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Introduction

Increasing human pressure on the ocean is causing unprecedented impacts on marine ecosystems [START_REF] O'hara | At-risk marine biodiversity faces extensive, expanding, and intensifying human impacts[END_REF]. Overfishing is the main driver of change (IPBES, 2019) and threatens sustainable fisheries. Marine Protected Areas (MPAs) are an area-based management tool that is expected to deliver both conservation and fisheries benefits [START_REF] Reimer | Benefits and gaps in area-based management tools for the ocean Sustainable Development Goal[END_REF]. MPAs that are well-managed, well-enforced and with strict enough protection levels accrue fish size, abundance and biomass within their borders [START_REF] Edgar | Global conservation outcomes depend on marine protected areas with five key features[END_REF][START_REF] Zupan | Marine partially protected areas: drivers of ecological effectiveness[END_REF]). These conservation benefits can increase with the time of protection (Claudet et al. 2008) and be exported outside protected areas via recruitment subsidy and spillover, and hence support fisheries [START_REF] Pelc | Detecting larval export from marine reserves[END_REF][START_REF] Harrison | Larval export from marine reserves and the recruitment benefit for fish and fisheries[END_REF][START_REF] Lorenzo | Spillover from marine protected areas to 16 adjacent fisheries has an ecological and a fishery component[END_REF], 2020).

Networks of MPAs are touted to balance conservation and fisheries benefits of MPAs by limiting the size of MPAs and/or offering a spatial configuration that can reduce fishers' displacement costs to unprotected areas of the network in between MPAs [START_REF] Roberts | Effects of Marine Reserves on Adjacent Fisheries[END_REF][START_REF] Grorud-Colvert | Marine protected area networks: Assessing whether the whole is greater than the sum of its parts[END_REF].

While fishable areas within MPA networks are expected to benefit the most from larval dispersal and spillover (two components of connectivity) from the networked MPAs [START_REF] Barceló | Projecting the timescale of initial increase in fishery yield after implementation of marine protected areas[END_REF], they also receive most of the displaced fishing effort [START_REF] Halpern | Cofounding effects of the export of production and the displacement of fishing effort from marine reserves[END_REF]). Fisheries benefits outside individual MPAs [START_REF] Pelc | Detecting larval export from marine reserves[END_REF][START_REF] Harrison | Larval export from marine reserves and the recruitment benefit for fish and fisheries[END_REF][START_REF] Lorenzo | Spillover from marine protected areas to 16 adjacent fisheries has an ecological and a fishery component[END_REF] or outside MPA networks [START_REF] Hastings | Comparing designs of marine reserves for fisheries and for biodiversity[END_REF][START_REF] Gaines | Designing marine reserve networks for both conservation and fisheries management[END_REF][START_REF] Harrison | A connectivity portfolio effect stabilizes marine reserve performance[END_REF]) have been extensively studied. However less attention, if any, has been given in distinguishing the potential synergistic effects of networked MPAs inside a network and the overall effect outside the network. This implies comparing the relative ecological and fisheries outcomes of networks on unprotected areas between MPAs with those on unprotected areas further away from the area subject to protection.

Another component influencing conservation and fisheries outcomes of MPA networks is the level of protection (a classification based on the potential impacts on species size and number, and on habitats, of allowed activities with an MPA; Horta e [START_REF] Horta E Costa | A regulation-based classification system for Marine Protected Areas (MPAs)[END_REF]. Full and high protection levels confer the largest conservation benefits [START_REF] Zupan | Marine partially protected areas: drivers of ecological effectiveness[END_REF][START_REF] Grorud-Colvert | The MPA Guide: A framework to achieve global goals for the ocean[END_REF]).

Since the level of protection regulates the amount of fishing pressure that can remain within partially protected areas, it also drives the amount of displaced fishing pressure outside those protected areas. The highest levels of protection are mostly implemented in residual areas [START_REF] Devillers | Reinventing residual reserves in the sea: Are we favouring ease of establishment over need for protection?[END_REF]. In areas under higher rates of fishing pressure, the majority of MPAs are of lower protection levels (sensu Horta e Costa et al. 2016), largely allowing fishing activities within their borders (Dureuil et al. 2018;[START_REF] Claudet | Underprotected Marine Protected Areas in a Global Biodiversity Hotspot[END_REF]. Globally, the majority of MPAs do not offer high protection (Pelc et al., in press).

Here, using a metapopulation model of a demersal coastal species experiencing overharvesting [START_REF] Belharet | Extending full protection inside existing marine 13 protected areas, or reducing fishing effort outside, can reconcile conservation and fisheries goals[END_REF]), we compare the potential conservation (standing biomass) and fisheries (catch) outcomes through time of a set of non-spatial and spatial management scenarios: i) setting catch limits; ii) implementing large MPAs; iii) implementing networks of MPAs of smaller size. For each scenario, we assess how the conservation and fisheries outcomes are mediated by the level of protection (or of catch limit) and connectivity (in this work represented by larval dispersal), in different locations.

Methods

Metapopulation model

We use an age-structured, discrete-time and spatially explicit metapopulation model of the white seabream, Diplodus sargus (Linnée 1758), developed by [START_REF] Belharet | Extending full protection inside existing marine 13 protected areas, or reducing fishing effort outside, can reconcile conservation and fisheries goals[END_REF] to assess the effects of alternative configurations of management scenarios on conservation and fisheries outcomes.

The metapopulation model describes the key biological traits and processes influencing the demographic dynamics of this demersal coastal species (i.e., reproduction, larval dispersal, recruitment, body growth, sexual maturation, natural and fishing mortality). It explicitly considers connectivity among different sub-populations with larval dispersal. Due to the limited vagility of white seabream adults [START_REF] Franco | Linking home ranges to protected area size: The case study of the Mediterranean Sea[END_REF], adult displacement between cells is not represented in the model (see Supporting Information for details on model description).

The model is first calibrated (see Supporting Information) and run for 100 years to reach equilibrium before starting the simulations described below. Our study area covers the coastal area located between latitudes 41.8-42.6 and the longitude 3.10-3.77. The spatial resolution is about 2 x 2 km (i.e., one grid cell of the model, for a total of 86 cells).

We build n=3 networks of six MPAs (each MPA is represented by one grid cell). The three networks are implemented at different locations to cover the whole study area and to better account for the spatial variability due mainly to larval connectivity. The MPAs composing each network are separated in space by unprotected cells (see Supporting Information for details on modeled networks).

Management scenarios

We create an overfishing context by increasing the fishing mortality rate that left 10% of the total unexploited biomass remaining (Worm et al. 2009, see Supplementary Information). We assess and compare potential conservation and fisheries outcomes by running several management scenarios in the overfished context (presented below) and in the non-overfished context (fishing mortality rate set as in Belharet et al., 2020, results presented in Supporting Information). Each management scenario is systematically compared with its associated control scenario, i.e., a scenario with the same parameters but where neither spatial nor non-spatial management is implemented. Management scenarios are the following (Figure 1, Table 1):

• non-spatial fishery management, in which catch limits are modelled through an evenly distributed reduction in fishing mortality (across all 86 cells);

• implementation of a large MPA (6 cells in a spatially contiguous arrangement);

• implementation of a network of MPAs (6 MPAs of one cell, non-adjacent to each other).

To assess how each management scenario can be mediated by levels of protection, we model the following configurations:

• full protection: 100% reduction of fishing mortality in protected areas (large MPAs or networked MPAs). The equivalent fishing mortality is evenly redistributed in the adjacent unprotected cells;

• three levels of partial protection: respectively 75% (strong protection), 50% (intermediate protection) and 25% (low protection) reduction of fishing mortality in protected areas. The equivalent fishing mortality is redistributed in the adjacent unprotected cells;

• non-spatial scenarios: the three levels of reduced fishing mortality (strong, intermediate and low) are not concentrated in 6 protected cells but evenly distributed across all 86 cells. Each management scenario is tested with the previous levels of protection (4 simulations per scenario). Simulations are run over a period of 40 years preceded by a period without protection of 4 years (before and after impact data). Control simulations are run over a period of 44 years (Figure 1, Table 1).

As we are also interested in understanding if the ability of MPA networks to deliver both conservation and fisheries benefits is dependent on the network's connectivity, we test an additional group of simulations where the connectivity matrix is modified to exclude larval exchanges among network's cells in both managed and control scenarios (Figure 1, Table 1, "unconnected network"). We assess the impact of each management scenario in different locations by defining focal areas, described in Figure 1.

Statistical analysis

We use a meta-analytical approach [START_REF] Hedges | The meta-analysis of response ratio in experimental ecology[END_REF] to assess the effectiveness of each management measure. First, we calculate effect sizes to compare each test simulation T with the corresponding control simulation C. The effect size associated with scenario i is calculated as the log-response ratio R of biomass (or catch) in each area 𝑗 and in each year 𝑘 with respect to the corresponding control scenario:

𝑅 𝑖,𝑗,𝑘 = 1 𝑛 ∑ ln ( 𝑋 𝑇 𝑖,𝑗,𝑘,𝑛 𝑋 𝐶 𝑖,𝑗,𝑘,𝑛 ) 𝑘 𝑗 .
where 𝑛 is the number of spatial replicates for scenario i; 𝑋 𝑇 𝑖,𝑗,𝑘,𝑛 and 𝑋 𝐶 𝑖,𝑗,𝑘,𝑛 are the total biomass or catch in all cells of area j and year k, in test T and control C simulations, respectively.

For each effect size 𝑅 𝑖,𝑗,𝑘 , 95% confidence intervals were calculated as:

𝐶𝐼 𝑅 𝑖,𝑗,𝑘 = 𝑅 𝑇 𝑖,𝑗,𝑘 ± 𝑢 𝛼/2 * √ 𝑆 𝑇 𝑖,𝑗,𝑘 2 𝑛 ;
where 𝑢 is the two-tailed critical value of the standard normal distribution at the significance level 𝛼, and 𝑆 𝑇 𝑖,𝑗,𝑘 2 is the variance associated with the effect size in area 𝑗 and in year 𝑘.

All the analyses are carried out using the statistical software R (R Core Team, 2020).

Results

Implementation of non-spatial fishery management scenarios (scenario T0, Figure 1), with reductions in fishing mortality evenly distributed throughout the region rather than concentrated in protected cells, leads to negligible differences in total biomass or total catch compared to the control scenario (Figures 2 and3).

Implementation of large fully protected MPAs (scenario T1, Figure 1) results in overall average increases of about 90% in biomass (R = 0.64 ± 0.11, Table S4) and 60% in catch (R = 0.47 ± 0.10, Table S5) across the whole region, after 40 years of protection. This is due to a 877% increase in biomass inside the fully protected area (R = 2.28 ± 0.16, Table S4), and a 65% increase in biomass (R = 0.52 ± 0.12, Table S4) and about the same increase in catch (R = 0.51 ± 0.12, Table S5) outside the fully protected area (Figure 2 and 3). Overall gains in biomass and catch decrease as levels of protection decrease (Figure 2), with only full protection and the two most restrictive levels of partial protection providing long-term increases in biomass and catch across the region (Figure 2 and 3). Inside the partially protected areas, catches first decline, with the largest catch losses associated with the strongest levels of protection (Figure 3). Then, catches recover between 5 and 15 years of protection, for low and high levels of protection, respectively, reaching higher values than those without protection (Figure 3). Implementation of connected networks of fully protected MPAs leads to similar increases, in biomass (both inside the protected areas and outside the networks), and catch (outside the networks) as in the large fully protected MPAs scenarios (Figure 2 and3). In the unprotected areas in between networked MPAs, there is first a slight decrease in biomass, compared to the absence of protection, but biomass then starts to be larger, resulting in a 30% increase after 40 year of protection (R = 0.25 ± 0.04, Table S4). Catch also increases over the same period, compared to the case without the implementation of a network of fully protected areas, to almost a 50% increase (R = 0.40 ± 0.06, Table S5) after 40 years of protection. These gains in biomass and catch in fishable areas in between the fully protected networked MPAs are higher than those observed outside the large fully protected areas. Biomass and fisheries benefits in all three areas decrease with decreasing levels of protection. Benefits in catch are only observed for full and the two most restrictive (strong and intermediate) levels of partial protection (Figures 2 and3).

In the absence of connectivity (scenario T3, Figure 1), no biomass or catch benefits are observed in unprotected areas between the MPAs of the network (Figures 2 and3). Within MPAs, biomass gains are similar to those of connected networks.

In a non-overfished situation, biomass increases inside connected MPAs follow the same dynamics as in the overfished situation but with a smaller magnitude of increase (R = 1.17 ± 0.01 after 40 years of full protection, Table S4).

Discussion

Here, we assessed for the first time the relative contribution of different levels of protection in MPA networks to conservation and fisheries outcomes for a commercially exploited demersal coastal fish. Although our results are species-specific, the general patterns that emerge are also potentially valid for other coastal species characterized by low mobility of adult life stages. We showed that networks of partially protected areas can effectively support both fisheries and conservation, with benefits increasing with the level of protection. We also confirm the role of connectivity for the fisheries effectiveness of a network of MPAs, emphasizing the importance of distinguishing unprotected areas in between MPAs from those further away.

Our most compelling result is that protection level matters not only for conservation outcomes but also for fisheries outcomes. For conservation, stronger protection levels generate higher biomass, as observed in recent empirical studies [START_REF] Zupan | Marine partially protected areas: drivers of ecological effectiveness[END_REF][START_REF] Turnbull | Evaluating the social and ecological effectiveness of partially protected marine areas[END_REF]). For fisheries outcomes, time matters. Gains in catch are not only linked to biomass gains, but also to the spatial dynamics of fisheries. For all levels of protection, the initial decrease in catch is short and quickly offset by the increase in biomass. Thus, after a few years, even with lower fishing pressure in the MPAs, catches are at least equivalent to what they would have been without protection.

Inside MPAs, patterns of response to protection are very similar for the three spatial management scenarios. After a rapid increase in biomass -about 10 years for fully protected MPAs and 15 years for partially protected MPAsgains tend to stabilize after 20 years of protection, as also evidenced by empirical studies on other demersal species [START_REF] Macneil | Recovery potential of the world's coral reef fishes[END_REF][START_REF] Magris | Effectiveness of Large-Scale Marine Protected Areas in the Atlantic Ocean for Reducing Fishing Activities[END_REF][START_REF] Ferreira | Drivers of ecological effectiveness of marine protected areas: A meta-analytic approach from the Southwestern Atlantic Ocean (Brazil)[END_REF]). In the non-overfished situation, the increase in biomass for full and partial protection (from 20% to 240%) is comparable to that reported in the literature on similar reef-associated demersal species in the Mediterranean [START_REF] Giakoumi | Ecological effects of full and partial protection in the crowded Mediterranean Sea: a regional meta-analysis[END_REF] or globally [START_REF] Zupan | Marine partially protected areas: drivers of ecological effectiveness[END_REF]). In the overfished situation, biomass increases for full (+800%) and partial protection (from 30 to 300%) are larger, because the rate of change in fish biomass is higher when reducing fishing mortality inside MPAs by a large proportion. These results are consistent with those of [START_REF] Ziegler | External fishing effort regulates positive effects of no-take marine protected areas[END_REF], who showed that MPAs response ratio increase in heavily fished situations, simply because of high deterioration of stocks outside MPAs.

Outside MPAs, full and high protection levels lead to a notable increase in biomass (+25% to +75%), slightly higher with an MPA network than with a large MPA. In our study, MPAs can become saturated by adults due to their limited displacement. Single large MPAs generate large numbers of larvae that are mainly retained within the protected area, but do not all become adults due to density dependence [START_REF] Melià | Protection reveals density-dependent dynamics in fish populations: A case study in the central Mediterranean[END_REF]. In a network, MPAs are interspersed with fished areas that can benefit from contributions from several surrounding MPAs, and where larvae can survive to become adult fish that can then be caught [START_REF] Hastings | Comparing designs of marine reserves for fisheries and for biodiversity[END_REF].

Between MPAs of a connected network, positive conservation and fisheries outcomes appear after 10 years of protection for full and strong protection levels. First, MPAs generate larval subsidies that can offset the loss of biomass caused by fishing effort displacement and, subsequently, sustain fisheries [START_REF] Cowen | Scaling of Connectivity in Marine Populations[END_REF], representing the ecological and fisheries benefits of spillover, respectively [START_REF] Lorenzo | Spillover from marine protected areas to 16 adjacent fisheries has an ecological and a fishery component[END_REF]. Fisheries benefits from MPA networks have been demonstrated before for full protection (Le [START_REF] Port | Temperate marine protected area provides recruitment subsidies to local fisheries[END_REF]. [START_REF] Barceló | Projecting the timescale of initial increase in fishery yield after implementation of marine protected areas[END_REF] estimated that benefits would appear 8-18 years after ecological benefits inside MPAs. Here, we show for the first time that those benefits can occur, over a similar period, also with a strong protection level. In the unconnected network, however, the overall gains in catch and biomass are lower than in a connected network. Larval exchanges within the network can compensate for biomass offset between MPAs and benefit fisheries in those areas. While previous empirical and modelling studies have shown how spillover of adults and export of larvae from single MPAs can contribute to fisheries [START_REF] Gell | Benefits beyond boundaries: the fishery effects of marine reserves[END_REF][START_REF] Lorenzo | Spillover from marine protected areas to 16 adjacent fisheries has an ecological and a fishery component[END_REF], 2020;[START_REF] Port | Temperate marine protected area provides recruitment subsidies to local fisheries[END_REF], fisheries benefits within fishable areas of networks have never been studied specifically. When such areas have been included in models [START_REF] Hastings | Comparing designs of marine reserves for fisheries and for biodiversity[END_REF] or when studies have evaluated the magnitude of networks' fisheries benefits [START_REF] Fovargue | Size and spacing rules can balance conservation and fishery management objectives for marine protected areas[END_REF], the impact of fishing displacement has been overlooked and thus the export benefits might also have been overestimated. While [START_REF] Pelc | Detecting larval export from marine reserves[END_REF] showed that larval export from networked MPAs can be large enough to offset mortality due to displaced fishing effort, they did not specifically focus on the dynamics of fish biomass in unprotected areas between networked

MPAs. Here, we show that alternating unprotected fished areas with MPAs could be a key solution to optimize the export of benefits from MPAs for the most restrictive protection levels.

We have shown that, in the case of overfishing, spatial management outperforms non-spatial management when comparing cases of similar overall reduction in fishing mortality, as also evidenced elsewhere [START_REF] Rassweiler | Marine protected areas and the value of spatially optimized fishery management[END_REF][START_REF] Carvalho | Optimized fishing through periodically harvested closures[END_REF]). In the case of spatial management, the reduction in fishing mortality is concentrated inside MPAs and thus locally higher than in the non-spatial management scenario with the same overall reduction of fishing pressure but distributed throughout the modelled area. Inside MPAs, even when partially protected, fish increase in size and produce more larvae as propagule production increases disproportionately to the size of spawners [START_REF] Marshall | Underestimating the benefits of marine protected areas for the replenishment of fished populations[END_REF]). These larval subsidies can thus support fisheries outcomes by being exported from the protected areas towards the unprotected areas [START_REF] Rassweiler | Marine protected areas and the value of spatially optimized fishery management[END_REF][START_REF] Harrison | A connectivity portfolio effect stabilizes marine reserve performance[END_REF], and contributing to the persistence of meta populations [START_REF] Almany | Local replenishment of coral reef fish populations in a marine reserve[END_REF][START_REF] Saenz-Agudelo | Connectivity dominates larval replenishment in a coastal reef fish metapopulation[END_REF]. In contrast, in non-spatial management scenarios, reducing fishing mortality in each cell might not be sufficient to provide population-wide benefits in an overfished situation. Comparing the overall effectiveness of different spatial management scenarios, it appears that large MPAs and networks of MPAs can deliver similar conservation and fisheries benefits when networks are connected through larval dispersal. MPAs that are not connected by larval dispersal result in suboptimal, underperforming MPA networks [START_REF] Rassweiler | Marine protected areas and the value of spatially optimized fishery management[END_REF].

Our inferences are based on a number of assumptions. First, as detailed in Supporting Information, we developed our model using the characteristics of a typical temperate demersal coastal species.

However, our results should remain valid to a broad range of overfished species [START_REF] Costello | Status and Solutions for the World's Unassessed Fisheries[END_REF][START_REF] Carvalho | Optimized fishing through periodically harvested closures[END_REF]. Coastal areas are often places where fishing pressure is high and where space is a limiting factor, so where connected networks of fully protected areas such as those developed here could prove most useful. Further developments of our model could aim to better capture the behavior of pelagic species with large movements or to account for the population implications of time-at-risk when species cross MPA boundaries (Villegas-Ríos et al.

2021

). Second, we did not consider density-dependent spillover. Thus, our model might underestimate fisheries benefits and overestimate conservation benefits. Third, we used an average larval connectivity matrix to represent larval export. Several studies have shown that larval behavior produces spatial and temporal variability in connectivity patterns [START_REF] Cowen | Larval Dispersal and Marine Population Connectivity[END_REF][START_REF] Bode | Successful validation of a larval dispersal model using genetic parentage data[END_REF]). Nevertheless, the connectivity portfolio effect [START_REF] Harrison | A connectivity portfolio effect stabilizes marine reserve performance[END_REF] suggests that MPA networks' emergent properties may provide overall stability in larval supply.

Finally, to reduce complexity, we only use one single size for each of the six MPAs that are part of a network, and one single size (six times larger) for the large MPA. Including size as a continuous variable could help better inform MPA network planning [START_REF] Fovargue | Size and spacing rules can balance conservation and fishery management objectives for marine protected areas[END_REF]. Future developments of our model could include, among other aspects, multi-species interactions, influence of habitat heterogeneity, or fishing effort increase within MPAs boundaries [START_REF] Magris | Effectiveness of Large-Scale Marine Protected Areas in the Atlantic Ocean for Reducing Fishing Activities[END_REF].

In a world of increasing tension between conservation and resource use, there is a need to identify and improve sustainable management scenarios with multiple social and ecological outcomes.

Currently, the two main global strategies for implementing marine conservation consist of establishing few very large (often remote) fully or partially protected areas [START_REF] Lubchenco | Making waves: The science and politics of ocean protection[END_REF] or many smaller partially protected areas with often insufficient protection levels to deliver conservation benefits [START_REF] Claudet | Underprotected Marine Protected Areas in a Global Biodiversity Hotspot[END_REF] 
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 2 Figure 2. Simulated dynamics of effect sizes (log-ratio of the biomass in test simulation compared to their respective control simulation) in the whole region (first column), in each focal area (inside large MPA or inside networked MPAs, between networked MPAs, and outside large MPA or MPA network), for each set of simulations (non-spatial management, large MPA, connected MPA network, unconnected MPA network).
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 3 Figure 3. Simulated dynamics of effect sizes (log-ratio of the catch in test simulation compared to their respective control simulation) in the whole region (first column), in each focal area (inside large MPA or inside networked MPAs, between networked MPAs, and outside large MPA or MPA network), for each set of simulations (non-spatial management, large MPA, connected MPA network, unconnected MPA network).

  Description of the simulations used to evaluate the effectiveness of non-spatial management scenarios (T0) and spatial management scenarios (T1, T2, T3) at delivering conservation and fisheries outcomes, compared to unmanaged control scenarios (C1, C2). same proportion of fishing mortality for each cell in the model Connected network (T1) Activation of the MPA network the 5th year Larval connectivity activated Large MPA (T2) Activation of the large MPA the 5th year The large MPA has a surface equivalent to the total area covered by all the MPAs considered in scenario T1 Unconnected network (T3) Activation of the MPA network the 5th year Larval connectivity disactivated within the network

  

  

  

  . Our results show that a non-mutually exclusive third path is possible in areas where fisheries displacement costs are high. Networks of connected fully protected areas can reduce displacement costs while still delivering positive conservation and fisheries outcomes. Increases in catch are preceded by a short-term decrease that calls for the identification of mechanisms to compensate for those short-term losses. Our findings provide novel evidence that can support decision making in designing network of MPAs that reconcile conservation and fisheries goals.
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