, index relationships between LAeq of the transportation 

noise sources and various psychoacoustic and noise indices were determined, and tested by 

cross-validation. A good prediction quality of the index relationships, and the validity of the 

proposed methodology were highlighted. This might be of interest for field studies dealing 

with environmental noise assessment. In the current study, the index relationships were used 

to test noise annoyance models from the literature and based on noise sensitivity, various 

psychoacoustic and noise indices. The model testing considered survey data, with annoyance 



 

and noise sensitivity measured during a survey, and Lden from noise maps. The relationships 

proposed in this work enabled to estimate values of the different indices from Lden. The 

prediction quality of the annoyance models, based on noise sensitivity and the various indices, 

was satisfactorily compared with the prediction quality of noise annoyance models solely 

based on Lden, and of a model based on both noise sensitivity and aircraft day-night level, Ldn.  

This work points out the potential interest of the proposed methodology and index 

relationships in the investigation of enhancing noise annoyance models in future field studies, 

with the possibility to specifically establish index databases and index relationships for other 

study areas to account for different acoustic characteristics or different noise sources in these 

areas. 
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Appendix A: 95% confidence and prediction intervals 

 

 A.1 Road traffic noise index relationships  

For the built exponential relationships (Cf. Table 5 and Eq. (9)), variance and covariance 

matrix coefficients are needed to define both their confidence and prediction intervals. These 

matrix coefficients were obtained from the linear equations ln(index)=a+b*LAeq 

corresponding to each exponential equation. Coefficients of the covariance and variance 

matrix S of the linear equations were obtained using Statistica. The coefficients are given in 

Table A.1 for the exponential relationships obtained for the built index relationships for urban 

road traffic noise indices (Cf. their respective expression in Table 5), and for σ’(N) relationship 

given in Eq. (9) for the suburban road traffic noise. 

 

Table A.1. Coefficients of the variance (Var) and covariance (Covar) matrix S for the 

corresponding linear regression ln(index)=a+b∙LAeq of the index relationships obtained for 

urban road traffic noise (Cf. Table 5), and for σ’(N) relationship for the suburban road traffic 

noise (Cf. Eq. (9)). 

 

 

Regression 

coefficients (p<0.001) Coefficients of the symmetric matrix S 
 a b Var (a) Var(b) Covar(a,b) 

ln(N) -1.43 0.065 0.013 0.0000024 -0.0001747 



 

ln(URA) -1.69 0.061 0.015 0.0000029 -0.0002091 

ln(σ’(N)) 0.44 0.060 0.005 0.0000010 -0.0000691 

ln(σ’(N)) 

Cf. Eq.(9) 
-0,105 0.070 0,014 0,000003 -0,000212 

 

Prediction intervals for the linear equations classically correspond to confidence intervals 

with the additional term, the mean square error (MSE) value, an unbiased variance estimator. 

Both intervals take into account the variance and covariance matrix S. Thanks to the condition 

of constant standard deviation of ln(index), the 95% prediction intervals for the exponential 

equations are defined as follows: 

𝑌𝑛𝑙 = exp(𝑚𝑒𝑎𝑛(𝑎) + 𝑚𝑒𝑎𝑛(𝑏) ∙ 𝐿𝐴𝑒𝑞) ∙ exp (±1.96 ∙ √𝑿𝑻 ∙ 𝑺 ∙ 𝑿 + 𝑀𝑆𝐸) (A.1) 

 

A.2 Railway noise index relationships  

For both the 95% confidence and prediction intervals of the built railway noise index 

relationships and based on the rationale described in annex A.1, the coefficients of the 

variance and covariance matrix of linear equation Y=a+b∙LAeq are given in Table A.2. 

 

Table A.2. Coefficients of the variance (Var) and covariance (Covar) matrix S for 

linear equation Y=a+b*LAeq for the different built index relationships.  

 

 

Regression 

coefficients (p<0.05) Coefficients of the matrix S 
 a b Var (a) Var(b) Covar(a,b) 

TETC 12 24  -10.61 1.35 15.54 0.002594 -0.20045 

TETC 16 24  28.3 0.70 167.47 0.028 -2.160 

ln(Lfluc) 3.12 0.031 0.390558 0.000065 -0.005038 

ln(σ’(L,T)) 4.57 0.003 0.095738 0.000016 -0.001235 

 

A.3 Aircraft noise index relationships  

For both the 95% confidence and prediction intervals of the built aircraft noise index 

relationships and based on the rationale described in annex A.1, the coefficients of the 

variance and covariance matrix of linear equation Y=a+b∙LAeq are given in Table A.3. 

 

Table A.3. Coefficients of the variance (Var) and covariance (Covar) matrix S for 

linear equations Y=a+b∙LAeq for the different built index relationships.  

 

 

Regression 

coefficients (p<0.05) Coefficients of the matrix S 
 a b Var (a) Var(b) Covar(a,b) 

ln(N)  -2.30 0.075 0.000116 0.000002 -0.000015 

ln(N10) -0.53 0.056 0.003242 0.000002 -0.000075 

ln(σ’(N)) -0.53 0.072 0.00299 0.000002 -0.000068  
ln(N1-12) -1.77 0.065 0.004659 0.00003 -0.000376  



 

TETC 13 - 18 -36.17 1.78 0.012098 58.6 -0.83907 
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