
HAL Id: hal-04284178
https://hal.science/hal-04284178

Preprint submitted on 12 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Influenciæ: A library for tracing the influence back to
the data-points

Agustin Martin Picard, Lucas Hervier, Thomas Fel, David Vigouroux

To cite this version:
Agustin Martin Picard, Lucas Hervier, Thomas Fel, David Vigouroux. Influenciæ: A library for
tracing the influence back to the data-points. 2023. �hal-04284178�

https://hal.science/hal-04284178
https://hal.archives-ouvertes.fr

Influenciæ
A library for tracing the influence back to the

data-points

Agustin Picard∗1,2, Lucas Hervier∗1,2, Thomas Fel2,3,4, David Vigouroux1,2

1Institut de Recherche Technologique Saint-Exupery
2Artificial and Natural Intelligence Toulouse Institute
3Carney Institute for Brain Science, Brown University

4Innovation & Research Division, SNCF

Abstract

In today’s AI-driven world, understanding model behavior is becoming more
important than ever. While libraries abound for doing so via traditional XAI
methods, the domain of influence-based techniques for data-centric explanations
remains mostly underserved. To fill this void, we introduce Influenciæ, an open-
source library that implements the state-of-the-art methods for estimating the
influence of training points on the model, with a focus on efficiency and scalability
to fit the needs and the recent trends in the field. Finally, we have thoroughly
documented and included plenty of tutorials to make the library reachable to the
public, in the hopes that it will bring these methods back into the spotlight.

1 Introduction

In the rapidly evolving landscape of artificial intelligence, eXplainable AI (XAI) has emerged
as a critical domain, bridging the gap between the opacity of complex models and the need for
transparency and accountability. The importance of XAI cannot be overstated, particularly as AI
systems become increasingly integrated into various facets of our daily lives, from healthcare to
finance and beyond. To ensure the widespread adoption of AI in these critical domains, it is imperative
to not only build highly accurate models but also to gauge their reliability and interpretability. In
this pursuit, traditional XAI techniques offer a plethora of post-hoc methods for understanding
predictions [16, 7, 40, 10, 21, 41, 32, 38, 34, 28, 33, 25, 12, 24, 35, 26, 36]. What if we could directly
trace model behavior back to the training data itself?

The first reference to using a notion of the influence of training data in the model’s implemented
function as a means to explain the behavior of deep neural networks dates back to [18], where Koh &
Liang proposed a technique to approximately compute influence functions without needing to re-train
the model – one of the major setbacks of (approximate) leave-k-out techniques. This allowed them
to attribute some of the model’s predictions to the presence of certain “influential” data-points in
the training dataset. However, as any approximation, it comes with some limitations [6, 3, 29], and
other alternatives have since been released with the promise of improving on their results. Namely,
in [39], the authors propose to use the representer point theorem for kernels to re-write the function
implemented by the neural network as a kernel decomposed in a sum of the effects of each of the
training data-points, and use the coefficient associated to each of them as a notion of their influence
on the actual model. Nevertheless, this procedure requires the training of a surrogate model at the last
layer, thus potentially limiting the faithfulness of the method. As a response to this, an improvement
was devised in [37], where this was no longer required.

Preprint.

Figure 1: Influenciæ. Our library implements a plethora of influence-based methods for attributing
model behavior to training data (see Table 1). We showcase how we can find the most influential
points for a wrong prediction from the Imagenette subset of the ILSVRC [9] dataset, and thus, better
understand why the model got it wrong. These examples can be separated in two classes: Proponents
whose presence in the training set helps lower the loss on the sample under study; and Opponents that
increase the model’s loss – i.e. confuse the model. For a complicated test sample labeled as Chainsaw
but predicted as Golf ball, we observe that the main opponents are images of chainsaws where the
blade isn’t quite visible, while the proponents contain mostly images of golf balls in different settings.

In yet another vein, [15] introduced another approach to approximating leave-one-out (LOO) and
used it as a way of extracting insights from the training dataset. In particular, they propose to train
a linear model to predict a quantity related to an set of neural networks based on the presence of a
point (or group of points) on the choice of the subsample of the training dataset.

Nonetheless, all the aforementioned methods suffer from a high computational and memory costs,
and this can be exacerbated if their implementation is not correctly optimized. For instance, there are
several ways of approximately computing the product of the inverse of a given matrix and a vector
without needing to materialize the matrix in memory [23, 2, 30] that demand some knowledge on how
auto-differentiation frameworks work to obtain the most optimized implementations. Additionally,
dealing with very large datasets can be quite cumbersome, as the amount of elements that need to
be stored in memory can be quite important, and thus why lazy and batched computations can help
lessen memory requirements.

In summary, our contribution addresses the pressing need for readily available and open-source,
reliable AI models and methods to measure their reliability. From the point of view of post-hoc,
attribution, feature visualization and concept-based XAI, this has already been (at least, partially)
addressed via some well-known libraries [11, 20, 17, 22], but, to the best of our knowledge, this has
not been the case for influence-based techniques. Thus, we introduce Influenciæ, an open-source
Python package optimized for TensorFlow models that implements most of the prominent methods
for computing data influence in the literature, complemented with documentation and a set of user-
friendly tutorials that walk users through the process of getting started with our library. The essence
of our library is schematized in Fig. 1. We hope that this library will make data-attribution methods
more accessible to everyone in the community.

2

Figure 2: Illustrating Influence functions. For a linear regression problem defined by the dataset
constituted by the blue data-points and an eventual held-out red data-point, we can compute the
influence function for two different cases of held-out points, yielding two different perturbed models.
For the red point on the left, due to its position (outlier), its influence will be much higher than that of
a data-point that’s close to other points, and thus, provide a model that’s much more different than in
the other case. This can be quantified by the Cook’s distance – i.e. the influence values – and estimate
the importance of each of these red data-points in the model.

2 Attributing model behavior through data influence

The idea behind influence is that provided with a data point, a model, and all the other data used in
constructing the model, the Influence Function quantifies the extent to which the data contributed
positively or negatively to the current state or behavior of the model. To illustrate this, let’s consider
the entirety of data points presented in Figure 2 and the resulting estimator, symbolized by the blue
line – a common outcome for both scenarios. However, if one chooses to retain the distinctive red
data point from the training dataset, the estimator takes on a new form—the red curve. This stark
contrast becomes evident when observing the two graphs (right and left). Depending on the specific
data point held out during the model’s training phase, the resulting machine learning model can
exhibit significantly divergent behavior compared to when trained on the complete dataset. The
influence vector associated with the excluded data point provides valuable insights into the disparity
between the perturbed model and the original one. Additionally, it offers guidance by indicating
the "direction" in which the perturbed model moved with respect to the original model when the
data-point was held out from the training dataset.

In this section, we aim to comprehensively cover all the methods that we implemented in the
toolkit, introducing each one with technical details and highlighting their advantages and drawbacks.
For any end-user familiar with the different techniques at stake, a summary is provided in Table 1.

2.1 Notation

Throughout the paper, each one of the methods will explain a machine learning model h : X →
Y , with X and Y being respectively the input and output domain. In particular, this model is
parameterized by the weights θ ∈ Θ ⊆ Rd. If not specified otherwise, h is trained on a training
dataset Dtrain ⊂ (X × Y) of size n to minimize a loss function ℓ : (X ,Y,Θ) → R. We denote a
sample by the tuple z = (x, y)| x ∈ X , y ∈ Y . When an index subscript as i or j is added, e.g. zi, it
is assumed that zi belongs to the training dataset. If the subscript "test" is added, ztest, the sample does
not belong to the training data. When there is no subscript, the sample can either belong to the training
data or not. Finally, the empirical risk function is denoted as L(θ) := 1

n

∑
(x,y)∈Dtrain

ℓ(x, y, θ) =
1
n

∑
zj∈Dtrain

ℓ(zj , θ), the parameters that minimized this empirical risk as θ∗ := argminθ L(θ)
and an estimator of θ∗ is denoted θ̂.

3

Influence Calculator
Paper Method Name Object name in Influenciae

[18] First Order Influence Function (Eq. 2) FirstOrderInfluenceCalculator [C, T]
[4] RelatIF (Eq. 3) FirstOrderInfluenceCalculator [C, T]
[19] First Order Group Influence FirstOrderInfluenceCalculator [C, T]
[6] Second Order Group Influence SecondOrderInfluenceCalculator [C, T]
[39] RPS-L2 (Eq. 4) RepresenterPointL2 [C, T]
[37] RPS-LJE (Eq. 5) RepresenterPointLJE [C, T]
[27] TracIn (Eq. 6) TracIn [C, T]
[30], [2] Arnoldi Iteration Influence Functions ArnoldiInfluenceCalculator [C, T]
Inverse Hessian Vector Product
Paper Method Name Object name in Influenciae

N/A Exact computation ExactIHVP [C]
[1] LiSSA LissaIHVP [C]
[23] Conjugate Gradient Descent ConjugateGradientIHVP [C]

Table 1: Summary of the methods available in the Influenciæ library. The techniques for
computing influence – i.e. InfluenceCalculators and inverse-hessian-vector products (IHVPs)
that we have implemented in the library thus far. The C and T captions following the object name
are clickable link to respectively the source code and the tutorial (if available). We showcase some
examples in Fig. 3.

2.2 Influence functions

Influence functions originated from the field of robust statistics in the early 70s. In essence, they
evaluate the change of a model’s parameters as one up-weights a training sample by an infinitesimal
amount ϵ [13]: θ̂ϵ,zj := argminθ L(θ) + ϵℓ(zj , θ). One way to estimate the change in a model’s
parameters of a single training sample would be to perform leave-one-out (LOO) retraining, that is,
to train the model again with the sample of interest being held out of the training dataset. However,
repeatedly re-training the model to retrieve the parameters’ changes exactly can be computationally
prohibitive, especially when the dataset size and/or the number of parameters grows. As removing a
sample zj can be linearly approximated by up-weighting it by ϵ = − 1

n , computing influence helps
to estimate the change of a model’s parameters if a specific training point was removed. Thus, by
making the assumption that the empirical risk L is twice-differentiable and strictly convex with
respect to the model’s parameters θ – making the Hessian Hθ̂ := 1

n

∑
zi∈Dtrain

∇2
θℓ(zi, θ̂) positive

definite –, Cook & Weisberg [8] proposed to compute the influence of zj on the parameters θ̂ as:

I(zj) := −H−1

θ̂
∇θℓ(zj , θ̂) (1)

Later, Koh and Liang [18] popularized influence functions in the machine learning community as
they took advantage of auto-differentiation frameworks to efficiently compute the hessian for Deep
Neural Networks (DNNs) and derived Eq. 1 to formulate the influence of up-weighting a training
sample zj on the loss at a test point ztest:

IF(zj , ztest) := −∇θℓ(ztest, θ̂)
TH−1

θ̂
∇θℓ(zj , θ̂) (2)

[18] in Influenciae

This approach is the one implemented in the Influenciae library as the FirstOrderInfluence-
Calculator object. One can discover more in the Source Code and the dedicated Tutorial.

This formulation opens its way into example-based XAI as it compares to the study of finding the
nearest neighbors of ztest in the training dataset – i.e. the most similar examples – albeit with two
major differences: i) points with high training loss are given more influence revealing that outliers

4

https://github.com/deel-ai/influenciae/blob/main/deel/influenciae/influence/first_order_influence_calculator.py
https://colab.research.google.com/drive/1WlYcQNu5obhVjhonN2QYi8ybKyZJl4iY?usp=sharing
https://github.com/deel-ai/influenciae/blob/main/deel/influenciae/influence/first_order_influence_calculator.py
https://colab.research.google.com/drive/1WlYcQNu5obhVjhonN2QYi8ybKyZJl4iY?usp=sharing
https://github.com/deel-ai/influenciae/blob/main/deel/influenciae/influence/first_order_influence_calculator.py
https://colab.research.google.com/drive/1WlYcQNu5obhVjhonN2QYi8ybKyZJl4iY?usp=sharing
https://github.com/deel-ai/influenciae/blob/main/deel/influenciae/influence/second_order_influence_calculator.py
https://colab.research.google.com/drive/1qNvKiU3-aZWhRA0rxS6X3ebeNkoznJJe?usp=sharing
https://github.com/deel-ai/influenciae/blob/main/deel/influenciae/rps/rps_l2.py
https://colab.research.google.com/drive/17W5s30LbxABbDd8hbdwYE56abyWjSC4u?usp=sharing
https://github.com/deel-ai/influenciae/blob/main/deel/influenciae/rps/rps_lje.py
https://colab.research.google.com/drive/14e7wwFRQJhY-huVYmJ7ri355kfLJgAPA?usp=sharing
https://github.com/deel-ai/influenciae/blob/main/deel/influenciae/trac_in/tracin.py
https://colab.research.google.com/drive/1E94cGF46SUQXcCTNwQ4VGSjXEKm7g21c?usp=sharing
https://github.com/deel-ai/influenciae/blob/main/deel/influenciae/influence/arnoldi_influence_calculator.py
https://colab.research.google.com/drive/1rQU33sbD0YW1cZMRlJmS15EW5O16yoDE?usp=sharing
https://github.com/deel-ai/influenciae/blob/main/deel/influenciae/common/inverse_hessian_vector_product.py
https://github.com/deel-ai/influenciae/blob/main/deel/influenciae/common/inverse_hessian_vector_product.py
https://github.com/deel-ai/influenciae/blob/main/deel/influenciae/common/inverse_hessian_vector_product.py
https://github.com/deel-ai/influenciae/blob/main/deel/influenciae/influence/first_order_influence_calculator.py
https://colab.research.google.com/drive/1WlYcQNu5obhVjhonN2QYi8ybKyZJl4iY?usp=sharing

can dominate the model’s parameters [18], and ii) H−1

θ̂
measures what Koh & Liang called: the

resistance of the other training points to the removal of zj [18].

2.2.1 Inverse hessian vector product

It should be noted that hessian computation remains a significant challenge. Although one could
perform the exact computation of the hessian and then invert it, it can computationally prohibitive as
it requires second order derivatives to be calculated for all the target weights, and the inversion is
typically O(n3). Thus, the library includes several methods to estimate the inverse-hessian-vector
product (IHVP) in Eq. 2. As suggested in [18], the stochastic estimation via [1] (LiSSA: Linear time
Stochastic Second-order Algorithm) or through conjugate gradient descent [23] are implemented.
Furthermore, it also includes the Arnoldi algorithm [2] as it is performed by Schioppa et al. in [30]
(in which they also compare the three approaches).

IHVP in Influenciae

The library includes all the aforementioned IHVP: ExactIHVP,
ConjugateGradientDescentIHVP [23] and LissaIHVP [1]. Those three objects
can be used as a parameter for InfluenceCalculator needing to perform IHVP. The Arnoldi
algorithm [2] is also implemented but it is directly embedded in its own InfluenceCalculator:
ArnoldiInfluenceCalculator [30]. One can discover more concerning the IHVP operators
in the Source Code.

2.2.2 RelatIF

As highlighted by Barshan et al. [4], the influential instances yielded by Eq. 2 tend to overlap for
vastly different test samples due to the overpowering effect of the influence of the most influential
training samples over the test samples. To overcome this issue, they suggest putting constraints on
the re-weighting of influential instances by normalizing the formulation in 2:

RelatIF(z, ztest) :=
Iup,loss(z, ztest)
||H−1

θ̂
∇θℓ(z, θ̂)||

(3)

[4] in Influenciae

By setting the parameter normalize of the FirstOrderInfluenceCalculator to true at initial-
ization, one is actually using RelatIF. One can discover more in the Source Code and the
dedicated Tutorial.

2.2.3 Group influence

Oftentimes, we are not only interested in the influence of individual instances but rather in the
influence of a group of training samples (e.g. mini-batch effect, multi-source data, etc., as per [19].).
Koh et al. [19] propose to utilize the sum of individual influences, and demonstrate that this constitutes
a reliable proxy for ranking groups based on their influence.

[19] in Influenciae

As this approach is derived from [18], you can compute the influence of a group of data
points using the same FirstOrderInfluenceCalculator object but using a method dedicated
to group influence. One can discover more in the Source Code and the dedicated Tutorial.

However, this approximation leads to large absolute and relative errors. In addition, Basu et al. [6]
point out that such approximations ignore possible cross-correlations between samples in the group.
Thus, they suggest studying second-order approximations instead "to capture model changes when a
potentially large group of training samples is up-weighted".

5

https://github.com/deel-ai/influenciae/blob/main/deel/influenciae/common/inverse_hessian_vector_product.py
https://github.com/deel-ai/influenciae/blob/main/deel/influenciae/influence/first_order_influence_calculator.py
https://colab.research.google.com/drive/1WlYcQNu5obhVjhonN2QYi8ybKyZJl4iY?usp=sharing
https://github.com/deel-ai/influenciae/blob/main/deel/influenciae/influence/first_order_influence_calculator.py
https://colab.research.google.com/drive/1WlYcQNu5obhVjhonN2QYi8ybKyZJl4iY?usp=sharing

[6] in Influenciae

This work is encapsulated in the SecondOrderInfluenceCalculator object of the library.
One can discover more in the Source Code and the dedicated Tutorial.

However, it should be highlighted that their formulation can be computationally demanding, and they
specify that it holds for linear prediction models where the underlying optimization is convex, but
could eventually break in the case of DNNs. In a later work, Basu et al. [5] further investigated the
most appropriate settings for reliably computing such influence scores from a theoretical standpoint.

2.3 Kernel-based influence

Besides influence functions, other paradigms exist for finding the training examples that are the most
responsible for a given set of predictions. For instance, Yeh et al. [39] suggest an approach that
leverages kernels and the representer point theorem [31] "which loosely states that under certain
conditions, the minimizer of a loss functional over a reproducing kernel Hilbert space (RKHS) can be
expressed as a linear combination of kernel evaluations at training points". Therefore, they decide
to focus on explaining only the pre-activation prediction layer of a neural network Φ(xi, θ) := θ1fi
with θ1 the parameters of the last classification layer and fi the last intermediate layer feature for
input xi. Considering these last notations, they posit that if θ̃ constitutes a stationary point of the
optimization problem: argminθ{L(θ) + λ||θ1||2} for some λ > 0, then it is possible to compute
the representer value for ztest given z as follows:

RPSL2(z, ztest) :=
1

−2λn

∂ℓ(z, θ)

∂Φ(x, θ)
∗ fTz fztest = α(z) ∗ κ(z, ztest) , (4)

where α(z) = 1
−2λn

∂ℓ(z,θ)
∂Φ(x,θ) and κ(z, ztest) = fTz fztest . This representer value is the quantity that will

define as the influence of an instance, with its sign providing additional insights: positive representer
values are excitatory while negative ones are inhibitory to the prediction at the given test point. Note
that α(z) could be used as an importance measure of the training sample z on θ1.

[39] in Influenciae

This approach can be reproduced with Influenciae by using the RepresenterPointL2 object.
One can discover more in the Source Code and the dedicated Tutorial.

On one hand, this formulation has the significant advantage of being less memory intensive to
compute as it does not require the computation of hessian matrices. On the other hand, it suffers
on crucial drawback: it works only for models that perform a linear matrix multiplication before
the final activation and one needs to introduce a heavy L2 regularization on the last layer of the
model during the optimization phase, thus one cannot explain the behavior of pre-trained models.
One workaround for the latter can be to retrain a regularized model while imposing some closeness
between the retrained model’s outputs and the original one’s.

However, Sui et al. [37] state that, despite the similarity between these two models’ outputs, disagree-
ments between the two can still exist. Moreover, they point out that the previous approach tends
to yield a static ranking of training samples for test points in the same class providing more of a
class-level explanation rather than an instance-level explanation. In order to overcome those issues
they suggest a derivation for Representer Point Selection (RPS) based on a Local Jacobian Taylor ex-
pansion (LJE). In practice, they suppose that they have a model θ̂ such that:

∑n
i=1

∂ℓ(zi,θ̂)
∂θ1

|θ1=θ̂1
≃ 0.

By taking a one-step gradient ascent from the trained model they obtain θ∗1 , which is supposed to be
close to the original model’s parameters θ̂1, but with a small shift in the loss’s landscape. With the
help of a first-order Taylor expansion they propose to rewrite Eq. 4 as:

RPSLJE(z, ztest) := θ∗1
1

fzn
− 1

n
H−1

θ∗
1

∂ℓ(z, θ∗)

∂Φ(x, θ∗)
∗ κ(z, ztest) (5)

6

https://github.com/deel-ai/influenciae/blob/main/deel/influenciae/influence/second_order_influence_calculator.py
https://colab.research.google.com/drive/1qNvKiU3-aZWhRA0rxS6X3ebeNkoznJJe?usp=sharing
https://github.com/deel-ai/influenciae/blob/main/deel/influenciae/rps/rps_l2.py
https://colab.research.google.com/drive/17W5s30LbxABbDd8hbdwYE56abyWjSC4u?usp=sharing

Figure 3: An example of all the methods available in Influenciae in application. For each test sample,
we applied 2 different techniques and plotted the 3 most influential Proponent samples – whose
presence in the training set helps lower the loss on the sample under study; and the 3 most influential
Opponent samples – whose presence confuses the model.

[37] in Influenciae

One can leverage this derivation through the RepresenterPointLJE class. One can discover
more in the Source Code and the dedicated Tutorial.

While they need the same assumptions as [18] – i.e. that ℓ be twice differentiable and strictly convex –
they only require them with respect to the last linear layer’s parameters θ1. In addition, their approach
only requires one step of gradient ascent, compared to a possible retraining with RPS-L2, but they
need stronger assumptions mainly because of the hessian.

2.4 Tracing influence throughout the training process

Another popular approach for identifying influential instances involves leveraging training dynamics
– which in practice is done by replaying the training process with model checkpoints in a post-hoc

7

https://github.com/deel-ai/influenciae/blob/main/deel/influenciae/rps/rps_lje.py
https://colab.research.google.com/drive/14e7wwFRQJhY-huVYmJ7ri355kfLJgAPA?usp=sharing

fashion. Mainly, such approaches rely neither on being near optimality nor being strongly convex,
which is more realistic considering the reality of DNNs.

Pruthi et al. [27] propose to save only model checkpoints θti , and with that information, they
decompose the difference between the loss of the data-point under study at the end of training
compared to at the beginning of training along the path taken by the training process. Supposing that
one has k checkpoints θ[t1], ..., θ[tk] corresponding to iterations t1, ..., tk and that the step size ηi is
kept constant between checkpoints i− 1 and i we can use the following as an influence measure:

TracInCP (z, ztest) =

k∑
i=1

ηi∇θl(z, θ
[ti]).∇θl(ztest, θ

[ti]) (6)

[27] in Influenciae

Influenciae provides a simple TracIn object to allow one to replicate this method. One can
discover more in the Source Code and the dedicated Tutorial.

It should be noted that this formulation is also derived for the SGD optimization process in mini-
batches, but it can be adjusted to work for other optimization techniques and training processes. The
main advantage of this technique relies on its simplicity (compared to [14]) while being empirically
demonstrated as efficient as RPSL2 (Eq. 4) [39] or IF (Eq. 2) [18]. Nonetheless, this kind of approach
requires handling the training procedure to save the different checkpoints, potentially numerous,
which in practice is not always feasible.

3 API

With the ever growing size of datasets and models, the most memory-efficient way of computing
influence-related quantities is possibly to take advantage of lazy and batched computations as
implemented in the tensorflow.data.Dataset module. This is why we have built Influenciæin
such a way as to operate entirely via Tensorflow Datasets. Starting from the observation that the
influence score/vector of a sample has meaning only by comparing it with other samples of a
dataset, all core functions of the Influenciælibrary take as an argument a dataset and return a dataset
that the user can iterate over to extract the influence score or the influence vector. All methods
implemented in the library inherit from the BaseInfluenceCalculator class which contains all
the core functionality.

from deel.influenciae.common import InfluenceModel , ExactIHVP
from deel.influenciae.influence import FirstOrderInfluenceCalculator

Extract the end of the model defined by the target layer
influence_model = InfluenceModel(model , target_layer , loss_function)

Create the influence calculator from the model with the exact ihvp
ihvp_calculator = ExactIHVP(influence_model , train_dataset)
influence_calculator = FirstOrderInfluenceCalculator(influence_model ,

train_dataset , ihvp_calculator)

Return a dataset containing the self influence score for each point
of the training dataset
data_and_influence_dataset = influence_calculator.

compute_influence_values(train_dataset)

Oftentimes, the samples associated with the highest or smallest values of influence score can reveal
outliers of the distribution or mislabeled samples, thus abnormal model behaviour. In addition, one
could be interested in retrieving the training samples most responsible for the prediction of a given
test sample. For all these cases, the API provides a top_k function to retrieve the most "relevant"
samples.

8

https://github.com/deel-ai/influenciae/blob/main/deel/influenciae/trac_in/tracin.py
https://colab.research.google.com/drive/1E94cGF46SUQXcCTNwQ4VGSjXEKm7g21c?usp=sharing

For a given dataset to explain , this function will return a dataset
containing the top_k closest samples of the training set
of each sample to explain
explanation_ds = influence_calculator.top_k(samples_to_explain ,

train_ds.batch (32), k=5, order=ORDER.DESCENDING)

Finally, the API provides save and load arguments to avoid recomputing each time the influence’s
values.

The argument save_top_k_ds_path allows to save the result of top_k
explanation_ds = influence_calculator.top_k(samples_to_explain ,

train_ds.batch (32), k=5, order=ORDER.DESCENDING ,
save_top_k_ds_path="./ my_path/")

4 Conclusion

The year 2017 brought along a wave of interest in influence functions and data-centric approaches for
understanding model behavior. This interest peaked a little later, but, due to their computational cost,
these techniques have never really gotten the opportunity to catch up to other types of explanations
in terms of popularity and use by the general public. We believe that by providing an efficient
implementation in a popular auto-differentiation framework, we can facilitate their usage, and thus,
hopefully reignite the initial flame of data-centric explanations.

5 Acknowledgements

This work has benefited from the AI Interdisciplinary Institute ANITI, which is funded by the French
“Investing for the Future – PIA3” program under the Grant agreement ANR-19-P3IA-0004. The
authors gratefully acknowledge the support of the DEEL1 project.

1https://www.deel.ai/

9

https://www.deel.ai/

References
[1] Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimization for

machine learning in linear time. Journal of Machine Learning Research, 2017.

[2] Walter E. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue
problem. Quarterly of Applied Mathematics, 1951.

[3] Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger B Grosse. If influence
functions are the answer, then what is the question? NeurIPS, 2022.

[4] Elnaz Barshan, Marc-Etienne Brunet, and Gintare Karolina Dziugaite. Relatif: Identifying
explanatory training samples via relative influence. In AISTATS, 2020.

[5] S Basu, P Pope, and S Feizi. Influence functions in deep learning are fragile. In ICLR, 2021.

[6] Samyadeep Basu, Xuchen You, and Soheil Feizi. On second-order group influence functions
for black-box predictions. In ICML, 2020.

[7] Julien Colin, Thomas Fel, Rémi Cadène, and Thomas Serre. What i cannot predict, i do not
understand: A human-centered evaluation framework for explainability methods. Advances in
Neural Information Processing Systems (NeurIPS), 2021.

[8] R Dennis Cook and Sanford Weisberg. Residuals and influence in regression. New York:
Chapman and Hall, 1982.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[10] Thomas Fel, Thibaut Boissin, Victor Boutin, Agustin Picard, Paul Novello, Julien Colin, Drew
Linsley, Tom Rousseau, Rémi Cadène, Laurent Gardes, et al. Unlocking feature visualization
for deeper networks with magnitude constrained optimization. arXiv preprint arXiv:2306.06805,
2023.

[11] Thomas Fel, Lucas Hervier, David Vigouroux, Antonin Poche, Justin Plakoo, Remi Cadene,
Mathieu Chalvidal, Julien Colin, Thibaut Boissin, Louis Béthune, Agustin Picard, Claire
Nicodeme, Laurent Gardes, Gregory Flandin, and Thomas Serre. Xplique: A deep learning
explainability toolbox. 2022.

[12] Ruth C Fong and Andrea Vedaldi. Interpretable explanations of black boxes by meaningful
perturbation. In Proceedings of the IEEE international conference on computer vision, pages
3429–3437, 2017.

[13] Frank R Hampel. The influence curve and its role in robust estimation. JASA, 1974.

[14] Satoshi Hara, Atsushi Nitanda, and Takanori Maehara. Data cleansing for models trained with
sgd. NeurIPS, 2019.

[15] Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry.
Datamodels: Predicting predictions from training data. In ICML, 2022.

[16] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.
Interpretability beyond feature attribution: Quantitative testing with concept activation vectors
(tcav). In International conference on machine learning, pages 2668–2677. PMLR, 2018.

[17] Janis Klaise, Arnaud Van Looveren, Giovanni Vacanti, and Alexandru Coca. Alibi explain:
Algorithms for explaining machine learning models. Journal of Machine Learning Research,
22(181):1–7, 2021.

[18] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
In NeurIPS, 2017.

[19] Pang Wei W Koh, Kai-Siang Ang, Hubert Teo, and Percy S Liang. On the accuracy of influence
functions for measuring group effects. NeurIPS, 2019.

10

[20] Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsallakh, Jonathan
Reynolds, Alexander Melnikov, Natalia Kliushkina, Carlos Araya, Siqi Yan, and Orion Reblitz-
Richardson. Captum: A unified and generic model interpretability library for pytorch, 2020.

[21] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
Advances in neural information processing systems, 30, 2017.

[22] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems 30, pages 4765–4774. Curran
Associates, Inc., 2017.

[23] James Martens. Deep learning via hessian-free optimization. In ICML, 2010.

[24] Paul Novello, Thomas Fel, and David Vigouroux. Making sense of dependence: Efficient black-
box explanations using dependence measure. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

[25] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill, 2017.
https://distill.pub/2017/feature-visualization.

[26] Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for explanation
of black-box models. arXiv preprint arXiv:1806.07421, 2018.

[27] Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. NeurIPS, 2020.

[28] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 1135–1144, 2016.

[29] Andrea Schioppa, Katja Filippova, Ivan Titov, and Polina Zablotskaia. Theoretical and practical
perspectives on what influence functions do. arXiv preprint arXiv:2305.16971, 2023.

[30] Andrea Schioppa, Polina Zablotskaia, David Vilar, and Artem Sokolov. Scaling up influence
functions. In AAAI, 2022.

[31] Bernhard Schölkopf, Ralf Herbrich, and Alex J Smola. A generalized representer theorem. In
EuroCOLT, 2001.

[32] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based
localization. In Proceedings of the IEEE international conference on computer vision, pages
618–626, 2017.

[33] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. In In Workshop at International
Conference on Learning Representations. Citeseer, 2014.

[34] Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju. Fooling
lime and shap: Adversarial attacks on post hoc explanation methods. In Proceedings of the
AAAI/ACM Conference on AI, Ethics, and Society, pages 180–186, 2020.

[35] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smooth-
grad: removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

[36] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving
for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

[37] Yi Sui, Ga Wu, and Scott Sanner. Representer point selection via local jacobian expansion
for post-hoc classifier explanation of deep neural networks and ensemble models. In NeurIPS,
2021.

[38] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pages 3319–3328. PMLR, 2017.

11

[39] Chih-Kuan Yeh, Joon Kim, Ian En-Hsu Yen, and Pradeep K Ravikumar. Representer point
selection for explaining deep neural networks. NeurIPS, 2018.

[40] Ruihan Zhang, Prashan Madumal, Tim Miller, Krista A Ehinger, and Benjamin IP Rubinstein.
Invertible concept-based explanations for cnn models with non-negative concept activation
vectors. arXiv preprint arXiv:2006.15417, 2020.

[41] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2921–2929, 2016.

12

	Introduction
	Attributing model behavior through data influence
	Notation
	Influence functions
	Inverse hessian vector product
	RelatIF
	Group influence

	Kernel-based influence
	Tracing influence throughout the training process

	API
	Conclusion
	Acknowledgements

